WO2019208490A1 - 電磁波透過性金属光沢物品及びその製造方法 - Google Patents

電磁波透過性金属光沢物品及びその製造方法 Download PDF

Info

Publication number
WO2019208490A1
WO2019208490A1 PCT/JP2019/017005 JP2019017005W WO2019208490A1 WO 2019208490 A1 WO2019208490 A1 WO 2019208490A1 JP 2019017005 W JP2019017005 W JP 2019017005W WO 2019208490 A1 WO2019208490 A1 WO 2019208490A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
layer
indium oxide
electromagnetic wave
substrate
Prior art date
Application number
PCT/JP2019/017005
Other languages
English (en)
French (fr)
Inventor
孝洋 中井
太一 渡邉
暁雷 陳
秀行 米澤
幸大 宮本
将治 有本
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201980027687.9A priority Critical patent/CN112004665A/zh
Priority to KR1020207029679A priority patent/KR20210005578A/ko
Priority to JP2020516339A priority patent/JPWO2019208490A1/ja
Publication of WO2019208490A1 publication Critical patent/WO2019208490A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/14Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a face layer formed of separate pieces of material which are juxtaposed side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties

Definitions

  • the present invention relates to an electromagnetic wave transmissive metallic luster article and a method for producing the same.
  • members having electromagnetic wave transparency and metallic luster have been suitably used for devices that transmit and receive electromagnetic waves because they have both a high-quality appearance derived from the metallic luster and electromagnetic wave transparency.
  • a metallic luster article that combines both luster and electromagnetic wave transmission, in which a cover member of a millimeter wave radar mounted on the front part of an automobile such as a front grill and an emblem is decorated.
  • Millimeter wave radar transmits millimeter wave electromagnetic waves (frequency: about 77 GHz, wavelength: about 4 mm) to the front of the car, receives reflected waves from the target, and measures and analyzes the reflected waves. The distance, target direction, and size can be measured. The measurement result can be used for inter-vehicle measurement, automatic speed adjustment, automatic brake adjustment, and the like. Since the front part of the automobile in which such a millimeter wave radar is arranged is a so-called automobile face and is a part that gives a large impact to the user, it is preferable to produce a high-class feeling with a metallic glossy front decoration.
  • This kind of metallic luster article is not only a millimeter wave radar but also various devices that require communication, for example, automobile door handles with smart keys, in-vehicle communication devices, mobile phones, electronic devices such as personal computers, etc.
  • the application of is expected.
  • IoT technology application in a wide range of fields such as household appliances such as refrigerators, daily life equipment, etc., which has not been conventionally performed, is expected.
  • Patent Document 1 discloses a resin product including a metal coating made of chromium (Cr) or indium (In).
  • This resin product includes a resin base material, an inorganic base film containing an inorganic compound formed on the resin base material, and glitter and discontinuity formed on the inorganic base film by physical vapor deposition.
  • a metal film made of chromium (Cr) or indium (In) having a structure is included.
  • Patent Document 1 As an inorganic base film, in Patent Document 1, (a) a thin film of a metal compound, for example, a titanium compound such as titanium oxide (TiO, TiO 2 , Ti 3 O 5 etc.); silicon oxide (SiO, SiO 2 etc.), nitriding Silicon compounds such as silicon (Si 3 N 4 etc.); aluminum compounds such as aluminum oxide (Al 2 O 3 ); iron compounds such as iron oxide (Fe 2 O 3 ); selenium compounds such as selenium oxide (CeO); oxidation Zircon compounds such as zircon (ZrO); zinc compounds such as zinc sulfide (ZnS), etc. (b) coating films of inorganic paints such as silicon and amorphous TiO z (and other metal compounds exemplified above) as main components An inorganic coating film is used.
  • a metal compound for example, a titanium compound such as titanium oxide (TiO, TiO 2 , Ti 3 O 5 etc.); silicon oxide (SiO, Si
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2009-298006
  • Patent Document 3 discloses an electromagnetic wave transmission property in which a metal film layer is formed on a base material sheet, and cracks are generated by performing heat treatment while applying tension to the base material sheet. A method for producing a metal film decorative sheet is described.
  • the metallic luster article in the prior art is one in which a metal layer is formed on a smooth surface.
  • needs for the design of metallic luster articles are diversified.
  • metallic luster articles having a matte texture and metallic luster articles having an appearance with a geometric pattern are desired.
  • the present invention has been made in view of the above, and an object thereof is to provide an electromagnetic wave transmissive metallic luster article having a novel texture and / or appearance.
  • the present inventors can provide an electromagnetic wave transmissive metallic glossy article having a novel texture and / or appearance by using a substrate having an uneven surface. I found out that I can do it.
  • An electromagnetic wave transmissive metallic luster article of the present invention comprises a substrate having a concavo-convex surface and a metal layer formed on the concavo-convex surface of the substrate, and the metal layers are at least partially discontinuous with each other. Contains some parts.
  • an indium oxide-containing layer is further provided between the base and the metal layer.
  • the indium oxide-containing layer is preferably provided in a continuous state.
  • the indium oxide-containing layer is made of either indium oxide (In 2 O 3 ), indium tin oxide (ITO), or indium zinc oxide (IZO). It is preferable to include.
  • the thickness of the indium oxide-containing layer is preferably 1 nm to 1000 nm.
  • the maximum height Rz of the uneven surface is preferably 1 to 100 ⁇ m.
  • the thickness of the metal layer is preferably 10 nm to 100 nm.
  • the ratio of the thickness of the metal layer to the thickness of the indium oxide-containing layer is 0. .02 to 100 may be used.
  • the sheet resistance may be 100 ⁇ / ⁇ or more.
  • the plurality of portions may be formed in an island shape.
  • the metal layer is made of aluminum (Al), zinc (Zn), lead (Pb), copper (Cu), silver (Ag), or an alloy thereof. It is preferable that
  • the substrate is preferably any one of a base film, a resin molded article base, a glass base, or an article to be provided with a metallic luster.
  • the method for producing an electromagnetic wave transmissive metallic luster article of the present invention includes forming a metal layer by sputtering on the irregular surface of the substrate.
  • an indium oxide-containing layer is formed on the irregular surface of the substrate, and then a metal layer is formed on the indium oxide-containing layer by sputtering. Is preferred.
  • an electromagnetic wave transmissive metallic luster article having a novel texture and / or appearance. Moreover, according to the production method of the present invention, an electromagnetic wave transmissive metallic luster article in which a metal layer with little unevenness is formed on the uneven surface of the substrate having an uneven surface can be easily provided.
  • FIG. 1 is a schematic cross-sectional view of an electromagnetic wave transmissive metallic luster article according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an electromagnetic wave transmissive metallic luster article according to an embodiment of the present invention.
  • FIG. 3 is an electron micrograph (SEM image) for explaining the discontinuous structure of the metal layer.
  • FIG. 4 is a view for explaining a method of measuring the thickness of the metal layer of the electromagnetic wave transmissive metallic luster article according to the embodiment of the present invention.
  • FIG. 5 is a view showing a transmission electron micrograph (TEM image) of a cross section of a metal layer in one embodiment of the present invention.
  • TEM image transmission electron micrograph
  • FIG. 1 shows a schematic cross-sectional view of an electromagnetic wave transmissive metallic luster article (hereinafter referred to as “metallic luster article”) 1 according to an embodiment of the present invention
  • FIG. 3 shows a metallic luster article according to an embodiment of the present invention.
  • SEM image electron micrograph
  • FIG. 5 shows a transmission electron micrograph (TEM image) of a cross section of the island-shaped metal layer 11 in one embodiment of the present invention.
  • the metallic luster article 1 includes a base 10 having an uneven surface and a metal layer 12 formed on the uneven surface 10a of the base 10.
  • the metal layer 12 is formed on the uneven surface of the substrate 10.
  • the metal layer 12 includes a plurality of portions 12a. These portions 12a in the metal layer 12 are at least partially discontinuous from each other, in other words, at least partially separated by the gap 12b. Since the sheet is separated by the gap 12b, the sheet resistance of the metallic luster article is increased and the interaction with the radio wave is reduced, so that the radio wave can be transmitted.
  • Each of these portions 12a may be an aggregate of sputtered particles formed by vapor deposition, sputtering or the like of metal.
  • the “discontinuous state” referred to in the present specification means a state in which they are separated from each other by the gap 12b and as a result, are electrically insulated from each other.
  • the sheet resistance of the metallic luster article is increased, and the desired electromagnetic wave permeability can be obtained. That is, according to the metal layer 12 formed in a discontinuous state, sufficient glitter can be easily obtained, and electromagnetic wave permeability can be secured.
