WO2019208489A1 - 電磁波透過性金属光沢物品 - Google Patents

電磁波透過性金属光沢物品 Download PDF

Info

Publication number
WO2019208489A1
WO2019208489A1 PCT/JP2019/017003 JP2019017003W WO2019208489A1 WO 2019208489 A1 WO2019208489 A1 WO 2019208489A1 JP 2019017003 W JP2019017003 W JP 2019017003W WO 2019208489 A1 WO2019208489 A1 WO 2019208489A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
layer
electromagnetic wave
metallic luster
article according
Prior art date
Application number
PCT/JP2019/017003
Other languages
English (en)
French (fr)
Inventor
太一 渡邉
孝洋 中井
暁雷 陳
秀行 米澤
幸大 宮本
将治 有本
正義 片桐
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201980027678.XA priority Critical patent/CN112020424A/zh
Priority to KR1020207029951A priority patent/KR20210005586A/ko
Priority claimed from JP2019080623A external-priority patent/JP7319078B2/ja
Publication of WO2019208489A1 publication Critical patent/WO2019208489A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/18Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00

Definitions

  • the present invention relates to an electromagnetic wave transparent metallic luster article.
  • members having electromagnetic wave transparency and metallic luster have been suitably used for devices that transmit and receive electromagnetic waves because they have both a high-quality appearance derived from the metallic luster and electromagnetic wave transparency.
  • a metallic luster article that combines both luster and electromagnetic wave transmission, in which a cover member of a millimeter wave radar mounted on the front part of an automobile such as a front grill and an emblem is decorated.
  • Millimeter wave radar transmits millimeter wave electromagnetic waves (frequency: about 77 GHz, wavelength: about 4 mm) to the front of the car, receives reflected waves from the target, and measures and analyzes the reflected waves. The distance, target direction, and size can be measured. The measurement result can be used for inter-vehicle measurement, automatic speed adjustment, automatic brake adjustment, and the like. Since the front part of the automobile in which such a millimeter wave radar is arranged is a so-called automobile face and is a part that gives a large impact to the user, it is preferable to produce a high-class feeling with a metallic glossy front decoration.
  • This kind of metallic luster article is not only a millimeter wave radar but also various devices that require communication, for example, automobile door handles with smart keys, in-vehicle communication devices, mobile phones, electronic devices such as personal computers, etc.
  • the application of is expected.
  • IoT technology application in a wide range of fields such as household appliances such as refrigerators, daily life equipment, etc., which has not been conventionally performed, is expected.
  • Patent Document 1 discloses a resin product including a metal coating made of chromium (Cr) or indium (In).
  • This resin product includes a resin base material, an inorganic base film containing an inorganic compound formed on the resin base material, and glitter and discontinuity formed on the inorganic base film by physical vapor deposition.
  • a metal film made of chromium (Cr) or indium (In) having a structure is included.
  • Patent Document 1 As an inorganic base film, in Patent Document 1, (a) a thin film of a metal compound, for example, a titanium compound such as titanium oxide (TiO, TiO 2 , Ti 3 O 5 etc.); silicon oxide (SiO, SiO 2 etc.), nitriding Silicon compounds such as silicon (Si 3 N 4 etc.); aluminum compounds such as aluminum oxide (Al 2 O 3 ); iron compounds such as iron oxide (Fe 2 O 3 ); selenium compounds such as selenium oxide (CeO); oxidation Zircon compounds such as zircon (ZrO); zinc compounds such as zinc sulfide (ZnS), etc. (b) coating films of inorganic paints such as silicon and amorphous TiO z (and other metal compounds exemplified above) as main components An inorganic coating film is used.
  • a metal compound for example, a titanium compound such as titanium oxide (TiO, TiO 2 , Ti 3 O 5 etc.); silicon oxide (SiO, Si
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2009-298006
  • Patent Document 3 discloses an electromagnetic wave transmission property in which a metal film layer is formed on a base material sheet, and cracks are generated by performing heat treatment while applying tension to the base material sheet. A method for producing a metal film decorative sheet is described.
  • the metal layer in such a metallic luster article is configured as a metal layer including a plurality of parts that are discontinuous with each other in at least a part of the island structure or the like in order to ensure electromagnetic wave permeability, the surface area , And therefore tends to be oxidized.
  • the metal layer is oxidized, the metallic luster is lost. Therefore, a metallic luster article in which oxidation of the metal layer is suppressed has been desired.
  • This invention is made
  • One aspect of the present invention includes a base, a metal layer formed on the base, and a barrier layer formed on a surface of the metal layer opposite to the base.
  • the metal layer includes:
  • the present invention relates to an electromagnetic wave transmissive metallic luster article including a plurality of portions that are discontinuous with each other at least in part.
  • an indium oxide-containing layer is further provided between the base and the metal layer.
  • the indium oxide-containing layer is preferably provided in a continuous state.
  • the indium oxide-containing layer is made of either indium oxide (In 2 O 3 ), indium tin oxide (ITO), or indium zinc oxide (IZO). It is preferable to include.
  • the thickness of the indium oxide-containing layer is preferably 1 nm to 1000 nm.
  • one aspect of the electromagnetic wave transmissive metallic luster article of the present invention further includes a barrier layer formed between the metal layer and the substrate.
  • the barrier layer is made of at least one oxide, nitride, carbide, oxynitride, oxycarbide, oxycarbide, and oxynitride carbide of metal and semimetal. It is preferable to include at least one selected from the group consisting of
  • the barrier layer preferably contains at least one selected from the group consisting of AZO, ITO, AlO x , and SiO 2 .
  • the thickness of the metal layer is preferably 10 nm to 100 nm.
  • the ratio of the thickness of the metal layer to the thickness of the indium oxide-containing layer is 0. .02 to 100 may be used.
  • the sheet resistance is preferably 100 ⁇ / ⁇ or more.
  • the plurality of portions may be formed in an island shape.
  • the metal layer is made of aluminum (Al), zinc (Zn), lead (Pb), copper (Cu), silver (Ag), or an alloy thereof. It is preferable that
  • the substrate is preferably any one of a base film, a resin molded article base, a glass base, or an article to be provided with a metallic luster.
  • FIG. 1 is a schematic cross-sectional view of an electromagnetic wave transmissive metallic luster article according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an electromagnetic wave transmissive metallic luster article according to an embodiment of the present invention.
  • FIG. 3 is an electron micrograph of a metal layer of an electromagnetic wave transmissive metallic luster article according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of an electromagnetic wave transmissive metallic luster article according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of an electromagnetic wave transmissive metallic luster article according to an embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of an electromagnetic wave transmissive metallic luster article according to an embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of an electromagnetic wave transmissive metallic luster article according to an embodiment of the present invention.
  • FIG. 8 is a view for explaining a method for measuring the film thickness of the metal layer of the electromagnetic wave transmissive metallic luster article according to an embodiment of the present invention.
  • FIG. 9 is a view showing a transmission electron micrograph (TEM image) of a cross section of a metal layer in one embodiment of the present invention.
  • TEM image transmission electron micrograph
  • FIG. 1 shows a schematic cross-sectional view of an electromagnetic wave transmissive metallic luster article (hereinafter referred to as “metallic luster article”) 1 according to an embodiment of the present invention
  • FIG. 3 shows a metallic luster article according to an embodiment of the present invention.
  • the electron micrograph (SEM image) of the metal layer of 1 is shown.
  • FIG. 9 shows a transmission electron micrograph (TEM image) of a cross section of the island-shaped metal layer 12 in one embodiment of the present invention.
  • the metallic luster article 1 includes a base 10 and a metal layer 12 formed on the base 10. Further, it further includes a barrier layer 13 formed on the surface of the metal layer opposite to the substrate side.
  • the metal layer 12 is formed on the substrate 10.
  • the metal layer 12 includes a plurality of portions 12a. These portions 12a in the metal layer 12 are at least partially discontinuous from each other, in other words, at least partially separated by the gap 12b. Since the sheet is separated by the gap 12b, the sheet resistance of the metallic luster article is increased and the interaction with the radio wave is reduced, so that the radio wave can be transmitted.
  • Each of these portions 12a may be an aggregate of sputtered particles formed by vapor deposition, sputtering or the like of metal.
  • the “discontinuous state” referred to in the present specification means a state in which they are separated from each other by the gap 12b and as a result, are electrically insulated from each other.
  • the sheet resistance of the metallic luster article is increased, and the desired electromagnetic wave permeability can be obtained. That is, according to the metal layer 12 formed in a discontinuous state, sufficient glitter can be easily obtained, and electromagnetic wave permeability can be secured.
  • a discontinuous form is not specifically limited, For example, an island-like structure, a crack structure, etc. are contained.
  • the “island-like structure” means that metal particles are independent from each other as shown in FIG. 3, and the particles are spread in a state of being slightly separated or partially in contact with each other. It is the structure which becomes.
  • the crack structure is a structure in which a metal thin film is divided by a crack.
