WO2019139122A1 - 電波透過性金属光沢部材、これを用いた物品、及びその製造方法 - Google Patents

電波透過性金属光沢部材、これを用いた物品、及びその製造方法 Download PDF

Info

Publication number
WO2019139122A1
WO2019139122A1 PCT/JP2019/000694 JP2019000694W WO2019139122A1 WO 2019139122 A1 WO2019139122 A1 WO 2019139122A1 JP 2019000694 W JP2019000694 W JP 2019000694W WO 2019139122 A1 WO2019139122 A1 WO 2019139122A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio wave
substrate
wave transmitting
continuous surface
aluminum
Prior art date
Application number
PCT/JP2019/000694
Other languages
English (en)
French (fr)
Inventor
暁雷 陳
広宣 待永
創 西尾
太一 渡邉
孝洋 中井
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019002727A external-priority patent/JP2019123238A/ja
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to EP19738662.6A priority Critical patent/EP3738762A4/en
Priority to US16/961,741 priority patent/US11577491B2/en
Priority to CN201980007970.5A priority patent/CN111587179B/zh
Priority to KR1020207021246A priority patent/KR20200108853A/ko
Publication of WO2019139122A1 publication Critical patent/WO2019139122A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/14Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a face layer formed of separate pieces of material which are juxtaposed side-by-side
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon

Definitions

  • the present invention relates to a radio wave transmitting metal luster member, an article using the same, and a method of manufacturing the same.
  • a metallic luster member having both of brightness and radio wave transmission is required.
  • the millimeter wave radar transmits electromagnetic waves in the millimeter wave band (frequency about 77 GHz, wavelength about 4 mm) to the front of the car, receives the reflected wave from the target, measures and analyzes the reflected wave, and transmits it to the target.
  • the distance, the direction of the target, and the size can be measured.
  • the measurement results can be used for inter-vehicle measurement, automatic speed adjustment, automatic brake adjustment, and the like. Since the front part of the car on which such millimeter wave radars are arranged is the face of the car and gives a great impression to the user, it is preferable to create a sense of luxury with a metallic glossy front decoration .
  • This kind of metallic glossy member is not limited to millimeter wave radar, but also to various devices that require communication, such as car door handles equipped with smart keys, in-vehicle communication devices, electronic devices such as mobile phones, personal computers, etc. Application of is expected. Furthermore, in recent years, with the development of IoT technology, applications in a wide range of fields, such as household appliances such as refrigerators and household appliances, which were not conventionally performed by communication, are expected.
  • Patent Document 1 discloses a resin product including a metal film made of chromium (Cr) or indium (In).
  • This resin product comprises a resin base material, an inorganic base film containing an inorganic compound deposited on the resin base material, and the brightness and discontinuity formed on the inorganic base film by physical vapor deposition. It includes a metal film made of chromium (Cr) or indium (In) of the structure.
  • a thin film of a metal compound for example, a titanium compound such as titanium oxide (TiO, TiO 2 , Ti 3 O 5 or the like), an inorganic undercoat film; silicon oxide (SiO, SiO 2 or the like), nitrided Silicon compounds such as silicon (Si 3 N 4 etc.); aluminum compounds such as aluminum oxide (Al 2 O 3 ); iron compounds such as iron oxide (Fe 2 O 3 ); selenium compounds such as selenium oxide (CeO); Zircon compounds such as zircon (ZrO); zinc compounds such as zinc sulfide (ZnS); (b) a coating film of an inorganic paint, for example, silicon, amorphous TiO 2 etc.
  • a titanium compound such as titanium oxide (TiO, TiO 2 , Ti 3 O 5 or the like
  • silicon oxide SiO, SiO 2 or the like
  • nitrided Silicon compounds such as silicon (Si 3 N 4 etc.
  • aluminum compounds such as aluminum oxide (Al 2 O
  • Inorganic coatings are used.
  • Cr chromium
  • In indium
  • Al aluminum
  • Patent Document 2 JP 2009-298006 A (Patent Document 2), not only chromium (Cr) or indium (In) but also aluminum (Al), silver (Ag) and nickel (Ni) are formed as metal films. These metal films are formed by providing a base film having a discontinuous structure, but in order to make the base film a discontinuous layer, the base material inclination angle of sputtering is set to 0 ° or 70 °. There is a problem that manufacturing is complicated because there are restrictions such as having to be done. Moreover, according to Patent Document 2, for example, zinc (Zn), lead (Pb), copper (Cu), or an alloy thereof can not be formed as a metal film.
  • Patent Document 1 Japanese Patent Application Publication No. 2007-144988 JP, 2009-298006, A
  • the present invention has been made to solve these problems in the prior art, and not only chromium (Cr) or indium (In), but also other metals such as aluminum (Al) can be prepared from various materials. It is an object of the present invention to provide a radio wave transmitting metallic luster member which is formed as a metal layer on a continuous surface and is easy to manufacture, and an article using the same. In addition, the present invention can easily form not only chromium (Cr) or indium (In), but also other metals such as aluminum (Al) on a continuous surface made of various materials as a metal layer. It is an object of the present invention to provide a method of manufacturing an electromagnetic wave transparent metallic gloss member or an article using the electromagnetic wave transparent metallic gloss member.
  • AC AC
  • Al aluminum
  • a radio wave transmitting metallic glossy member includes a base having radio wave transmission and an aluminum layer directly formed on a continuous surface of the base, and the aluminum layer Have discontinuous regions that include a plurality of separate sections that are discontinuous from one another.
  • the radio wave transmitting metallic glossy member of this aspect not only chromium (Cr) or indium (In) but, for example, aluminum (Al) is formed as a metal layer on a continuous surface made of various materials.
  • An electromagnetic wave transparent metallic luster member is provided.
  • the sheet resistance of the aluminum layer is preferably 90 ⁇ / ⁇ or more.
  • a radio wave transmitting metal luster member comprises a base having radio wave transmission and an aluminum layer formed directly on the continuous surface of the base, The sheet resistance is 90 ⁇ / ⁇ or more.
  • the radio wave transmitting metallic glossy member of this aspect not only chromium (Cr) or indium (In) but, for example, aluminum (Al) is formed as a metal layer on a continuous surface made of various materials.
  • An electromagnetic wave transparent metallic luster member is provided.
  • the continuous surface may be made of a dielectric resin material or a glass material.
  • the dielectric resin material may be made of any of polyester, polyolefin, acrylic polymer, and polycarbonate.
  • the continuous surface may be formed using an indium oxide containing material.
  • the substrate may be a film, a resin molded product, a glass product, or an article itself to which a metallic gloss is to be imparted.
  • the maximum thickness of the aluminum layer is preferably 15 to 80 nm.
  • the radio wave transmission attenuation amount of the aluminum layer is 10 dB or less.
  • the aluminum layer may be either aluminum (Al) or an alloy of aluminum (Al).
  • Al aluminum
  • Al aluminum
  • Al alloy of aluminum
  • the aluminum may be provided on the inner surface of a transparent housing formed by using the continuous surface of the base.
  • a method of manufacturing a radio wave transmitting metal glossy member or an article using the radio wave transmitting metal glossy member using AC sputtering on a radio wave transmitting substrate to separate a plurality of discontinuous members from each other. Directly forming an aluminum layer having discontinuous regions including sections. Further, according to another aspect of the present invention, there is provided a method of manufacturing a radio wave transmitting metal glossy member or an article using the radio wave transmitting metal glossy member using AC sputtering on a radio wave transmitting substrate having a sheet resistance of 90 ⁇ . Including the step of directly forming an aluminum layer so as to be / ⁇ or more.
  • radio wave transmitting metal glossy member of these embodiments or the method of manufacturing an article using the radio wave transmitting metal glossy member not only chromium (Cr) or indium (In) but also aluminum (Al) etc. Can be easily formed as a metal layer on a continuous surface of various materials.
  • the aluminum layer may be formed directly on the continuous surface of the substrate.
  • the continuous surface may be made of a dielectric resin material or a glass material, or may be formed using an indium oxide-containing material.
  • the AC sputtering is preferably performed under a pressure of 1.5 Pa or more.
  • the temperature of the substrate at the time of performing the AC sputtering is preferably 20 ° C. or more.
  • the surface on which the metal layer is formed may be a continuous surface, and not only chromium (Cr) or indium (In) but also other metals such as, for example, aluminum (Al)
  • Cr chromium
  • Al aluminum
  • FIG. 1 (A) of FIG. 1, (b) is a figure which shows the schematic sectional drawing of the electromagnetic wave transmission metal luster member by one Embodiment of this invention.
  • Both (a) and (b) of FIG. 2 are electron micrographs of the surface of the radio wave transmitting metallic glossy member according to the embodiment of the present invention. It is a figure explaining the measuring method of the thickness of the metal layer in an example and a comparative example. It is an image of the cross section in the partial area
  • FIGS. 1A and 1B respectively show schematic cross-sectional views of a radio wave transmitting metallic glossy member (hereinafter referred to as a “metallic glossy member”) 1 and 1A according to an embodiment of the present invention. Similar or corresponding elements, including these and other figures, have the same reference numerals.
  • the metallic gloss members 1 and 1A both include a base 10 having radio wave transmission and a metal layer 12 formed directly on the continuous surfaces 10a and 11a of the base 10.
  • the difference between the metallic gloss member 1 and the metallic gloss member 1A is that the metallic gloss member 1A differs from the metallic gloss member 1 in that the base layer 11 is provided on the substrate 10.
  • the underlayer 11 is provided to reduce the wettability between the metal layer 12 and the substrate 10, and by providing such an underlayer 11, the metal layer 12 tends to be discontinuous.
  • the continuous surface 11a of the metallic gloss member 1A is not formed by the surface 10a of the base 10 itself, because the base layer 11 is provided.
  • the surface 11 a of the base layer 11 provided on the base 10 is formed.
  • this base layer 11 is in the form of a thin film, discontinuous portions 11 b may occur, but even if such discontinuous portions 11 b occur, the thickness of the base layer 11 is about 10 nm.
  • the metal layers 12 will not be discontinuous due to their discontinuities 11b because they are thin as follows. In other words, even if the discontinuous portion 11b exists in the underlayer 11, the substrate 10 forms a substantially continuous surface 11a in spite of the inclusion of the underlayer 11 in relation to the metal layer 12. You may understand it as what you are doing. Therefore, the term "the continuous surface of the substrate” in the present specification includes not only the continuous surface 10a of the substrate itself but also the continuous surface 11a including the underlayer.
  • any of these metallic luster members 1 and 1A since the metal layer 12 is directly formed on the continuous surfaces 10a and 11a of the substrate 10, their smoothness and corrosion resistance are greatly improved. Also, it is easy to arrange the metal layers 12 uniformly in the plane.
  • the substrate 10 is required to have radio wave transmission properties, and may be, for example, a film, a resin molded product, a glass product, or an article itself to be imparted with metallic gloss.
  • the film is, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate, polyamide, polyimide, nylon, polyvinyl chloride, polycarbonate (PC), cycloolefin polymer (COP) ), Polystyrene, polypropylene (PP), polyethylene (PE), polycycloolefin, polyurethane, acryl (PMMA), and materials such as homopolymers and copolymers such as ABS. According to these materials, they do not affect the brightness and radio wave permeability. These films are preferably transparent.
  • the substrate 10 may be a single layer film or a laminated film.
  • the thickness is preferably, for example, about 6 ⁇ m to 250 ⁇ m from the viewpoint of ease of processing.
  • the substrate 10 is a glass product, for example, soda lime glass, alkali-free glass, chemically strengthened glass, etc. can be used, but the invention is not limited thereto.
  • the substrate 10 is a resin molded article
  • ABS for example, ABS, PC, PMMA, PP, PE, polyphthalamide (PPA), polyoxymethylene (POM), polybutylene terephthalate (PBT)
  • PPA polyphthalamide
  • POM polyoxymethylene
  • PBT polybutylene terephthalate
  • the substrate 10 is an article itself to be imparted with metallic gloss, for example, an automobile emblem, an automobile door knob provided with a smart key, a housing of a communication device such as a mobile phone or personal computer, a housing of a refrigerator May have formed a body.