  • a discontinuous form is not specifically limited, For example, an island-like structure, a crack structure, etc. are contained.
  • the “island-like structure” means that metal particles are independent from each other as shown in FIG. 3, and the particles are spread in a state of being slightly separated or partially in contact with each other. It is the structure which becomes.
  • the crack structure is a structure in which a metal thin film is divided by a crack.
  • the metal layer 12 having a crack structure can be formed, for example, by providing a metal thin film layer on a base film and bending and stretching it to cause a crack in the metal thin film layer. At this time, the metal layer 12 having a crack structure can be easily formed by providing a brittle layer made of a material having poor stretchability between the base film and the metal thin film layer. .
  • the aspect in which the metal layer 12 is discontinuous is not particularly limited, but an island structure is preferable from the viewpoint of productivity.
  • the electromagnetic wave permeability of the metallic luster article 1 can be evaluated by, for example, the amount of radio wave transmission attenuation.
  • the radio wave transmission attenuation in the microwave band (5 GHz) measured by the method described in the example column is preferably 10 [ ⁇ dB] or less, and preferably 5 [ ⁇ dB] or less. And more preferably 2 [-dB] or less. If it is larger than 10 [-dB], there is a problem that 90% or more of radio waves are blocked.
  • a metallic luster article excellent in electromagnetic wave transmission in the wave band is also excellent in electromagnetic wave transmission in the frequency band of the millimeter wave radar.
  • the sheet resistance of the metallic luster article 1 also has a correlation with the electromagnetic wave permeability.
  • the sheet resistance of the metallic luster article 1 is preferably 100 ⁇ / ⁇ or more.
  • the radio wave transmission attenuation in the microwave band (5 GHz) is about 10 to 0.01 [ ⁇ dB].
  • the sheet resistance of the metallic luster article is more preferably 200 ⁇ / ⁇ or more, and further preferably 600 ⁇ / ⁇ or more. Particularly preferably, it is 1000 ⁇ / ⁇ or more.
  • the sheet resistance of the metallic luster article 1 can be measured by an eddy current measurement method according to JIS-Z2316-1: 2014.
  • the radio wave transmission attenuation amount and sheet resistance of the metallic luster article 1 are affected by the material and thickness of the metal layer 12.
  • the metallic luster article 1 includes the indium oxide-containing layer 11, it is also affected by the material and thickness of the indium oxide-containing layer 11.
  • the substrate 10 include resins, glasses, and ceramics from the viewpoint of electromagnetic wave transmission.
  • the substrate 10 may be any of a substrate film, a resin molded substrate, a glass substrate, or an article to which a metallic luster is to be imparted.
  • the base film for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate, polyamide, polyvinyl chloride, polycarbonate (PC), cycloolefin polymer (COP), polystyrene
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • COP cycloolefin polymer
  • PP polypropylene
  • PMMA polyurethane
  • ABS acrylic
  • these members do not affect the glitter and electromagnetic wave transmission.
  • it is preferably one that can withstand high temperatures such as vapor deposition and sputtering. Therefore, among the above materials, for example, polyethylene terephthalate, polyethylene naphthalate, Acrylic, polycarbonate, cycloolefin polymer, ABS, polypropylene and polyurethane are preferred. Of these, polyethylene terephthalate, cycloolefin polymer, polycarbonate, and acrylic are preferable because of a good balance between heat resistance and cost.
  • the base film may be a single layer film or a laminated film. From the viewpoint of ease of processing, the thickness is preferably about 6 ⁇ m to 250 ⁇ m, for example.
  • plasma treatment, easy adhesion treatment, or the like may be performed.
  • the metal layer 11 may be provided on at least a part of the base film, may be provided only on one side of the base film, or may be provided on both sides.
  • the base film is only an example of an object (substrate 10) on which the metal layer 12 can be formed.
  • the base 10 includes a resin molded product base, a glass base, and an article itself to which a metallic luster is to be imparted.
  • articles that should be provided with a resin-molded base material and metallic luster include, for example, vehicle structural parts, vehicle-mounted products, electronic equipment casings, home appliance casings, structural parts, mechanical parts, and various automobiles. Parts, electronic equipment parts, furniture, household goods such as kitchenware, medical equipment, building material parts, other structural parts and exterior parts.
  • the metal layer 12 can be formed on all of these substrates, and may be formed on a part of the surface of the substrate or on the entire surface of the substrate.
  • the substrate 10 to which the metal layer 12 is to be applied preferably satisfies the same materials and conditions as those of the base film.
  • the substrate 10 has an uneven surface 10a.
  • an electromagnetic wave-transmitting metallic glossy article having a novel texture and / or appearance such as a matte texture or an appearance having a geometric pattern is obtained.
  • substrate 10 only one side may be an uneven surface, and both surfaces may be an uneven surface.
  • the maximum height Rz of the uneven surface of the substrate 10 is preferably 1 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 30 ⁇ m, and even more preferably 1 ⁇ m to 10 ⁇ m.
  • the maximum height Rz can be measured according to JIS K 7105.
  • the method for manufacturing the substrate 10 having an uneven surface is not particularly limited.
  • the substrate 10 is mixed with particles, the substrate 10 is embossed, sandblasted, or UV-molded, and the substrate 10 is coated with a liquid containing particles.
  • the method of crafting etc. is mentioned.
  • the properties of the uneven surface that is, the maximum height Rz and the surface, are adjusted by adjusting the particle size and mixing amount of the particles to be mixed.
  • the roughness Ra or the like can be controlled.
  • inorganic particles such as silica and alumina that are difficult to be thermally deformed are preferable.
  • the electromagnetic wave permeable metallic luster article 1 may further include an indium oxide-containing layer 11 between the base 10 and the metal layer 12 as shown in FIG.
  • the indium oxide-containing layer 11 may be provided directly on the surface of the substrate 10 or indirectly through a protective film or the like provided on the surface of the substrate 10.
  • the indium oxide-containing layer 11 is preferably provided in a continuous state on the surface of the substrate 10 to be provided with a metallic luster, in other words, without a gap. By being provided in a continuous state, the smoothness and corrosion resistance of the indium oxide-containing layer 11, and thus the metal layer 12 and the electromagnetic wave transmitting metallic luster article 1 can be improved. It is also easy to form a film.
  • the indium oxide-containing layer 11 is further provided between the base 10 and the metal layer 12, that is, the indium oxide-containing layer 11 is formed on the base 10, and the metal layer 12 is formed thereon.
  • the metal layer 12 can be easily formed in a discontinuous state.
  • the details of the mechanism are not always clear, but when sputtered particles formed by metal deposition or sputtering form a thin film on the substrate, the surface diffusivity of the particles on the substrate affects the shape of the thin film. It is considered that the discontinuous structure is more easily formed when the temperature of the metal layer is higher, the wettability of the metal layer to the substrate is lower, and the melting point of the material of the metal layer is lower.
  • the indium oxide-containing layer on the substrate it is considered that the surface diffusibility of the metal particles on the surface is promoted and the metal layer can be easily grown in a discontinuous state.
  • indium oxide-containing layer 11 indium oxide (In 2 O 3 ) itself can be used.
  • a metal-containing material such as indium tin oxide (ITO) or indium zinc oxide (IZO) is used.
  • ITO or IZO containing the second metal is more preferable in terms of high discharge stability in the sputtering process.
  • a film in a continuous state can be formed along the surface of the substrate.
  • a metal layer laminated on the indium oxide-containing layer is For example, it is preferable because an island-like discontinuous structure is easily obtained.
  • Cr chromium
  • indium (In) but also a discontinuous structure is usually difficult to be applied to the metal layer. It becomes easy to include various metals.
  • the content ratio (content ratio (ZnO / (In 2 O 3 + ZnO)) ⁇ 100), which is a mass ratio of zinc oxide (ZnO) contained in IZO, is, for example, 2 wt% to 20 wt%.
  • the thickness of the indium oxide-containing layer 11 is usually preferably 1000 nm or less, more preferably 50 nm or less, and still more preferably 20 nm or less, from the viewpoints of sheet resistance, radio wave transmission attenuation, and productivity.
  • the thickness is preferably 1 nm or more, and in order to easily facilitate the discontinuous state, it is more preferably 2 nm or more, and 5 nm or more. More preferably.
  • the metal layer 12 is formed on the concavo-convex surface of the substrate 10 and includes a plurality of portions 12a that are discontinuous with each other at least in part.