  • the metal layer 12 having a crack structure can be formed, for example, by providing a metal thin film layer on a base film and bending and stretching it to cause a crack in the metal thin film layer. At this time, the metal layer 12 having a crack structure can be easily formed by providing a brittle layer made of a material having poor stretchability between the base film and the metal thin film layer. .
  • the aspect in which the metal layer 12 is discontinuous is not particularly limited, but an island structure is preferable from the viewpoint of productivity.
  • the electromagnetic wave permeability of the metallic luster article 1 can be evaluated by, for example, the amount of radio wave transmission attenuation.
  • the radio wave transmission attenuation in the centimeter wave band (5 GHz) measured by the method described in the example column is preferably 10 [ ⁇ dB] or less, and preferably 5 [ ⁇ dB] or less. And more preferably 2 [-dB] or less. If it is larger than 10 [-dB], there is a problem that 90% or more of radio waves are blocked. Note that there is a correlation between the radio wave transmission attenuation in the centimeter wave band (5 GHz) and the radio wave transmission attenuation in the frequency band (76 to 80 GHz) of the millimeter wave radar.
  • a metallic luster article excellent in electromagnetic wave transmission in the wave band is also excellent in electromagnetic wave transmission in the frequency band of the millimeter wave radar.
  • the sheet resistance of the metallic luster article 1 also has a correlation with the electromagnetic wave permeability.
  • the sheet resistance of the metallic luster article 1 is preferably 100 ⁇ / ⁇ or more.
  • the radio wave transmission attenuation in the centimeter wave band (5 GHz) is about 10 to 0.01 [ ⁇ dB].
  • the sheet resistance of the metallic luster article is more preferably 200 ⁇ / ⁇ or more, and further preferably 600 ⁇ / ⁇ or more. Particularly preferably, it is 1000 ⁇ / ⁇ or more.
  • the sheet resistance of the metallic luster article 1 can be measured by an eddy current measurement method according to JIS-Z2316-1: 2014.
  • the radio wave transmission attenuation amount and sheet resistance of the metallic luster article 1 are affected by the material and thickness of the metal layer 12.
  • the metallic luster article 1 includes the indium oxide-containing layer 11, it is also affected by the material and thickness of the indium oxide-containing layer 11.
  • the substrate 10 include resins, glasses, and ceramics from the viewpoint of electromagnetic wave transmission.
  • the substrate 10 may be any of a substrate film, a resin molded substrate, a glass substrate, or an article to which a metallic luster is to be imparted.
  • the base film for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate, polyamide, polyvinyl chloride, polycarbonate (PC), cycloolefin polymer (COP), polystyrene
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • COP cycloolefin polymer
  • PP polypropylene
  • PMMA polyurethane
  • ABS acrylic
  • these members do not affect the glitter and electromagnetic wave transmission.
  • it is preferably one that can withstand high temperatures such as vapor deposition and sputtering. Therefore, among the above materials, for example, polyethylene terephthalate, polyethylene naphthalate, Acrylic, polycarbonate, cycloolefin polymer, ABS, polypropylene and polyurethane are preferred. Of these, polyethylene terephthalate, cycloolefin polymer, polycarbonate, and acrylic are preferable because of a good balance between heat resistance and cost.
  • the base film may be a single layer film or a laminated film. From the viewpoint of ease of processing, the thickness is preferably about 6 ⁇ m to 250 ⁇ m, for example.
  • plasma treatment, easy adhesion treatment, or the like may be performed.
  • the metal layer 11 may be provided on at least a part of the base film, may be provided only on one side of the base film, or may be provided on both sides.
  • the base film is only an example of an object (substrate 10) on which the metal layer 12 can be formed.
  • the base 10 includes a resin molded product base, a glass base, and an article itself to which a metallic luster is to be imparted.
  • articles that should be provided with a resin-molded base material and metallic luster include, for example, vehicle structural parts, vehicle-mounted products, electronic equipment casings, home appliance casings, structural parts, mechanical parts, and various automobiles. Parts, electronic equipment parts, furniture, household goods such as kitchenware, medical equipment, building material parts, other structural parts and exterior parts.
  • the metal layer 12 can be formed on all of these substrates, and may be formed on a part of the surface of the substrate or on the entire surface of the substrate.
  • the substrate 10 to which the metal layer 12 is to be applied preferably satisfies the same materials and conditions as those of the base film.
  • the electromagnetic wave permeable metallic luster article 1 may further include an indium oxide-containing layer 11 between the base 10 and the metal layer 12 as shown in FIG.
  • the indium oxide-containing layer 11 may be provided directly on the surface of the substrate 10 or indirectly through a protective film or the like provided on the surface of the substrate 10.
  • the indium oxide-containing layer 11 is preferably provided in a continuous state on the surface of the substrate 10 to be provided with a metallic luster, in other words, without a gap. By being provided in a continuous state, the smoothness and corrosion resistance of the indium oxide-containing layer 11, and thus the metal layer 12 and the electromagnetic wave transmitting metallic luster article 1 can be improved. It is also easy to form a film.
  • the indium oxide-containing layer 11 is further provided between the base 10 and the metal layer 12, that is, the indium oxide-containing layer 11 is formed on the base 10, and the metal layer 12 is formed thereon.
  • the metal layer 12 can be easily formed in a discontinuous state.
  • the details of the mechanism are not always clear, but when sputtered particles formed by metal deposition or sputtering form a thin film on the substrate, the surface diffusivity of the particles on the substrate affects the shape of the thin film. It is considered that the discontinuous structure is more easily formed when the temperature of the metal layer is higher, the wettability of the metal layer to the substrate is lower, and the melting point of the material of the metal layer is lower.
  • the indium oxide-containing layer on the substrate it is considered that the surface diffusibility of the metal particles on the surface is promoted and the metal layer can be easily grown in a discontinuous state.
  • indium oxide-containing layer 11 indium oxide (In 2 O 3 ) itself can be used.
  • a metal-containing material such as indium tin oxide (ITO) or indium zinc oxide (IZO) is used.
  • ITO or IZO containing the second metal is more preferable in terms of high discharge stability in the sputtering process.
  • a film in a continuous state can be formed along the surface of the substrate.
  • a metal layer laminated on the indium oxide-containing layer is For example, it is preferable because an island-like discontinuous structure is easily obtained.
  • Cr chromium
  • indium (In) but also a discontinuous structure is usually difficult to be applied to the metal layer. It becomes easy to include various metals.
  • the content ratio (content ratio (ZnO / (In 2 O 3 + ZnO)) ⁇ 100), which is a mass ratio of zinc oxide (ZnO) contained in IZO, is, for example, 2 wt% to 20 wt%.
  • the thickness of the indium oxide-containing layer 11 is usually preferably 1000 nm or less, more preferably 50 nm or less, and still more preferably 20 nm or less, from the viewpoints of sheet resistance, radio wave transmission attenuation, and productivity.
  • the thickness is preferably 1 nm or more, and in order to easily facilitate the discontinuous state, it is more preferably 2 nm or more, and 5 nm or more. More preferably.
  • metal layer 12 has a relatively low melting point as well as sufficient glitter. This is because the metal layer 12 is preferably formed by thin film growth using sputtering. For this reason, a metal having a melting point of about 1000 ° C. or less is suitable as the metal layer 12. For example, aluminum (Al), zinc (Zn), lead (Pb), copper (Cu), silver (Ag) It is preferable that at least one kind of metal selected from the above and an alloy containing the metal as a main component are included. In particular, Al and alloys thereof are preferable for the reasons such as the luster and stability of the substance and the price. Moreover, when using an aluminum alloy, it is preferable that aluminum content shall be 50 mass% or more.
  • the thickness of the metal layer 12 is usually preferably 10 nm or more so as to exhibit sufficient glitter, and is usually preferably 100 nm or less from the viewpoint of sheet resistance and radio wave transmission attenuation. For example, 15 nm to 70 nm is preferable, and 15 nm to 50 nm is more preferable. This thickness is also suitable for forming a uniform film with high productivity, and the appearance of the resin molded product as the final product is also good. In addition, the thickness of the metal layer 12 can be measured as follows, for example. (Measuring method of metal layer thickness) First, as shown in FIG.
  • a square region 3 having a side of 5 cm is appropriately extracted from the metallic luster article, and the center lines A and B of the vertical and horizontal sides of the square region 3 are respectively divided into four equal parts.
  • a total of five points “a” to “e” obtained are selected as measurement points.
  • TEM image transmission electron micrograph
  • the total cross-sectional area of the metal layer in the viewing angle region extracted at each of the five measurement locations divided by the width of the viewing angle region is the thickness of the metal layer in each viewing angle region, and at each of the five measurement locations, Let the average value of the thickness of the metal layer in each viewing angle region be the thickness of the metal layer.
  • the ratio of the thickness of the metal layer 12 to the thickness of the indium oxide-containing layer 11 is in the range of 0.1 to 100.
  • the range of 0.3 to 35 is more preferable.
  • the equivalent circle diameter of the portion 12a of the metal layer 12 is not particularly limited, but is usually about 10 to 1000 nm.
  • the distance between the portions 12a is not particularly limited, but is usually about 10 to 1000 nm.