  • the metal layer 12 may be provided on the outer surface or the inner surface of such a housing.
  • the article to be imparted with metallic gloss preferably satisfies the same materials and conditions as in the case where the substrate is a film, a glass product, or a resin molded product.
  • the continuous surface 10a of the substrate 10 can be formed of, for example, a dielectric resin material, a glass material, and the continuous surface 11a of the substrate 10 can be formed of, for example, a dielectric resin material, a glass material, and an indium oxide-containing material. It can be formed of any one material. It is not necessary to necessarily form all the areas of the continuous surfaces 10a and 11a from any one of these materials, and some areas and other areas may be formed of different materials. Moreover, only a part of the continuous surfaces 10a and 11a may be formed of these materials.
  • dielectric resin material for example, polyester, polyolefin, acrylic polymer and polycarbonate can be used.
  • dielectric resin materials dielectric metal oxide materials such as Al 2 O 3 , SiO 2 , Nb 2 O 3 , and TiO 2 , dielectric metal nitride materials such as AlN and SiN, and resin molding such as films It also includes those formed on goods.
  • the substrate 10 is a resin molded product, the continuous surface 10a of the substrate 10 is formed of these materials, so that the continuous surface 10a is formed by the article itself to be imparted with metallic gloss. Can be formed.
  • the metal layer 12 can be formed directly on the substrate 10.
  • alkali-free glass can be used as a glass material.
  • the continuous surface 10a of the substrate 10 is formed of these materials, whereby the continuous surface 10a is formed by the article itself to be imparted with metallic gloss. It can be formed.
  • the metal layer 12 can be formed directly on the substrate 10.
  • indium oxide-containing material for example, indium oxide (In 2 O 3 ) itself can be used, or a metal-containing material such as indium tin oxide (ITO) or indium zinc oxide (IZO) is used. You can also However, ITO or IZO containing a second metal is more preferable in that the discharge stability in the sputtering step is high.
  • the content of tin (Sn) with respect to the weight of In 2 O 3 in ITO is not particularly limited, and is, for example, 2.5 wt% to 30 wt%, more preferably 3 wt% to 10 wt%, and In 2 in IZO.
  • the content of zinc oxide (ZnO) with respect to the weight of O 3 is, for example, 2 wt% to 20 wt%. Since these indium oxide-containing materials are provided as the underlayer 11 to reduce the wettability between the metal layer 12 and the substrate 10 as shown in FIG. 1 (b), substantially, The continuous surface 11 a of the substrate 10 can be formed. However, when the continuous surface 11 a is formed of the dielectric resin material as described above, the continuous surface 11 a of the substrate 10 can not be formed depending on the article itself to be provided with the metallic luster.
  • the indium oxide-containing layer 11 as the underlayer 11 may be provided directly on the surface of the substrate 10 or may be provided indirectly via a protective film or the like provided on the surface of the substrate 10.
  • the thickness of the indium oxide-containing layer 11 is usually preferably 100 nm or less, more preferably 50 nm or less, and still more preferably 20 nm or less, from the viewpoint of sheet resistance, radio wave transmittance, and productivity.
  • the thickness is preferably 1 nm or more so that the metal layer 12 to be stacked is in a discontinuous state, more preferably 2 nm or more, and 5 nm or more in order to ensure a discontinuous state. preferable.
  • AC sputtering such as MF-AC sputtering utilizing an intermediate frequency range of 40 kHz, for example.
  • Each of these separation sections 12a is a collection of sputtered particles formed by AC sputtering metal.
  • the details of the mechanism by which the metal layer 12 becomes discontinuous on the continuous surfaces 10a and 11a are not necessarily clear, but it is presumed to be approximately as follows. That is, in the thin film formation process of the metal layer 12, the easiness of formation of the discontinuous structure is the surface diffusion on the member to which the metal layer 12 is applied (in the present case, the member forming the continuous surfaces 10a and 11a).
  • the discontinuous structure can be formed in the same manner.
  • the “discontinuous state” in the present specification means a state in which they are separated from each other by the gap 12 b and as a result are electrically isolated from each other. By being electrically insulated, the sheet resistance is increased, and desired radio wave transmission can be obtained.
  • the discontinuous form is not particularly limited, and includes, for example, islands, cracks, and the like.
  • island-like means, as shown in (b) of FIG. 1, that particles which are an aggregate of sputtered particles are independent of each other, and those particles are slightly separated from each other or It means a structure that is paved in a state of partial contact.
  • the metal layer 12 be capable of exhibiting sufficient luster and that the melting point is relatively low.
  • the metal layer 12 is provided by thin film growth using sputtering.
  • a metal having a melting point of about 1000 ° C. or less is suitable as the metal layer 12 and, for example, aluminum (Al), zinc (Zn), lead (Pb), copper (Cu), silver (Ag)
  • Al aluminum
  • Zn zinc
  • Pb lead
  • Cu copper
  • aluminum and its alloys are preferred for reasons such as the brightness and stability of the substance and the price.
  • the content of aluminum in the total metal component in the alloy is preferably 50% or more, more preferably 60% or more, and still more preferably 75% or more.
  • the thickness of the metal layer 12 is sufficient Usually, 15 nm or more is preferable so as to exhibit excellent brightness, and on the other hand, 80 nm or less is preferable in terms of sheet resistance and radio wave transmittance. For example, 20 nm to 75 nm is preferable, and 25 nm to 70 nm is more preferable. This thickness is also suitable for forming a uniform film with good productivity, and the appearance of the resin molded product which is the final product is also good.
  • the sheet resistance of the metal layer 12 is preferably 100 to 100,000 ⁇ / ⁇ so as to exhibit sufficient radio wave transmission.
  • the radio wave transmission attenuation amount is about 10 to 0.01 [-dB] at a wavelength of 1 GHz. More preferably, it is 1000 to 50000 ⁇ / ⁇ .
  • the thickness of the metal layer 12 Is preferably 20 nm or more in general so as to exert sufficient luster, and is preferably 100 nm or less in general from the viewpoint of sheet resistance and radio wave transmittance. For example, 20 nm to 100 nm is preferable, and 30 nm to 70 nm is more preferable.
  • the reason why the preferable value can be a large value as compared to the above ⁇ 3-2-1> is that by providing the base layer 11, the wettability between the metal layer 12 and the base 10 becomes small.
  • the metal layer 12 is likely to form a discontinuous layer, and therefore, a thick film can be formed. Since the underlayer 11 is in the form of a thin film, it does not substantially affect the brightness, the sheet resistance, and the like. This thickness is also suitable for forming a uniform film with good productivity, and the appearance of the resin molded product which is the final product is also good.
  • the ratio of the thickness of the metal layer to the thickness of the indium oxide-containing layer is The range of 0.1 to 100 is preferable, and the range of 0.3 to 35 is more preferable.
  • the sheet resistance as a laminate of the metal layer 12 and the underlayer 11 is preferably 100 to 100,000 ⁇ / ⁇ .
  • the radio wave transmission attenuation amount is about 10 to 0.01 [-dB] at a wavelength of 1 GHz. More preferably, it is 1000 to 50000 ⁇ / ⁇ .
  • the indium oxide-containing layer 11 is formed on the base 10.
  • the indium oxide-containing layer 11 can be formed by vacuum deposition, sputtering, ion plating or the like. However, sputtering is preferred because the thickness can be strictly controlled even in a large area.
  • the metal layer 12 is laminated directly on the continuous surface 11 a formed by the indium oxide containing layer 11.
  • AC sputtering is used to stack the metal layer 12.
  • the indium oxide containing layer 11 and the metal layer 12 be in direct contact with each other without any other layer, the surface of the metal layer 12 on the indium oxide containing layer 11 described above is preferable. Other layers can be intervened if the diffusion mechanism is ensured.
  • the sheet resistance, the radio wave transmission attenuation amount, and the glossiness of each of the prepared samples were evaluated.
  • the sheet resistance and the radio wave transmission attenuation amount are the evaluation regarding the radio wave transmission property, and the glossiness is the evaluation regarding the brightness. It is preferable that the values of the glossiness and the sheet resistance be larger, and the values of the radio wave transmission attenuation be smaller. Details of the evaluation method are as follows.
  • the sheet resistance of the metal layer was measured by an eddy current measurement method according to JIS-Z2316 using a non-contact resistance measurement device NC-80MAP manufactured by Napson.
  • the sheet resistance needs to be 90 ohms / square or more, preferably 200 ohms / square or more, more preferably 250 ohms / square or more, and still more preferably 600 ohms / square or more. If it is smaller than 90 ⁇ / ⁇ , there is a problem that sufficient radio wave transmission can not be obtained.
  • the radio wave transmission attenuation amount at 1 GHz was evaluated using a KEC measurement and evaluation jig and a spectrum analyzer CXA signal Analyzer NA9000A manufactured by Agilent. There is a correlation between electromagnetic wave transmission in the frequency band (76 to 80 GHz) of millimeter wave radar and electromagnetic wave transmission in the microwave band (1 GHz), and they show relatively close values.
  • the radio wave permeability in the band (1 GHz) that is, the microwave electric field transmission attenuation amount was used as an index.
  • the microwave electric field transmission attenuation amount needs to be 10 [-dB] or less, preferably 5 [-dB] or less, and more preferably 2 [-dB] or less. If it is 10 [-dB] or more, there is a problem that 90% or more of radio waves are blocked.
  • the 20 ° specular glossiness of the metal layer was measured according to JIS-Z8741 using a handy type gloss meter PG-II M manufactured by Nippon Denshoku Industries Co., Ltd.
  • the glossiness is the following ⁇ 5-2. It can be said that the evaluation is substantially the same as the correlation with the visible light reflectance used in>, but here, glossiness excellent in quantitative expression of metallic gloss was used.
  • the glossiness needs to be 500 or more, preferably 750 or more, and more preferably 1000 or more in order to have sufficient brightness. If the glossiness is less than 500, the brightness is reduced and the appearance is not good.
  • the thickness of the separation section 12a is taken into consideration in consideration of the variation in the metal layer, and more specifically, the thickness variation between the separation sections 12a shown in FIG. Of the metal layer was taken as the average value of. Hereinafter, this average value is referred to as “maximum thickness” for convenience.
  • the thickness of each of the separated sections 12a was the thickness at the thickest portion in the vertical direction from the base (corresponding to the continuous surfaces 10a and 11a in FIG. 1).
  • FIG. 2 shows an example of an electron micrograph (SEM image) of the surface of the radio wave transmitting metallic glossy member. The image size in the SEM image of (a) of FIG.
  • Example 1 A PET film (thickness 125 ⁇ m) manufactured by Mitsubishi Resins Co., Ltd. was prepared as a film as the substrate 10 (hereinafter, referred to as “base film”). Moreover, the aluminum layer was used for the metal layer. An aluminum (Al) layer with a maximum thickness of 20 nm is directly formed on the continuous surface of the base film using AC sputtering (MF-AC sputtering using an intermediate frequency range of 40 kHz) , "Metal film”. The temperature of the base film at the time of forming the Al layer was set to 130 ° C., and the pressure of argon (Ar) gas in the chamber for housing the base film was set to 2 Pa.