  • the metal layer 12 has a relatively low melting point as well as sufficient glitter. This is because the metal layer 12 is preferably formed by thin film growth using sputtering. For this reason, a metal having a melting point of about 1000 ° C. or less is suitable as the metal layer 12. For example, aluminum (Al), zinc (Zn), lead (Pb), copper (Cu), silver (Ag) It is preferable that at least one kind of metal selected from the above and an alloy containing the metal as a main component are included. In particular, Al and alloys thereof are preferable for the reasons such as the luster and stability of the substance and the price. Moreover, when using an aluminum alloy, it is preferable that aluminum content shall be 50 mass% or more.
  • the thickness of the metal layer 12 is usually preferably 10 nm or more so as to exhibit sufficient glitter. On the other hand, from the viewpoint of sheet resistance and radio wave transmission attenuation, it is usually preferably 100 nm or less. For example, 15 nm to 70 nm is preferable, and 15 nm to 50 nm is more preferable. This thickness is also suitable for forming a uniform film with high productivity, and the appearance of the resin molded product as the final product is also good. In addition, the thickness of the metal layer 12 can be measured by the method as described in the column of an Example.
  • the ratio of the thickness of the metal layer 12 to the thickness of the indium oxide-containing layer 11 is in the range of 0.1 to 100.
  • the range of 0.3 to 35 is more preferable.
  • the equivalent circle diameter of the portion 12a of the metal layer 12 is not particularly limited, but is usually about 10 to 1000 nm.
  • the distance between the portions 12a is not particularly limited, but is usually about 10 to 1000 nm.
  • the metal layer 12 is formed on the uneven surface of the substrate 10.
  • the metal particles are unlikely to adhere to the shadowed portion on the uneven surface, resulting in unevenness. It is easy to form a metal layer with However, in order to obtain a good metallic appearance, it is preferable to suppress this unevenness.
  • the metal layer is preferably provided by sputtering as described later.
  • the metallic luster article of the present embodiment may include other layers in addition to the above-described metal layer and indium oxide-containing layer depending on the application.
  • Other layers include an optical adjustment layer (color adjustment layer) such as a highly refractive material for adjusting the appearance such as color, and a protective layer (abrasion resistance) for improving durability such as moisture resistance and scratch resistance.
  • Property layer barrier layer (corrosion prevention layer), easy adhesion layer, hard coat layer, antireflection layer, light extraction layer, antiglare layer and the like.
  • the metal layer 12 on the concavo-convex surface of the substrate 10 for example, a method such as vacuum deposition or sputtering can be used.
  • a method such as vacuum deposition or sputtering can be used.
  • a discontinuous metal layer is provided uniformly on the uneven surface, but from this point of view, sputtering is used.
  • the method for producing the metallic luster article 1 includes forming the metal layer 12 on the uneven surface of the substrate 10 by sputtering.
  • the metal particles flying from the evaporation source to the substrate have a long mean free path and high directivity in the direction of travel under high vacuum. Particles are difficult to adhere and unevenness is likely to occur in the metal layer formed on the uneven surface of the substrate 10.
  • the metal particles flying from the target to the substrate have a mean free path shortened due to the presence of the introduced gas particles and proceed in various directions. In addition, metal particles are liable to adhere, and unevenness is unlikely to occur in the metal layer formed on the uneven surface of the substrate 10.
  • sputtering is excellent in that the thickness can be strictly controlled even in a large area.
  • the indium oxide-containing layer 11 is formed on the uneven surface of the substrate 10, the indium oxide-containing layer 11 is formed by vacuum deposition, sputtering, ion plating or the like prior to the formation of the metal layer 12. That is, after the indium oxide-containing layer 11 is formed on the uneven surface of the substrate 10, the metal layer 12 is formed on the indium oxide-containing layer 11.
  • the formation method of the indium oxide-containing layer 11 is preferably sputtering for the same reason as described above.
  • indium oxide containing layer 11 between the base
  • the metallic luster article 1 of this embodiment has electromagnetic wave permeability, it is preferable to use it for an apparatus and article for transmitting and receiving electromagnetic waves, and parts thereof.
  • household goods such as structural parts for vehicles, on-vehicle equipment, housing for electronic equipment, housing for home appliances, structural parts, mechanical parts, various automotive parts, electronic equipment parts, furniture, kitchenware, etc. , Medical equipment, building material parts, other structural parts and exterior parts.
  • ECU boxes electrical components, engine peripheral components, drive system / gear peripheral components, intake / exhaust system components, cooling system components, and the like.
  • electronic devices and home appliances include refrigerators, washing machines, vacuum cleaners, microwave ovens, air conditioners, lighting equipment, electric water heaters, TVs, clocks, ventilation fans, projectors, speakers, and other home appliances, personal computers, mobile phones
  • Electronic information devices such as smartphones, digital cameras, tablet PCs, portable music players, portable game machines, chargers, and batteries.
  • the metallic luster articles of Examples 1 to 8 and Comparative Examples 1 to 3 were prepared, and the metal layer thickness, sheet resistance, radio wave transmission attenuation amount, and appearance were evaluated. Note that a base film was used as the substrate 10.
  • the total cross-sectional area of the metal layer in the viewing angle region extracted at each of the five measurement locations divided by the width of the viewing angle region is the thickness of the metal layer in each viewing angle region, and at each of the five measurement locations, The average value of the thickness of the metal layer in each viewing angle region was defined as the thickness of the metal layer.
  • Radio wave transmission attenuation The radio wave transmission attenuation at 5 GHz was measured using a spectrum analyzer MS4644B manufactured by Anritsu Co., Ltd. with a sample sandwiched by a rectangular waveguide measurement evaluation jig WR-187. In addition, the radio wave transmission attenuation was evaluated based on the measured values according to the following criteria.
  • Example 1 Polycarbonate (thickness: 120 ⁇ m, surface height Rz: 30 ⁇ m) was used as a substrate film having an uneven surface.
  • an ITO layer (underlayer) having a thickness of 50 nm was directly formed on the surface of the base film using DC magnetron sputtering.
  • the temperature of the base film when forming the ITO layer was set to 130 ° C.
  • an aluminum (Al) layer having a thickness of 50 nm was formed on the ITO layer (underlying layer) using AC sputtering (AC: 40 kHz) to obtain a metallic luster article.
  • the temperature of the base film when forming the Al layer was set to 130 ° C.
  • Example 2 to [Example 4]
  • the metallic glossy articles of Examples 2 to 4 having different thicknesses of the aluminum (Al) layer were obtained in the same manner as in Example 1 except that the sputtering time for forming the aluminum (Al) layer on the ITO layer was changed. Obtained.
  • Example 5 to [Example 8]
  • the metallic glossy articles of Examples 5 to 8 having different ITO layer thicknesses were obtained in the same manner as in Example 1 except that the sputtering time for forming the ITO layer on the base film was changed.
  • Comparative Example 1 A metallic glossy article of Comparative Example 1 having a different aluminum (Al) layer thickness was obtained in the same manner as in Example 6 except that the sputtering time for forming the aluminum (Al) layer on the ITO layer was changed. .
  • Comparative Example 2 A metallic glossy article of Comparative Example 2 was obtained in the same manner as in Example 1 except that the ITO layer was not formed.
  • Comparative Example 3 A metallic luster article of Comparative Example 3 was obtained in the same manner as in Comparative Example 2 except that an aluminum (Al) layer was formed by vacuum deposition.
  • the metallic luster articles of Examples 1 to 8 were all excellent in radio wave transmission. The evaluation result of the appearance was also good. Moreover, it had a novel appearance with a geometric pattern by using a substrate having an uneven surface. In the metallic glossy articles of Comparative Examples 1 to 3, at least part of the metallic glossy articles did not include a plurality of portions that are discontinuous with each other, that is, a continuous metal layer was formed. As a result, the metallic luster articles of Comparative Examples 1 to 3 were inferior in electromagnetic wave transmission.
  • the metallic luster article according to the present invention can be used for devices and articles for transmitting and receiving electromagnetic waves, and parts thereof.
  • applications for household goods such as structural parts for vehicles, vehicle-mounted products, housings for electronic devices, housings for home appliances, structural components, mechanical parts, various automotive parts, electronic device parts, furniture, kitchenware, etc. It can also be used for various applications that require both design and electromagnetic wave transmission properties, such as medical equipment, building material parts, other structural parts and exterior parts.