  • the metallic luster article 1 includes a barrier layer 13 on the surface of the metal layer 12 opposite to the substrate 10 side.
  • the barrier layer 13 should just be laminated
  • the barrier layer is a layer for suppressing oxidation (corrosion) of the metal layer 12.
  • the barrier layer includes at least one selected from the group consisting of at least one oxide, nitride, carbide, oxynitride, oxycarbide, nitrided carbide, and oxynitride carbide of metal and metalloid.
  • the metal for example, aluminum, titanium, indium, magnesium, and the like can be used.
  • the semimetal for example, silicon, bismuth, germanium, and the like can be used.
  • ZnO + Al 2 O 3 (AZO), indium zinc oxide (IZO), indium tin oxide (ITO), silicon oxycarbide nitride film (SiOCN), silicon oxynitride film (SiON), silicon nitride film (SiN) ), SiO X , AlO X , AlON, TiO X, or the like can be used.
  • the barrier layer In order to improve the performance of the barrier layer to suppress the oxidation (corrosion) of the metal layer 12 (hereinafter also referred to as “barrier property”), carbon that makes the network structure (network structure) in the barrier layer dense. It is preferable that nitrogen is included. Furthermore, in order to improve transparency, it is preferable to contain oxygen. That is, the barrier layer preferably contains at least one oxynitride carbide of metal and metalloid.
  • the barrier layer does not easily transmit water vapor.
  • the degree of water vapor permeation through the barrier layer can be evaluated by various methods. For example, it can be evaluated by using the water vapor transmission amount measured by the method described in the column of Examples.
  • the water vapor permeation amount is less than 5g / m 2 ⁇ day, more preferably at most 3g / m 2 ⁇ day, or less 2g / m 2 ⁇ day More preferably.
  • the thickness of the barrier layer 13 is not particularly limited, but is preferably 1 nm or more, more preferably 5 nm or more, and further preferably 10 nm or more in order to improve the barrier property. Moreover, in order to improve electromagnetic wave permeability and the metallic glossiness of an external appearance, 100 nm or less is preferable, 80 nm or less is more preferable, and 60 nm or less is still more preferable.
  • a barrier layer may be further provided between the metal layer and the substrate as shown in FIGS.
  • a barrier layer may be provided between the indium oxide-containing layer and the metal layer as shown in FIG. 5, and the metal of the indium oxide-containing layer as shown in FIG.
  • a barrier layer may be provided on the side opposite to the layer. Moreover, you may provide in both as shown in FIG.
  • the metallic luster article may include other layers depending on applications.
  • Other layers include an optical adjustment layer (color adjustment layer) such as a high refractive material for adjusting the appearance such as color, and a protective layer (scratch resistance layer) for improving durability such as scratch resistance.
  • a method such as vacuum deposition or sputtering can be used.
  • the indium oxide-containing layer 11 is formed on the substrate 10, the indium oxide-containing layer 11 is formed by vacuum deposition, sputtering, ion plating or the like prior to the formation of the metal layer 12.
  • sputtering is preferable because the thickness can be strictly controlled even in a large area.
  • the barrier layer is formed by a dry process using a vacuum such as vapor deposition, sputtering, or chemical vapor deposition (CVD).
  • a vacuum such as vapor deposition, sputtering, or chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • a very dense barrier layer having a high barrier property can be obtained.
  • a vapor deposition method is preferable. This is because the vapor deposition method is a process with a very high film formation rate and is a highly productive process, and thus has high production efficiency.
  • Arc discharge plasma has been found to have a very high electron density, unlike normally used glow discharge plasma. By using arc discharge plasma for the vapor deposition method, the reactivity can be increased and a very dense barrier layer can be formed.
  • the arc discharge plasma can be formed by, for example, a pressure gradient type plasma gun, a direct current discharge plasma generator, a high frequency discharge plasma generator, etc., and the pressure capable of generating a high-density plasma stably even during vapor deposition. It is preferable to use a gradient plasma gun.
  • the indium oxide-containing layer 11 When the indium oxide-containing layer 11 is provided between the base 10 and the metal layer 12, the indium oxide-containing layer 11 and the metal layer 12 are directly contacted without any other layer such as the barrier layer 13 interposed. Is preferred.
  • metallic luster articles and metal thin films Since the metallic luster article 1 and the metal thin film of this embodiment have electromagnetic wave permeability, it is preferable to use them for devices and articles that transmit and receive electromagnetic waves, and parts thereof.
  • household goods such as structural parts for vehicles, on-vehicle equipment, housing for electronic equipment, housing for home appliances, structural parts, mechanical parts, various automotive parts, electronic equipment parts, furniture, kitchenware, etc. , Medical equipment, building material parts, other structural parts and exterior parts.
  • ECU boxes electrical components, engine peripheral components, drive system / gear peripheral components, intake / exhaust system components, cooling system components, and the like.
  • electronic devices and home appliances include refrigerators, washing machines, vacuum cleaners, microwave ovens, air conditioners, lighting equipment, electric water heaters, TVs, clocks, ventilation fans, projectors, speakers, and other home appliances, personal computers, mobile phones
  • Electronic information devices such as smartphones, digital cameras, tablet PCs, portable music players, portable game machines, chargers, and batteries.
  • the metallic luster articles of Examples 1 to 10 and Comparative Example 1 were prepared, and the water vapor transmission amount, radio wave transmission attenuation amount (-dB), sheet resistance, 20 ° glossiness, and reflectance of the barrier layer were measured. Note that a base film was used as the substrate 10. Details of the evaluation method are as follows.
  • Radio wave transmission attenuation The radio wave transmission attenuation at 5 GHz was evaluated using a waveguide method measurement evaluation jig and a vector network analyzer MS4644B (Anritsu Corporation).
  • Sheet resistance A laminate of a metal layer and an indium oxide-containing layer by an eddy current measurement method in accordance with JIS-Z2316 using a Napson non-contact resistance measuring device NC-80MAP (upper limit of measurement: 3000 ⁇ / ⁇ ). The sheet resistance was measured.
  • the 20 degree glossiness of a metallic luster article was measured based on JISZ8741 (1997 edition). Specifically, the measurement was performed using PG-IIM (20 ° gloss measurement, manufactured by Nippon Denshoku Industries Co., Ltd.). In addition, the measurement of 20 degree glossiness was performed with respect to the surface by the side of a metal layer.
  • the 20 ° gloss is preferably 900 or more, more preferably 1100 or more, and particularly preferably 1300 or more. If it is less than 900, there is a problem that the metallic appearance cannot be obtained due to inferior luster.
  • an aluminum (Al) layer having a thickness of 30 nm was formed on the ITO layer by alternating current sputtering (AC: 40 kHz) to obtain a metallic luster article without a barrier layer.
  • the obtained aluminum layer was a discontinuous layer.
  • the temperature of the base film when forming the Al layer was set to 130 ° C.
  • Examples 1 to 4 A barrier layer made of AZO of various thicknesses was formed on the aluminum layer of a metallic luster article without a barrier layer obtained in the same manner as in Comparative Example 1 by using DC magnetron sputtering. A metallic luster article was obtained. The temperature of the base film when forming the barrier layer was set to 130 ° C. For AZO, AZO-low n manufactured by Mitsubishi Materials was used. The thickness of the barrier layer was measured by the same method as the method for measuring the thickness of the metal layer described above.
  • Example 5 A metallic glossy article of Example 5 was obtained in the same manner as Example 2 except that a barrier layer made of ITO was formed.
  • the content of tin oxide (SnO 2 ) contained in ITO was 30 wt%.
  • Examples 6 and 7 By using RF (13.6 MHz) power source sputtering, a barrier layer made of AlO x having various thicknesses is formed on an aluminum layer of a metallic luster article not provided with a barrier layer obtained in the same manner as in Comparative Example 1. The metallic luster articles of Examples 6 and 7 were obtained. The temperature of the base film when forming the barrier layer was set to room temperature.
  • Example 8 to 10 Using an RF (13.6 MHz) power source sputtering, a barrier layer made of SiO 2 of various thicknesses was formed on an aluminum layer of a metallic luster article not provided with a barrier layer obtained in the same manner as in Comparative Example 1. The metallic luster articles of Examples 8 to 10 were obtained. The temperature of the base film when forming the barrier layer was set to room temperature.
  • the metallic luster articles of Examples 1 to 10 all had a high reflectance retention after 500 hours as compared with the metallic luster article of Comparative Example 1 that did not have a barrier layer. That is, each of the metallic luster articles of Examples 1 to 10 was able to suppress oxidation (corrosion) of the aluminum layer as compared with the metallic luster article of Comparative Example 1 that did not have a barrier layer.
  • the metallic luster article according to the present invention can be used for devices and articles for transmitting and receiving electromagnetic waves, and parts thereof.
  • applications for household goods such as structural parts for vehicles, vehicle-mounted products, housings for electronic devices, housings for home appliances, structural components, mechanical parts, various automotive parts, electronic device parts, furniture, kitchenware, etc. It can also be used for various applications that require both design and electromagnetic wave transmission properties, such as medical equipment, building material parts, other structural parts and exterior parts.

