WO2018003847A1 - 電磁波透過性金属部材、これを用いた物品、及び、電磁波透過性金属フィルムの製造方法 - Google Patents

電磁波透過性金属部材、これを用いた物品、及び、電磁波透過性金属フィルムの製造方法 Download PDF

Info

Publication number
WO2018003847A1
WO2018003847A1 PCT/JP2017/023734 JP2017023734W WO2018003847A1 WO 2018003847 A1 WO2018003847 A1 WO 2018003847A1 JP 2017023734 W JP2017023734 W JP 2017023734W WO 2018003847 A1 WO2018003847 A1 WO 2018003847A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
electromagnetic wave
crack
linear
Prior art date
Application number
PCT/JP2017/023734
Other languages
English (en)
French (fr)
Inventor
創 西尾
広宣 待永
一斗 山形
将治 有本
暁雷 陳
梨恵 林内
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US16/313,338 priority Critical patent/US11351753B2/en
Priority to CN201780038483.6A priority patent/CN109311262B/zh
Priority to KR1020187037715A priority patent/KR102425042B1/ko
Priority to JP2018525204A priority patent/JP7305350B2/ja
Priority to EP17820201.6A priority patent/EP3480007A4/en
Publication of WO2018003847A1 publication Critical patent/WO2018003847A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/52Radiator or grille guards ; Radiator grilles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5886Mechanical treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/52Radiator or grille guards ; Radiator grilles
    • B60R2019/525Radiator grilles

Definitions

  • the present invention relates to an electromagnetic wave transmissive metal member having metallic luster and electromagnetic wave permeability, an article using the same, and a method for producing an electromagnetic wave transmissive metal film.
  • a metal member having both metallic luster and electromagnetic wave permeability is required.
  • Millimeter wave radar transmits millimeter wave electromagnetic waves (frequency: about 77 GHz, wavelength: about 4 mm) in front of the car, receives reflected waves from the target, and measures and analyzes the reflected waves. The distance, target direction, and size can be measured. The measurement result can be used for inter-vehicle measurement, automatic speed adjustment, automatic brake adjustment, and the like. Since the front part of the automobile on which the millimeter wave radar is arranged is the face of the automobile, and is a part that gives a large impact to the user, it is preferable to produce a high-class feeling with a metallic glossy front decoration. However, when metal is used for the front part of an automobile, transmission / reception of electromagnetic waves by the millimeter wave radar is substantially impossible or obstructed.
  • Patent Document 1 proposes a metal film in which indium is formed in an island shape on the surface of a substrate by a vacuum deposition method.
  • the indium film formed in an island shape has a metallic luster and can transmit electromagnetic waves through a gap between the islands.
  • Patent Document 2 proposes a method for producing a metal film decorative sheet using heat treatment.
  • This metal film decorating sheet is a base material sheet in which a crack inducing layer and a metal film layer made of a specific metal formed in contact with the crack inducing layer are formed on a base sheet.
  • a crack in the filamentous surface structure is formed by increasing the temperature (120 ° C.-200 ° C.) while applying a predetermined tension to the sheet.
  • Patent Document 3 also uses heat treatment in the same manner as Patent Document 2.
  • an aluminum (Al) film formed on a resin substrate and a chromium film formed on the aluminum film are heated together with the resin substrate at a high temperature (120 ° C.), thereby utilizing thermal stress.
  • the aluminum film and the chromium film are discontinuous.
  • Patent Document 4 also uses heat treatment.
  • the conductive film is subjected to after-baking to form a conductive film. It is supposed to form island-shaped fine cracks for transmitting electromagnetic waves.
  • Patent Document 1 a metal member having an electromagnetic wave transmission level that can withstand practical use can be obtained.
  • Patent Document 4 indium is expensive. Therefore, this method increases the manufacturing cost.
  • Patent Documents 2 to 4 are technologies that do not use indium, so there is no problem of material cost, but considerable equipment investment is required to perform heat treatment, and material costs can be reduced, Since a heating raw material is required, manufacturing cost becomes high.
  • heating it is necessary to finely manage the heating temperature and heating time. If the management is not successful, the control of cracks becomes unstable, resulting in variations in electromagnetic wave transmission characteristics. Moreover, the problem that a metallic luster member will become cloudy will arise.
  • Patent Document 4 paragraph 0052 since a heating step is involved in forming the crack, the member curls due to the difference in the coefficient of linear expansion between the metal layer and the base material, and a new problem that the appearance of the metallic luster member deteriorates may occur (for example, Patent Document 4 paragraph 0052).
  • the present invention has been made in order to solve these problems in the prior art, and has an electromagnetic wave transmission property that combines both metallic luster and electromagnetic wave transmission property, which is inexpensive to manufacture and easy to manufacture. It is an object of the present invention to provide a metal member, an article using the metal member, and a method for producing an electromagnetic wave transmissive metal film.
  • an electromagnetic wave transmissive metal member includes a metal layer and a crack layer, and the metal layer and the crack layer are substantially in each plane within each plane. It has a plurality of parallel linear cracks, and the linear cracks of the metal layer and the linear cracks of the crack layer penetrate each layer in the thickness direction and are continuous in the thickness direction. It is said.
  • the term “straight line” in the above “linear crack” is a word given to distinguish it from a gap or crack in the prior art, for example, an island-shaped gap as described in Patent Document 1. Of course, it does not mean that it is a perfect straight line.
  • the “straight crack” is a method defined in the claims, that is, “a direction in which a multilayer film formed by laminating a metal layer and a crack layer on a long base film intersects the longitudinal direction of the multilayer film. In other words, all cracks having linearity to the extent that they can be formed by bending and stretching the multilayer film in the longitudinal direction in a state where the multilayer film is folded back to the base film side.
  • the term “substantially parallel” is not, of course, a word meaning that it is completely parallel, but a millimeter wave radar, a mobile phone, a smartphone, a tablet PC, a notebook to which the present invention is applied. Including those that are parallel to the extent that they can be used in mold PCs, refrigerators, and the like.
  • an angle formed by the adjacent linear cracks included in at least one surface of the metal layer or the crack layer is ⁇ 10 ° or less.
  • the metal layer or the crack layer may be arbitrarily selected from a plurality of the linear cracks included in a plane of 400 ⁇ m ⁇ (a square having a side of 400 ⁇ m (hereinafter the same)). It is preferable that 40% or more of the angle formed by the two selected linear cracks is ⁇ 10 ° or less.
  • the two linear cracks arbitrarily selected from the plurality of linear cracks included in the 400 ⁇ m ⁇ plane of the metal layer or the crack layer, Of the angles formed by the two selected linear cracks, 40% or more is preferably ⁇ 10 ° or less, and 40% or more is preferably 80 ° or more and 100 ° or less.
  • 80% or more of the plurality of linear cracks included in the 400 ⁇ m ⁇ plane of the metal layer or the crack layer is ⁇ 5 ° or less with respect to a reference straight line. It may be in the range.
  • the “reference straight line” is a first straight line having a predetermined angle determined arbitrarily, and a second straight line rotated by a predetermined angle in a predetermined direction around an arbitrary point passing through the first straight line
  • a plurality of straight lines are drawn in unit angle increments, and each of the plurality of straight lines and a straight line parallel to each of the plurality of straight lines (however, the second straight line and the second straight line are The total length of the linear cracks that overlap with the straight line parallel to the straight line) is obtained for all 360 ° directions at predetermined angles with the arbitrary point as the center, and the region having the largest value among the obtained totals Means a straight line located between the first straight line and the second straight line.
  • a multilayer film formed by laminating a metal layer and a crack layer on a base film is bent and stretched in only one direction while being folded back to the base film side, Linear cracks may be formed in the metal layer and the crack layer.
  • “one direction” means that the direction of bending and stretching is along only one direction, and includes reciprocating conveyance processing.
  • the range is within ⁇ 5 ° with respect to a reference straight line.
  • the thing may be 70% or less. If the proportion of linear cracks that overlap with a straight line having an angle within a predetermined range with respect to the reference straight line is small, it means that the linear cracks are not aligned in the predetermined direction, and therefore the polarization characteristics deteriorate. On the other hand, the permeability is good.
  • a multilayer film formed by laminating a metal layer and a crack layer on a base film is bent and stretched in a plurality of directions while being folded back to the base film side, Linear cracks may be formed in the metal layer and the crack layer.
  • a plurality of directions means that the bending and extending directions are a plurality of directions, and reciprocal conveyance may be performed in each direction.
  • the length of the linear crack is preferably 200 ⁇ m or more.
  • the width of the linear crack generated in the layer disposed on the side far from the bent side is The thickness is preferably 0.1 nm to 100 nm or less.
  • the ratio of the thickness of the metal layer to the thickness of the crack layer is 0.1 to 20 or less, the thickness of the metal layer is 10 nm to 1000 nm, The thickness is preferably 5 nm to 5000 nm.
  • the crack layer is preferably made of a material containing at least one selected from a metal having a Mohs hardness of 4 or more, an alloy containing the metal as a main component, and ceramics. .
  • the ceramic is a substance containing any one of an oxide, a nitride, a carbide, and an oxynitride of an element containing at least one selected from metal, silicon, and boron. Is preferred.
  • the metal layer has a Mohs hardness of 1 or more and less than 4, and the metal layer is at least one metal selected from Al, Cu, Ag, Au, and Zn. And any of alloys containing the metal as a main component.
  • an electromagnetic wave transmissive metal film comprising the electromagnetic wave transmissive metal member of the above aspect and a substrate film, or an electromagnetic wave transmissive metal comprising an electromagnetic wave transmissive metal member and a resin molded substrate.
  • a resin member can also be provided.
  • a method for producing an electromagnetic wave transmissive metal film includes a multilayer film obtained by laminating a metal layer and a crack layer on a long base film. Forming linear cracks in the metal layer and the crack layer by bending and stretching the multilayer film in the longitudinal direction while being folded back toward the base film side along a direction intersecting the longitudinal direction It is characterized by.
  • an electromagnetic wave transmitting metal member having both metallic luster and electromagnetic wave transparency, an article using the same, and a method for producing an electromagnetic wave transparent metal film, which are inexpensive to manufacture and easy to manufacture.
  • FIG. 1 shows an electromagnetic wave transmissive metal member (hereinafter referred to as “metal member”) 1 according to an embodiment of the present invention, and an electromagnetic wave transmissive metal film (hereinafter referred to as “metal member”) using the metal member 1 according to an embodiment of the present invention. , Referred to as “metal film”.)
  • metal member an electromagnetic wave transmissive metal member
  • metal film an electromagnetic wave transmissive metal film
  • the metal member 1 includes at least a metal layer 11 and a crack layer 12.
  • the metal films 3 and 3A further include at least a base film 10.
  • a metal film 3 shown in FIG. 1A is obtained by laminating a crack layer 12 and a metal layer 11 in this order on a base film 10, while the metal film 3A shown in FIG. A metal layer 11 and a crack layer 12 are laminated on the base film 10 in this order.
  • the metal films 3, 3 'of the present application include both types shown in FIGS. 1 (a) and 1 (b).