Abstract

本発明は、凹凸面を有する基体(10)と、前記基体(10)の前記凹凸面上に形成された金属層(12)とを備え、前記金属層(12)は、少なくとも一部において互いに不連続の状態にある複数の部分(12a)を含む電磁波透過性金属光沢物品(1)に関する。

Description

電磁波透過性金属光沢物品及びその製造方法
 本発明は、電磁波透過性金属光沢物品及びその製造方法に関する。
 従来、電磁波透過性及び金属光沢を有する部材が、その金属光沢に由来する外観の高級感と、電磁波透過性とを兼ね備えることから、電磁波を送受信する装置に好適に用いられている。
 例えば、フロントグリル、エンブレムといった自動車のフロント部分に搭載されるミリ波レーダーのカバー部材に装飾を施した、光輝性と電磁波透過性の双方を兼ね備えた金属光沢物品が求められている。
 ミリ波レーダーは、ミリ波帯の電磁波(周波数約77GHz、波長約4mm)を自動車の前方に送信し、ターゲットからの反射波を受信して、反射波を測定、分析することで、ターゲットとの距離や、ターゲットの方向、サイズを計測することができるものである。
 計測結果は、車間計測、速度自動調整、ブレーキ自動調整などに利用することができる。
 このようなミリ波レーダーが配置される自動車のフロント部分は、いわば自動車の顔であり、ユーザに大きなインパクトを与える部分であるから、金属光沢調のフロント装飾で高級感を演出することが好ましい。しかしながら、自動車のフロント部分に金属を使用した場合には、ミリ波レーダーによる電磁波の送受信が実質的に不可能、或いは、妨害されてしまう。したがって、ミリ波レーダーの働きを妨げることなく、自動車の意匠性を損なわせないために、光輝性と電磁波透過性の双方を兼ね備えた金属光沢物品が必要とされている。
 この種の金属光沢物品は、ミリ波レーダーのみならず、通信を必要とする様々な機器、例えば、スマートキーを設けた自動車のドアハンドル、車載通信機器、携帯電話、パソコン等の電子機器等への応用が期待されている。更に、近年では、IoT技術の発達に伴い、従来は通信等行われることがなかった、冷蔵庫等の家電製品、生活機器等、幅広い分野での応用も期待されている。
 金属光沢部材に関して、日本国特開2007-144988号公報(特許文献1)には、クロム(Cr)又はインジウム(In)より成る金属被膜を含む樹脂製品が開示されている。この樹脂製品は、樹脂基材と、当該樹脂基材の上に成膜された無機化合物を含む無機質下地膜と、当該無機質下地膜の上に物理蒸着法により成膜された光輝性及び不連続構造のクロム(Cr)又はインジウム(In)よりなる金属皮膜を含む。無機質下地膜として、特許文献1では、(a)金属化合物の薄膜、例えば、酸化チタン(TiO、TiO、Ti等)等のチタン化合物;酸化ケイ素(SiO、SiO等)、窒化ケイ素(Si等)等のケイ素化合物;酸化アルミニウム(Al)等のアルミニウム化合物;酸化鉄(Fe)等の鉄化合物;酸化セレン(CeO)等のセレン化合物;酸化ジルコン(ZrO)等のジルコン化合物;硫化亜鉛(ZnS)等の亜鉛化合物等、(b)無機塗料の塗膜、例えば、シリコン、アモルファスTiO等(その他、上記例示の金属化合物)を主成分とする無機塗料による塗膜が使用されている。
 一方、日本国特開2009-298006号公報(特許文献2)には、クロム(Cr)又はインジウム(In)のみならず、アルミニウム(Al)、銀(Ag)、ニッケル(Ni)をも金属膜として形成することができる電磁波透過性光輝樹脂製品が開示されている。
 日本国特開2010-5999号公報(特許文献3)には金属膜層を母材シートに形成し、母材シートに、張力を負荷しつつ、加熱処理を行うことによりクラックを有する電磁波透過性の金属膜加飾シートを製造する方法が記載されている。
日本国特開2007-144988号公報 日本国特開2009-298006号公報 日本国特開2010-5999号公報
 従来技術における金属光沢物品は、一般的には平滑面に金属層を形成したものである。しかしながら、金属光沢物品の意匠に対するニーズは多様化しており、例えばマットな質感を有する金属光沢物品や、幾何学的な模様を配した外観を有する金属光沢物品も望まれている。
 本願発明は、上記に鑑みてなされたものであり、その課題は、新規な質感及び/又は外観を有する電磁波透過性金属光沢物品を提供することにある。
 本発明者等は、上記課題を解決するために鋭意検討を重ねた結果、凹凸面を有する基体を用いることで、新規な質感及び/又は外観を有する電磁波透過性金属光沢物品を提供することができることを見出した。
 本発明の電磁波透過性金属光沢物品は、凹凸面を有する基体と、前記基体の前記凹凸面上に形成された金属層とを備え、前記金属層は、少なくとも一部において互いに不連続の状態にある複数の部分を含む。
 本発明の電磁波透過性金属光沢物品の一態様において、前記基体と前記金属層の間に、酸化インジウム含有層をさらに備えることが好ましい。
 本発明の電磁波透過性金属光沢物品の一態様において、前記酸化インジウム含有層は連続状態で設けられていることが好ましい。
 本発明の電磁波透過性金属光沢物品の一態様において、前記酸化インジウム含有層は、酸化インジウム(In)、インジウム錫酸化物(ITO)、又はインジウム亜鉛酸化物(IZO)のいずれかを含むことが好ましい。
 本発明の電磁波透過性金属光沢物品の一態様において、前記酸化インジウム含有層の厚さは、1nm~1000nmであることが好ましい。
 本発明の電磁波透過性金属光沢物品の一態様において、前記凹凸面の最大高さRzは1~100μmであることが好ましい。
 本発明の電磁波透過性金属光沢物品の一態様において、前記金属層の厚さは、10nm~100nmであることが好ましい。
 本発明の電磁波透過性金属光沢物品の一態様において、前記金属層の厚さと前記酸化インジウム含有層の厚さとの比(前記金属層の厚さ/前記酸化インジウム含有層の厚さ)は、0.02~100であってもよい。
 本発明の電磁波透過性金属光沢物品の一態様は、シート抵抗が、100Ω/□以上であってもよい。
 本発明の電磁波透過性金属光沢物品の一態様において、前記複数の部分は島状に形成されていてもよい。
 本発明の電磁波透過性金属光沢物品の一態様において、前記金属層は、アルミニウム(Al)、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)、又はこれらの合金のいずれかであることが好ましい。
 本発明の電磁波透過性金属光沢物品の一態様において、前記基体は、基材フィルム、樹脂成型物基材、ガラス基材、又は金属光沢を付与すべき物品のいずれかであることが好ましい。
 また、本発明の電磁波透過性金属光沢物品の製造方法は、前記基体の前記凹凸面上にスパッタリングにより金属層を形成することを含む。
 本発明の電磁波透過性金属光沢物品の製造方法の一態様においては、前記基体の前記凹凸面上に酸化インジウム含有層を形成した後に、前記酸化インジウム含有層上にスパッタリングにより金属層を形成することが好ましい。
 本発明によれば、新規な質感及び/又は外観を有する電磁波透過性金属光沢物品を提供することができる。
 また、本発明の製造方法によれば、凹凸面を有する基体の凹凸面状にムラの少ない金属層が形成された電磁波透過性金属光沢物品を容易に提供することができる。
図1は、本発明の一実施形態による電磁波透過性金属光沢物品の概略断面図である。 図2は、本発明の一実施形態による電磁波透過性金属光沢物品の概略断面図である。 図3は、金属層の不連続構造について説明するための電子顕微鏡写真(SEM画像)である。 図4は、本発明の一実施形態による電磁波透過性金属光沢物品の金属層の膜厚の測定方法を説明するための図である。 図5は、本発明の一実施形態における金属層の断面の透過型電子顕微鏡写真(TEM画像)を示す図である。