Abstract

本発明は、基体(10)と、前記基体(10)上に形成された金属層(12)と、前記金属層(12)の前記基体側とは反対側の面上に形成されたバリア層(13)とを備え、前記金属層(12)は、少なくとも一部において互いに不連続の状態にある複数の部分(12a)を含む電磁波透過性金属光沢物品(1)に関する。

Description

電磁波透過性金属光沢物品
 本発明は、電磁波透過性金属光沢物品に関する。
 従来、電磁波透過性及び金属光沢を有する部材が、その金属光沢に由来する外観の高級感と、電磁波透過性とを兼ね備えることから、電磁波を送受信する装置に好適に用いられている。
 例えば、フロントグリル、エンブレムといった自動車のフロント部分に搭載されるミリ波レーダーのカバー部材に装飾を施した、光輝性と電磁波透過性の双方を兼ね備えた金属光沢物品が求められている。
 ミリ波レーダーは、ミリ波帯の電磁波(周波数約77GHz、波長約4mm)を自動車の前方に送信し、ターゲットからの反射波を受信して、反射波を測定、分析することで、ターゲットとの距離や、ターゲットの方向、サイズを計測することができるものである。
 計測結果は、車間計測、速度自動調整、ブレーキ自動調整などに利用することができる。
 このようなミリ波レーダーが配置される自動車のフロント部分は、いわば自動車の顔であり、ユーザに大きなインパクトを与える部分であるから、金属光沢調のフロント装飾で高級感を演出することが好ましい。しかしながら、自動車のフロント部分に金属を使用した場合には、ミリ波レーダーによる電磁波の送受信が実質的に不可能、或いは、妨害されてしまう。したがって、ミリ波レーダーの働きを妨げることなく、自動車の意匠性を損なわせないために、光輝性と電磁波透過性の双方を兼ね備えた金属光沢物品が必要とされている。
 この種の金属光沢物品は、ミリ波レーダーのみならず、通信を必要とする様々な機器、例えば、スマートキーを設けた自動車のドアハンドル、車載通信機器、携帯電話、パソコン等の電子機器等への応用が期待されている。更に、近年では、IoT技術の発達に伴い、従来は通信等行われることがなかった、冷蔵庫等の家電製品、生活機器等、幅広い分野での応用も期待されている。
 金属光沢部材に関して、日本国特開2007-144988号公報(特許文献1)には、クロム(Cr)又はインジウム(In)より成る金属被膜を含む樹脂製品が開示されている。この樹脂製品は、樹脂基材と、当該樹脂基材の上に成膜された無機化合物を含む無機質下地膜と、当該無機質下地膜の上に物理蒸着法により成膜された光輝性及び不連続構造のクロム(Cr)又はインジウム(In)よりなる金属皮膜を含む。無機質下地膜として、特許文献1では、(a)金属化合物の薄膜、例えば、酸化チタン(TiO、TiO、Ti等)等のチタン化合物;酸化ケイ素(SiO、SiO等)、窒化ケイ素(Si等)等のケイ素化合物;酸化アルミニウム(Al)等のアルミニウム化合物;酸化鉄(Fe)等の鉄化合物;酸化セレン(CeO)等のセレン化合物;酸化ジルコン(ZrO)等のジルコン化合物;硫化亜鉛(ZnS)等の亜鉛化合物等、(b)無機塗料の塗膜、例えば、シリコン、アモルファスTiO等(その他、上記例示の金属化合物)を主成分とする無機塗料による塗膜が使用されている。
 一方、日本国特開2009-298006号公報(特許文献2)には、クロム(Cr)又はインジウム(In)のみならず、アルミニウム(Al)、銀(Ag)、ニッケル(Ni)をも金属膜として形成することができる電磁波透過性光輝樹脂製品が開示されている。
 日本国特開2010-5999号公報(特許文献3)には金属膜層を母材シートに形成し、母材シートに、張力を負荷しつつ、加熱処理を行うことによりクラックを有する電磁波透過性の金属膜加飾シートを製造する方法が記載されている。
日本国特開2007-144988号公報 日本国特開2009-298006号公報 日本国特開2010-5999号公報
 このような金属光沢物品における金属層は、電磁波透過性を確保するために島状構造等の少なくとも一部において互いに不連続の状態にある複数の部分を含む金属層として構成されているため、表面積が広く、したがって酸化されやすい傾向がある。
 しかしながら金属層が酸化されると金属光沢が失われる。したがって、金属層の酸化が抑制された金属光沢物品が望まれていた。
 本願発明は、上記に鑑みてなされたものであり、その課題は、金属層の酸化が抑制された電磁波透過性金属光沢物品を提供することにある。
 本発明者等は、上記課題を解決するために鋭意検討を重ねた結果、バリア層を備える電磁波透過性金属光沢物品により上記課題を解決できることを見出した。
 本発明の一態様は、基体と、前記基体上に形成された金属層と、前記金属層の前記基体側とは反対側の面上に形成されたバリア層とを備え、前記金属層は、少なくとも一部において互いに不連続の状態にある複数の部分を含む電磁波透過性金属光沢物品に関する。
 本発明の電磁波透過性金属光沢物品の一態様において、前記基体と前記金属層の間に、酸化インジウム含有層をさらに備えることが好ましい。
 本発明の電磁波透過性金属光沢物品の一態様において、前記酸化インジウム含有層は連続状態で設けられていることが好ましい。
 本発明の電磁波透過性金属光沢物品の一態様において、前記酸化インジウム含有層は、酸化インジウム(In)、インジウム錫酸化物(ITO)、又はインジウム亜鉛酸化物(IZO)のいずれかを含むことが好ましい。
 本発明の電磁波透過性金属光沢物品の一態様において、前記酸化インジウム含有層の厚さは、1nm~1000nmであることが好ましい。
 本発明の電磁波透過性金属光沢物品の一態様は、前記金属層と前記基体との間に形成されたバリア層をさらに備えることが好ましい。
 本発明の電磁波透過性金属光沢物品の一態様において、前記バリア層は、金属および半金属の少なくとも1種の酸化物、窒化物、炭化物、酸化窒化物、酸化炭化物、窒化炭化物および酸化窒化炭化物からなる群より選ばれる少なくとも1種を含むことが好ましい。
 本発明の電磁波透過性金属光沢物品の一態様において、前記バリア層は、AZO、ITO、AlO、SiOからなる群より選ばれる少なくとも1種を含むことが好ましい。
 本発明の電磁波透過性金属光沢物品の一態様において、前記金属層の厚さは、10nm~100nmであることが好ましい。
 本発明の電磁波透過性金属光沢物品の一態様において、前記金属層の厚さと前記酸化インジウム含有層の厚さとの比(前記金属層の厚さ/前記酸化インジウム含有層の厚さ)は、0.02~100であってもよい。
 本発明の電磁波透過性金属光沢物品の一態様は、シート抵抗が、100Ω/□以上であることが好ましい。
 本発明の電磁波透過性金属光沢物品の一態様において、前記複数の部分は島状に形成されていてもよい。
 本発明の電磁波透過性金属光沢物品の一態様において、前記金属層は、アルミニウム(Al)、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)、又はこれらの合金のいずれかであることが好ましい。
 本発明の電磁波透過性金属光沢物品の一態様において、前記基体は、基材フィルム、樹脂成型物基材、ガラス基材、又は金属光沢を付与すべき物品のいずれかであることが好ましい。
 本発明によれば、金属層の酸化が抑制された電磁波透過性金属光沢部材を提供することができる。
図1は、本発明の一実施形態による電磁波透過性金属光沢物品の概略断面図である。 図2は、本発明の一実施形態による電磁波透過性金属光沢物品の概略断面図である。 図3は、本発明の一実施形態による電磁波透過性金属光沢物品の金属層の電子顕微鏡写真である。 図4は、本発明の一実施形態による電磁波透過性金属光沢物品の概略断面図である。 図5は、本発明の一実施形態による電磁波透過性金属光沢物品の概略断面図である。 図6は、本発明の一実施形態による電磁波透過性金属光沢物品の概略断面図である。 図7は、本発明の一実施形態による電磁波透過性金属光沢物品の概略断面図である。 図8は、本発明の一実施形態による電磁波透過性金属光沢物品の金属層の膜厚の測定方法を説明するための図である。 図9は、本発明の一実施形態における金属層の断面の透過型電子顕微鏡写真(TEM画像)を示す図である。