  • linear cracks 11 ′ and 12 ′ are formed in the metal layer 11 and the crack layer 12, respectively. These linear cracks 11 ′ and 12 ′ penetrate through the respective layers 11 and 12 in the thickness direction (arrow “ ⁇ ” direction in the figure), and one linear crack 15 continues in the thickness direction “ ⁇ ”. Is made.
  • the metal member 1 can transmit electromagnetic waves despite the provision of the metal layer 11 that obstructs transmission of electromagnetic waves.
  • the base film 10 does not hinder the transmission of electromagnetic waves.
  • FIG. 2 schematically shows a manufacturing process using a cross-sectional view similar to FIG. 1, and FIG. 3 schematically shows a part of the configuration of an apparatus that can be used for manufacturing. is there.
  • the metal film will be described using the metal film 3 shown in FIG. 1A, but the metal film 3A shown in FIG. 1B can also be manufactured by the same method. .
  • stacked on the elongate base film 10 is prepared.
  • the crack layer 12 is formed by vacuum deposition, sputtering, ion plating or the like, and the metal layer 11 is further formed by plating in addition to these.
  • the sputtering method is preferable because the thickness can be strictly controlled even in a large area.
  • the direct contact is not always necessary. It is not necessary to make them, and it is sufficient if each layer is laminated in such a manner that the linear crack 15 described above can be formed.
  • This apparatus configuration mainly includes a columnar (or cylindrical) member 30.
  • the cylindrical member 30 may be, for example, a drum or a rod, and the material thereof may be wood, plastic, or metal. However, since it is necessary to apply a relatively large tension to the multilayer film 20 at the time of bending and stretching, it is preferable to use a metal having higher rigidity than other materials.
  • the cylindrical member 30 is installed in a direction “ ⁇ ” that intersects the longitudinal direction of the multilayer film 20 (the direction of the arrow “ ⁇ ” in the figure). The angle formed by the longitudinal direction “ ⁇ ” and the intersecting direction “ ⁇ ” is preferably set to 90 °.
  • the error range from 90 ° is preferably within ⁇ 5 °. This is because within such a range, the linear cracks 11 'and 12' can be efficiently generated.
  • the multilayer film 20 is in a state where R having a predetermined curvature is attached along the peripheral surface of the cylindrical member 30, in other words, in a state where the multilayer film 20 is bent and bent toward the base film 10 side using the cylindrical member 30. Then, it is conveyed a plurality of times along the longitudinal direction “ ⁇ ” while applying tension. At this time, the tension applied to the multilayer film 20 is preferably 30 N to 200 N.
  • the moving speed of the multilayer film 20 is preferably 1 cm / second or more. By setting such a speed, the linear cracks 11 ′ and 12 ′ can be efficiently generated.
  • widths “A” and “B” of the linear cracks 12 ′ and 11 ′ are very small and is negligible from the viewpoint of electromagnetic wave transmission. Moreover, the size of these widths “A” and “B” is at most about 100 nm, and does not affect the appearance of the metal film 3.
  • the metal layer 11 and the crack layer 12 may be returned to a flat state as shown in FIG.
  • the width “C” of the linear crack 15 is slightly smaller than the widths “A” and “B” in the bent state.
  • the linear crack 15 still penetrates the metal layer 11 and the crack layer 12 and is continuous in the thickness direction of those layers. After it is generated, it is not completely buried. Therefore, even if it is used in the state shown in FIG. 2 (c), the electromagnetic wave transmission is not greatly affected.
  • the electromagnetic wave permeability of the metal film should be finely adjusted by the widths “A” to “C” of the linear cracks and the pitch widths of a plurality of adjacent linear cracks (which are well shown in FIG. 4 to be described later). Can do. These widths and pitches can be easily adjusted by adjusting the curvature of the cylindrical member 30. For example, by using a cylindrical member having a larger curvature than the cylindrical member 30 shown in FIG. 3, the widths “A” to “C” are set larger, and the pitch widths of adjacent linear cracks are set. Can be set small.
  • the direction of the linear crack can also be easily adjusted by adjusting the direction in which the tension is applied, that is, the angle formed by the longitudinal direction “ ⁇ ” and the intersecting direction “ ⁇ ”.
  • the metal member 1 can be obtained by transferring the metal member 1 formed when the metal film 3 is manufactured. Furthermore, if this metal member 1 is transferred to a resin base material, an electromagnetic wave transmissive metal resin member including the metal member 1 and a resin base material (not shown) can be produced.
  • Base film> polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate, polyamide, polyvinyl chloride, polycarbonate (PC), cycloolefin polymer (COP), polystyrene, polypropylene (PP), polyethylene
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • COP cycloolefin polymer
  • PP polystyrene
  • PP polypropylene
  • a transparent film made of a homopolymer or copolymer such as polycycloolefin, polyurethane, acrylic (PMMA) or ABS can be used. These members are suitable for bending and stretching under tension, and according to these members, the metallic luster and electromagnetic wave permeability are not affected.
  • the metal layer 11 and the crack layer 12 can withstand high temperatures such as vapor deposition and sputtering. Therefore, among the above materials, for example, polyethylene terephthalate, polyethylene naphthalate, acrylic, polycarbonate , Cycloolefin polymer, ABS, polypropylene and polyurethane are preferred. Of these, polyethylene terephthalate is preferable because of a good balance between heat resistance and cost.
  • the base film 10 may be a single layer film or a laminated film. The thickness is preferably about 6 ⁇ m to 250 ⁇ m, for example. In order to strengthen the adhesion with the metal layer 11 and the crack layer 12, plasma treatment or the like may be performed.
  • the crack layer 12 is continuous with the linear crack 12 ′ using the stress generated in the metal layer 11 in contact with or adjacent to the linear crack 12 ′ when the linear crack 12 ′ is generated.
  • it is necessary to be a substance that is likely to generate the linear crack 12 ′ and to be able to apply a sufficient stress to the metal layer 11.
  • the thickness of the crack layer 12 is usually 5 nm to 5000 nm, preferably 10 to 1000 nm, and more preferably 20 to 200 nm.
  • the crack layer 12 includes a metal having a Mohs hardness of 4 or more,
  • a metal containing at least one selected from Cr, Ti, W, V, Nb, Mo, and Ni, or an alloy containing the metal as a main component is suitable.
  • ceramics with extremely high brittleness can be said to be suitable for the crack layer 12.
  • Ceramics may contain any of oxides, nitrides, carbides, and oxynitrides of elements containing at least one selected from metals and silicon and boron.
  • the oxide examples include Al 2 O 3 , ITO (tin-doped indium oxide), ZnO, TiO 2 , Nb 2 O 5 , and SiO 2.
  • the nitride includes, for example, AlN, TiN, SiN, BN, and the like are included, and the carbide includes, for example, TiC, SiC, and the like.
  • ITO is a substance containing expensive In, but since it is a mixture of In and other substances, the manufacturing cost is lower than when In itself is used. Table 1 below shows the Mohs hardness of the main metals.
  • the metal layer 11 needs to be capable of exhibiting a sufficient metallic luster, as well as being able to be induced by the linear crack 12 ′ to generate the linear crack 11 ′.
  • a crack width that does not hinder the appearance such as scattering and cloudiness is required, and a substance having a hardness smaller than that of the metal contained in the crack layer is desirable.
  • a metal having a Mohs hardness of 1 or more and less than 4 is suitable as the metal layer 11.
  • at least one metal selected from Al, Cu, Ag, Au, and Zn, and the metal is used. It is preferable that any one of the alloys having the main component is included. In particular, Al, Cu, and alloys thereof are preferable for reasons of material stability and price.
  • the thickness of the metal layer 11 is usually 10 nm to 1000 nm, preferably 20 to 200 nm, more preferably 30 to 100 nm so that the linear crack 11 ′ is easily induced. This thickness is suitable for forming a uniform film, and also the appearance of the resin molded product as the final product is good.
  • the ratio of the thickness of the metal layer to the thickness of the crack layer that is, the thickness of the metal layer / the thickness of the crack layer is 0.
  • the range of 1 to 20 is preferable, and the range of 0.2 to 10 is more preferable.
  • the Mohs hardness of the metal layer 11 is preferably smaller than the Mohs hardness of the crack layer 12, usually 1 to less than 4, and preferably 2 to 3.5.
  • FIG. 4 the optical microscope image of the linear crack which arose in the metal film 3 is shown. Although this figure is an image corresponding to the metal film 3 shown in FIG. 1A, it can be considered that a similar image can be obtained for the metal film 3A shown in FIG. Further, since this image was taken in a state where the metal film 3 is wound around the metal rod (a state corresponding to (b) in FIG. 2), the width of these linear cracks 11 ′ (in FIG. 2). (Corresponding to the width “B” in (b)) is the width of the linear crack (in FIG. 2) in the state where the metal layer 11 and the crack layer 12 are returned to a flat state (state corresponding to (c) in FIG.
  • FIG. 4 actually shows only the linear crack 11 ′ of the metal layer 11, but the linear crack 11 ′ and the linear crack 12 ′ are continuous in the thickness direction. It can be seen that both the linear crack 11 ′ of the layer 11 and the linear crack 12 ′ of the crack layer 12 are shown.
  • the metal layer 11 and the crack layer 12 have a plurality of linear cracks (linear cracks in FIGS. 2B and 2C) that are substantially parallel to each other. 11 ′, 12 ′, and 15).
  • linear cracks linear cracks in FIGS. 2B and 2C
  • substantially parallel includes, of course, those that are not completely parallel but parallel to the extent that they can be used for the use of directional electromagnetic waves.
  • the linear crack may be formed not only in one direction but also in a plurality of directions.
  • the angle of the film is rotated by 90 ° and is orthogonal to “ ⁇ ”.
  • By performing bending and stretching in the direction “ ⁇ ”, it is possible to obtain a lattice-like metal film in which linear cracks intersect each other.
  • an electromagnetic wave transmissive metal member having high electromagnetic wave permeability in all directions can be obtained regardless of the directivity of the electromagnetic wave.
  • the sheet resistance is greatly increased.
  • the sheet resistance of the metal films 3 and 3 ′ is usually 100 ⁇ / ⁇ or more, preferably 200 ⁇ / ⁇ or more, more preferably 400 ⁇ / ⁇ or more.
  • the electromagnetic wave transmission attenuation factor of the metal films 3 and 3 ′ according to the present invention is usually ⁇ 10 dB or less, preferably ⁇ 5 dB or less, more preferably ⁇ 1 dB or less.
  • the width of the linear crack at the time of bending of the metal films 3 and 3 ′ is usually 0.1 nm to 100 nm, preferably 0.2 nm to 60 nm, in a state where the metal film 3 is wound around a metal rod having a diameter of 6 mm while being folded back to the base film side. More preferably, the thickness is 0.3 nm to 30 nm.
  • the width of the linear crack 11 ′ (12 ′) at the time of bending is emphasized slightly larger than the width of the linear crack 15 in a state where the metal layer 11 is returned to a flat state. In any case, the width of the linear crack is equal to or smaller than that described above.