 以下、添付図面を参照しつつ、本発明の一つの好適な実施形態について説明する。以下においては、説明の便宜のために本発明の好適な実施形態のみを示すが、勿論、これによって本発明を限定しようとするものではない。
<1.基本構成>
 図1に、本発明の一実施形態による電磁波透過性金属光沢物品(以下、「金属光沢物品」という。)1の概略断面図を示し、図3に、本発明の一実施形態による金属光沢物品の表面の電子顕微鏡写真(SEM画像)の例を示す。また、図5に、本発明の一実施形態における島状構造の金属層11の断面の透過型電子顕微鏡写真(TEM画像)を示す。
 金属光沢物品1は、凹凸面を有する基体10と、基体10の凹凸面10aの上に形成された、金属層12を含む。
 金属層12は基体10の凹凸面の上に形成される。金属層12は複数の部分12aを含む。金属層12におけるこれらの部分12aは、少なくとも一部において互いに不連続の状態、言い換えれば、少なくとも一部において隙間12bによって隔てられる。隙間12bによって隔てられるため、金属光沢物品のシート抵抗は大きくなり、電波との相互作用が低下するため、電波を透過させることができる。これらの各部分12aは金属を蒸着、スパッタ等することによって形成されたスパッタ粒子の集合体であってもよい。
 尚、本明細書でいう「不連続の状態」とは、隙間12bによって互いに隔てられており、この結果、互いに電気的に絶縁されている状態を意味する。電気的に絶縁されることにより、金属光沢物品のシート抵抗が大きくなり、所望とする電磁波透過性が得られることになる。すなわち、不連続の状態で形成された金属層12によれば、十分な光輝性が得られやすく、電磁波透過性を確保することもできる。不連続の形態は、特に限定されるものではなく、例えば、島状構造、クラック構造等が含まれる。ここで「島状構造」とは、図3に示されているように、金属粒子同士が各々独立しており、それらの粒子が、互いに僅かに離間し又は一部接触した状態で敷き詰められてなる構造である。
 クラック構造とは、金属薄膜がクラックにより分断された構造である。
 クラック構造の金属層12は、例えば基材フィルム上に金属薄膜層を設け、屈曲延伸して金属薄膜層にクラックを生じさせることにより形成することができる。この際、基材フィルムと金属薄膜層の間に伸縮性に乏しい、即ち延伸によりクラックを生成しやすい素材からなる脆性層を設けることにより、容易にクラック構造の金属層12を形成することができる。
 上述のとおり金属層12が不連続となる態様は特に限定されないが、生産性の観点からは島状構造とすることが好ましい。
 金属光沢物品1の電磁波透過性は、例えば電波透過減衰量により評価することができる。金属光沢物品1において、実施例の欄に記載の方法で測定したマイクロ波帯域(5GHz)における電波透過減衰量は、10[-dB]以下であることが好ましく、5[-dB]以下であるのがより好ましく、2[-dB]以下であることが更に好ましい。10[-dB]より大きいと、90%以上の電波が遮断されるという問題がある。なお、マイクロ波帯域(5GHz)における電波透過減衰量とミリ波レーダーの周波数帯域(76~80GHz)における電波透過減衰量との間には相関性があり、比較的近い値を示すことから、マイクロ波帯域における電磁波透過性に優れる金属光沢物品は、ミリ波レーダーの周波数帯域における電磁波透過性にも優れる。
 金属光沢物品1のシート抵抗も電磁波透過性と相関を有する。金属光沢物品1のシート抵抗は100Ω/□以上であるのが好ましく、この場合マイクロ波帯域(5GHz)における電波透過減衰量は、10~0.01[-dB]程度となる。金属光沢物品のシート抵抗は200Ω/□以上であることがより好ましく、600Ω/□以上であることが更に好ましい。また、特に好ましくは、1000Ω/□以上である。
 金属光沢物品1のシート抵抗は、JIS-Z2316-1:2014に従って渦電流測定法により測定することができる。
 金属光沢物品1の電波透過減衰量及びシート抵抗は、金属層12の材質や厚さ等により影響を受ける。また、金属光沢物品1が酸化インジウム含有層11を備える場合には酸化インジウム含有層11の材質や厚さ等によっても影響を受ける。
<2.基体>
 基体10としては、電磁波透過性の観点から、樹脂、ガラス、セラミックス等が挙げられる。
 基体10は、基材フィルム、樹脂成型物基材、ガラス基材、又は金属光沢を付与すべき物品のいずれかであってもよい。
 より具体的には、基材フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート、ポリアミド、ポリ塩化ビニル、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、ポリスチレン、ポリプロピレン(PP)、ポリエチレン、ポリシクロオレフィン、ポリウレタン、アクリル(PMMA)、ABSなどの単独重合体や共重合体からなる透明フィルムを用いることができる。
 これらの部材によれば、光輝性や電磁波透過性に影響を与えることもない。但し、酸化インジウム含有層11や金属層12を後に形成する観点から、蒸着やスパッタ等の高温に耐え得るものであることが好ましく、従って、上記材料の中でも、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、アクリル、ポリカーボネート、シクロオレフィンポリマー、ABS、ポリプロピレン、ポリウレタンが好ましい。なかでも、耐熱性とコストとのバランスがよいことからポリエチレンテレフタレートやシクロオレフィンポリマー、ポリカーボネート、アクリルが好ましい。
 基材フィルムは、単層フィルムでもよいし積層フィルムでもよい。加工のし易さ等から、厚さは、例えば、6μm~250μm程度が好ましい。酸化インジウム含有層11や金属層12との付着力を強くするために、プラズマ処理や易接着処理などが施されてもよい。
 基体10が基材フィルムの場合、金属層11は基材フィルム上の少なくとも一部に設ければよく、基材フィルムの片面のみに設けてもよく、両面に設けてもよい。
 ここで、基材フィルムは、その表面上に金属層12を形成することができる対象(基体10)の一例にすぎない点に注意すべきである。基体10には、上記のとおり基材フィルムの他、樹脂成型物基材、ガラス基材、金属光沢を付与すべき物品それ自体も含まれる。樹脂成型物基材、及び金属光沢を付与すべき物品としては、例えば、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品や外装用部品等が挙げられる。
 金属層12は、これら全ての基体上に形成することができ、基体の表面の一部に形成してもよく、基体の表面の全てに形成してもよい。この場合、金属層12を付与すべき基体10は、上記の基材フィルムと同様の材質、条件を満たしていることが好ましい。
 また、基体10は、凹凸面10aを有する。基体10が凹凸面を有することにより、例えばマットな質感や、幾何学的な模様を配した外観等の新規な質感及び/又は外観を有する電磁波透過性金属光沢物品が得られる。基体10は、片面のみが凹凸面であってもよく、両面が凹凸面であってもよい。
 基体10の凹凸面の最大高さRzは1μm~100μmであることが好ましく、1μm~30μmであることがより好ましく、1μm~10μmであることがさらに好ましい。なお、最大高さRzはJIS K 7105に準拠して測定することができる。