 以下、添付図面を参照しつつ、本発明の一つの好適な実施形態について説明する。以下においては、説明の便宜のために本発明の好適な実施形態のみを示すが、勿論、これによって本発明を限定しようとするものではない。
<1.基本構成>
 図1に、本発明の一実施形態による電磁波透過性金属光沢物品(以下、「金属光沢物品」という。)1の概略断面図を示し、図3に、本発明の一実施形態による金属光沢物品1の金属層の電子顕微鏡写真(SEM画像)を示す。また、図9に、本発明の一実施形態における島状構造の金属層12の断面の透過型電子顕微鏡写真(TEM画像)を示す。
 金属光沢物品1は、基体10と、基体10の上に形成された、金属層12と、を含む。また、金属層の基体側とは反対側の面上に形成されたバリア層13をさらに含む。
 金属層12は基体10の上に形成される。金属層12は複数の部分12aを含む。金属層12におけるこれらの部分12aは、少なくとも一部において互いに不連続の状態、言い換えれば、少なくとも一部において隙間12bによって隔てられる。隙間12bによって隔てられるため、金属光沢物品のシート抵抗は大きくなり、電波との相互作用が低下するため、電波を透過させることができる。これらの各部分12aは金属を蒸着、スパッタ等することによって形成されたスパッタ粒子の集合体であってもよい。
 尚、本明細書でいう「不連続の状態」とは、隙間12bによって互いに隔てられており、この結果、互いに電気的に絶縁されている状態を意味する。電気的に絶縁されることにより、金属光沢物品のシート抵抗が大きくなり、所望とする電磁波透過性が得られることになる。すなわち、不連続の状態で形成された金属層12によれば、十分な光輝性が得られやすく、電磁波透過性を確保することもできる。不連続の形態は、特に限定されるものではなく、例えば、島状構造、クラック構造等が含まれる。ここで「島状構造」とは、図3に示されているように、金属粒子同士が各々独立しており、それらの粒子が、互いに僅かに離間し又は一部接触した状態で敷き詰められてなる構造である。
 クラック構造とは、金属薄膜がクラックにより分断された構造である。
 クラック構造の金属層12は、例えば基材フィルム上に金属薄膜層を設け、屈曲延伸して金属薄膜層にクラックを生じさせることにより形成することができる。この際、基材フィルムと金属薄膜層の間に伸縮性に乏しい、即ち延伸によりクラックを生成しやすい素材からなる脆性層を設けることにより、容易にクラック構造の金属層12を形成することができる。
 上述のとおり金属層12が不連続となる態様は特に限定されないが、生産性の観点からは島状構造とすることが好ましい。
 金属光沢物品1の電磁波透過性は、例えば電波透過減衰量により評価することができる。金属光沢物品1において、実施例の欄に記載の方法で測定したセンチ波帯域(5GHz)における電波透過減衰量は、10[-dB]以下であることが好ましく、5[-dB]以下であるのがより好ましく、2[-dB]以下であることが更に好ましい。10[-dB]より大きいと、90%以上の電波が遮断されるという問題がある。なお、センチ波帯域(5GHz)における電波透過減衰量とミリ波レーダーの周波数帯域(76~80GHz)における電波透過減衰量との間には相関性があり、比較的近い値を示すことから、センチ波帯域における電磁波透過性に優れる金属光沢物品は、ミリ波レーダーの周波数帯域における電磁波透過性にも優れる。
 金属光沢物品1のシート抵抗も電磁波透過性と相関を有する。金属光沢物品1のシート抵抗は100Ω/□以上であるのが好ましく、この場合センチ波帯域(5GHz)における電波透過減衰量は、10~0.01[-dB]程度となる。金属光沢物品のシート抵抗は200Ω/□以上であることがより好ましく、600Ω/□以上であることが更に好ましい。また、特に好ましくは、1000Ω/□以上である。
 金属光沢物品1のシート抵抗は、JIS-Z2316-1:2014に従って渦電流測定法により測定することができる。
 金属光沢物品1の電波透過減衰量及びシート抵抗は、金属層12の材質や厚さ等により影響を受ける。また、金属光沢物品1が酸化インジウム含有層11を備える場合には酸化インジウム含有層11の材質や厚さ等によっても影響を受ける。
<2.基体>
 基体10としては、電磁波透過性の観点から、樹脂、ガラス、セラミックス等が挙げられる。
 基体10は、基材フィルム、樹脂成型物基材、ガラス基材、又は金属光沢を付与すべき物品のいずれかであってもよい。
 より具体的には、基材フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート、ポリアミド、ポリ塩化ビニル、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、ポリスチレン、ポリプロピレン(PP)、ポリエチレン、ポリシクロオレフィン、ポリウレタン、アクリル(PMMA)、ABSなどの単独重合体や共重合体からなる透明フィルムを用いることができる。
 これらの部材によれば、光輝性や電磁波透過性に影響を与えることもない。但し、酸化インジウム含有層11や金属層12を後に形成する観点から、蒸着やスパッタ等の高温に耐え得るものであることが好ましく、従って、上記材料の中でも、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、アクリル、ポリカーボネート、シクロオレフィンポリマー、ABS、ポリプロピレン、ポリウレタンが好ましい。なかでも、耐熱性とコストとのバランスがよいことからポリエチレンテレフタレートやシクロオレフィンポリマー、ポリカーボネート、アクリルが好ましい。
 基材フィルムは、単層フィルムでもよいし積層フィルムでもよい。加工のし易さ等から、厚さは、例えば、6μm~250μm程度が好ましい。酸化インジウム含有層11や金属層12との付着力を強くするために、プラズマ処理や易接着処理などが施されてもよい。
 基体10が基材フィルムの場合、金属層11は基材フィルム上の少なくとも一部に設ければよく、基材フィルムの片面のみに設けてもよく、両面に設けてもよい。
 ここで、基材フィルムは、その表面上に金属層12を形成することができる対象(基体10)の一例にすぎない点に注意すべきである。基体10には、上記のとおり基材フィルムの他、樹脂成型物基材、ガラス基材、金属光沢を付与すべき物品それ自体も含まれる。樹脂成型物基材、及び金属光沢を付与すべき物品としては、例えば、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品や外装用部品等が挙げられる。
 金属層12は、これら全ての基体上に形成することができ、基体の表面の一部に形成してもよく、基体の表面の全てに形成してもよい。この場合、金属層12を付与すべき基体10は、上記の基材フィルムと同様の材質、条件を満たしていることが好ましい。
<3.酸化インジウム含有層>
 また、一実施形態に係る電磁波透過性金属光沢物品1は、図2に示されるように、基体10と金属層12の間に、酸化インジウム含有層11をさらに備えてもよい。酸化インジウム含有層11は、基体10の面に直接設けられていてもよいし、基体10の面に設けられた保護膜等を介して間接的に設けられてもよい。酸化インジウム含有層11は、金属光沢を付与すべき基体10の面に連続状態で、言い換えれば、隙間なく、設けられるのが好ましい。連続状態で設けられることにより、酸化インジウム含有層11、ひいては、金属層12や電磁波透過性金属光沢物品1の平滑性や耐食性を向上させることができ、また、酸化インジウム含有層11を面内ばらつきなく成膜することも容易となる。
 このように、基体10と金属層12の間に、酸化インジウム含有層11をさらに備えること、すなわち、基体10の上に酸化インジウム含有層11を形成し、その上に金属層12を形成することによれば、金属層12を不連続の状態で形成しやすくなるため好ましい。そのメカニズムの詳細は必ずしも明らかではないが、金属の蒸着やスパッタによるスパッタ粒子が基体上で薄膜を形成する際には、基体上での粒子の表面拡散性が薄膜の形状に影響を及ぼし、基体の温度が高く、基体に対する金属層の濡れ性が小さく、金属層の材料の融点が低い方が不連続構造を形成しやすいと考えられる。そして、基体上に酸化インジウム含有層を設けることにより、その表面上の金属粒子の表面拡散性が促進されて、金属層を不連続の状態で成長させやすくなると考えられる。