  • the angle formed by the adjacent linear cracks 11 ′, 12 ′, 15 included in the plane is usually ⁇ 10 ° or less, preferably ⁇ 5 ° or less. . These angular differences can be said to be substantially parallel angles, for example, for millimeter wave radar.
  • linear cracks When the linear cracks are formed in a substantially rectangular lattice, two linear cracks arbitrarily selected from a plurality of linear cracks 11 ′, 12 ′, and 15 included in an arbitrary 400 ⁇ m square surface are mutually connected. Usually, 40% or more of the formed angles is ⁇ 10 ° or less, preferably ⁇ 5 ° or less, and more preferably ⁇ 2 ° or less. Similarly, when the linear crack is formed into a substantially rectangular lattice, two linear cracks arbitrarily selected from the plurality of linear cracks 11 ′, 12 ′, and 15 included in the surface of 400 ⁇ m ⁇ are mutually connected.
  • angles formed usually 40% or more is ⁇ 10 ° or less (preferably ⁇ 5 ° or less, more preferably ⁇ 2 ° or less), and 40% or more is 80 ° or more (preferably 85 ° or less). More preferably ⁇ 87 ° or more) and 100 ° or less (preferably 105 ° or less, more preferably 102 ° or less).
  • performance can be improved by suppressing variations in linear cracks.
  • the length of the linear cracks 11 ′, 12 ′ and 15 is usually 200 ⁇ m or more, preferably 500 ⁇ m or more.
  • the wavelength of a signal transmitted and received by the millimeter wave radar is about 4 mm, this length is considered sufficient for the use of the millimeter wave radar.
  • the visible light reflectance Using a spectrophotometer U4100 manufactured by Hitachi High-Technologies Corporation, the reflectance at a measurement wavelength of 550 nm was measured. As a reference, the reflectance of the Al deposition mirror was set to 100%. In order to have a sufficient metallic luster, the visible light reflectance needs to be 40% or more, preferably 60% or more, and more preferably 70% or more. Incidentally, when the visible light reflectance is 40% or less, there is a problem that the metallic luster is remarkably lowered and the appearance is not excellent.
  • the surface resistance was measured by an eddy current measurement method according to JIS-Z2316 using a non-contact type resistance measuring device NC-80MAP manufactured by Napson.
  • the surface resistance needs to be 100 ⁇ / ⁇ or more, preferably 200 ⁇ / ⁇ or more, and more preferably 400 ⁇ / ⁇ or more.
  • sufficient electromagnetic wave permeability cannot be obtained as it is 100 ohms / square or less.
  • the electric field transmission attenuation at 1 GHz was evaluated using a KEC method measurement evaluation jig and an Agilent spectrum analyzer CXA signal Analyzer NA9000A.
  • the microwave electric field transmission attenuation amount needs to be ⁇ 10 dB or less, preferably ⁇ 5 dB or less, and more preferably ⁇ 1 dB or less. Incidentally, if it is ⁇ 10 dB or more, there is a problem that 90% or more of electromagnetic waves are blocked. Note that the microwave transmission in the millimeter wave radar frequency band (76 to 80 GHz) and the electromagnetic wave transmission in the microwave band (1 GHz) are correlated and show relatively close values. The electromagnetic wave permeability in the band (1 GHz) was used as an index.
  • “Upper layer” shown in the column of “Layer configuration” in Table 2 means a layer far from the bent side (base film 10 side), and “lower layer” means a layer closer to the bent side. Means. In the case where only one of the metal layer and the crack layer is provided, “present” is described in the provided layer, and “ ⁇ ” is described in the layer not provided. In Example 1 and Comparative Example 1, the value is not described in the column of “Mohs hardness” simply because it is difficult to measure an accurate value of the Mohs hardness, which means that the Mohs hardness is small. do not do.
  • the Mohs hardness of the material used for the crack layer is at least 4 or more, and is sufficiently larger than the Mohs hardness of the material used for the metal layer.
  • Example 1 This is an example in which a metal layer is disposed in the upper layer and a crack layer is disposed in the lower layer.
  • the base film corresponding to the base film 10 in FIGS. 1 and 2
  • a PET film thinness 125 ⁇ m
  • a 50 nm ITO layer was formed on the base film by sputtering, and then a 70 nm aluminum (Al) layer was formed on the ITO layer by sputtering to obtain a multilayer film.
  • ITO contains SnO2 10 wt% with respect to In2O3.
  • the multilayer film is wound around a metal rod having a diameter of 6 mm while being folded back on the base film side, and moved at a speed of 10 cm / second with a force of 100 N.
  • a metal film was produced.
  • the film was reciprocated in the longitudinal direction “ ⁇ ”, and this treatment was performed 12 times.
  • FIG. 4 shows an optical microscope image of the surface of the metal film obtained by this bending and stretching process
  • FIG. 5 shows an image obtained by binarizing the image in the same region as FIG.
  • the image size in FIG. 5 is 400 ⁇ m ⁇ , and the number, interval, and length of linear cracks (corresponding to the linear crack 15 in FIG. 2C) included in this region were analyzed.
  • the image which expanded the cross section of the metal film with the transmission electron microscope (TEM) in FIG. 6 is each shown with the SEM image.
  • the images in FIGS. 4 to 6 are taken with a metal film wound around a metal rod having a diameter of 6 mm, so strictly speaking, linear cracks are emphasized compared to a state in which no metal film is wound.
  • the image area in the micro order is extremely small with respect to the diameter of the metal rod in the nano order, the image is substantially the same as FIG. It can be considered that is obtained.
  • the lattice-shaped metal film in which the linear cracks intersect each other was obtained by bending and stretching in a direction perpendicular to the linear cracks.
  • 50% or more of angles formed by the plurality of linear cracks included in each other is ⁇ 0.5 ° or less, and 40% or more is 0.5 ° or more and 1 ° or less.
  • Example 1 According to the configuration of Example 1, good results were obtained for all of the visible light reflectance, surface resistance, and microwave electric field transmission attenuation. That is, a metal film or metal member having both metallic luster and electromagnetic wave permeability was obtained.
  • Example 2 In the same manner as in Example 1, a metal layer is disposed in the upper layer and a crack layer is disposed in the lower layer, and the crack layer is made of alumina (Al 2 O 3 ). Other conditions are the same as in the first embodiment.
  • the Mohs hardness of alumina is 9, whereas the Mohs hardness of aluminum (Al) used as the metal layer is 2.5. Also in this case, a metal film or metal member having both metallic luster and electromagnetic wave permeability was obtained.
  • Example 3 Unlike Examples 1 and 2, this is an example in which a crack layer is disposed in the upper layer and a metal layer is disposed in the lower layer. Unlike Example 1, the crack layer was 45 nm chromium (Cr), and the metal layer was 20 nm aluminum (Al). Other conditions are the same as in the first embodiment. The Mohs hardness of chromium is 8.5, whereas the Mohs hardness of aluminum is 2.5. Also in this case, a metal film or metal member having both metallic luster and electromagnetic wave permeability was obtained.
  • Example 4 Unlike Example 1, by bending and stretching the multilayer film in a plurality of directions, more specifically, after bending and stretching in the longitudinal direction “ ⁇ ” (see FIG. 3), the direction orthogonal to “ ⁇ ” A metal member having a shape in which linear cracks intersect each other was obtained by bending and stretching “ ⁇ ”. Also in this case, a metal film or metal member having both metallic luster and electromagnetic wave permeability was obtained.
  • Example 1 In the same manner as in Example 1, the upper layer is a metal layer and the lower layer is a crack layer. However, unlike Example 1, the bending and stretching treatment was not performed. Other conditions are the same as in the first embodiment. In this case, good results were obtained for the metallic luster, but the electromagnetic wave permeability was insufficient.
  • Example 2 In the same manner as in Example 1, the upper layer is a metal layer and the lower layer is a crack layer.
  • the thickness of the upper layer aluminum (Al) was 70 nm, and alumina (Al2O3) was used as the crack layer.
  • Al aluminum
  • Al2O3 alumina
  • the bending and stretching treatment was not performed.
  • Other conditions are the same as those in the first embodiment. In this case as well, good results were obtained for the metallic luster, but the electromagnetic wave permeability was insufficient.
  • Example 3 Unlike Example 1, this is an example in which a crack layer is disposed in the upper layer and a metal layer is disposed in the lower layer. Further, unlike Example 1, the bending and stretching treatment was not performed, 45 nm chromium was used as the crack layer, and 20 nm aluminum was used as the metal layer. Other conditions are the same as in the first embodiment. In this case as well, good results were obtained for the metallic luster, but the electromagnetic wave permeability was insufficient.
  • Example 4 Unlike Example 1, this is an example in which a crack layer is disposed in the upper layer and a metal layer is disposed in the lower layer. Further, unlike Example 1, 45 nm chromium was used as the crack layer, and 20 nm aluminum was used as the metal layer. Further, heat treatment was performed instead of bending and stretching. Heating is by placing the metal film in a 120 degree environment for 2 hours. Other conditions are the same as in the first embodiment. In this case, good results were obtained for the metallic luster, but the electromagnetic wave permeability was insufficient. In addition, the metal film curls after the heat treatment, making it difficult to put to practical use.
  • Comparative Examples 5 and 6 Unlike Example 1, only the metal layer is used. As the metal layer, 70 nm of aluminum was used. Further, in Comparative Example 5, the bending and stretching treatment was not performed, and in Comparative Example 6, the bending and stretching treatment was performed in the same manner as in Example 1. Other conditions are the same as in the first embodiment. In this case, good results were obtained for the metallic luster, but the electromagnetic wave permeability was insufficient.
  • Example 7 Unlike Example 1, only the crack layer is used. Unlike Example 1, 50 nm chromium was used as the crack layer. Further, for Comparative Example 7, the bending and stretching treatment was not performed, and for Comparative Example 8, the bending and stretching treatment was performed in the same manner as in Example 1. Other conditions are the same as in the first embodiment. In this case, good results were obtained with respect to electromagnetic wave transmission, but the appearance became cloudy and the visible light reflectance was remarkably reduced, so that the metallic luster was insufficient.
  • Examples 5 to 9 and Comparative Example 9> Various metal films were evaluated for visible light reflectance, radio wave transmission attenuation, polarization degree, and crack ratio.
  • “Visible light reflectance” is the same as “visible light reflectance” in the first embodiment, and “radiowave transmission attenuation” is substantially equal to “microwave electric field transmission attenuation” in the first embodiment. It is equivalent and is an evaluation relating to electromagnetic wave transmission.
  • “Polarization degree” is an evaluation relating to polarization characteristics obtained by aligning the direction of linear cracks in a predetermined direction. A large degree of polarization means that the directivity of the electromagnetic wave is high. From the viewpoint of this directivity, the larger the degree of polarization, the better. Since the “crack ratio” correlates with the degree of polarization, this was also evaluated. Details of the evaluation method are as follows.
  • Radio wave transmission attenuation (transmittance) Radio wave transmission attenuation at 76.5 GHz was evaluated using a transmission / reflection attenuation measurement system LAF-26.5A manufactured by Keycom.