  • base film the substrate 10
  • Metal layer was used for the metal layer.
  • Example 1 the continuous surface of the substrate film exhibits high smoothness and corrosion resistance, while the aluminum layer in this continuous surface includes a plurality of separated sections 12a formed in a discontinuous state. Therefore, the sheet resistance was a large value, and the radio wave transmission attenuation amount showed relatively good results.
  • Table 1 for convenience, when the radio wave transmission attenuation amount is smaller than 2 [-dB] as an “evaluation" result of the radio wave transmission attenuation amount, " ⁇ ” means 2 [-dB] or more and 5 [--- A case smaller than dB] is represented by “ ⁇ ”, and a case larger than 5 [ ⁇ dB] and smaller than 10 [ ⁇ dB] is represented by “ ⁇ ”, and 10 [ ⁇ dB] or more by “x”.
  • Example 1 a result which can sufficiently withstand practical use was obtained.
  • Table 1 as an “evaluation” result of glossiness, when the glossiness is 1000 or more is “ ⁇ ”, and 750 or more and less than 1000 is “O”, 500 or more and The case smaller than 750 is represented by “ ⁇ ”, and the case smaller than 500 is represented by “x”.
  • “comprehensive evaluation” of radio wave transmittance and glitter if "x" is present in any of the evaluations, "x” is given, and otherwise "o”.
  • the overall evaluation was “o”, and a good metallic luster member or a metallic film having both radio wave transmittance and glitter was obtained.
  • Example 2 the maximum thickness of the aluminum layer formed on the continuous surface of the substrate film was gradually increased to be larger than the maximum thickness of Example 1.
  • the pressure of argon gas was set to a value larger than that in Example 1.
  • the other conditions are the same as in Example 1.
  • the sheet resistance in Examples 2 to 4, as in Example 1, the value is larger than 3 k ⁇ / ⁇ , while in Examples 5 and 6, although not as good as in Examples 2 to 4, it is sufficient for practical use. Large value was obtained.
  • the sheet resistance was lower than that in Example 1, probably because the amount of deposited aluminum increased and the discontinuous area decreased.
  • Example 7 to [Example 11]
  • the maximum thickness of the aluminum layer formed on the continuous surface was made the same as the maximum thickness of Example 2, and the sputtering conditions other than the temperature of the base film were the same.
  • the temperature of the substrate film was set lower than that of Example 2.
  • the material of the base film was changed.
  • Example 7 polyethylene terephthalate (PET film manufactured by Mitsubishi Chemical Co., Ltd., thickness 125 ⁇ m), in Example 8 acrylic (PMMA manufactured by Mitsubishi Chemical Co., Ltd., thickness 125 ⁇ m), in Example 9 polycarbonate (PC manufactured by Sumitomo Chemical Co., Ltd.)
  • PET film manufactured by Mitsubishi Chemical Co., Ltd., thickness 125 ⁇ m
  • acrylic PMMA manufactured by Mitsubishi Chemical Co., Ltd., thickness 125 ⁇ m
  • Example 9 polycarbonate
  • the alkali-free glass manufactured by Corning, 400 ⁇ m in thickness
  • Example 11 the content of tin (Sn) with respect to the weight of In 2 O 3 in ITO / PET is 10 wt%, the film thickness is 5 nm) was used respectively.
  • Comparative Example 1 good results were obtained for the sheet resistance and the radio wave transmission attenuation due to the small thickness of the aluminum layer, but on the other hand, the results for the gloss were insufficient. On the other hand, in Comparative Example 2, since the thickness of the aluminum layer was thick, sufficient results were obtained for the gloss, but the sheet resistance and the value of the radio wave transmission attenuation amount were deteriorated, and were not practical. .
  • Comparative Example 3 The conditions other than the sputtering method and the pressure of argon gas were the same as in Example 2.
  • the pressure of argon gas was set to a value lower than those of Examples 1 to 11 as in Comparative Examples 1 and 2.
  • DC sputtering was used here as a sputtering method.
  • the DC sputtering apparatus was the same as that of Example 1, and used was one in which only the power supply was changed to the direct current system. In this case, both the radio wave permeability and the radiance were insufficient.
  • Comparative Example 4 vacuum deposition was used as a film forming method. More specifically, the substrate is set in a chamber using a high vacuum deposition apparatus EX-550 manufactured by ULVAC, and after evacuation to 10 -4 Pa, aluminum is set to 30 nm at a rate of 1 nm / sec by resistance heating. It formed a film. In this case, both the radio wave permeability and the radiance were insufficient.
  • the sheet resistance was measured by the same method as the above-mentioned " ⁇ 5-1>(1)".
  • the sheet resistance needs to be 90 ohms / square or more, preferably 200 ohms / square or more, more preferably 250 ohms / square or more, and still more preferably 600 ohms / square or more. If it is smaller than 90 ⁇ / ⁇ , there is a problem that sufficient radio wave transmission can not be obtained.
  • Radio wave transmission attenuation amount It measured and evaluated by the method similar to said " ⁇ 5-1>(2)". More specifically, the electromagnetic wave transmission in the frequency band (76 to 80 GHz) of the millimeter wave radar and the electromagnetic wave transmission in the microwave band (1 GHz) have a correlation and show relatively close values. In the evaluation, radio wave permeability in the microwave band (1 GHz), that is, microwave electric field transmission attenuation amount was used as an index.
  • the microwave electric field transmission attenuation amount needs to be 10 [-dB] or less, preferably 5 [-dB] or less, and more preferably 2 [-dB] or less. If it is 10 [-dB] or more, there is a problem that 90% or more of electromagnetic waves are blocked.
  • the reflectance at a measurement wavelength of 550 nm was measured using a spectrophotometer U4100 manufactured by Hitachi High-Technologies Corporation.
  • the reflectance of the Al deposition mirror was set to a reflectance of 100%.
  • the visible light reflectance is required to have 20% or more, preferably 40% or more, and more preferably 50% or more in order to have sufficient brightness. If the visible light reflectance is less than 20%, the brilliance decreases and there is a problem that the appearance is not excellent.
  • Thickness of Metal Layer Measured as “maximum thickness” in the same manner as the above “ ⁇ 5-1> (4)”.
  • Example 12 A PET film (thickness 125 ⁇ m) manufactured by Mitsubishi Plastics, Inc. was used as the base film. First, a 50 nm thick ITO layer was formed directly thereon, along the face of the substrate film, using DC magnetron sputtering. The temperature of the substrate film at the time of forming the ITO layer was set to 130.degree. ITO contains 10 wt% of Sn relative to In 2 O 3.
  • an aluminum (Al) layer of 50 nm in maximum thickness is formed on the ITO layer using AC sputtering (MF-AC sputtering using an intermediate frequency range of 40 kHz), and a metallic luster member (metal film (metal film) Got).
  • the temperature of the base film at the time of forming the Al layer was set to 130 ° C., and the pressure of argon (Ar) gas in the chamber for housing the base film was set to 0.22 Pa.
  • FIG. 2 is a SEM image of the surface of the metallic gloss member (metal film) obtained as a result of these treatments
  • FIG. 4 is an image of a cross section in a partial region of (b) of FIG. is there.
  • the image size is 1.16 ⁇ m ⁇ 0.85 ⁇ m. It may be considered that the same cross section can be obtained in the first embodiment and the like.
  • the ITO layer of the metallic gloss member exhibits high smoothness and corrosion resistance since it is provided in a continuous state along the surface of the base film, Since the aluminum layer includes a plurality of portions 12a formed in a discontinuous state by being laminated on the ITO layer, the sheet resistance is 260 ⁇ / ⁇ , and the radio wave transmission attenuation amount is at a wavelength of 1 GHz. It was 4.5 [-dB], and good results were obtained for radio wave permeability.
  • Example 13 to [Example 15]
  • the maximum thickness of the aluminum layer laminated on the ITO layer is modified to be thinner than that of Example 12 for Examples 13 and 14, while that for Example 15 is greater than that of Example 12 Also changed to be thicker.
  • the other conditions are the same as in Example 12.
  • values and results similar to those of Example 12 were obtained in all of Examples 13 to 15.
  • Example 15 was inferior to Example 12. Good results were obtained.
  • Examples 13 and 14 they can sufficiently withstand practical use.
  • Example 16 to [Example 17]
  • the thickness of the ITO layer was set to be thinner than that of Example 12.
  • the other conditions are the same as in Example 12.
  • better results than in Example 12 were obtained in all of Examples 16 to 19.
  • values and results similar to those of Example 12 were obtained in all of Examples 16 to 19.
  • Example 20 to [Example 23]
  • the Sn content in the ITO layer was changed to be higher than that of Example 12 for Example 20, while it was changed to be smaller than that of Example 12 for Examples 21-23.
  • the ITO layer of Example 23 since Sn is zero, it is not the ITO layer but the indium oxide (In2O3) layer more accurately.
  • the aluminum layer was 40 nm.
  • the other conditions are the same as in Example 12.
  • the visible light reflectance in Examples 20 to 22, the same values and results as in Example 12 were obtained, and in Example 23, the results were slightly inferior to Example 12. From this result, it became clear that the ITO layer is more preferably containing Sn.
  • Example 24 instead of ITO, IZO in which ZnO is contained in indium oxide was used. ZnO contains 11 wt% with respect to In2O3. The other conditions are the same as in Example 12. In this case, the sheet resistance and the radio wave transmission attenuation amount were slightly inferior to those of Example 12. On the other hand, for the visible light reflectance, the same values and results as in Example 12 were obtained. Although the comprehensive evaluation was inferior to Example 12, it became clear that it was sufficiently practicable even when ZnO was contained.
  • Comparative Example 5 The maximum thickness of the aluminum layer laminated on the ITO layer was changed to be thicker than that of Example 12. The other conditions are the same as in Example 12. In this case, with respect to the visible light reflectance, better results than Example 11 were obtained as the thickness was increased. On the other hand, the sheet resistance and the radio wave transmission attenuation amount were significantly inferior to those of Example 12 and became impractical.
  • Comparative Example 6 The aluminum layer was formed directly on the substrate film without providing the ITO layer.
  • the other conditions are the same as in Example 12.
  • the visible light reflectance the same values and results as in Example 12 were obtained, but the sheet resistance and the radio wave transmission attenuation amount were significantly inferior to those of Example 12, and were not practicable. It became a thing.
  • the metal layer 12 formed on the metallic glossy member 1A is as thin as about 20 nm to 100 nm, and only this can be used as a metal thin film.
  • the metal layer 12 is formed by sputtering on the indium oxide-containing layer 11 laminated on a substrate such as the substrate 10 to obtain a film.
  • an adhesive is coated on a substrate to make a substrate with an adhesive layer. The film and the substrate are pasted so that the metal layer 12 and the adhesive layer are in contact with each other, and after sufficient adhesion, the film and the substrate are peeled off, whereby the metal layer (metal thin film) 12 present on the outermost surface of the film Can be transferred to the outermost surface of the substrate.
  • the metal film and the metallic luster member according to the present invention can be suitably used, for example, to decorate a cover member of a millimeter wave radar mounted on a front portion of an automobile such as a front grille or an emblem.
  • it can be used for various applications such as a mobile phone, a smartphone, a tablet PC, a notebook PC, a refrigerator, etc. in which both designability and radio wave transparency are required.