 酸化インジウム含有層11として、酸化インジウム(In)そのものを使用することもできるし、例えば、インジウム錫酸化物(ITO)や、インジウム亜鉛酸化物(IZO)のような金属含有物を使用することもできる。但し、第二の金属を含有したITOやIZOの方が、スパッタリング工程での放電安定性が高い点で、より好ましい。これらの酸化インジウム含有層11を用いることにより、基体の面に沿って連続状態の膜を形成することもでき、また、この場合には、酸化インジウム含有層の上に積層される金属層を、例えば、島状の不連続構造としやすくなるため、好ましい。更に、後述するように、この場合には、金属層に、クロム(Cr)又はインジウム(In)だけでなく、通常は不連続構造になり難く、本用途には適用が難しかった、アルミニウム等の様々な金属を含めやすくなる。
 ITOに含まれる酸化錫(SnО)の質量比率である含有率(含有率=(SnO/(In+SnO))×100)は特に限定されるものではないが、例えば、2.5wt%~30wt%、より好ましくは、3wt%~10wt%である。また、IZOに含まれる酸化亜鉛(ZnO)の質量比率である含有率(含有率=(ZnO/(In+ZnO))×100)は、例えば、2wt%~20wt%である。酸化インジウム含有層11の厚さは、シート抵抗や電波透過減衰量、生産性の観点から、通常1000nm以下が好ましく、50nm以下がより好ましく、20nm以下が更に好ましい。一方、積層される金属層12を不連続状態としやすくするためには、1nm以上であることが好ましく、確実に不連続状態にしやすくするためには、2nm以上であることがより好ましく、5nm以上であることが更に好ましい。
<4.金属層>
 金属層12は、十分な光輝性を発揮し得ることは勿論、融点が比較的低いものであることが望ましい。金属層12は、スパッタリングを用いた薄膜成長によって形成するのが好ましいためである。このような理由から、金属層12としては、融点が約1000℃以下の金属が適しており、例えば、アルミニウム(Al)、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)から選択された少なくとも一種の金属、および該金属を主成分とする合金のいずれかを含むことが好ましい。特に、物質の光輝性や安定性、価格等の理由からAlおよびそれらの合金が好ましい。また、アルミニウム合金を用いる場合には、アルミニウム含有量を50質量%以上とすることが好ましい。
 金属層12の厚さは、十分な光輝性を発揮するように、通常10nm以上が好ましく、一方、シート抵抗や電波透過減衰量の観点から、通常100nm以下が好ましい。例えば、15nm~70nmが好ましく、15nm~50nmがより好ましい。この厚さは、均一な膜を生産性良く形成するのにも適しており、また、最終製品である樹脂成形品の見栄えも良い。なお、金属層12の厚さは例えば以下のようにして測定できる。
(金属層の厚さの測定方法)
 まず、金属光沢物品から、図8に示すように一辺5cmの正方形領域3を適当に抽出し、該正方形領域3の縦辺及び横辺それぞれの中心線A、Bをそれぞれ4等分することによって得られる計5箇所の点「a」~「e」を測定箇所として選択する。
 次いで、選択した測定箇所それぞれにおける、図9に示すような断面画像(透過型電子顕微鏡写真(TEM画像))を測定し、得られたTEM画像から、5個以上の金属部分12aが含まれる視野角領域を抽出する。
 5箇所の測定箇所それぞれにおいて抽出された視野角領域における金属層の総断面積を視野角領域の横幅で割ったものを各視野角領域の金属層の厚さとし、5箇所の測定箇所それぞれにおける、各視野角領域の金属層の厚さの平均値を金属層の厚さとする。
 また、同様の理由から、金属層12の厚さと酸化インジウム含有層11の厚さとの比(金属層12の厚さ/酸化インジウム含有層11の厚さ)は、0.1~100の範囲が好ましく、0.3~35の範囲がより好ましい。
 金属層12の部分12aの円相当径は特に限定されないが、通常10~1000nm程度である。また、各部分12a同士の距離は特に限定されないが、通常は10~1000nm程度である。
<5.バリア層>
 金属光沢物品1は、図1及び2に示すように、金属層12の基体10側とは反対側の面上にバリア層13を備える。なお、バリア層13は金属層12上に積層されていればよく、必ずしも隙間12bを完全に埋めていなくてもよい。
 バリア層は、金属層12の酸化(腐食)を抑制するための層である。バリア層は、金属および半金属の少なくとも1種の酸化物、窒化物、炭化物、酸化窒化物、酸化炭化物、窒化炭化物および酸化窒化炭化物からなる群より選ばれる少なくとも1種を含む。金属としては、例えば、アルミニウム、チタン、インジウム、マグネシウムなどを用いることができ、半金属としては、例えば、ケイ素、ビスマス、ゲルマニウムなどを用いることができる。
 具体的には、例えばZnO+Al(AZO)、酸化インジウム亜鉛(IZO)、酸化インジウム錫(ITO)、酸化炭化窒化ケイ素膜(SiOCN)、酸化窒化ケイ素膜(SiON)、窒化ケイ素膜(SiN)、SiO、AlO、AlON、TiO等を用いることができる。中でも、AZO、ITO、AlO及びSiOからなる群より選ばれる少なくとも一種を用いることが好ましい。
 バリア層が金属層12の酸化(腐食)を抑制する性能(以下「バリア性」ともいう)の向上のためには、バリア層内におけるネットワーク構造(網目状の構造)を緻密にするような炭素、窒素を含むことが好ましい。さらに透明性を向上させるためには、酸素を含有していることが好ましい。すなわち、バリア層は、金属および半金属の少なくとも1種の酸化窒化炭化物を含むことが好ましい。
 また、バリア性の向上のためには、バリア層は水蒸気を透過しにくいことが好ましい。バリア層の水蒸気の透過の度合いは種々の方法により評価できるが、例えば実施例の欄に記載の方法により測定した水蒸気透過量を用いて評価することができる。バリア性の向上のためには、当該水蒸気透過量が5g/m・day以下であることが好ましく、3g/m・day以下であることがより好ましく、2g/m・day以下であることが更に好ましい。
 バリア層13の厚みは特に限定はされないが、バリア性を向上させるためには1nm以上が好ましく、5nm以上がより好ましく、10nm以上が更に好ましい。また、電磁波透過性や外観の金属光沢感を向上させるためには100nm以下が好ましく、80nm以下がより好ましく、60nm以下が更に好ましい。
 また、金属層12の酸化(腐食)をより一層抑制するために、バリア層は図4~7に示すように、金属層と基体との間にさらに設けられてもよい。
 金属光沢物品1が酸化インジウム含有層を備える場合は、図5に示すように酸化インジウム含有層と金属層の間にバリア層を設けてもよく、図6に示すように酸化インジウム含有層の金属層とは反対側にバリア層を設けてもよい。また、図7に示すようにこの両方に設けてもよい。
 また、金属光沢物品は、上述の金属層、酸化インジウム含有層、及びバリア層の他に、用途に応じてその他の層を備えてもよい。
 その他の層としては色味等の外観を調整するための高屈折材料等の光学調整層(色味調整層)、耐擦傷性等の耐久性を向上させるための保護層(耐擦傷性層)、易接着層、ハードコート層、反射防止層、光取出し層、アンチグレア層等が挙げられる。
<6.金属光沢物品の製造>
 金属光沢物品1の製造方法の一例について、説明する。特に説明しないが、基材フィルム10以外の基体を用いた場合についても同様の方法で製造することができる。
 基体10上に金属層12を形成するにあたっては、例えば、真空蒸着、スパッタリング等の方法を用いることができる。
 また、基体10上に酸化インジウム含有層11を形成する場合には、金属層12の形成に先立ち、酸化インジウム含有層11を、真空蒸着、スパッタリング、イオンプレーティング等によって形成する。但し、大面積でも厚さを厳密に制御できる点から、スパッタリングが好ましい。