  • the radio wave transmission attenuation amount corresponds to the “microwave electric field transmission attenuation amount” in Example 1 and the like, but here, the radio wave transmission attenuation amounts of the “transmission axis” and the “cutoff axis” were separately obtained.
  • the “microwave electric field transmission attenuation” in the first embodiment or the like substantially corresponds to the radio wave transmission attenuation of the “transmission axis”.
  • the radio wave transmission attenuation of the “transmission axis” is perpendicular to the direction of the “linear crack to be used as a reference” in the “polarization direction” of the electric field component of the input / output antenna in the measurement system.
  • the radio wave transmission attenuation amount of the “blocking axis” means the radio wave transmission attenuation amount obtained when arranged in parallel.
  • the “polarization direction” is an ellipse
  • the major axis is used as the polarization direction.
  • the “linear crack to be used as a reference” is assumed to be along the “reference straight line” in the following “(4) Crack ratio”.
  • the radio wave transmission attenuation amount of the “transmission axis” needs to be ⁇ 10 dB or less, and is preferably ⁇ 5 dB or less, similarly to the “microwave electric field transmission attenuation amount” in Example 1 and the like. More preferably, it is 1 dB or less.
  • the degree of polarization is the transmittance (%) for the radio transmission attenuation of the “transmission axis” (herein referred to as “T1”) and the transmissivity for the radio transmission atomic quantity of the “blocking axis”. (%) (Herein referred to as “T2”), that is, a value calculated by T1 / T2.
  • the degree of polarization is appropriately adjusted according to the purpose of use, but is generally preferably 1000 or more, more preferably 2000 or more, and still more preferably 4000 or more.
  • FIG. 5 is an image obtained by binarizing an optical microscope image of the surface of a metal film of Example 9 described later. As in FIG. 5, the image size is set to 400 ⁇ m ⁇ .
  • the crack shown in FIG. 5 can be calculated by the same method. First, for the image in FIG. 7, a first straight line having a predetermined angle and a second straight line rotated by 2 ° in a predetermined direction around an arbitrary point passing through the first straight line.
  • a plurality of straight lines are drawn from the first straight line in increments of 0.1 °, and each of the plurality of straight lines and straight lines parallel to the plurality of straight lines (however, the second straight line and the second straight line)
  • the sum of the lengths of the linear cracks that overlap with the straight line (not including straight lines parallel to the straight line) is obtained (hereinafter referred to as “total length”).
  • the second straight line described above is used as the first straight line, and a straight line that is further rotated by 2 ° in a predetermined direction around the arbitrary point described above is used as the second straight line.
  • Ask. The same processing is repeated a plurality of times, and a total length of 360 °, that is, a total of 90 pieces is obtained.
  • total length of these 90 pieces is totaled to obtain the total length of linear cracks (hereinafter referred to as “total length”).
  • total length an area having the largest “total length” (hereinafter referred to as “maximum area”) is extracted.
  • maximum area an area having the largest “total length”
  • reference straight line located between the first straight line and the second straight line defining the maximum area.
  • Total length A total value of the total length in the region rotated by 2 ° in the direction and the total length in the region further rotated by 2 ° (hereinafter referred to as “total length”) is obtained.
  • “Crack ratio” is the ratio of “total length” to “total length”.
  • Crack ratio (%) total length ( ⁇ m) / total length ( ⁇ m) It is.
  • the crack ratio correlates with the degree of polarization and is preferably as large as possible from the viewpoint of directivity, preferably 80% or more and 100% or less, more preferably 90% or more and 100% or less, and still more preferably 95%. It is 100% or less, more preferably 97% or more and 100% or less.
  • the degree of polarization and the crack ratio increase, the electromagnetic wave to be blocked increases, and as a result, the electromagnetic wave permeability deteriorates.
  • the degree of polarization and the electromagnetic wave transparency are in a trade-off relationship, and from the viewpoint of electromagnetic wave transparency, the degree of polarization and the crack ratio are preferably small to some extent.
  • the crack ratio is preferably 65% or less, more preferably 62% or less.
  • the lower limit is not particularly limited, but is preferably 30% or more, more preferably 40% or more, and still more preferably 50% or more in consideration of directivity.
  • the evaluation results are shown in Table 3 below.
  • the items of “metal layer”, “crack layer”, and “visible light reflectance” are as described with reference to Table 2.
  • the number of bendings and the diameter of the metal rod around which the base film was wound were changed.
  • the value is not described in the column of “Mohs hardness” simply because it is difficult to measure an accurate value of the Mohs hardness and does not mean that the Mohs hardness is small.
  • the Mohs hardness of the material used for the crack layer is at least 4 or more, and is sufficiently larger than the Mohs hardness of the material used for the metal layer.
  • the value of the degree of polarization in the table below is a value calculated based on actual data, and is not exactly the same as the value of T1 / T2 in the table because of significant figures.
  • Example 5 First, a multilayer film having the same layer structure as in Example 2 was produced by the same method. Next, in the same manner as in Example 2, bending stretching was performed using a metal rod having a diameter of 6 mm. However, in this bending and stretching process, unlike Example 2, the film was transported twice back and forth along the longitudinal direction “ ⁇ ”. As a result, an optical microscope image similar to that shown in FIG. 4 was obtained, and a binarized image similar to that shown in FIG. 5 was obtained.
  • the total length of linear cracks included in the plane corresponding to the unit area (400 ⁇ m ⁇ ) shown in FIG. 5 is 4317 ⁇ m, the total length is 4167 ⁇ m, and the crack ratio is as high as 97%. It was. In addition, a good value of 2599 was obtained for the degree of polarization correlated with the crack ratio, and it had high polarization characteristics.
  • Example 6 Unlike Example 5, 50 nm STO was used for the lower crack layer. Further, in the bending and stretching treatment, unlike Example 5, the film was reciprocally conveyed “60 times” in the longitudinal direction “ ⁇ ”. Other conditions are the same as in the fifth embodiment.
  • the total length of linear cracks included in the plane corresponding to the unit area (400 ⁇ m ⁇ ) shown in FIG. 5 is 4423 ⁇ m, the total length is 4326 ⁇ m, and the crack ratio is as high as 98%. It was. In addition, a large value of 4822 was obtained for the degree of polarization correlating with the crack ratio, and high polarization characteristics were obtained. Furthermore, good results were also obtained for the visible light reflectance and the radio wave transmission attenuation.
  • Example 7 Unlike Example 5, 50 nm AZO was used for the lower crack layer. In the bending and stretching treatment, unlike Example 5, the film was reciprocally conveyed “60 times” in the longitudinal direction “ ⁇ ”. Other conditions are the same as in the fifth embodiment.
  • the total length of linear cracks included in the plane corresponding to the unit area (400 ⁇ m ⁇ ) shown in FIG. 5 is 3861 ⁇ m, the total length is 3762 ⁇ m, and the crack ratio is as high as 97%. It was. In addition, a large value of 3229 was obtained for the degree of polarization correlated with the crack ratio, and it had high polarization characteristics. Furthermore, good results were also obtained for the visible light reflectance and the radio wave transmission attenuation.
  • Example 8 Unlike Example 5, 50 nm of copper (Cu) was used for the upper metal layer, and 50 nm of ITO was used for the lower crack layer. As in Example 1, ITO contains 10 wt% SnO2 with respect to In2O3. In the bending and stretching treatment, unlike Example 5, the film was reciprocally conveyed “60 times” in the longitudinal direction “ ⁇ ”. Other conditions are the same as in the fifth embodiment.
  • the total length of the linear cracks included in the plane corresponding to the unit area (400 ⁇ m ⁇ ) shown in FIG. 5 is 5582 ⁇ m, the total length is 5572 ⁇ m, and the crack ratio is as high as 99%. It was. Further, the degree of polarization correlated with the crack ratio was 10872, which was a very large value, and the polarization characteristic was very good. Although good results were obtained for the radio wave transmission attenuation, the visible light reflectance was inferior to that of Example 5 or the like.
  • Example 9 Unlike Example 5, a crack layer was disposed in the upper layer, and a metal layer was disposed in the lower layer. As in the case of Example 5, aluminum (Al) was used for the metal layer, but its thickness was 20 nm. On the other hand, unlike Example 5, 45 nm chromium (Cr) was used for the crack layer. In the bending and stretching process, the reciprocating conveyance process was performed twice in the same manner as in Example 1. Other conditions are the same as in the first embodiment. In addition, FIG. 7 mentioned above has shown the image which binarized the optical microscope image of the metal film surface obtained in this Example.
  • the total length of the linear cracks included in the plane corresponding to the unit area (400 ⁇ m ⁇ ) shown in FIG. 5 was 9762 ⁇ m, the total length was 6079 ⁇ m, and the crack ratio was 62%.
  • the polarization degree correlated with the crack ratio was a small value of 30.
  • the crack ratio and the degree of polarization were inferior to those of Example 5 and the like.
  • the electromagnetic wave transmittance was -0.6 dB, which was better than that of Example 5 and the like. Results were obtained. Furthermore, good results were also obtained for the visible light reflectance and the radio wave transmission attenuation.
  • Example 9 Unlike Example 5, the bending and stretching treatment was not performed. Other conditions are the same as in the fifth embodiment. In this case, good results were obtained for the metallic luster, but the electromagnetic wave permeability was insufficient.
  • the metal film and metal member according to the present invention can be suitably used for decorating, for example, a cover member of a millimeter wave radar mounted on a front part of an automobile such as a front grille, an emblem, and a bumper. Moreover, it can also be used as a radar cover such as a radome or a polarized antenna such as a base station.
  • a radar cover such as a radome or a polarized antenna such as a base station.