Abstract

クロム(Cr)又はインジウム(In)のみならず、例えば、アルミニウム(Al)等その他の金属が、様々な材料から成る連続面に金属層として形成された、製造が容易な電波透過性金属光沢部材、及びそれを用いた物品を提供することを目的とする。また、クロム又はインジウムのみならず、例えば、アルミニウム等その他の金属を、様々な材料から成る連続面に、金属層として容易に形成することができる、電波透過性金属光沢部材又は該電波透過性金属光沢部材を用いた物品の製造方法を提供することを目的とする。 電波透過性を有する基体と、基体の連続面に直接形成されたアルミニウム層と、を備える。アルミニウム層は、互いに不連続の複数の分離区分を含む不連続領域を有する。

Description

電波透過性金属光沢部材、これを用いた物品、及びその製造方法
 本発明は、電波透過性金属光沢部材、これを用いた物品、及びその製造方法に関する。
 例えば、フロントグリル、エンブレムといった自動車のフロント部分に搭載されるミリ波レーダーのカバー部材を装飾するために、光輝性と電波透過性の双方を兼ね備えた金属光沢部材が求められている。
 ミリ波レーダーは、ミリ波帯の電磁波(周波数約77GHz、波長約4mm)を自動車の前方に送信し、ターゲットからの反射波を受信して、反射波を測定、分析することで、ターゲットとの距離や、ターゲットの方向、サイズを計測することができるものである。計測結果は、車間計測、速度自動調整、ブレーキ自動調整などに利用することができる。このようなミリ波レーダーが配置される自動車のフロント部分は、いわば自動車の顔であり、ユーザに大きな印象を与える部分であるから、金属光沢調のフロント装飾で高級感を演出等するのが好ましい。しかしながら、自動車のフロント部分に金属を使用した場合には、ミリ波レーダーによる電磁波の送受信が実質的に不可能、或いは、妨害されてしまう。したがって、ミリ波レーダーの働きを妨げることなく、自動車の意匠性を損なわせないために、光輝性と電波透過性の双方を兼ね備えた金属光沢部材が必要とされている。
 この種の金属光沢部材は、ミリ波レーダーのみならず、通信を必要とする様々な機器、例えば、スマートキーを設けた自動車のドアハンドル、車載通信機器、携帯電話、パソコン等の電子機器等への応用が期待されている。更に、近年では、IoT技術の発達に伴い、従来は通信等行われることがなかった、冷蔵庫等の家電製品、生活機器等、幅広い分野での応用も期待されている。
 金属光沢部材に関して、特開2007-144988号公報(特許文献1)には、クロム(Cr)又はインジウム(In)より成る金属被膜を含む樹脂製品が開示されている。この樹脂製品は、樹脂基材と、当該樹脂基材の上に成膜された無機化合物を含む無機質下地膜と、当該無機質下地膜の上に物理蒸着法により成膜された光輝性及び不連続構造のクロム(Cr)又はインジウム(In)よりなる金属皮膜を含む。無機質下地膜として、特許文献1では、(a)金属化合物の薄膜、例えば、酸化チタン(TiO、TiO2、Ti35等)等のチタン化合物;酸化ケイ素(SiO、SiO2等)、窒化ケイ素(Si34等)等のケイ素化合物;酸化アルミニウム(Al23)等のアルミニウム化合物;酸化鉄(Fe23)等の鉄化合物;酸化セレン(CeO)等のセレン化合物;酸化ジルコン(ZrO)等のジルコン化合物;硫化亜鉛(ZnS)等の亜鉛化合物等、(b)無機塗料の塗膜、例えば、シリコン、アモルファスTiO2等(その他、上記例示の金属化合物)を主成分とする無機塗料による塗膜が使用されている。しかしながら、この樹脂製品では、金属皮膜として、クロム(Cr)又はインジウム(In)のみを用いるものであって、これらに比べて価格や光輝性において優れる、例えば、アルミニウム(Al)を金属皮膜として用いることはできない。
 一方、特開2009-298006号(特許文献2)には、クロム(Cr)又はインジウム(In)のみならず、アルミニウム(Al)、銀(Ag)、ニッケル(Ni)をも金属膜として形成することができる電磁波透過性光輝樹脂製品が開示されている。これらの金属膜は、不連続構造の下地膜を設けることによって形成されるものであるが、下地膜を不連続層とするために、スパッタの基材傾斜角度を0°又は70°に設定しなければならない等の制約があることから、製造が煩雑であるといった問題がある。また、特許文献2によっては、例えば、亜鉛(Zn)、鉛(Pb)、銅(Cu)、又はこれらの合金を金属膜として形成することもできない。
特開2007-144988号公報 特開2009-298006号公報
 本願発明は、これら従来技術における問題点を解決するためになされたものであり、クロム(Cr)又はインジウム(In)のみならず、例えば、アルミニウム(Al)等その他の金属が、様々な材料から成る連続面に金属層として形成された、製造が容易な電波透過性金属光沢部材、及びそれを用いた物品を提供することを目的とする。また、本願発明は、クロム(Cr)又はインジウム(In)のみならず、例えば、アルミニウム(Al)等その他の金属を、様々な材料から成る連続面に、金属層として容易に形成することができる、電波透過性金属光沢部材又は該電波透過性金属光沢部材を用いた物品の製造方法を提供することを目的とする。
 本発明者等は、上記課題を解決するために鋭意検討を重ねた結果、AC(交流)スパッタリングを用いることによって、通常は不連続構造になり難い、例えば、アルミニウム(Al)等その他の金属が、様々な材料から成る連続面において不連続構造を発現させることを見出し、本発明を完成するに至った。
 上記の課題を解決するため、本発明の一態様による電波透過性金属光沢部材は、電波透過性を有する基体と、前記基体の連続面に直接形成されたアルミニウム層と、を備え、前記アルミニウム層は、互いに不連続の複数の分離区分を含む不連続領域を有する。
 この態様の電波透過性金属光沢部材によれば、クロム(Cr)又はインジウム(In)のみならず、例えば、アルミニウム(Al)が、様々な材料から成る連続面に金属層として形成された、製造が容易な電波透過性金属光沢部材が提供される。
 上記態様の電波透過性金属光沢部材において、前記アルミニウム層のシート抵抗は90Ω/□以上であるのが好ましい。
 また、上記の課題を解決するため、本発明の他の態様による電波透過性金属光沢部材は、電波透過性を有する基体と、前記基体の連続面に直接形成されたアルミニウム層と、を備え、シート抵抗が90Ω/□以上である。
 この態様の電波透過性金属光沢部材によれば、クロム(Cr)又はインジウム(In)のみならず、例えば、アルミニウム(Al)が、様々な材料から成る連続面に金属層として形成された、製造が容易な電波透過性金属光沢部材が提供される。
 上記態様の電波透過性金属光沢部材において、前記連続面は、誘電性樹脂材料、又は、ガラス材料から成っていてもよい。ここで、前記誘電性樹脂材料は、ポリエステル、ポリオレフィン、アクリル系ポリマー、ポリカーボネートのいずれかから構成されていてもよい。
 また、上記態様の電波透過性金属光沢部材において、前記連続面は、酸化インジウム含有材料を利用して形成されていてもよい。
 また、上記態様の電波透過性金属光沢部材において、前記基体が、フィルム、樹脂成型品、ガラス製品、又は金属光沢を付与すべき物品そのものであってもよい。
 更に、上記態様の電波透過性金属光沢部材において、前記アルミニウム層の最大の厚さが15~80nmであるのが好ましい。
 また、上記態様の電波透過性金属光沢部材において、前記アルミニウム層の電波透過減衰量が10dB以下であるのが好ましい。
 また、上記態様の電波透過性金属光沢部材において、前記アルミニウム層は、アルミニウム(Al)又はアルミニウム(Al)の合金のいずれかであってもよい。ここで、前記アルミニウム(Al)の合金における全金属成分中のアルミニウム含有比率が50%以上であるのが好ましい。
 また、上記態様の電波透過性金属光沢部材において、前記基体の連続面を利用して形成された透明な筐体の内面に前記アルミニウムが設けられていてもよい。
 本発明の一態様による電波透過性金属光沢部材又は該電波透過性金属光沢部材を用いた物品の製造方法は、電波透過性を有する基体に、ACスパッタリングを用いて、互いに不連続の複数の分離区分を含む不連続領域を有するアルミニウム層を直接形成する段階を含む。
 また、本発明の他の態様による電波透過性金属光沢部材又は該電波透過性金属光沢部材を用いた物品の製造方法は、電波透過性を有する基体に、ACスパッタリングを用いて、シート抵抗が90Ω/□以上となるようにアルミニウム層を直接形成する段階を含む。
 これらの態様の電波透過性金属光沢部材又は該電波透過性金属光沢部材を用いた物品の製造方法によれば、クロム(Cr)又はインジウム(In)のみならず、例えば、アルミニウム(Al)等その他の金属を、様々な材料から成る連続面に、金属層として容易に形成することができる。
 上記態様の電波透過性金属光沢部材の製造方法において、前記アルミニウム層は前記基体の連続面に直接形成されてもよい。ここで、前記連続面は、誘電性樹脂材料、又は、ガラス材料から成っていてもよいし、また、酸化インジウム含有材料を利用して形成されていてもよい。
 上記態様の電波透過性金属光沢部材の製造方法において、前記ACスパッタリングは1.5Pa以上の圧力下で行われるのが好ましい。
 また、上記態様の電波透過性金属光沢部材の製造方法において、前記ACスパッタリングを行う際の前記基体の温度が20℃以上であるのが好ましい。
 本発明によれば金属層が形成される面が連続面であってもよく、且つ、クロム(Cr)又はインジウム(In)だけでなく、例えば、アルミニウム(Al)等その他の金属をも金属層として用いることができる、製造が容易な電波透過性金属光沢部材、それを用いた物品、及びその製造方法電波透過性が提供される。
図1の(a)、(b)ともに、本発明の一実施形態による電波透過性金属光沢部材の概略断面図を示す図である。 図2の(a)、(b)ともに、本発明の一実施形態による電波透過性金属光沢部材の表面の電子顕微鏡写真である。 実施例及び比較例における金属層の厚さの測定方法を説明する図である。 図2の(b)の一部領域における断面の画像である。
 以下、添付図面を参照しつつ、本発明の一つの好適な実施形態について説明する。説明の便宜のため本発明の好適な実施形態のみを示すが、勿論、これによって本発明を限定しようとするものではない。
<1.基本構成>
 図1の(a)、(b)に、それぞれ、本発明の一実施形態による電波透過性金属光沢部材(以下、「金属光沢部材」という。)1、1Aの概略断面図を示す。これらの図及び他の図を含め、同様の又は対応する部材には、同じ参照番号を付している。
 金属光沢部材1、1Aは、共に、電波透過性を有する基体10と、基体10の連続面10a、11aに直接形成された金属層12を含む。金属光沢部材1と金属光沢部材1Aとの相違は、金属光沢部材1Aには、金属光沢部材1と異なり、基体10に下地層11が設けられている点にある。下地層11は、金属層12と基体10との間の濡れ性を小さくするために設けられているものであって、このような下地層11を設けることにより、金属層12は不連続となり易くなる。下地層11を設けているため、金属光沢部材1Aにおける連続面11aは、金属光沢部材1における連続面10aと異なり、基体10そのものの面10aによって形成されていることにはならず、正確には、基体10に設けた下地層11の面11aによって形成されていることになる。この下地層11は、薄膜状のものであるため、不連続部分11bが生じてしまうこともあるが、仮にそのような不連続部分11bが生じたとしても、下地層11は、厚さ10nm程度以下の薄いものであるため、金属層12が、それらの不連続部分11bに起因して不連続となることはない。換言すれば、仮に下地層11に不連続部分11bが存在するとしても、基体10は、金属層12との関係では、下地層11を含んでいるにも拘らず実質的に連続面11aを形成しているものと解してよい。よって、本明細書中の「基体の連続面」の語には、基体そのものの連続面10aのみならず、下地層を含んだ連続面11aも含まれる。このように、これら金属光沢部材1、1Aのいずれにおいても、金属層12は、基体10の連続面10a、11aに直接形成されていることから、それらの平滑性や耐食性は大きく改善されており、また、それらの金属層12を面内にばらつきなく配置することが容易なものとなっている。
<2.基体>
<2-1.基体を構成する物品>
 基体10は、電波透過性を有することを要し、例えば、フィルム、樹脂成型品、ガラス製品の他、金属光沢を付与すべき物品そのものであってもよい。
 基体10がフィルムの場合、該フィルムは、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート、ポリアミド、ポリイミド、ナイロン、ポリ塩化ビニル、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、ポリスチレン、ポリプロピレン(PP)、ポリエチレン(PE)、ポリシクロオレフィン、ポリウレタン、アクリル(PMMA)、ABSなどの単独重合体や共重合体等の材料で形成される。これらの材料によれば、光輝性や電波透過性に影響を与えることもない。これらのフィルムは透明であることが好ましい。また、金属層12を後に形成する観点から、スパッタリングを行う際の高温に耐え得るものであることが好ましく、従って、上記材料の中でも、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、シクロオレフィンポリマー、ポリプロピレン、ポリウレタン、アクリル、ABSが好ましい。なかでも、耐熱性とコストとのバランスがよいことから、ポリエチレンテレフタレートやシクロオレフィンポリマー、ポリカーボネート、アクリルが好ましい。基体10は、単層フィルムでもよいし積層フィルムでもよい。加工のし易さ等から、厚さは、例えば、6μm~250μm程度が好ましい。
 基体10がガラス製品の場合、例えば、ソーダライムガラス、無アルカリガラス、化学強化ガラスなどを用いることができるが、これに限定されることはない。
 基体10が樹脂成形品の場合、例えば、ABS、PC、PMMA、PP、PE、ポリフタルアミド(PPA)、ポリオキシメチレン(POM)、ポリブチレンテレフタレート(PBT)を用いることができるが、これに限定されることはない。
 基体10が金属光沢を付与すべき物品そのものである場合として、例えば、基体10によって、自動車のエンブレム、スマートキーを設けた自動車のドアノブ、携帯電話やパソコン等の通信機器の筐体、冷蔵庫の筐体を形成した場合がある。通信機器等の筐体が透明である場合には、金属層12は、そのような筐体の外面に設けてもよいし、内面に設けてもよい。但し、金属光沢を付与すべき物品は、基体がフィルム、ガラス製品、樹脂成型品の場合と同様の材質、条件を満たしていることが好ましい。