 凹凸面を有する基体10を製造する方法は特に限定されないが、例えば基体10に粒子を混入させる、基体10にエンボス加工、サンドブラスト加工、UVモールディング加工を施す、基体10に粒子を含有する液を塗工する等の方法が挙げられる。
 基体10に粒子を混入させる場合や、粒子を含有する液を塗工する場合は、混入させる粒子の粒径や混入量を調整することにより、凹凸面の性状、即ち、最大高さRzや表面粗さRa等を制御することができる。また、混入させる粒子としては、シリカ、アルミナ等の熱変形しにくい無機粒子が好ましい。
<3.酸化インジウム含有層>
 また、一実施形態に係る電磁波透過性金属光沢物品1は、図2に示されるように、基体10と金属層12の間に、酸化インジウム含有層11をさらに備えてもよい。酸化インジウム含有層11は、基体10の面に直接設けられていてもよいし、基体10の面に設けられた保護膜等を介して間接的に設けられてもよい。酸化インジウム含有層11は、金属光沢を付与すべき基体10の面に連続状態で、言い換えれば、隙間なく、設けられるのが好ましい。連続状態で設けられることにより、酸化インジウム含有層11、ひいては、金属層12や電磁波透過性金属光沢物品1の平滑性や耐食性を向上させることができ、また、酸化インジウム含有層11を面内ばらつきなく成膜することも容易となる。
 このように、基体10と金属層12の間に、酸化インジウム含有層11をさらに備えること、すなわち、基体10の上に酸化インジウム含有層11を形成し、その上に金属層12を形成することによれば、金属層12を不連続の状態で形成しやすくなるため好ましい。そのメカニズムの詳細は必ずしも明らかではないが、金属の蒸着やスパッタによるスパッタ粒子が基体上で薄膜を形成する際には、基体上での粒子の表面拡散性が薄膜の形状に影響を及ぼし、基体の温度が高く、基体に対する金属層の濡れ性が小さく、金属層の材料の融点が低い方が不連続構造を形成しやすいと考えられる。そして、基体上に酸化インジウム含有層を設けることにより、その表面上の金属粒子の表面拡散性が促進されて、金属層を不連続の状態で成長させやすくなると考えられる。
 酸化インジウム含有層11として、酸化インジウム(In)そのものを使用することもできるし、例えば、インジウム錫酸化物(ITO)や、インジウム亜鉛酸化物(IZO)のような金属含有物を使用することもできる。但し、第二の金属を含有したITOやIZOの方が、スパッタリング工程での放電安定性が高い点で、より好ましい。これらの酸化インジウム含有層11を用いることにより、基体の面に沿って連続状態の膜を形成することもでき、また、この場合には、酸化インジウム含有層の上に積層される金属層を、例えば、島状の不連続構造としやすくなるため、好ましい。更に、後述するように、この場合には、金属層に、クロム(Cr)又はインジウム(In)だけでなく、通常は不連続構造になり難く、本用途には適用が難しかった、アルミニウム等の様々な金属を含めやすくなる。
 ITOに含まれる酸化錫(SnО)の質量比率である含有率(含有率=(SnO/(In+SnO))×100)は特に限定されるものではないが、例えば、2.5wt%~30wt%、より好ましくは、3wt%~10wt%である。また、IZOに含まれる酸化亜鉛(ZnO)の質量比率である含有率(含有率=(ZnO/(In+ZnO))×100)は、例えば、2wt%~20wt%である。酸化インジウム含有層11の厚さは、シート抵抗や電波透過減衰量、生産性の観点から、通常1000nm以下が好ましく、50nm以下がより好ましく、20nm以下が更に好ましい。一方、積層される金属層12を不連続状態としやすくするためには、1nm以上であることが好ましく、確実に不連続状態にしやすくするためには、2nm以上であることがより好ましく、5nm以上であることが更に好ましい。
<4.金属層>
 金属層12は基体10の凹凸面上に形成され、少なくとも一部において互いに不連続の状態にある複数の部分12aを含む。
 金属層12は、十分な光輝性を発揮し得ることは勿論、融点が比較的低いものであることが望ましい。金属層12は、スパッタリングを用いた薄膜成長によって形成するのが好ましいためである。このような理由から、金属層12としては、融点が約1000℃以下の金属が適しており、例えば、アルミニウム(Al)、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)から選択された少なくとも一種の金属、および該金属を主成分とする合金のいずれかを含むことが好ましい。特に、物質の光輝性や安定性、価格等の理由からAlおよびそれらの合金が好ましい。また、アルミニウム合金を用いる場合には、アルミニウム含有量を50質量%以上とすることが好ましい。
 金属層12の厚さは、十分な光輝性を発揮するように、通常10nm以上が好ましく、一方、シート抵抗や電波透過減衰量の観点から、通常100nm以下が好ましい。例えば、15nm~70nmが好ましく、15nm~50nmがより好ましい。この厚さは、均一な膜を生産性良く形成するのにも適しており、また、最終製品である樹脂成形品の見栄えも良い。なお、金属層12の厚さは実施例の欄に記載の方法で測定できる。
 また、同様の理由から、金属層12の厚さと酸化インジウム含有層11の厚さとの比(金属層12の厚さ/酸化インジウム含有層11の厚さ)は、0.1~100の範囲が好ましく、0.3~35の範囲がより好ましい。
 金属層12の部分12aの円相当径は特に限定されないが、通常10~1000nm程度である。また、各部分12a同士の距離は特に限定されないが、通常は10~1000nm程度である。
 また、金属層12は基体10の凹凸面上に形成されているが、通常凹凸面上に金属層を形成すると、凹凸面において影になっている部分に金属粒子が付着しにくく、その結果ムラの有る金属層が形成されやすい。しかしながら、良好な金属調の外観を得るためには、このムラを抑制することが好ましく、そのためには金属層は後述のようにスパッタリングにより設けられたものであることが好ましい。
 本実施形態の金属光沢物品は、上述の金属層、及び酸化インジウム含有層の他に、用途に応じてその他の層を備えてもよい。
 その他の層としては色味等の外観を調整するための高屈折材料等の光学調整層(色味調整層)、耐湿性や耐擦傷性等の耐久性を向上させるための保護層(耐擦傷性層)、バリア層(腐食防止層)、易接着層、ハードコート層、反射防止層、光取出し層、アンチグレア層等が挙げられる。
<5.金属光沢物品の製造>
 金属光沢物品1の製造方法の一例について、説明する。特に説明しないが、基材フィルム10以外の基体を用いた場合についても同様の方法で製造することができる。
 基体10の凹凸面上に金属層12を形成するにあたっては、例えば、真空蒸着、スパッタリング等の方法を用いることができる。
 上記のとおり、良好な金属調の外観を有する金属光沢物品1を得るためには、凹凸面上に不連続な金属層がムラなく設けられることが好ましいが、この観点からはスパッタリングを用いることが好ましい。すなわち、金属光沢物品1の製造方法は基体10の凹凸面上にスパッタリングにより金属層12を形成することを含むことが好ましい。
 真空蒸着を用いた場合、蒸発源から基体へ飛翔する金属粒子は、高真空下において平均自由工程が長く、進行方向の指向性が高く、したがって、凹凸面において影になっている部分には金属粒子が付着しづらく、基体10の凹凸面上に形成される金属層にムラが生じやすい。
 一方、スパッタリングを用いた場合は、ターゲットから基体へ飛翔する金属粒子は導入するガス粒子の存在により、平均自由工程は短くなり、様々な方向に進行するため、凹凸面において影になっている部分にも金属粒子が付着しやすく、基体10の凹凸面上に形成される金属層にムラが生じにくい。