  • the present invention is not limited to this. For example, it can be used for various applications that require both design and electromagnetic wave permeability, such as mobile phones, smartphones, tablet PCs, notebook PCs, and refrigerators. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Computer Security & Cryptography (AREA)
  • Laminated Bodies (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

製造コストが安価であり、且つ、製造が容易である、金属光沢と電磁波透過性の双方を兼ね備えた電磁波透過性金属部材と、これを用いた物品、及び、電磁波透過性金属フィルムの製造方法を提供する。 金属層とクラック層とを含み、金属層とクラック層は、それぞれの各面内に、互いに実質的に平行な複数の直線状クラックを有する。金属層の直線状クラックとクラック層の直線状クラックは、それぞれの層を厚み方向に貫通し、且つ、厚み方向において連続している。

Description

電磁波透過性金属部材、これを用いた物品、及び、電磁波透過性金属フィルムの製造方法
 本発明は、金属光沢を有し且つ電磁波透過性を有する電磁波透過性金属部材と、これを用いた物品、及び、電磁波透過性金属フィルムの製造方法に関する。
 例えば、フロントグリル、エンブレム、バンパーといった自動車のフロント部分に搭載されるミリ波レーダーのカバー部材を装飾するために、金属光沢と電磁波透過性の双方を兼ね備えた金属部材が求められている。
 ミリ波レーダーは、ミリ波帯の電磁波(周波数約77GHz、波長約4mm)を自動車の前方に送信し、ターゲットからの反射波を受信して、反射波を測定、分析することで、ターゲットとの距離や、ターゲットの方向、サイズを計測することができるものである。計測結果は、車間計測、速度自動調整、ブレーキ自動調整などに利用することができる。ミリ波レーダーが配置される自動車のフロント部分は、いわば自動車の顔であり、ユーザに大きなインパクトを与える部分であるから、金属光沢調のフロント装飾で高級感を演出することが好ましい。しかしながら、自動車のフロント部分に金属を使用した場合には、ミリ波レーダーによる電磁波の送受信が実質的に不可能、或いは、妨害されてしまう。したがって、ミリ波レーダーの働きを妨げることなく、自動車の意匠性を損なわせないために、金属光沢と電磁波透過性の双方を兼ね備えた金属部材が必要とされている。有効な解決策の一つとして、金属層を不連続とし、この不連続部分を利用して電磁波透過性を付与する金属部材が幾つか提案されている。
 例えば、特許文献1には、真空蒸着法により基材の表面にインジウムをアイランド状に成膜した金属被膜が提案されている。アイランド状に成膜されたインジウム被膜は、金属光沢を有するとともに、アイランド間の隙間により電磁波を透過させることができる。
 一方、特許文献2には、加熱処理を利用した金属膜加飾シートの製造方法が提案されている。この金属膜加飾シートは、基体シート上にクラック誘発層と該クラック誘発層に接して形成された特定の金属を材料とした金属膜層とを形成した母材シートを作成し、この母材シートに所定の張力を負荷しつつ高温(120℃-200℃)にすることによって糸状面構造体のクラックを形成したものである。
 特許文献3も、特許文献2と同様に、加熱処理を利用するものである。ここでは、樹脂基材上に成膜したアルミニウム(Al)膜と該アルミニウム膜上に成膜したクロム膜とを、樹脂基材と共に高温(120℃)で加熱することにより、熱応力を利用してアルミニウム膜とクロム膜とを不連続とする。
 特許文献4も、加熱処理を利用するものであり、ここでは、無電解めっき法により基材の表面に金属光沢を有する導通膜を形成した後、この導通膜をアフターベーキングすることによって導通膜に電磁波を透過させるためのアイランド状の微細クラックを形成するものとされている。
特開2000-159039号公報 特開2010-5999号公報 特開2009-286082号公報 特開2011-163903号公報
 特許文献1の技術によれば、実用に耐え得るレベルの電磁波透過性を有する金属部材が得られるが、多くの文献(例えば、特許文献4)が指摘しているように、インジウムは高価であるため、この方式では、製造コストが高くなってしまう。
 これに対し、特許文献2乃至4は、インジウムを使用しない技術であるため材料コストの問題はないものの、加熱処理を行うために相当の設備投資が必要となり、また、材料費は安く済むものの、加熱原料が必要となるため製造コストは高くなる。更に、加熱を行う場合には加熱温度や加熱時間の細かな管理が必要であって、管理がうまく成されない場合にはクラックの制御が不安定となり、この結果、電磁波透過特性にばらつきが出たり、また、金属光沢部材が白濁してしまうといった問題が生じてしまう。更に、クラックを形成する際に加熱工程を伴うことから金属層と基材との線膨張係数の違いから部材がカールしてしまい、金属光沢部材の外観が悪化するといった新たな問題も生じ得る(例えば、特許文献4の0052段落)。
 本願発明は、これら従来技術における問題点を解決するためになされたものであり、製造コストが安価であり、且つ、製造が容易である、金属光沢と電磁波透過性の双方を兼ね備えた電磁波透過性金属部材と、これを用いた物品、及び、電磁波透過性金属フィルムの製造方法を提供することを目的とする。
 上記の課題を解決するため、本発明の一態様による電磁波透過性金属部材は、金属層とクラック層とを含み、前記金属層と前記クラック層は、それぞれの各面内に、互いに実質的に平行な複数の直線状クラックを有し、前記金属層の直線状クラックと前記クラック層の直線状クラックは、それぞれの層を厚み方向に貫通し、且つ、厚み方向において連続していることを特徴としている。
 尚、上記「直線状クラック」における「直線状」の語は、従来技術における隙間やクラック、例えば、特許文献1に記載されているようなアイランド状の隙間と区別するために付した語であって、勿論、完全な直線であることを意味しない。「直線状クラック」には、請求項で規定した方法、即ち、「長尺の基材フィルム上に金属層とクラック層とを積層して成る多層フィルムを多層フィルムの長尺方向と交差する方向に沿って基材フィルム側に折り返した状態で多層フィルムを長尺方向に屈曲延伸すること」によって形成され得る程度の直線性を有した全てのクラックが含まれる。また、上記「実質的に平行」の語も、勿論、完全に平行であることを意味する語ではなく、本発明の適用対象であるミリ波レーダーや、携帯電話、スマートフォン、タブレット型PC、ノート型PC、冷蔵庫等に使用可能な程度に平行であるものを含む。
 上記態様の電磁波透過性金属部材において、前記金属層又は前記クラック層の少なくとも一方の面内に含まれる相隣り合う前記直線状クラックが互いに成す角度が、±10°以下であるのが好ましい。
 また、上記態様の電磁波透過性金属部材において、前記金属層又は前記クラック層の400μm□(一辺400μmの正方形(以下、同様))の面内に含まれる複数の前記直線状クラックの中から任意に選択した2本の直線状クラックが互いに成す角度のうち40%以上が±10°以下であるのが好ましい。
 更に、上記態様の電磁波透過性金属部材において、前記金属層又は前記クラック層の400μm□の面内に含まれる複数の前記直線状クラックの中から任意に選択した2本の直線状クラックに関して、前記選択された2本の直線状クラックが互いに成す角度のうち40%以上が±10°以下であり、且つ、40%以上が80°以上且つ100°以下であるのが好ましい。
 また、上記態様の電磁波透過性金属部材において、前記金属層又は前記クラック層の400μm□の面内に含まれる複数の前記直線状クラックのうち、80%以上が基準直線に対して±5°以下の範囲にあってもよい。
 「基準直線」とは、任意に定めた所定の角度を有する第一の直線と、この第一の直線を通る任意の点を中心に所定の方向に所定の角度だけ回転させた第二の直線と、の間の領域において、第一の直線から単位角刻みに複数の直線を引き、これら複数の直線それぞれと及びこれら複数の直線それぞれと並行な直線(但し、第二の直線及びこの第二直線と並行な直線)と重なり合う直線状クラックの長さの合計を、上記任意の点を中心として所定の角度毎に360°方向の全てについて求め、求めた合計のうち、最も大きな値を有する領域を規定している第一の直線と第二の直線の中間に位置する直線を意味する。
 基準直線に対して±5°以下の範囲にある直線状クラックの割合が大きい場合には、直線状クラックが、所定の方向に揃っていることを意味し、従って、良好な偏波特性が得られると考えてよい。
 上記態様の電磁波透過性金属部材において、基材フィルム上に金属層とクラック層とを積層して成る多層フィルムを、前記基材フィルム側に折り返した状態で一方向にのみ屈曲延伸することにより、前記金属層と前記クラック層に直線状クラックが形成されてもよい。ここでいう「一方向」は、屈曲延伸される方向が一方向のみに沿っていうことを意味し、往復搬送処理も含まれる。
 更に、上記態様の電磁波透過性金属部材において、前記金属層又は前記クラック層の400μm□の面内に含まれる複数の前記直線状クラックのうち、基準直線に対して±5°以下の範囲にあるものが、70%以下であってもよい。
 基準直線に対して所定範囲の角度を有する直線と重なり合う直線状クラックの割合が小さい場合には、直線状クラックが、所定の方向に揃っていないことを意味し、従って、偏波特性は悪化するものの、その一方で、透過性は良好となる。
 上記態様の電磁波透過性金属部材において、基材フィルム上に金属層とクラック層とを積層して成る多層フィルムを、前記基材フィルム側に折り返した状態で複数の方向に屈曲延伸することにより、前記金属層と前記クラック層に直線状クラックが形成されてもよい。ここでいう「複数の方向」とは、屈曲延伸される方向が複数の方向であることを意味し、各方向において往復搬送されてもよい。
 また、上記態様の電磁波透過性金属部材において、前記直線状クラックの長さが200μm以上であるのが好ましい。
 また、上記態様の電磁波透過性金属部材において、前記金属層と前記クラック層が所定の曲率で屈曲されているときに、屈曲側から遠い側に配置された層に生じる前記直線状クラックの幅が、0.1nm~100nm以下であるのが好ましい。
 更に、上記態様の電磁波透過性金属部材において、前記金属層の厚さと前記クラック層の厚さの比が0.1~20以下、前記金属層の厚さが、10nm~1000nm、前記クラック層の厚さが、5nm~5000nmであるのが好ましい。
 また、上記態様の電磁波透過性金属部材において、前記クラック層が、モース硬度が4以上の金属、該金属を主成分とする合金、およびセラミックスから選択された少なくとも一種を含む物質から成るのが好ましい。
 上記態様の電磁波透過性金属部材において、前記セラミックスは、金属、シリコン、及びホウ素から選択された少なくとも一種を含む元素の酸化物、窒化物、炭化物、酸窒化物のいずれかを含有する物質であるのが好ましい。
 また、上記態様の電磁波透過性金属部材において、前記金属層のモース硬度が1以上4未満であり、また、前記金属層が、Al、Cu、Ag、Au、Znから選択された少なくとも一種の金属、および該金属を主成分とする合金のいずれかを含むことが好ましい。
 本発明の一態様によれば、上記態様の電磁波透過性金属部材と基材フィルムとを含む電磁波透過性金属フィルム、或いは、電磁波透過性金属部材と樹脂成形物基材とを含む電磁波透過性金属樹脂部材を提供することもできる。