 バリア層は、蒸着、スパッタリング、化学気相堆積法(CVD)のような真空を用いたドライプロセスにより形成される。これにより、非常に緻密でバリア性の高いバリア層を得ることができる。この中でも、蒸着法が好ましい。蒸着法は、成膜速度が非常に速いプロセスであり、生産性の高いプロセスであるため、生産効率が良いためである。特に好ましいのは、アーク放電プラズマを利用した蒸着法を用いて形成することである。アーク放電プラズマは、通常使用されるグロー放電プラズマとは異なり、非常に高い電子密度であることがわかっている。蒸着法にアーク放電プラズマを用いることで、反応性を高くすることができ、非常に緻密なバリア層が形成できる。
 アーク放電プラズマは、例えば、圧力勾配型プラズマガン、直流放電プラズマ発生装置、高周波放電プラズマ発生装置などで形成可能であるが、中でも蒸着中でも安定して高密度なプラズマを発生することが可能な圧力勾配型プラズマガンを用いることが好ましい。
 尚、基体10と金属層12の間に酸化インジウム含有層11を設ける場合、酸化インジウム含有層11と金属層12の間には、バリア層13等の他の層を介在させずに直接接触させるのが好ましい。
<7.金属光沢物品及び金属薄膜の用途>
 本実施形態の金属光沢物品1及び金属薄膜は、電磁波透過性を有することから電磁波を送受信する装置や物品及びその部品等に使用することが好ましい。例えば、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品や外装用部品等が挙げられる。
 より具体的には、車両関係では、インスツルメントパネル、コンソールボックス、ドアノブ、ドアトリム、シフトレバー、ペダル類、グローブボックス、バンパー、ボンネット、フェンダー、トランク、ドア、ルーフ、ピラー、座席シート、ステアリングホイール、ECUボックス、電装部品、エンジン周辺部品、駆動系・ギア周辺部品、吸気・排気系部品、冷却系部品等が挙げられる。
 電子機器および家電機器としてより具体的には、冷蔵庫、洗濯機、掃除機、電子レンジ、エアコン、照明機器、電気湯沸かし器、テレビ、時計、換気扇、プロジェクター、スピーカー等の家電製品類、パソコン、携帯電話、スマートフォン、デジタルカメラ、タブレット型PC、携帯音楽プレーヤー、携帯ゲーム機、充電器、電池等電子情報機器等が挙げられる。
 以下、実施例及び比較例を挙げて、本発明をより具体的に説明する。実施例1~10及び比較例1の金属光沢物品を準備し、バリア層の水蒸気透過量、電波透過減衰量(-dB)、シート抵抗、20°光沢度、反射率を測定した。なお、基体10としては、基材フィルムを用いた。
 評価方法の詳細は以下のとおりである。
(1)バリア層の水蒸気透過量
 MOCON社製水蒸気透過度測定装置PERMATRAN-W Model3/33を用いて、40℃90%RH環境下におけるバリア膜単膜の水蒸気透過度を評価した。
(2)電波透過減衰量
 5GHzにおける電波透過減衰量を導波管法測定評価治具およびベクトルネットワークアナライザMS4644B(アンリツ株式会社)を用いて評価した。
(3)シート抵抗
 ナプソン社製非接触式抵抗測定装置NC-80MAP(測定上限:3000Ω/□)を用い、JIS-Z2316に準拠し、渦電流測定法により金属層と酸化インジウム含有層の積層体としてのシート抵抗を測定した。
(4)20°光沢度
 金属光沢物品の20°光沢度をJIS Z 8741(1997年版)に準拠して測定した。具体的には、PG-IIM(20°グロス測定、日本電色工業株式会社製)を用いて測定を行った。なお、20°光沢度の測定は金属層側の面に対して行った。
 この20°光沢度は、900以上であることが好ましく、1100以上であることがより好ましく、1300以上であることが特に好ましい。900より小さいと、光輝性に劣り金属外観が得られないという問題がある。
(5)反射率
 日立分光光度計U-4100を用いて、波長550nmにおける0°反射率を測定した。
 次いで、金属光沢物品を60℃、95%RHの条件下に放置し、250時間後、及び500時間後に、同様にして反射率を測定した。
 また、500時間後の反射率の、初期の反射率に対する割合(500時間後反射率維持率)を求めた。
[比較例1]
 基材フィルムとして、三菱樹脂社製PETフィルム(厚さ125μm、340mm幅)を用いた。
 先ず、DCマグネトロンスパッタリングを用いて、基材フィルムの面に沿って、5nmの厚さのITO層をその上に直接形成した。ITO層を形成する際の基材フィルムの温度は、130℃に設定した。ITOに含まれる酸化錫(SnО)の含有率(含有率=(SnO/(In+SnO))×100)は10wt%である。
 次いで、交流スパッタリング(AC:40kHz)を用いて、ITO層の上に厚さ30nmのアルミニウム(Al)層を形成し、バリア層を備えない金属光沢物品を得た。なお、得られたアルミニウム層は不連続層であった。Al層を形成する際の基材フィルムの温度は、130℃に設定した。
[実施例1~4]
 比較例1と同様にして得られたバリア層を備えない金属光沢物品のアルミニウム層上に、DCマグネトロンスパッタリングを用いて、種々の厚みのAZOからなるバリア層を形成し、実施例1~4の金属光沢物品を得た。バリア層を形成する際の基材フィルムの温度は、130℃に設定した。なお、AZOは三菱マテリアル製AZO-low nを使用した。なお、バリア層の厚みは先述の金属層の厚みの測定方法と同様の方法で測定した。
[実施例5]
 ITOからなるバリア層を形成した以外は、実施例2と同様にして実施例5の金属光沢物品を得た。なお、ITOに含まれる酸化錫(SnО)の含有率(含有率=(SnO/(In+SnO))×100)は30wt%であった。
[実施例6、7]
 比較例1と同様にして得られたバリア層を備えない金属光沢物品のアルミニウム層上に、RF(13.6MHz)電源スパッタリングを用いて、種々の厚みのAlOからなるバリア層を形成し、実施例6、7の金属光沢物品を得た。バリア層を形成する際の基材フィルムの温度は、室温に設定した。
[実施例8~10]
 比較例1と同様にして得られたバリア層を備えない金属光沢物品のアルミニウム層上に、RF(13.6MHz)電源スパッタリングを用いて、種々の厚みのSiOからなるバリア層を形成し、実施例8~10の金属光沢物品を得た。バリア層を形成する際の基材フィルムの温度は、室温に設定した。
 以下の表1に、結果を示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~10の金属光沢物品は、いずれもバリア層を備えない比較例1の金属光沢物品と比較すると、500時間後反射率維持率が高かった。すなわち、実施例1~10の金属光沢物品は、いずれもバリア層を備えない比較例1の金属光沢物品と比較するとアルミニウム層の酸化(腐食)を抑制することができた。
 なお、以上の実施例で特に使用したアルミニウム(Al)以外の金属についても、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)などの比較的融点の低い金属については、同様の手法で不連続構造を形成しうると考えられる。
 本発明は前記実施例に限定されるものではなく、発明の趣旨から逸脱しない範囲で適宜変更して具体化することもできる。
 以上、本発明の好ましい実施の形態について説明したが、本発明は、上述した実施の形態に制限されるものではなく、本発明の範囲を逸脱しない範囲において、上述した実施の形態に種々の変形及び置換を加えることができる。
なお、本出願は、2018年4月23日出願の日本特許出願(特願2018-082662)および2019年4月22日出願の日本特許出願(特願2019-080623)に基づくものであり、その内容は本出願の中に参照として援用される。
 本発明に係る金属光沢物品は、電磁波を送受信する装置や物品及びその部品等に使用することができる。例えば、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品や外装用部品等、意匠性と電磁波透過性の双方が要求される様々な用途にも利用できる。
1 金属光沢物品
10 基体
11 酸化インジウム含有層
12 金属層
12a 部分
12b 隙間
13 バリア層