<2-2.基体の連続面>
 基体10の連続面10aは、例えば、誘電性樹脂材料、ガラス材料から形成することができ、また、基体10の連続面11aは、例えば、誘電性樹脂材料、ガラス材料、及び酸化インジウム含有材料のいずれか1つの材料から形成することができる。必ずしも連続面10a、11aの全ての領域をこれらの材料のいずれか1つから形成する必要はなく、一部の領域と他の領域を、それぞれ異なる材料で形成してもよい。また、連続面10a、11aの一部のみが、これらの材料で形成されていてもよい。
 誘電性樹脂材料として、例えば、ポリエステル、ポリオレフィン、アクリル系ポリマー、ポリカーボネートを使用することができる。誘電性樹脂材料には、Al23やSiO2、Nb23、TiO2などの誘電性金属酸化物材料や、AlN、SiNなどの誘電性金属窒化物材料を、フィルム等の樹脂成形品上に形成したものも含まれる。例えば、図1の(a)に示すように、基体10が樹脂成型品の場合、基体10の連続面10aをこれらの材料で形成することにより、金属光沢を付与すべき物品そのものによって連続面10aを形成することができる。換言すれば、金属層12を、基体10に直接形成することができる。
 ガラス材料として、例えば、無アルカリガラスを使用することができる。例えば、図1の(a)に示すように、基体10がガラス製品の場合、基体10の連続面10aをこれらの材料で形成することにより、金属光沢を付与すべき物品そのものによって連続面10aを形成することができる。換言すれば、金属層12を、基体10に直接形成することができる。
 酸化インジウム含有材料としては、例えば、酸化インジウム(In23)そのものを使用することもできるし、インジウム錫酸化物(ITO)や、インジウム亜鉛酸化物(IZO)のような金属含有物を使用することもできる。但し、第二の金属を含有したITOやIZOの方が、スパッタリング工程での放電安定性が高い点で、より好ましい。ITOにおけるIn23の重量に対する錫(Sn)の含有率は特に限定されないが、例えば、2.5wt%~30wt%、より好ましくは、3wt%~10wt%であり、また、IZOにおけるIn23の重量に対する酸化亜鉛(ZnO)の含有率は、例えば、2wt%~20wt%である。これらの酸化インジウム含有材料は、図1の(b)に示すように、金属層12と基体10との間の濡れ性を小さくするために下地層11として付与されるため、実質的には、基体10の連続面11aを形成し得る。但し、このように連続面11aが誘電性樹脂材料で形成される場合、金属光沢を付与すべき物品そのものによっては、基体10の連続面11aを形成することはできない。下地層11としての酸化インジウム含有層11は、基体10の面に直接設けられていてもよいし、基体10の面に設けられた保護膜等を介して間接的に設けられてもよい。酸化インジウム含有層11の厚さは、シート抵抗や電波透過性、生産性の観点から、通常100nm以下が好ましく、50nm以下がより好ましく、20nm以下が更に好ましい。一方、積層される金属層12が不連続状態となるように、1nm以上であることが好ましく、確実に不連続状態にするために2nm以上であることがより好ましく、5nm以上であることが更に好ましい。
<3.金属層>
<3-1.金属層の構造>
 金属層12は、基体10の連続面10a、11aに、例えば40kHzの中間周波数領域を利用したMF-ACスパッタリング等のACスパッタリングを用いて付与される。ACスパッタリングを用いて金属層12を付与することにより、金属層12は、連続面10a、11aの少なくとも一部の領域において、互いに不連続の状態、更に言えば、隙間12bによって隔てられた複数の分離区分12aを含む不連続領域を形成し得る。隙間12bによって隔てられるため、分離区分12aにおけるシート抵抗は大きくなり、また、電波透過減衰量は小さくなり、この結果、電磁波との相互作用が低下し、電磁波を透過させることができる。これらの分離区分12aは、それぞれ、金属をACスパッタリングすることによって形成されたスパッタ粒子の集合体である。金属層12が連続面10a、11aの上で不連続状態となるメカニズムの詳細は必ずしも明らかではないが、おおよそ、次のようなものであると推測される。即ち、金属層12の薄膜形成プロセスにおいて、不連続構造の形成し易さは、金属層12が付与される被付与部材(本件では、連続面10a、11aを形成する部材)上での表面拡散と関連性があり、被付与部材の温度が高く、被付与部材に対する金属層の濡れ性が小さく、金属層の材料の融点が低い方が不連続構造を形成しやすい、というものである。従って、以下の実施例で特に使用したアルミニウム(Al))以外の金属についても、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)などの比較的融点の低い金属については、同様の手法で不連続構造を形成し得ると考えられる。尚、本明細書でいう「不連続の状態」とは、隙間12bによって互いに隔てられており、この結果、互いに電気的に絶縁されている状態を意味する。電気的に絶縁されることにより、シート抵抗が大きくなり、所望とする電波透過性が得られることになる。不連続の形態は、特に限定されるものではなく、例えば、島状、クラック等が含まれる。ここで「島状」とは、図1の(b)に示されているように、スパッタ粒子の集合体である粒子同士が各々独立しており、それらの粒子が、互いに僅かに離間し又は一部接触した状態で敷き詰められてなる構造を意味する。
<3-2.金属層の材料>
 金属層12は、十分な光輝性を発揮し得ることは勿論、融点が比較的低いものであることが望ましい。金属層12は、スパッタリングを用いた薄膜成長によって付与されるためである。このような理由から、金属層12としては、融点が約1000℃以下の金属が適しており、例えば、アルミニウム(Al)、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)から選択された少なくとも一種の金属、および該金属を主成分とする合金のいずれかを含むことが好ましい。特に、物質の光輝性や安定性、価格等の理由からアルミニウムおよびその合金が好ましい。アルミニウムの合金については、合金における全金属成分中のアルミニウム含有比率が50%以上が好ましく、60%以上のより好ましく、75%以上が更に好ましい。
<3-2-1.連続面が基体そのものによって形成される場合>
 図1の(a)に示すように、連続面が基体10そのものの面10aによって形成され、金属層12がそのような連続面10aに直接形成される場合、金属層12の厚さは、十分な光輝性を発揮するように、通常15nm以上が好ましく、一方、シート抵抗や電波透過性の観点から、通常80nm以下が好ましい。例えば、20nm~75nmが好ましく、25nm~70nmがより好ましい。この厚さは、均一な膜を生産性良く形成するのにも適しており、また、最終製品である樹脂成形品の見栄えも良い。
 また、金属層12のシート抵抗は、十分な電波透過性を発揮するように、100~100000Ω/□であるのが好ましい。この場合、電波透過減衰量は、1GHzの波長において、10~0.01[-dB]程度となる。更に好ましくは、1000~50000Ω/□である。
<3-2-2.連続面が下地層によって形成される場合>
 図1の(b)に示すように、連続面11aが下地層11の面によって形成され、金属層12がそのような基体10の連続面11aに直接形成される場合、金属層12の厚さは、十分な光輝性を発揮するように、通常20nm以上が好ましく、一方、シート抵抗や電波透過性の観点から、通常100nm以下が好ましい。例えば、20nm~100nmが好ましく、30nm~70nmがより好ましい。好ましい値が、上記<3-2-1>と比較して大きな値とすることができるのは、下地層11を設けたことにより、金属層12と基体10との間の濡れ性が小さくなり、金属層12が不連続層を形成しやすくなっているため、従って、厚膜化が可能になっているためである。尚、下地層11は、薄膜状のものであるから、光輝性やシート抵抗等に実質的に影響を与えることはない。この厚さは、均一な膜を生産性良く形成するのにも適しており、また、最終製品である樹脂成形品の見栄えも良い。
 また、同様の理由から、例えば、下地層11が酸化インジウム含有層の場合、金属層の厚さと酸化インジウム含有層の厚さとの比(金属層の厚さ/酸化インジウム含有層の厚さ)は、0.1~100の範囲が好ましく、0.3~35の範囲がより好ましい。
 更に、金属層12と下地層11との積層体としてのシート抵抗は、100~100000Ω/□であるのが好ましい。この場合、電波透過減衰量は、1GHzの波長において、10~0.01[-dB]程度となる。更に好ましくは、1000~50000Ω/□である。
<4.金属光沢部材の製造方法>
 金属光沢部材1、1Aの製造方法の一例を説明する。
<4-1.連続面が基体そのものによって形成される場合>
 図1の(a)に示すように、連続面10aが基体10そのものの面によって形成されており、金属層12をそのような連続面10aに直接形成する場合は、連続面10aを形成する工程を経ることなく、連続面10aにACスパッタリングを用いて、直接、金属層12が積層される。
<4-2.連続面が下地層によって形成される場合>
 図1の(b)に示すように、連続面11aが下地層11によって形成されており、金属層12をそのような連続面11aに直接形成する場合には、少なくとも2つの工程が必要となる。
(1)酸化インジウム含有層を成膜する工程
 基体10に対し、酸化インジウム含有層11を成膜する。酸化インジウム含有層11は、真空蒸着、スパッタリング、イオンプレーティング等によって形成することができる。但し、大面積でも厚さを厳密に制御できる点から、スパッタリングが好ましい。
(2)金属層を積層する工程
 次いで、酸化インジウム含有層11によって形成された連続面11aに、直接、金属層12を積層する。金属層12の積層には、ACスパッタリングを用いる。尚、酸化インジウム含有層11と、金属層12との間には、他の層を介在させずに直接接触させるのが好ましいが、上に説明した酸化インジウム含有層11上における金属層12の表面拡散のメカニズムが確保されるのであれば、他の層を介在させることもできる。
<5.実施例及び比較例>
<5-1.連続面が基体そのものによって形成される場合>
 実施例及び比較例では、フィルムを基体10として用いて各種試料を準備した。準備した各種試料について、シート抵抗、電波透過減衰量、及び光沢度を評価した。シート抵抗と電波透過減衰量は、電波透過性に関する評価、光沢度は、光輝性に関する評価である。光沢度とシート抵抗の値は大きい方が好ましく、電波透過減衰量の値は小さい方が好ましい。
 評価方法の詳細は以下のとおりである。
(1)シート抵抗
 ナプソン社製非接触式抵抗測定装置NC-80MAPを用い、JIS-Z2316に従って渦電流測定法により金属層のシート抵抗を測定した。
 このシート抵抗は、90Ω/□以上であることが必要であり、200Ω/□以上であるのが好ましく、250Ω/□以上であるのがより好ましく、600Ω/□以上であることが更に好ましい。90Ω/□より小さいと、充分な電波透過性が得られないという問題がある。
(2)電波透過減衰量
 1GHzにおける電波透過減衰量をKEC法測定評価治具およびアジレント社製スペクトルアナライザCXA signal Analyzer NA9000Aを用いて評価した。ミリ波レーダーの周波数帯域(76~80GHz)における電磁波透過性と、マイクロ波帯域(1GHz)における電磁波透過性には相関性があり、比較的近い値を示すことから、今回の評価では、マイクロ波帯域(1GHz)における電波透過性、即ち、マイクロ波電界透過減衰量を指標とした。
 このマイクロ波電界透過減衰量は、10[-dB]以下であることが必要であり、5[-dB]以下であるのが好ましく、2[-dB]以下であることがより好ましい。10[-dB]以上であると、90%以上の電波が遮断されるという問題がある。
(3)光沢度
 日本電色工業社製ハンディ型光沢計PG-II Mを用い、JIS-Z8741に従って、金属層の20°鏡面光沢度を測定した。光沢度は、下記<5-2.>で使用した可視光反射率と、相関関係にあり実質的には同じ評価を行っているということができるが、ここでは、金属光沢の定量的表現に優れる光沢度を使用した。
 この光沢度は、十分な光輝性を有するために500以上が必要であり、750以上であるのが好ましく、更に好ましくは1000以上である。光沢度が、500より小さいと、光輝性が低下し、外観に優れないという問題がある。
(4)金属層の厚さ
 実施例及び比較例においては、金属層におけるバラツキ、更に詳細には、図1に示す分離区分12a間の厚さにおけるバラツキを考慮して、分離区分12aの厚さの平均値を金属層の厚さとした。以下、この平均値を、便宜上、「最大の厚さ」と呼ぶ。尚、個々の分離区分12aの厚さは、下地(図1における連続面10a、11aに相当)から垂直方向に最も厚いところの厚さとした。
 図2に、電波透過性金属光沢部材の表面の電子顕微鏡写真(SEM画像)の一例を示す。図2の(a)のSEM画像における画像サイズは1.16μm×0.85μm、図2の(b)のSEM画像における画像サイズは、1.16μm×0.85μmである。最大の厚さを求めるに際し、先ず、図2に示すような電波透過性金属光沢部材の表面に現れた金属層において、図3に示すような一辺5cmの正方形領域3を適当に抽出し、該正方形領域3の縦辺及び横辺それぞれの中心線A、Bをそれぞれ4等分することによって得られる計5箇所の点「a」~「e」を測定箇所として選択した。
 次いで、選択した測定箇所それぞれにおける、図4に示すような断面画像(透過型電子顕微鏡写真(TEM画像))において、おおよそ5個の分離区分12aが含まれる視野角領域を抽出した。
 これら計5箇所の測定箇所それぞれにおける、おおよそ5個の分離区分12a、即ち、約25個(5個×5箇所)の分離区分12aの個々の厚さを求め、それらの平均値を「最大の厚さ」とした。
 以下の表1に、評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
[実施例1]
 基体10としてのフィルム(以下、「基材フィルム」と呼ぶ。)として、三菱樹脂社製PETフィルム(厚さ125μm)を準備した。また、金属層には、アルミニウム層を用いた。基材フィルムの連続面に、ACスパッタリング(40kHzの中間周波数領域を利用したMF-ACスパッタリング)を用いて、20nmの最大の厚さのアルミニウム(Al)層を直接形成し、金属光沢部材(以下、「金属フィルム」と呼ぶ。)を得た。Al層を形成する際の基材フィルムの温度は130℃に設定し、基材フィルムを収容するチャンバにおけるアルゴン(Ar)ガスの圧力は2Paに設定した。