 上記の課題を解決するため、本発明の一態様による電磁波透過性金属フィルムの製造方法は、長尺の基材フィルム上に金属層とクラック層とを積層して成る多層フィルムを該多層フィルムの長尺方向と交差する方向に沿って前記基材フィルム側に折り返した状態で該多層フィルムを前記長尺方向に屈曲延伸することにより、前記金属層と前記クラック層に直線状クラックを形成することを特徴としている。
 製造コストが安価であり、且つ、製造が容易である、金属光沢と電磁波透過性を兼ね備えた電磁波透過性金属部材と、これを用いた物品、及び、電磁波透過性金属フィルムの製造方法が提供される。
本発明の金属フィルムの概略断面図である。 金属フィルムの製造工程を概略的に示した図である。 製造に用いることができる装置構成の一部を概略的に示した図である。 金属フィルムに生じた直線状クラックの光学顕微鏡像である。 図4と同じ領域の画像を二値化処理した画像である。 金属フィルムの断面の拡大画像である。 本発明の他の例による金属フィルムの二値化処理画像である。
 以下、添付図面を参照しつつ、本発明の一つの好適な実施形態について説明する。以下においては、説明の便宜のために本発明の好適な実施形態のみを示すが、勿論、これによって本発明を限定しようとするものではない。
<1.基本構成>
 図1に、本発明の一実施形態による電磁波透過性金属部材(以下、「金属部材」という。)1と、該金属部材1を用いた本発明の一実施形態による電磁波透過性金属フィルム(以下、「金属フィルム」という。)3、3Aの概略断面図を示す。
 金属部材1は、少なくとも金属層11とクラック層12を含む。金属フィルム3、3Aは、これら金属層11とクラック層12に加え、更に、少なくとも基材フィルム10を含む。図1の(a)に示した金属フィルム3は、基材フィルム10上にクラック層12と金属層11をこの順に積層したもの、一方、図1の(b)に示した金属フィルム3Aは、基材フィルム10上に金属層11とクラック層12とをこの順に積層したものである。本願の金属フィルム3、3’には、図1の(a)、(b)に示した双方の型が含まれる。
 金属部材1又は金属フィルム3、3’では、金属層11とクラック層12のそれぞれに、直線状のクラック11’、12’が形成されている。これら直線状クラック11’、12’は、それぞれの層11、12を厚み方向(図示矢印「α」方向)に貫通していると共に、厚み方向「α」において連続して1つの直線状クラック15を成している。このような直線状クラック15を設けることにより、電磁波の透過を妨害する金属層11を設けているにもかかわらず、金属部材1は、電磁波を透過させることができる。後述の説明から明らかなように、基材フィルム10は、電磁波の透過を妨げることはない。
<2.金属部材及び金属フィルムの製造>
 図2、図3を参照して、金属部材1及び金属フィルム3、3’の製造方法の一例を説明する。図2は、図1と同様の断面図を用いて製造工程を概略的に示したもの、また、図3は、製造に用いることができる装置の構成の一部を概略的に示したものである。尚、金属フィルムに関して、ここでは図1の(a)に示した金属フィルム3を用いて説明を行うが、図1の(b)に示した金属フィルム3Aについても同じ方法で製造することができる。
(1) 先ず、図2の(a)に示すように、長尺の基材フィルム10上に金属層11とクラック層12が積層された多層フィルム20を準備する。クラック層12は、真空蒸着、スパッタリング、イオンプレーティング等によって、金属層11は、これらに加え、更に、メッキによって形成する。但し、大面積でも厚みを厳密に制御できる点からスパッタリング法が好ましい。金属層11とクラック層12の間、或いは、クラック層12と基材フィルム10の間には、他の層(図示されていない)を介在させずに直接接触させるのが好ましいが、必ずしも直接接触させる必要はなく、各層は上に説明した直線状クラック15を形成することができる態様で積層されていれば十分である。
(2) 次いで、図3に示す装置構成を用いて、多層フィルム20を屈曲延伸させる。この装置構成は主として円柱(円筒でもよい)部材30を含む。円柱部材30は、例えば、ドラムやロッドであってもよく、それらの材質は、木材、プラスチック、金属のいずれであってもよい。但し、屈曲延伸時には多層フィルム20に比較的大きな張力を加える必要があるため、他の材質に比べて剛性が大きい金属を用いるのが好ましい。円柱部材30は、多層フィルム20の長尺方向(図示矢印「β」方向)と交差する方向「γ」に設置される。長尺方向「β」と交差方向「γ」が成す角度は、90°に設定するのが好ましい。尚、90°からの誤差の範囲は±5°以内とするのが好ましい。このような範囲であれば、効率的に直線状クラック11’、12’を発生させることができるからである。多層フィルム20は、円柱部材30の周面に沿って所定の曲率を有するRを付けた状態で、換言すれば、円柱部材30を利用して基材フィルム10側に折り返して屈曲させた状態で、張力をかけながら長尺方向「β」に沿って複数回搬送させる。このとき多層フィルム20にかける張力は30N~200Nが好ましい。このような大きさとすることにより、金属層11に直線状クラック11’を誘発する張力を維持しつつ、基材フィルム10の破断を防ぐことができる。また、多層フィルム20の移動速度は1cm/秒以上が好ましい。このような速度とすることにより、効率的に直線状クラック11’、12’を発生させることができる。
 この屈曲延伸処理により、図2の(b)に示すように、屈曲側に近い側、図2の金属フィルム3の例で言えば、クラック層12には、クラック層12を貫通した状態で、幅「A」の直線状クラック12’が交差方向「γ」に沿って生じ、一方、屈曲側から遠い側、即ち、金属層11には、クラック層12における直線状クラック12’の発生時に金属層11に生じる応力によって、金属層11を貫通した状態で、幅「B」の直線状クラック11’が交差方向「γ」に沿って誘発される。これら直線状クラック12’と直線状クラック11’は、それらの厚み方向「α」において連続しており、この結果、金属層11を設けているにも拘わらず、電磁波を透過させることが可能となる。尚、直線状クラック12’、11’の幅「A」、「B」の大きさの差は極僅かであって、電磁波透過性の観点からは無視できる程度のものである。また、これらの幅「A」、「B」の大きさは、大きなものでもせいぜい100nm程であって、金属フィルム3の外観に影響を与えるものではない。
(3) 図2の(b)に示す状態で使用することもできるが、図2の(c)に示すように、金属層11やクラック層12を平坦な状態に戻してもよい。平坦な状態に戻した場合、直線状クラック15の幅「C」は、屈曲状態における幅「A」や「B」よりも若干小さくなる。しかしながら、この場合であっても、直線状クラック15は、依然として、金属層11やクラック層12を貫通し、また、それらの層の厚み方向において連続した状態にあり、また、直線状クラックを一旦発生させた後は、これが完全に埋まることはなく、従って、図2の(c)の状態で使用しても、電磁波透過性に大きな影響を与えることはない。
 金属フィルムの電磁波透過性は、直線状クラックの幅「A」ないし「C」や、複数の相隣り合う直線状クラックのピッチ幅(後述する図4によく示されている)によって微調整することができる。これらの幅やピッチは、円柱部材30の曲率を調整することによって簡単に調整することができる。例えば、図3に示した円柱部材30よりも大きな曲率を有する円柱部材を使用することによって、幅「A」ないし「C」をより大きく設定し、また、相隣り合う直線状クラックのピッチ幅を小さく設定することができる。また、直線状クラックの方向は、張力をかける方向、即ち、長尺方向「β」と交差方向「γ」が成す角度を調整することによって簡単に調整することもできる。
 金属部材1は、金属フィルム3の製造時に形成された金属部材1を転写させることによって得ることができる。更に、この金属部材1を樹脂基材に転写すれば、金属部材1と樹脂基材(図示されていない)を含む電磁波透過性金属樹脂部材を製造することもできる。
<3.基材フィルム>
 基材フィルム10には、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート、ポリアミド、ポリ塩化ビニル、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、ポリスチレン、ポリプロピレン(PP)、ポリエチレン、ポリシクロオレフィン、ポリウレタン、アクリル(PMMA)、ABSなどの単独重合体や共重合体からなる透明フィルムを用いることができる。これらの部材は、張力をかけた屈曲延伸に適しており、また、これらの部材によれば、金属光沢や電磁波透過性に影響を与えることもない。但し、金属層11やクラック層12を形成する観点から、蒸着やスパッタ等の高温に耐え得るものであることが好ましく、従って、上記材料の中でも、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、アクリル、ポリカーボネート、シクロオレフィンポリマー、ABS、ポリプロピレン、ポリウレタンが好ましい。なかでも、耐熱性とコストとのバランスがよいことからポリエチレンテレフタレートが好ましい。
 尚、基材フィルム10は、単層フィルムでもよいし積層フィルムでもよい。厚さは、例えば、6μm~250μm程度が好ましい。金属層11やクラック層12との付着力を強くするために、プラズマ処理などが施されてもよい。
<4.クラック層>
 クラック層12は、直線状クラック12’の発生時に、これと接した又はこれと隣接して配置された金属層11に生じる応力を利用して、該金属層11に直線状クラック12’と連続した直線状クラック11’を誘発させるためのものであるから、直線状クラック12’を生じやすい物質であるとともに、金属層11に十分な応力を与えることができるものであることが必要である。
 このような理由から、クラック層12の厚さは、通常5nm~5000nmであり、10~1000nmが好ましく、20~200nmがより好ましい。
 また、所定の硬さを有する物質は、適度に薄いものであれば、破壊強さが比較的小さく割れ易いと考えられることから、クラック層12には、例えば、モース硬度が4以上の金属、例えば、Cr、Ti、W、V、Nb、Mo、Niから選択された少なくとも一種を含む金属、又は、該金属を主成分とする合金が適している。同様の理由から、脆性が非常に高いセラミックスも、クラック層12に適したものといえる。セラミックスは、金属、およびシリコン、ホウ素から選択された少なくとも一種を含む元素の酸化物、窒化物、炭化物、酸窒化物のいずれかを含有していてもよい。ここで言う酸化物には、例えば、Al23、ITO(スズドープ酸化インジウム)、ZnO、TiO2、Nb25、SiO2等が含まれ、窒化物には、例えば、AlN、TiN、SiN、BN等が含まれ、炭化物には、例えばTiC、SiC等が含まれる。尚、ITOは、高価なInを含有する物質であるが、Inと他の物質との混合物であることから、Inそのものを使用する場合よりも製造コストは安くなる。
 以下の表1に、主な金属のモース硬度を示す。
Figure JPOXMLDOC01-appb-T000001
<5.金属層>
 金属層11は、十分な金属光沢を発揮し得ることは勿論、直線状クラック12’に誘発されて直線状クラック11’を生じ得るものであることが必要である。一方で、クラックが生じた際には、散乱や白濁など外観を阻害しない程度のクラック幅が必要であり、上記クラック層に含まれる金属よりも硬さが小さい物質が望ましい。
 このような理由から、金属層11としては、モース硬度が1以上4未満の金属が適しており、例えば、Al、Cu、Ag、Au、Znから選択された少なくとも一種の金属、および該金属を主成分とする合金のいずれかを含むことが好ましい。特に、物質の安定性や価格等の理由からAl、Cuおよびそれらの合金が好ましい。