 また、スパッタリングは大面積でも厚さを厳密に制御できる点においても優れる。
 また、基体10の凹凸面上に酸化インジウム含有層11を形成する場合には、金属層12の形成に先立ち、酸化インジウム含有層11を、真空蒸着、スパッタリング、イオンプレーティング等によって形成する。すなわち、基体10の凹凸面上に酸化インジウム含有層11を形成した後に、酸化インジウム含有層上11に金属層12を形成する。酸化インジウム含有層11の形成方法は、上記と同様の理由により、スパッタリングが好ましい。
 尚、基体10と金属層12の間に酸化インジウム含有層11を設ける場合、酸化インジウム含有層11と金属層12の間には、他の層を介在させずに直接接触させるのが好ましい。
<6.金属光沢物品の用途>
 本実施形態の金属光沢物品1は、電磁波透過性を有することから電磁波を送受信する装置や物品及びその部品等に使用することが好ましい。例えば、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品や外装用部品等が挙げられる。
 より具体的には、車両関係では、インスツルメントパネル、コンソールボックス、ドアノブ、ドアトリム、シフトレバー、ペダル類、グローブボックス、バンパー、ボンネット、フェンダー、トランク、ドア、ルーフ、ピラー、座席シート、ステアリングホイール、ECUボックス、電装部品、エンジン周辺部品、駆動系・ギア周辺部品、吸気・排気系部品、冷却系部品等が挙げられる。
 電子機器および家電機器としてより具体的には、冷蔵庫、洗濯機、掃除機、電子レンジ、エアコン、照明機器、電気湯沸かし器、テレビ、時計、換気扇、プロジェクター、スピーカー等の家電製品類、パソコン、携帯電話、スマートフォン、デジタルカメラ、タブレット型PC、携帯音楽プレーヤー、携帯ゲーム機、充電器、電池等電子情報機器等が挙げられる。
 以下、実施例及び比較例を挙げて、本発明をより具体的に説明する。実施例1~8及び比較例1~3の金属光沢物品を準備し、金属層の厚み、シート抵抗、電波透過減衰量、及び外観を評価した。なお、基体10としては、基材フィルムを用いた。
(1)金属層の厚さ
 まず、金属光沢物品から、図4に示すように一辺5cmの正方形領域3を適当に抽出し、該正方形領域3の縦辺及び横辺それぞれの中心線A、Bをそれぞれ4等分することによって得られる計5箇所の点「a」~「e」を測定箇所として選択した。
 次いで、選択した測定箇所それぞれにおける、図5に示すような断面画像(透過型電子顕微鏡写真(TEM画像))を測定し、得られたTEM画像から、5個以上の金属部分12aが含まれる視野角領域を抽出した。
 5箇所の測定箇所それぞれにおいて抽出された視野角領域における金属層の総断面積を視野角領域の横幅で割ったものを各視野角領域の金属層の厚さとし、5箇所の測定箇所それぞれにおける、各視野角領域の金属層の厚さの平均値を金属層の厚さとした。
(2)シート抵抗
 ナプソン社製非接触式抵抗測定装置NC-80MAPを用い、JIS-Z2316に準拠し、渦電流測定法により酸化インジウム含有層を備えるものについては金属層と酸化インジウム含有層の積層体としてのシート抵抗を、酸化インジウム含有層を備えないものについては金属層のシート抵抗を測定した。
(3)電波透過減衰量
 5GHzにおける電波透過減衰量を、方形導波管測定評価治具WR-187でサンプルを挟み、アンリツ社製スペクトルアナライザMS4644Bを用いて測定した。また、測定値に基づいて下記基準で電波透過減衰量を評価した。
(電波透過減衰量の評価基準)
 10[-dB]以上:×
 10[-dB]未満~5[-dB]:△
 5[-dB]未満~2[-dB]:○
 2[-dB]未満:◎
(4)外観の評価
 目視により、金属光沢物品の外観を金属質感と面内均一性の観点から、以下の基準で評価した。
(外観の評価基準)
 金属質感、面内均一性がともに良好:◎
 金属質感、面内均一性のいずれか、又はいずれもで軽微な不良あり:○
 金属質感、面内均一性のいずれかで不良:△
 金属質感、面内均一性がともに不良:×
 以下の表1に、評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
[実施例1]
 凹凸面を有する基材フィルムとして、ポリカーボネート(厚さ:120μm、表面高さRz:30μm)を用いた。
 先ず、DCマグネトロンスパッタリングを用いて、基材フィルムの面に沿って、50nmの厚さのITO層(下地層)をその上に直接形成した。ITO層を形成する際の基材フィルムの温度は、130℃に設定した。ITOに含まれる酸化錫(SnО)の含有率(含有率=(SnO/(In+SnO))×100)は10wt%であった。
 次いで、交流スパッタリング(AC:40kHz)を用いて、ITO層(下地層)の上に、50nmの厚さのアルミニウム(Al)層を形成し、金属光沢物品を得た。Al層を形成する際の基材フィルムの温度は、130℃に設定した。
[実施例2]~[実施例4]
 ITO層の上に、アルミニウム(Al)層を形成する際のスパッタ時間を変更した以外は実施例1と同様にして、アルミニウム(Al)層の厚みの異なる実施例2~4の金属光沢物品を得た。
[実施例5]~[実施例8]
 基材フィルムの上にITO層を形成する際のスパッタ時間を変更した以外は実施例1と同様にして、ITO層の厚みの異なる実施例5~8の金属光沢物品を得た。
[比較例1]
 ITO層の上に、アルミニウム(Al)層を形成する際のスパッタ時間を変更した以外は実施例6と同様にして、アルミニウム(Al)層の厚みの異なる比較例1の金属光沢物品を得た。
[比較例2]
 ITO層を形成しなかった点以外は実施例1と同様にして、比較例2の金属光沢物品を得た。
[比較例3]
 真空蒸着法を用いてアルミニウム(Al)層を形成した点以外は比較例2と同様にして、比較例3の金属光沢物品を得た。
 実施例1~8の金属光沢物品は、いずれも電波透過性に優れた。外観の評価結果も良好であった。また、凹凸面を有する基体を用いたことにより幾何学的な模様を配した新規な外観を有した。
 比較例1~3の金属光沢物品では、少なくとも一部において互いに不連続の状態にある複数の部分を含まない、すなわち、連続な金属層が形成された。その結果、比較例1~3の金属光沢物品は電磁波透過性が劣るものであった。
 なお、以上の実施例で特に使用したアルミニウム(Al)以外の金属についても、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)などの比較的融点の低い金属については、同様の手法で不連続構造を形成しうると考えられる。
 本発明は前記実施例に限定されるものではなく、発明の趣旨から逸脱しない範囲で適宜変更して具体化することもできる。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2018年4月23日付けで出願された日本特許出願(特願2018-082660)及び2018年4月23日付けで出願された日本特許出願(特願2018-082661)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
 本発明に係る金属光沢物品は、電磁波を送受信する装置や物品及びその部品等に使用することができる。例えば、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品や外装用部品等、意匠性と電磁波透過性の双方が要求される様々な用途にも利用できる。
1 金属光沢物品
10 基体
11 酸化インジウム含有層
12 金属層
12a 部分
12b 隙間