Claims (14)

  1.  基体と、前記基体上に形成された金属層と、前記金属層の前記基体側とは反対側の面上に形成されたバリア層とを備え、
     前記金属層は、少なくとも一部において互いに不連続の状態にある複数の部分を含む電磁波透過性金属光沢物品。
  2.  前記基体と前記金属層の間に、酸化インジウム含有層をさらに備える請求項1に記載の電磁波透過性金属光沢物品。
  3.  前記酸化インジウム含有層は連続状態で設けられている請求項2に記載の電磁波透過性金属光沢物品。
  4.  前記酸化インジウム含有層は、酸化インジウム(In)、インジウム錫酸化物(ITO)、又はインジウム亜鉛酸化物(IZO)のいずれかを含む請求項2又は3に記載の電磁波透過性金属光沢物品。
  5.  前記酸化インジウム含有層の厚さは、1nm~1000nmである請求項2~4のいずれか1項に記載の電磁波透過性金属光沢物品。
  6.  前記金属層と前記基体との間に形成されたバリア層をさらに備える請求項1~5のいずれか1項に記載の電磁波透過性金属光沢物品。
  7.  前記バリア層は、金属および半金属の少なくとも1種の酸化物、窒化物、炭化物、酸化窒化物、酸化炭化物、窒化炭化物および酸化窒化炭化物からなる群より選ばれる少なくとも1種を含む請求項1~6のいずれか1項に記載の電磁波透過性金属光沢物品。
  8.  前記バリア層は、AZO、ITO、AlO、SiOからなる群より選ばれる少なくとも1種を含む請求項1~7のいずれか1項に記載の電磁波透過性金属光沢物品。
  9.  前記金属層の厚さは、10nm~100nmである請求項1~8のいずれか1項に記載の電磁波透過性金属光沢物品。
  10.  前記金属層の厚さと前記酸化インジウム含有層の厚さとの比(前記金属層の厚さ/前記酸化インジウム含有層の厚さ)は、0.02~100である請求項2~5のいずれか1項に記載の電磁波透過性金属光沢物品。
  11.  シート抵抗が、100Ω/□以上である請求項1~10のいずれか1項に記載の電磁波透過性金属光沢物品。
  12.  前記複数の部分は島状に形成されている請求項1~11のいずれか1項に記載の電磁波透過性金属光沢物品。
  13.  前記金属層は、アルミニウム(Al)、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)、又はこれらの合金のいずれかである請求項1~12のいずれか1項に記載の電磁波透過性金属光沢物品。
  14.  前記基体は、基材フィルム、樹脂成型物基材、ガラス基材、又は金属光沢を付与すべき物品のいずれかである請求項1~13のいずれか1項に記載の電磁波透過性金属光沢物品。
PCT/JP2019/017003 2018-04-23 2019-04-22 電磁波透過性金属光沢物品 WO2019208489A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980027678.XA CN112020424A (zh) 2018-04-23 2019-04-22 电磁波透过性金属光泽物品
KR1020207029951A KR20210005586A (ko) 2018-04-23 2019-04-22 전자파 투과성 금속 광택 물품

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018082662 2018-04-23
JP2018-082662 2018-04-23
JP2019080623A JP7319078B2 (ja) 2018-04-23 2019-04-22 電磁波透過性金属光沢物品
JP2019-080623 2019-04-22

Publications (1)

Publication Number Publication Date
WO2019208489A1 true WO2019208489A1 (ja) 2019-10-31

Family

ID=68294523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017003 WO2019208489A1 (ja) 2018-04-23 2019-04-22 電磁波透過性金属光沢物品

Country Status (1)

Country Link
WO (1) WO2019208489A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066783B2 (ja) * 1986-12-22 1994-01-26 株式会社麗光 包装用蒸着フイルム
JP2008221557A (ja) * 2007-03-12 2008-09-25 Ulvac Japan Ltd 光輝性膜および光輝性膜の製造方法
WO2018079547A1 (ja) * 2016-10-24 2018-05-03 日東電工株式会社 電磁波透過性金属光沢部材、これを用いた物品、及び、金属薄膜

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066783B2 (ja) * 1986-12-22 1994-01-26 株式会社麗光 包装用蒸着フイルム
JP2008221557A (ja) * 2007-03-12 2008-09-25 Ulvac Japan Ltd 光輝性膜および光輝性膜の製造方法
WO2018079547A1 (ja) * 2016-10-24 2018-05-03 日東電工株式会社 電磁波透過性金属光沢部材、これを用いた物品、及び、金属薄膜

Similar Documents

Publication Publication Date Title
KR102271407B1 (ko) 전자파 투과성 금속 광택 부재, 이것을 사용한 물품 및 금속 박막
TW201945176A (zh) 電磁波透過性金屬光澤物品及加飾構件
JP2019123238A (ja) 電波透過性金属光沢部材、これを用いた物品、及びその製造方法
WO2019208499A1 (ja) 電磁波透過性金属光沢物品
CN112020423B (zh) 电磁波透过性金属光泽物品、及金属薄膜
WO2021182380A1 (ja) 電磁波透過性積層部材、及びその製造方法
WO2019208493A1 (ja) 電磁波透過性金属光沢物品、及び、加飾部材
WO2021182381A1 (ja) 電磁波透過性金属光沢部材、及びその製造方法
WO2019208504A1 (ja) 電磁波透過性金属光沢物品、及び、金属薄膜
JP7319078B2 (ja) 電磁波透過性金属光沢物品
WO2019208494A1 (ja) 電磁波透過性金属光沢物品、及び、金属薄膜
JP7319080B2 (ja) 電磁波透過性金属光沢物品、及び、金属薄膜
JP2018192808A (ja) 電磁波透過性金属光沢部材、これを用いた物品、及び、金属薄膜
JP7319081B2 (ja) 電磁波透過性金属光沢物品
WO2019208489A1 (ja) 電磁波透過性金属光沢物品
CN112004664B (zh) 电磁波透过性金属光泽物品
WO2019139122A1 (ja) 電波透過性金属光沢部材、これを用いた物品、及びその製造方法
WO2019208490A1 (ja) 電磁波透過性金属光沢物品及びその製造方法
WO2019208488A1 (ja) 電磁波透過性金属光沢物品
WO2022181528A1 (ja) 電磁波透過性金属光沢部材および加飾部材
WO2021187069A1 (ja) 電磁波透過性金属光沢部材
JP2023013743A (ja) 積層体、及び加飾部材
JP2022171450A (ja) 電磁波透過性金属光沢部材および加飾部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793808

Country of ref document: EP

Kind code of ref document: A1