 金属層11の厚さは、直線状クラック11’が誘発され易くなるように、通常10nm~1000nmであり、20~200nmが好ましく、30~100nmがより好ましい。この厚さは、均一な膜を形成するのにも適しており、また、最終製品である樹脂成形品の見栄えも良い。また、上記の金属層11やクラック層12の厚さや脆性等を考慮して、金属層の厚さとクラック層の厚さの比、即ち、金属層の厚さ/クラック層の厚さは、0.1~20の範囲が好ましく、0.2~10の範囲がより好ましい。更に、同様の理由から、金属層11のモース硬度は、クラック層12のモース硬度よりも小さいことが好ましく、通常1~4未満であり、2~3.5が好ましい。
<6.直線状クラック>
 図4に、金属フィルム3に生じた直線状クラックの光学顕微鏡像を示す。この図は、図1の(a)に示した金属フィルム3に対応する画像であるが、図1の(b)に示した金属フィルム3Aについても同様の画像が得られると考えてよい。また、この画像は、金属フィルム3を金属ロッドに巻き付けた状態(図2の(b)に相当する状態)で撮影されたものであるため、これらの直線状クラック11’の幅(図2の(b)における幅「B」に相当)は、金属層11やクラック層12を平坦な状態に戻した状態(図2の(c)に相当する状態)における直線状クラックの幅(図2の(c)における幅「C」に相当)よりも若干大きく強調されたものとなっている。また、図4は、実際上は、金属層11の直線状クラック11’だけを示すものであるが、直線状クラック11’と直線状クラック12’は厚み方向において連続していることから、金属層11の直線状クラック11’とクラック層12の直線状クラック12’の双方を示していると見ることもできる。
 図4から明らかなように、金属層11やクラック層12は、それぞれの各面内に、互いに実質的に平行な複数の直線状クラック(図2の(b)、(c)における直線状クラック11’、12’、15に相当)を有する。例えば、ミリ波レーダーを用いて送受信される電磁波は指向性を有することから、このような直線状クラックは、ミリ波レーダーのような装置の使用に適したものということができる。ここでいう「実質的に平行」には、完全には平行でないが、指向性を有した電磁波の使用に使用可能な程度に平行のものも勿論含まれる。
 直線状クラックは一方向だけでなく複数の方向に形成されてもよい。例えば、フィルムの長尺方向「β」(図3参照)でフィルムの屈曲延伸を行って図4に示す直線状クラックを形成した後に、フィルムの角度を90°回転させ、「β」と直行する方向「γ」にて屈曲延伸を行うことで、直線状クラックが互いに交差した格子状の金属フィルムを得ることができる。この場合、電磁波の指向性に関係なく、あらゆる方位に高い電磁波透過性を有する電磁波透過性金属部材を得ることができる。
 これらの直線状クラック11’、12’、15は微小ではあっても、シート抵抗を大きく増大させる。シート抵抗が増大することにより電磁波透過減衰率は小さくなり、電磁波透過減衰率が小さくなることにより金属フィルム3、3’に十分な電磁波透過性が付与される。金属フィルム3、3’のシート抵抗は、通常100Ω/□以上であり、好ましくは200Ω/□以上、より好ましくは400Ω/□以上である。また、本発明に係る金属フィルム3、3’の電磁波透過減衰率は、通常-10dB以下であり、好ましくは-5dB以下、より好ましくは-1dB以下である。
 金属フィルム3、3’の、屈曲時における直線状クラックの幅、より正確には、屈曲側から遠い側に配置された層、例えば、図4の例では金属層11の、直線状クラック11’(12’)の幅は、金属フィルム3を直径6mmの金属ロッドの周囲に基材フィルム側に折り返した状態で巻き付けた状態において、通常0.1nm~100nmであり、好ましくは0.2nm~60nm、より好ましくは0.3nm~30nmである。尚、屈曲時における直線状クラック11’(12’)の幅は、金属層11を平坦な状態に戻した状態における直線状クラック15の幅よりも若干大きく強調されたものとなっていることから、いずれにせよ、直線状クラックの幅は、上記のものと同じか又はそれより小さい値となる。
 また、金属フィルム3、3’において、面内に含まれる相隣り合う直線状クラック11’、12’、15が互いに成す角度は、通常±10°以下であり、好ましくは±5°以下である。これらの角度差は、例えば、ミリ波レーダーについては実質的に平行な角度であるということができる。
 直線状クラックを略矩形の格子状とした場合、任意の400μm□の面内に含まれる複数の直線状クラック11’、12’、15の中から任意に選択した2本の直線状クラックが互いに成す角度のうちの通常40%以上が±10°以下であり、好ましくは±5°以下であり、より好ましくは±2°以下である。同様に直線状クラックを略矩形の格子状とした場合、400μm□の面内に含まれる複数の直線状クラック11’、12’、15の中から任意に選択した2本の直線状クラックが互いに成す角度のうちの通常40%以上が±10°以下(好ましくは±5°以下であり、より好ましくは±2°以下)であり、且つ、40%以上は80°以上(好ましくは85°以下であり、より好ましくは±87°以上)且つ100°以下(好ましくは105°以下であり、より好ましくは102°以下)である。このように、直線状クラックのバラツキを抑えることにより、性能を向上させることができる。
 金属フィルム3、3’において、直線状クラック11’、12’、15の長さは、通常200μm以上、好ましくは500μm以上である。例えば、ミリ波レーダーで送受信される信号の波長は4mm程度であることから、この長さは、ミリ波レーダーの使用には十分であると考えられる。
<7.実施例1乃至4、及び、比較例1乃至8>
 以下、実施例及び比較例を挙げて、本発明をより具体的に説明する。金属フィルムに関して各種試料を準備し、可視光反射率、表面抵抗、及びマイクロ波電界透過減衰量を評価した。可視光反射率は、金属光沢に関する評価、表面抵抗とマイクロ波電界透過減衰量は、電磁波透過性に関する評価である。可視光反射率と表面抵抗の値は大きい方が好ましく、マイクロ波電界透過減衰量の値は小さい方が好ましい。
 評価方法の詳細は以下のとおりである。
(1)可視光反射率
 日立ハイテクノロジーズ社製分光光度計U4100を用い、550nmの測定波長における反射率を測定した。基準として、Al蒸着ミラーの反射率を反射率100%とした。
 十分な金属光沢を有するため、可視光反射率は、40%以上が必要であり、60%以上であるのが好ましく、更に好ましくは70%以上である。尚、可視光反射率が、40%以下であると、金属光沢が著しく低下し、外観に優れないという問題がある。
(2)表面抵抗
 ナプソン社製非接触式抵抗測定装置NC-80MAPを用い、JIS-Z2316に準拠し、渦電流測定法により表面抵抗を測定した。
 表面抵抗は、例えば、100Ω/□以上であることが必要であり、200Ω/□以上であるのが好ましく、更に400Ω/□以上であることがより好ましい。尚、100Ω/□以下であると、充分な電磁波透過性が得られないという問題がある。
(3)マイクロ波電界透過減衰量
 1GHzにおける電界透過減衰量をKEC法測定評価治具およびアジレント社製スペクトルアナライザCXA signal Analyzer NA9000Aを用いて評価した。
 マイクロ波電界透過減衰量は、-10dB以下であることが必要であり、-5dB以下であるのが好ましく、-1dB以下であることがより好ましい。尚、-10dB以上であると、90%以上の電磁波が遮断されるという問題がある。
 なお、ミリ波レーダーの周波数帯域(76~80GHz)における電磁波透過性と、マイクロ波帯域(1GHz)における電磁波透過性には相関性があり、比較的近い値を示すことから、ここでは、マイクロ波帯域(1GHz)における電磁波透過性を指標とした。
 以下の表2に、評価結果を示す。表2中の「層構成」の欄に示した「上層」とは、屈曲側(基材フィルム10側)から遠い側の層を意味し、「下層」とは、屈曲側に近い側の層を意味する。また、金属層又はクラック層のいずれか一方のみが設けられている場合、設けられている層には「有り」と、設けられていない層には「-」と記載した。尚、実施例1及び比較例1において「モース硬度」の欄に値が記載されていないのは、単に、モース硬度の正確な値を測定しづらいからであって、モース硬度が小さいことを意味しない。クラック層に使用される材料のモース硬度は、少なくとも4以上であって、金属層に使用される材料のモース硬度に比して十分に大きいものとなっている。
Figure JPOXMLDOC01-appb-T000002
[実施例1]
 上層に金属層を、下層にクラック層を配置した例である。基材フィルム(図1、図2の基材フィルム10に相当)として、三菱樹脂社製PETフィルム(厚さ125μm)を用いた。基材フィルム上にスパッタリング法にて50nmのITO層を形成し、次いで、ITO層の上にスパッタリング法で70nmのアルミニウム(Al)層を形成して、多層フィルムを得た。尚、ITOは、In2O3に対してSnO2を10wt%含有させたものである。
 次いで、図3を参照して説明したように、この多層フィルムを直径6mmの金属ロッドの周囲に基材フィルム側に折り返した状態で巻き付け、100Nの力で10cm/秒の速度で移動させることにより金属フィルムを製造した。屈曲延伸処理は、長尺方向「β」にてフィルムを往復搬送し、この処理を12回行った。
 図4に、この屈曲延伸処理によって得られた金属フィルム表面の光学顕微鏡像を、また、図5に、図4と同じ領域の画像を二値化処理した画像を示す。図5の画像サイズは400μm□であり、この領域内に含まれる直線状クラック(図2の(c)における直線状クラック15に相当)の数、間隔、長さを解析した。更に、図6に、金属フィルムの断面を透過型電子顕微鏡(TEM)によって拡大した画像をSEM画像とともにそれぞれ示す。尚、図4乃至図6の画像は、金属フィルムを直径6mmの金属ロッドに巻き付けた状態で撮影されたものであることから、厳密には、巻き付けていない状態に比べて直線状クラックが強調されたものになっているが、ナノオーダーである金属ロッドの直径に対して、マイクロオーダーである画像領域は極めて小さいことから、巻き付けていない場合であっても、図4等と実質的に同じ画像が得られると考えてよい。
 図4、図5から、面内に複数の直線状クラックが発生していることが分かる。また、図6から、上層(Al層)の直線状クラックと、下層(ITO層)の直線状クラックが、それぞれの層を厚み方向に貫通している共に、厚み方向において連続して1つの直線状クラックを形成していることが分かる。
 図5に示した単位面積当たりの面内には、23本の直線状クラックが含まれる。これら23本について更に解析を行ったところ、相隣り合う直線状クラック同士の間隔は、平均11μmであった。また、図5における垂直方向を0°として、面内に含まれる直線状クラックの平行度のバラツキを測定したところ、-3.4~+1.4°の範囲であった。また、面内に含まれる複数の直線状クラックの中から任意に選択した2本の直線状クラックが互いに成す角度のうちの50%以上が±0.5°以下であり、90%以上が±2.0°以下であった。更に、図5に示す直線状クラックを形成した後に、これと直行する方向にて屈曲延伸を行うことで直線状クラックが互いに交差した格子状の金属フィルムを得たところ、単位面積当たりの面内に含まれる複数の直線状クラックが互いに成す角度のうちの50%以上が±0.5°以下であり、且つ、40%以上が0.5°以上且つ1°以下であった。
 実施例1の構成によれば、可視光反射率、表面抵抗、及びマイクロ波電界透過減衰量の全てについて、良好な結果が得られた。即ち、金属光沢と電磁波透過性の双方を兼ね備えた金属フィルム、或いは、金属部材が得られた。