Claims (14)

  1.  凹凸面を有する基体と、前記基体の前記凹凸面上に形成された金属層とを備え、
     前記金属層は、少なくとも一部において互いに不連続の状態にある複数の部分を含む電磁波透過性金属光沢物品。
  2.  前記基体と前記金属層の間に、酸化インジウム含有層をさらに備える請求項1に記載の電磁波透過性金属光沢物品。
  3.  前記酸化インジウム含有層は連続状態で設けられている請求項2に記載の電磁波透過性金属光沢物品。
  4.  前記酸化インジウム含有層は、酸化インジウム(In)、インジウム錫酸化物(ITO)、又はインジウム亜鉛酸化物(IZO)のいずれかを含む請求項2又は3に記載の電磁波透過性金属光沢物品。
  5.  前記酸化インジウム含有層の厚さは、1nm~1000nmである請求項2~4のいずれか1項に記載の電磁波透過性金属光沢物品。
  6.  前記凹凸面の最大高さRzは1~100μmである請求項1~5のいずれか1項に記載の電磁波透過性金属光沢物品。
  7.  前記金属層の厚さは、10nm~100nmである請求項1~6のいずれか1項に記載の電磁波透過性金属光沢物品。
  8.  前記金属層の厚さと前記酸化インジウム含有層の厚さとの比(前記金属層の厚さ/前記酸化インジウム含有層の厚さ)は、0.02~100である請求項2~5のいずれか1項に記載の電磁波透過性金属光沢物品。
  9.  シート抵抗が、100Ω/□以上である請求項1~8のいずれか1項に記載の電磁波透過性金属光沢物品。
  10.  前記複数の部分は島状に形成されている請求項1~9のいずれか1項に記載の電磁波透過性金属光沢物品。
  11.  前記金属層は、アルミニウム(Al)、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)、又はこれらの合金のいずれかである請求項1~10のいずれか1項に記載の電磁波透過性金属光沢物品。
  12.  前記基体は、基材フィルム、樹脂成型物基材、ガラス基材、又は金属光沢を付与すべき物品のいずれかである請求項1~11のいずれか1項に記載の電磁波透過性金属光沢物品。
  13.  前記基体の前記凹凸面上にスパッタリングにより前記金属層を形成することを含む、請求項1~12のいずれか1項に記載の電磁波透過性金属光沢物品の製造方法。
  14.  前記基体の前記凹凸面上に酸化インジウム含有層を形成した後に、前記酸化インジウム含有層上にスパッタリングにより前記金属層を形成する請求項13に記載の電磁波透過性金属光沢物品の製造方法。
PCT/JP2019/017005 2018-04-23 2019-04-22 電磁波透過性金属光沢物品及びその製造方法 WO2019208490A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980027687.9A CN112004665A (zh) 2018-04-23 2019-04-22 电磁波透过性金属光泽物品及其制造方法
KR1020207029679A KR20210005578A (ko) 2018-04-23 2019-04-22 전자파 투과성 금속 광택 물품 및 그 제조 방법
JP2020516339A JPWO2019208490A1 (ja) 2018-04-23 2019-04-22 電磁波透過性金属光沢物品及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-082660 2018-04-23
JP2018082660 2018-04-23
JP2018-082661 2018-04-23
JP2018082661 2018-04-23

Publications (1)

Publication Number Publication Date
WO2019208490A1 true WO2019208490A1 (ja) 2019-10-31

Family

ID=68294865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017005 WO2019208490A1 (ja) 2018-04-23 2019-04-22 電磁波透過性金属光沢物品及びその製造方法

Country Status (5)

Country Link
JP (1) JPWO2019208490A1 (ja)
KR (1) KR20210005578A (ja)
CN (1) CN112004665A (ja)
TW (1) TW201945186A (ja)
WO (1) WO2019208490A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066783B2 (ja) * 1986-12-22 1994-01-26 株式会社麗光 包装用蒸着フイルム
JP2008221557A (ja) * 2007-03-12 2008-09-25 Ulvac Japan Ltd 光輝性膜および光輝性膜の製造方法
WO2018079547A1 (ja) * 2016-10-24 2018-05-03 日東電工株式会社 電磁波透過性金属光沢部材、これを用いた物品、及び、金属薄膜

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4706596B2 (ja) 2005-10-31 2011-06-22 豊田合成株式会社 樹脂製品及びその製造方法並びに金属皮膜の成膜方法
JP2009298006A (ja) 2008-06-12 2009-12-24 Toyoda Gosei Co Ltd 電磁波透過性光輝樹脂製品及び製造方法
JP2010005999A (ja) 2008-06-30 2010-01-14 Nissha Printing Co Ltd クラックを有する金属膜加飾シートの製造方法
TWI467214B (zh) * 2009-09-02 2015-01-01 Dexerials Corp A conductive optical element, a touch panel, an information input device, a display device, a solar cell, and a conductive optical element
CN102896825A (zh) * 2011-07-29 2013-01-30 鸿富锦精密工业(深圳)有限公司 镀膜件及其制造方法
EP3278982A4 (en) * 2015-03-30 2018-11-14 Dai Nippon Printing Co., Ltd. Decorative sheet
US10575370B2 (en) * 2015-09-25 2020-02-25 Samsung Electronics Co., Ltd. Electrical conductors, electrically conductive structures, and electronic devices including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066783B2 (ja) * 1986-12-22 1994-01-26 株式会社麗光 包装用蒸着フイルム
JP2008221557A (ja) * 2007-03-12 2008-09-25 Ulvac Japan Ltd 光輝性膜および光輝性膜の製造方法
WO2018079547A1 (ja) * 2016-10-24 2018-05-03 日東電工株式会社 電磁波透過性金属光沢部材、これを用いた物品、及び、金属薄膜

Also Published As

Publication number Publication date
KR20210005578A (ko) 2021-01-14
CN112004665A (zh) 2020-11-27
JPWO2019208490A1 (ja) 2021-05-13
TW201945186A (zh) 2019-12-01

Similar Documents

Publication Publication Date Title
KR102271407B1 (ko) 전자파 투과성 금속 광택 부재, 이것을 사용한 물품 및 금속 박막
JP2019188806A (ja) 電磁波透過性金属光沢物品、及び、加飾部材
JP7319077B2 (ja) 電磁波透過性金属光沢物品、及び、金属薄膜
WO2019208499A1 (ja) 電磁波透過性金属光沢物品
WO2021182380A1 (ja) 電磁波透過性積層部材、及びその製造方法
WO2019208493A1 (ja) 電磁波透過性金属光沢物品、及び、加飾部材
WO2019208504A1 (ja) 電磁波透過性金属光沢物品、及び、金属薄膜
JP7319080B2 (ja) 電磁波透過性金属光沢物品、及び、金属薄膜
JP7319081B2 (ja) 電磁波透過性金属光沢物品
WO2019208494A1 (ja) 電磁波透過性金属光沢物品、及び、金属薄膜
JP7319078B2 (ja) 電磁波透過性金属光沢物品
CN112004664B (zh) 电磁波透过性金属光泽物品
JP2018192808A (ja) 電磁波透過性金属光沢部材、これを用いた物品、及び、金属薄膜
WO2019208490A1 (ja) 電磁波透過性金属光沢物品及びその製造方法
WO2019208488A1 (ja) 電磁波透過性金属光沢物品
WO2019208489A1 (ja) 電磁波透過性金属光沢物品
WO2021187069A1 (ja) 電磁波透過性金属光沢部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792868

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516339

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792868

Country of ref document: EP

Kind code of ref document: A1