 実施例1の構成において、基材フィルムの連続面は高い平滑性と耐食性を発揮し、その一方で、この連続面においてアルミニウム層は不連続な状態に形成された複数の分離区分12aを含むことから、そのシート抵抗は大きな値となり、また、電波透過減衰量は比較的良好な結果を示した。尚、表1では、便宜上、電波透過減衰量の「評価」結果として、当該電波透過減衰量が2[-dB]より小さい場合を「◎」で、2[-dB]以上で且つ5[-dB]より小さい場合を「○」で、5[-dB]以上で且つ10[-dB]より小さい場合を「△」で、10[-dB]以上を「×」で、それぞれ表している。
 また、実施例1の構成においては、光輝性についても実用に十分耐え得る結果が得られた。尚、便宜上、表1では、光沢度の「評価」結果として、当該光沢度が1000以上である場合を「◎」で、750以上で且つ1000より小さい場合を「○」で、500以上で且つ750より小さい場合を「△」で、500より小さい場合を「×」で、それぞれ表している。更に、電波透過性と光輝性の「総合評価」として、いずれかの評価に「×」があれば「×」とし、それ以外については「○」とした。結果、実施例1について、総合評価は「○」となり、電波透過性と光輝性の双方を兼ね備えた良好な金属光沢部材、或いは、金属フィルムが得られた。
[実施例2]~[実施例6]
 実施例2~6については、基材フィルムの連続面に形成するアルミニウム層の最大の厚さを、実施例1の最大の厚さより大きくなるように段階的に増やした。また、実施例4~6については、アルゴンガスの圧力を実施例1よりも大きな値に設定した。その他の条件は実施例1と同じである。
 シート抵抗に関して、実施例2~4では、実施例1と同様に、3kΩ/□を超える大きな値となり、一方、実施例5、6では、実施例2~4ほどではないが、実用上は十分な大きな値が得られた。実施例5、6において、シート抵抗が実施例1より低い値となったのは、アルミニウムの堆積量が多くなり、不連続領域が減少したことによるものと考えられる。電波透過減衰量に関して、実施例2~6の全てにおいて、実施例1の値と同等又はそれを上回る結果が得られた。一方、光沢度に関しては、当然のことながら、実施例2~6の全てにおいて、実施例1の値を上回る結果が得られた。
 図2の(a)に、実施例6によって得られた金属光沢部材(金属フィルム)表面のSEM画像を示す。
[実施例7]~[実施例11]
 実施例7~11の全てにおいて、連続面に形成されるアルミニウム層の最大の厚さを、実施例2の最大の厚さと同じとし、且つ、基材フィルムの温度以外のスパッタ条件を揃えた。基材フィルムの温度は、実施例2よりも低温に設定した。実施例7~11の間においては、基材フィルムの材質を変更した。実施例7では、ポリエチレンテレフタレート(三菱ケミカル社製PETフィルム、厚さ125μm)、実施例8では、アクリル(三菱ケミカル社製PMMA、厚さ125μm)、実施例9では、ポリカーボネート(住友化学社製PC、厚さ125μm)、実施例10では、無アルカリガラス(コーニング社製、厚さ400μm)、実施例11では、ITO/PET(ITOにおけるIn23の重量に対する錫(Sn)の含有率は10wt%、膜厚は5nmである)を、それぞれ使用した。このように、実施例7~11では、基材フィルムの材質を変更したにも関わらず、それらの全てにおいて、電波透過性及び光輝性ともに、実施例1~6と少なくとも同等か、又は、それらを上回る結果が得られた。よって、実施例7~11の結果から、基材フィルムの材質に拘らず、電波透過性と光輝性の双方を兼ね備えた金属光沢部材、或いは、金属フィルムが得られることは明らかである。
[比較例1]~[比較例2]
 比較例1では、基材フィルムの連続面に形成されるアルミニウム層の最大の厚さを、実施例1~11の最大の厚さより薄くし、これとは逆に、比較例2では、厚くした。また、アルゴンガスの圧力を、実施例1~11の圧力よりも低い値に設定した。その他の条件については、実施例1~6と同じである。
 比較例1では、アルミニウム層の厚さが薄いため、シート抵抗や電波透過減衰量については良好な結果が得られたが、その一方で、光沢性については不十分な結果となった。一方、比較例2では、アルミニウム層の厚さが厚いため、光沢性については十分な結果が得られたが、シート抵抗や電波透過減衰量の値は悪化し、実用に耐え得るものではなかった。
[比較例3]
 スパッタリングの方法とアルゴンガスの圧力以外の条件については、実施例2と同じ条件とした。アルゴンガスの圧力は、比較例1、2と同様に、実施例1~11より低い値に設定した。また、スパッタリングの方法として、ここでは、DCスパッタを用いた。DCスパッタ装置は、実施例1と同様の装置であり、電源のみ直流方式に変更したものを使用した。この場合、電波透過性及び光輝性ともに不十分な結果となった。
[比較例4]
 製膜方法として、ここでは、真空蒸着を用いた。より詳細には、アルバック社製高真空蒸着装置EX-550を用い、基材をチャンバー内にセットし、10-4Paまで真空引き後、抵抗加熱方式にてアルミを1nm/secのレートで30nm製膜した。この場合、電波透過性及び光輝性ともに不十分な結果となった。
<5-2.連続面が下地層によって形成される場合>
 実施例及び比較例では、フィルムを基体10として用いて各種試料を準備した。準備した各種試料について、シート抵抗、電波透過減衰量、及び可視光反射率を評価した。ここで、シート抵抗と電波透過減衰量は、電波透過性に関する評価、可視光反射率は、光輝性に関する評価である。可視光反射率とシート抵抗の値は大きい方が好ましく、電波透過減衰量の値は小さい方が好ましい。
 評価方法の詳細は以下のとおりである。
(1)シート抵抗
 上記「<5-1>(1)」と同様の方法で測定した。
 このシート抵抗は、90Ω/□以上であることが必要であり、200Ω/□以上であるのが好ましく、250Ω/□以上であるのがより好ましく、600Ω/□以上であることが更に好ましい。90Ω/□より小さいと、充分な電波透過性が得られないという問題がある。
(2)電波透過減衰量
 上記「<5-1>(2)」と同様の方法で測定、評価した。更に詳細には、ミリ波レーダーの周波数帯域(76~80GHz)における電磁波透過性と、マイクロ波帯域(1GHz)における電磁波透過性には相関性があり、比較的近い値を示すことから、今回の評価では、マイクロ波帯域(1GHz)における電波透過性、即ち、マイクロ波電界透過減衰量を指標とした。
 このマイクロ波電界透過減衰量は、10[-dB]以下であることが必要であり、5[-dB]以下であるのが好ましく、2[-dB]以下であることがより好ましい。10[-dB]以上であると、90%以上の電磁波が遮断されるという問題がある。
(3)可視光反射率
 日立ハイテクノロジーズ社製分光光度計U4100を用い、550nmの測定波長における反射率を測定した。基準として、Al蒸着ミラーの反射率を反射率100%とした。 この可視光反射率は、十分な光輝性を有するために20%以上が必要であり、40%以上であるのが好ましく、更に好ましくは50%以上である。可視光反射率が、20%より小さいと、光輝性が低下し、外観に優れないという問題がある。
(4)金属層の厚さ
 上記「<5-1>(4)」と同様の方法で「最大の厚さ」として測定した。
 以下の表2に、評価結果を示す。
Figure JPOXMLDOC01-appb-T000002
[実施例12]
 基材フィルムとして、三菱樹脂社製PETフィルム(厚さ125μm)を用いた。
 先ず、DCマグネトロンスパッタリングを用いて、基材フィルムの面に沿って、50nmの厚さのITO層をその上に直接形成した。ITO層を形成する際の基材フィルムの温度は、130℃に設定した。ITOは、In2O3に対してSnを10wt%含有させたものである。
 次いで、ACスパッタリング(40kHzの中間周波数領域を利用したMF-ACスパッタリング)を用いて、ITO層の上に、50nmの最大の厚さのアルミニウム(Al)層を形成し、金属光沢部材(金属フィルム)を得た。Al層を形成する際の基材フィルムの温度は、130℃に設定し、基材フィルムを収容するチャンバにおけるアルゴン(Ar)ガスの圧力を0.22Paに設定した。
 図2の(b)は、これらの処理の結果得られた金属光沢部材(金属フィルム)表面のSEM画像であり、図4は、この図2の(b)の一部領域における断面の画像である。画像サイズは1.16μm×0.85μmである。実施例1等についても、これと同様の断面が得られると考えてよい。
 これらの図から明らかなように、本実施例では、金属光沢部材のITO層は、基材フィルムの面に沿って連続状態で設けられていることから高い平滑性と耐食性を発揮し、その一方で、アルミニウム層は、ITO層に積層されることによって不連続な状態に形成された複数の部分12aを含むことから、そのシート抵抗は260Ω/□となり、その電波透過減衰量は1GHzの波長において4.5[-dB]となり、電波透過性について良好な結果が得られた。尚、表1では、便宜上、電波透過減衰量の「評価」結果として、当該電波透過減衰量が2[-dB]より小さい場合を「◎」で、2[-dB]以上で且つ5[-dB]より小さい場合を「○」で、5[-dB]以上で且つ10[-dB]より小さい場合を「△」で、10[-dB]以上を「×」で、それぞれ表している。
 また、この金属光沢部材の可視光反射率は56%となり、光輝性についても良好な結果が得られた。尚、便宜上、表1では、可視光反射率の「評価」結果として、当該可視光反射率が50%より大きい場合を「◎」で、50%以下で且つ40%より大きい場合を「○」で、40%以下で且つ20%より大きい場合を「△」で、20%以下を「×」で、それぞれ表している。更に、電波透過性と光輝性の「総合評価」として、両者が同じ評価結果の場合には同じ評価結果を、一方が片方より悪い結果の場合には悪い方の評価結果を、それぞれ示している。結果、実施例11について、総合評価は「○」となり、電波透過性と光輝性の双方を兼ね備えた良好な金属光沢部材、或いは、金属フィルムが得られた。
[実施例13]~[実施例15]
 ITO層の上に積層するアルミニウム層の最大の厚さを、実施例13、14については実施例12のそれよりも薄くなるように変更し、一方、実施例15については実施例12のそれよりも厚くなるように変更した。その他の条件については実施例12と同じである。
 この場合、シート抵抗及び電波透過減衰量については、実施例13~15の全てにおいて、実施例12と同様の値及び結果が得られた。一方、可視光反射率については、アルミニウム層の最大の厚さが実施例12のそれより薄い実施例13、14については若干劣る結果となったが、実施例15については、実施例12よりも良好な結果が得られた。但し、実施例13、14についても、実用に十分耐え得るものである。
[実施例16]~[実施例17]
 ITO層の厚さを、実施例12よりも薄くなるように設定した。その他の条件については、実施例12と同じである。
 この場合、シート抵抗及び電波透過減衰量については、実施例16~19の全てにおいて、実施例12よりも良好な結果が得られた。また、可視光反射率については、実施例16~19の全てにおいて、実施例12と同様の値及び結果が得られた。これらの実施例により、ITO層の厚さは薄くてもよいことが明らかとなり、ITO層の厚さを薄くすることにより、材料コストを抑制できることが明らかとなった。
[実施例20]~[実施例23]
 ITO層におけるSnの含有率を、実施例20については実施例12のそれより大きくなるように変更し、一方、実施例21~23については実施例12のそれより小さくなるように変更した。尚、実施例23のITO層ではSnをゼロとしていることから、より正確には、ITO層ではなく、酸化インジウム(In2O3)層となっている。その他、実施例23では、アルミニウム層は40nmとした。その他の条件については、実施例12と同じである。
 この場合、シート抵抗及び電波透過減衰量については、実施例20~22において、実施例12と同様の結果が得られ、実施例23においては、実施例12より若干劣る結果となった。また、可視光反射率については、実施例20~22において、実施例12と同様の値及び結果が得られ、実施例23において、実施例12より若干劣る結果となった。これの結果から、ITO層は、Snを含有するのがより好ましいことが明らかとなった。
[実施例24]
 ITOではなく、酸化インジウムにZnOを含有させたIZOを用いた。ZnOは、In2O3に対して11wt%含有する。その他の条件については、実施例12と同じである。
 この場合、シート抵抗及び電波透過減衰量については、実施例12よりも若干劣る結果となった。一方、可視光反射率については、実施例12と同様の値及び結果が得られた。実施例12より総合評価は劣るものの、ZnOを含有させた場合でも、十分に実用可能であることが明らかとなった。
[比較例5]
 ITO層の上に積層するアルミニウム層の最大の厚さを、実施例12のそれよりも厚くなるように変更した。その他の条件については、実施例12と同じである。
 この場合、可視光反射率については、厚さを増した分、実施例11よりも良好な結果が得られた。一方、シート抵抗及び電波透過減衰量については、実施例12のそれらよりも大きく劣る結果となり、実用不可能なものとなった。
[比較例6]
 ITO層を設けることなく、基材フィルム上にアルミニウム層を直接成膜した。その他の条件については、実施例12と同じである。
 この場合、可視光反射率については、実施例12と同様の値及び結果が得られたが、シート抵抗及び電波透過減衰量については、実施例12のそれらよりも大きく劣る結果となり、実用不可能なものとなった。
<6.金属薄膜の利用>
 金属光沢部材1Aに形成された金属層12は、厚さ20nm~100nm程度の薄いものであって、これのみを金属薄膜として使用することもできる。例えば、基体10のような基体に積層されたインジウム酸化物含有層11の上に、スパッタリングで金属層12を形成して、フィルムを得る。また、これとは別に、接着剤を基材の上に塗工して接着剤層付きの基材を作成する。フィルムと基材を、金属層12と接着剤層が接するように貼り合せ、十分に密着させた後にフィルムと基材を剥離させることで、フィルムの最表面に存在した金属層(金属薄膜)12を基材の最表面に転写させることができる。
 本発明は前記実施例に限定されるものではなく、発明の趣旨から逸脱しない範囲で適宜変更して具体化することもできる。
 本発明に係る金属フィルムや金属光沢部材は、例えば、フロントグリル、エンブレム、といった自動車のフロント部分に搭載されるミリ波レーダーのカバー部材を装飾するために好適に用いることができる。また、例えば、携帯電話やスマートフォン、タブレット型PC、ノート型PC、冷蔵庫など、意匠性と電波透過性の双方が要求される様々な用途にも利用できる。
1 金属光沢部材
3 金属フィルム
10 基材フィルム
10a 連続面
11 下地層(酸化インジウム含有層)
11a 連続面
12 金属層

Claims (21)

  1.  電波透過性を有する基体と、
     前記基体の連続面に直接形成されたアルミニウム層と、
    を備え、
     前記アルミニウム層は、互いに不連続の複数の分離区分を含む不連続領域を有することを特徴とする電波透過性金属光沢部材。
  2.  前記アルミニウム層のシート抵抗が90Ω/□以上である、請求項1に記載の電波透過性金属光沢部材。
  3.  電波透過性を有する基体と、
     前記基体の連続面に直接形成されたアルミニウム層と、
    を備え、
     シート抵抗が90Ω/□以上であることを特徴とする電波透過性金属光沢部材。
  4.  前記連続面が、誘電性樹脂材料、又は、ガラス材料から成る、請求項1乃至3のいずれかに記載の電波透過性金属光沢部材。
  5.  前記誘電性樹脂材料が、ポリエステル、ポリオレフィン、アクリル系ポリマー、ポリカーボネートのいずれかから構成されている、請求項4に記載の電波透過性金属光沢部材。
  6.  前記連続面が酸化インジウム含有材料を利用して形成されている、請求項1乃至3のいずれかに記載の電波透過性金属光沢部材。
  7.  前記基体が、フィルム、樹脂成型品、ガラス製品、又は金属光沢を付与すべき物品そのものである請求項1乃至6のいずれかに記載の電波透過性金属光沢部材。
  8.  前記アルミニウム層の最大の厚さが15~80nmである、請求項1乃至7のいずれかに記載の電波透過性金属光沢部材。
  9.  前記アルミニウム層の電波透過減衰量が10dB以下である、請求項1乃至8のいずれかに記載の電波透過性金属光沢部材。
  10.  前記アルミニウム層は、アルミニウム(Al)又はアルミニウム(Al)の合金のいずれかである、請求項1乃至9のいずれかに記載の電波透過性金属光沢部材。
  11.  前記アルミニウム(Al)の合金における全金属成分中のアルミニウム含有比率が50%以上である、請求項10に記載の電波透過性金属光沢部材。
  12.  前記基体の連続面を利用して形成された透明な筐体の内面に前記アルミニウムが設けられている、請求項1乃至11のいずれかに記載の電波透過性金属光沢部材。
  13.  請求項1乃至12のいずれかに記載の電波透過性金属光沢部材を用いた物品。
  14.  前記物品が通信機器である、請求項13に記載の物品。
  15.  電波透過性を有する基体に、ACスパッタリングを用いて、互いに不連続の複数の分離区分を含む不連続領域を有するアルミニウム層を直接形成する段階を含むことを特徴とする電波透過性金属光沢部材又は該電波透過性金属光沢部材を用いた物品の製造方法。
  16.  電波透過性を有する基体に、ACスパッタリングを用いて、シート抵抗が90Ω/□以上となるようにアルミニウム層を直接形成する段階を含むことを特徴とする電波透過性金属光沢部材又は該電波透過性金属光沢部材を用いた物品の製造方法。
  17.  前記アルミニウム層は前記基体の連続面に直接形成される、請求項15又は16に記載の電波透過性金属光沢部材又は該電波透過性金属光沢部材を用いた物品の製造方法。
  18.  前記連続面が、誘電性樹脂材料、又は、ガラス材料から成る、請求項17に記載の電波透過性金属光沢部材又は該電波透過性金属光沢部材を用いた物品の製造方法。
  19.  前記連続面が酸化インジウム含有材料を利用して形成されている、請求項17に記載の電波透過性金属光沢部材又は該電波透過性金属光沢部材を用いた物品の製造方法。
  20.  前記ACスパッタリングは1.5Pa以上の圧力下で行われる、請求項15乃至19のいずれかに記載の製造方法。
  21.  前記ACスパッタリングを行う際の前記基体の温度が20℃以上である、請求項15乃至20のいずれかに記載の製造方法。
PCT/JP2019/000694 2018-01-12 2019-01-11 電波透過性金属光沢部材、これを用いた物品、及びその製造方法 WO2019139122A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19738662.6A EP3738762A4 (en) 2018-01-12 2019-01-11 RADIO-PERMEABLE GLOSSY METAL ELEMENT, ARTICLE THEREFORE AND METHOD OF ITS MANUFACTURING
US16/961,741 US11577491B2 (en) 2018-01-12 2019-01-11 Metallic lustrous member with radio wave transmissibility, article using same, and production method therefor
CN201980007970.5A CN111587179B (zh) 2018-01-12 2019-01-11 电波透过性金属光泽构件、使用该构件的物品、及其制造方法
KR1020207021246A KR20200108853A (ko) 2018-01-12 2019-01-11 전파 투과성 금속 광택 부재, 이것을 사용한 물품, 및 그 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018003620 2018-01-12
JP2018-003620 2018-01-12
JP2019-002727 2019-01-10
JP2019002727A JP2019123238A (ja) 2018-01-12 2019-01-10 電波透過性金属光沢部材、これを用いた物品、及びその製造方法

Publications (1)

Publication Number Publication Date
WO2019139122A1 true WO2019139122A1 (ja) 2019-07-18

Family

ID=67219621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000694 WO2019139122A1 (ja) 2018-01-12 2019-01-11 電波透過性金属光沢部材、これを用いた物品、及びその製造方法

Country Status (1)

Country Link
WO (1) WO2019139122A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021182380A1 (ja) * 2020-03-09 2021-09-16 日東電工株式会社 電磁波透過性積層部材、及びその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138270A (ja) * 2005-11-21 2007-06-07 Toyoda Gosei Co Ltd 樹脂製品及びその製造方法並びに金属皮膜の成膜方法
JP2007144988A (ja) 2005-10-31 2007-06-14 Toyoda Gosei Co Ltd 樹脂製品及びその製造方法並びに金属皮膜の成膜方法
WO2009038116A1 (ja) * 2007-09-18 2009-03-26 Shin-Etsu Polymer Co., Ltd. 電波透過性装飾部材
JP2009298006A (ja) 2008-06-12 2009-12-24 Toyoda Gosei Co Ltd 電磁波透過性光輝樹脂製品及び製造方法
JP2011180562A (ja) * 2010-03-04 2011-09-15 Konica Minolta Holdings Inc 熱線遮断用基材
JP2018056683A (ja) * 2016-09-27 2018-04-05 株式会社ファルテック レーダカバー及びレーダカバーの製造方法
WO2018079547A1 (ja) * 2016-10-24 2018-05-03 日東電工株式会社 電磁波透過性金属光沢部材、これを用いた物品、及び、金属薄膜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144988A (ja) 2005-10-31 2007-06-14 Toyoda Gosei Co Ltd 樹脂製品及びその製造方法並びに金属皮膜の成膜方法
JP2007138270A (ja) * 2005-11-21 2007-06-07 Toyoda Gosei Co Ltd 樹脂製品及びその製造方法並びに金属皮膜の成膜方法
WO2009038116A1 (ja) * 2007-09-18 2009-03-26 Shin-Etsu Polymer Co., Ltd. 電波透過性装飾部材
JP2009298006A (ja) 2008-06-12 2009-12-24 Toyoda Gosei Co Ltd 電磁波透過性光輝樹脂製品及び製造方法
JP2011180562A (ja) * 2010-03-04 2011-09-15 Konica Minolta Holdings Inc 熱線遮断用基材
JP2018056683A (ja) * 2016-09-27 2018-04-05 株式会社ファルテック レーダカバー及びレーダカバーの製造方法
WO2018079547A1 (ja) * 2016-10-24 2018-05-03 日東電工株式会社 電磁波透過性金属光沢部材、これを用いた物品、及び、金属薄膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3738762A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021182380A1 (ja) * 2020-03-09 2021-09-16 日東電工株式会社 電磁波透過性積層部材、及びその製造方法

Similar Documents

Publication Publication Date Title
TWI791466B (zh) 電磁波穿透性金屬光澤構件、使用其之物品及金屬薄膜
JP2019123238A (ja) 電波透過性金属光沢部材、これを用いた物品、及びその製造方法
CN112020423B (zh) 电磁波透过性金属光泽物品、及金属薄膜
WO2019208499A1 (ja) 電磁波透過性金属光沢物品
WO2021182380A1 (ja) 電磁波透過性積層部材、及びその製造方法
JP6944425B2 (ja) 電磁波透過性金属光沢部材、これを用いた物品、及び、金属薄膜
WO2019139122A1 (ja) 電波透過性金属光沢部材、これを用いた物品、及びその製造方法
WO2019208504A1 (ja) 電磁波透過性金属光沢物品、及び、金属薄膜
JP7319080B2 (ja) 電磁波透過性金属光沢物品、及び、金属薄膜
WO2019208494A1 (ja) 電磁波透過性金属光沢物品、及び、金属薄膜
TW202003217A (zh) 電磁波透過性金屬光澤物品
JP2019188808A (ja) 電磁波透過性金属光沢物品
JP2019188805A (ja) 電磁波透過性金属光沢物品
WO2019208488A1 (ja) 電磁波透過性金属光沢物品
WO2019208490A1 (ja) 電磁波透過性金属光沢物品及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019738662

Country of ref document: EP

Effective date: 20200812