[実施例2]
 実施例1と同様に、上層に金属層を、下層にクラック層を配置した例であるが、クラック層をアルミナ(Al23)とした。その他の条件については、実施例1と同じである。尚、アルミナのモース硬度は9であるのに対し、金属層として用いたアルミニウム(Al)のモース硬度は2.5である。
 この場合も、金属光沢と電磁波透過性の双方を兼ね備えた金属フィルム、或いは、金属部材が得られた。
[実施例3]
 実施例1、2と異なり、上層にクラック層を、下層に金属層を配置した例である。また、実施例1と異なり、クラック層を45nmのクロム(Cr)とし、金属層を20nmのアルミニウム(Al)とした。その他の条件については、実施例1と同じである。尚、クロムのモース硬度は8.5であるのに対し、アルミニウムのモース硬度は2.5である。
 この場合も、金属光沢と電磁波透過性の双方を兼ね備えた金属フィルム、或いは、金属部材が得られた。
[実施例4]
 実施例1と異なり、多層フィルムを複数の方向に屈曲延伸処理することにより、更に詳細には、長尺方向「β」(図3参照)に屈曲延伸処理した後に、「β」と直交する方向「γ」に屈曲延伸処理を行うことで、直線状クラックが互いに交差した形状を有する金属部材を得た。
 この場合も、金属光沢と電磁波透過性の双方を兼ね備えた金属フィルム、或いは、金属部材が得られた。
[比較例1]
 実施例1と同様に、上層に金属層を、下層にクラック層を配置した例である。しかしながら、実施例1と異なり、屈曲延伸処理は行わなかった。その他の条件については、実施例1と同じである。
 この場合は、金属光沢については良好な結果が得られたが、電磁波透過性については不十分な結果となった。
[比較例2]
 実施例1と同様に、上層に金属層を、下層にクラック層を配置した例である。上層のアルミニウム(Al)の厚さは70nmとし、更に、クラック層としてアルミナ(Al2O3)を用いた。実施例1と異なり、屈曲延伸処理は行わなかった。また、その他の条件については、実施例1と同じである。
 この場合も、金属光沢については良好な結果が得られたが、電磁波透過性については不十分な結果となった。
[比較例3]
 実施例1と異なり、上層にクラック層を、下層に金属層を配置した例である。また、実施例1と異なり、屈曲延伸処理は行わず、また、クラック層として45nmのクロムを用い、金属層として20nmのアルミニウムを用いた。その他の条件については、実施例1と同じである。
 この場合も、金属光沢については良好な結果が得られたが、電磁波透過性については不十分な結果となった。
[比較例4]
 実施例1と異なり、上層にクラック層を、下層に金属層を配置した例である。また、実施例1と異なり、クラック層として45nmのクロムを用い、金属層として20nmのアルミニウムを用いた。更に、屈曲延伸処理を行う代わりに、加熱処理を行った。加熱は、金属フィルムを2時間、120度の環境下に置くことによるものである。その他の条件については、実施例1と同じである。
 この場合は、金属光沢については良好な結果が得られたが、電磁波透過性については不十分な結果となった。また、加熱処理後に金属フィルムがカールしてしまい実用に供することが困難であった。
[比較例5、6]
 実施例1と異なり、金属層だけを用いた例である。金属層としては70nmのアルミニウムを用いた。更に、比較例5については、屈曲延伸処理を行わず、比較例6については、実施例1と同様に、屈曲延伸処理を行った。その他の条件については、実施例1と同じである。
 この場合、金属光沢については良好な結果が得られたが、電磁波透過性については不十分な結果となった。
[比較例7、8]
 実施例1と異なり、クラック層だけを用いた例である。また、実施例1と異なり、クラック層として50nmのクロムを用いた。更に、比較例7については、屈曲延伸処理を行わず、比較例8については、実施例1と同様に、屈曲延伸処理を行った。その他の条件については、実施例1と同じである。
 この場合、電磁波透過性については良好な結果が得られたが、外観が白濁し、可視光反射率が著しく低下してしまうため、金属光沢については不十分な結果となった。
<8.実施例5乃至9、及び、比較例9>
 各種の金属フィルムにつき、可視光反射率、電波透過減衰量、偏波度、及びクラック割合を評価した。「可視光反射率」は、上記実施例1等における「可視光反射率」と同じもの、「電波透過減衰量」は、上記実施例1等における「マイクロ波電界透過減衰量」に実質的に相当するものであって、電磁波透過性に関する評価である。「偏波度」は、直線状クラックの方向が所定の方向に揃っていることによって得られる偏波特性に関する評価である。大きな偏波度は、電磁波の指向性が高いことを意味し、この指向性の観点からは、偏波度は大きければ大きいほどよい。「クラック割合」は、偏波度と相関することから、これについても評価対象とした。評価方法の詳細は以下のとおりである。
(1)可視光反射率
 実施例1等と同じ装置を用いて同じ方法で測定した。
(2)電波透過減衰量(透過率)
 76.5GHzにおける電波透過減衰量を、キーコム社製透過・反射減衰測定システムLAF-26.5Aを用いて評価した。電波透過減衰量は、上記実施例1等における「マイクロ波電界透過減衰量」に相当するが、ここでは「透過軸」と「遮断軸」の電波透過減衰量をそれぞれ別個に求めた。上記実施例1等における「マイクロ波電界透過減衰量」は、実質的に、「透過軸」の電波透過減衰量に相当する。ここで「透過軸」の電波透過減衰量とは、上記計測システムにおいて、入出射アンテナの電界成分の「偏波方向」を「基準とすべき直線状クラック」の方向に対して、垂直になるように配置した場合に得られる電波透過減衰量を意味し、一方、「遮断軸」の電波透過減衰量とは、平行になるように配置した場合に得られる電波透過減衰量を意味する。「偏波方向」が楕円の場合には、その長軸を偏波方向として使用する。「基準とすべき直線状クラック」は、下記「(4)クラック割合」における「基準直線」に沿うものとした。「透過軸」の電波透過減衰量は、上記実施例1等における「マイクロ波電界透過減衰量」と同様に、-10dB以下であることが必要であり、-5dB以下であるのが好ましく、-1dB以下であることがより好ましい。
 「透過率」は、電波透過減衰量を求めるためのものではなく、下記「(3)偏波度」を求めるために必要な値であって、電波透過減衰量の値を用いて、以下の式を用いて求めることができる。
 透過率(%)=10^(-X/10)×100 (ただし、Xは、電波透過減衰量(dB))
(3)偏波度
 偏波度は、「透過軸」の電波透過減衰量についての透過率(%)(ここでは、「T1」という)と、「遮断軸」の電波透過原子量についての透過率(%)(ここでは、「T2」という)の比、即ち、T1/T2で算出される値である。偏波度は、使用目的に応じて、適宜、調整することになるが、一般的に好ましくは1000以上、より好ましくは2000以上、更に好ましくは4000以上である。
(4)クラック割合
 図7を参照して、クラック割合の算出法を説明する。この図は、図5に相当する図であって、後述する実施例9の金属フィルム表面の光学顕微鏡像を二値化処理した画像である。図5と同様に、画像サイズは400μm□に設定されている。図7を参照して説明するが、図5に示すクラックについても同じ方法で算出することができる。
 先ず、図7の画像について、任意に定めた所定の角度を有する第一の直線と、この第一の直線を通る任意の点を中心に所定の方向に2°回転させた第二の直線と、の間の領域において、第一の直線から0.1°刻みで複数の直線を引き、これら複数の直線それぞれ及びこれら複数の直線それぞれと並行な直線(但し、第二の直線及びこの第二直線と並行な直線は含めない)と重なり合う直線状クラックの長さの合計(以下、「合計長」という)を求める。次いで、上述した第二の直線を第一の直線として、且つ、上述した任意の点を中心に所定の方向に更に2°回転させた直線を第二の直線として、同様の方法で合計長を求める。同じ処理を複数回繰り返し、360°分、即ち、計90個の合計長を求める。
 次いで、これら計90個の合計長を総計し、直線状クラックの総長(以下、「総長」という)を求める。
 また、これら90個の合計長のうち、最も大きい「合計長」を有する領域(以下、「最大領域」という)を抽出する。
 更に、最大領域を規定している第一の直線と第二の直線の中間に位置する直線(以下、「基準直線」という)に対して±5°以下の範囲にある直線状クラックの合計長の和を求める。更に詳細には、最大領域における合計長と、最大領域から所定の方向に2°回転させた領域における合計長及び更に2°回転させた領域における合計長と、最大領域から所定の方向とは反対方向に2°回転させた領域における合計長及び更に2°回転させた領域における合計長とを、合計した値(以下、「総合計長」という)を求める。
 「クラック割合」は、「総合計長」が「総長」に対して占める割合、即ち、
 クラック割合(%)= 総合計長(μm)/総長(μm)
である。
 クラック割合は、偏波度と相関しており、指向性の観点から大きければ大きいほど良く、80%以上100%以下が好ましく、より好ましくは90%以上100%以下であり、更に好ましくは95%以上100%以下、更に好ましくは97%以上100%以下である。
 一方、偏波度やクラック割合が大きくなると、遮断される電磁波が多くなり、この結果、電磁波透過性は悪化してしまう。このように、偏波度と電磁波透過性は、トレードオフの関係にあり、電磁波透過性の観点からは、偏波度やクラック割合はある程度小さい方が好ましい。電磁波透過性の観点から、クラック割合は、65%以下が好ましく、より好ましくは62%以下である。下限は特に制限されないが、指向性との釣り合いから、好ましくは、30%以上、より好ましくは40%以上、更に好ましくは50%以上である。
 以下の表3に、評価結果を示す。「金属層」、「クラック層」、「可視光反射率」の項目は、表2を参照して説明したとおりである。クラック処理条件について、屈曲回数と、基材フィルム等を巻き付ける金属ロッドの直径を変更した。実施例6乃至8において「モース硬度」の欄に値が記載されていないのは、単に、モース硬度の正確な値を測定しづらいからであって、モース硬度が小さいことを意味しない。クラック層に使用される材料のモース硬度は、少なくとも4以上であって、金属層に使用される材料のモース硬度に比して十分に大きいものとなっている。尚、下記表中の偏波度の値は、実データを元に算出した値であって、有効数字の関係上、同表中のT1/T2の値とは厳密には一致していない。
Figure JPOXMLDOC01-appb-T000003
[実施例5]
 先ず、実施例2と同じ層構成の多層フィルムをこれと同じ方法で作製した。次いで、実施例2と同様に、直径6mmの金属ロッドを使用して屈曲延伸処理を施した。但し、この屈曲延伸処理は、実施例2と異なり、長尺方向「β」に沿ってフィルムを2回往復搬送するものとした。結果、図4に示すものと同様の光学顕微鏡像が得られ、また、図5に示すものと同様の二値化処理画像が得られた。
 この場合、図5に示した単位面積(400μm□)に相当する面内に含まれる直線状クラックの総長は、4317μm、総合計長は、4167μmとなり、クラック割合は、97%と高い値が得られた。また、クラック割合と相関する偏波度についても、2599と良好な値が得られ、高い偏波特性を有するものとなった。
 更に、可視光反射率と電波透過減衰量についても、良好な結果が得られた。即ち、金属光沢と電磁波透過性の双方を兼ね備えた金属フィルム、或いは、金属部材が得られた。
[実施例6]
 実施例5と異なり、下層のクラック層に、50nmのSTOを用いた。また、屈曲延伸処理は、実施例5と異なり、長尺方向「β」にてフィルムを「60回」往復搬送させた。その他の条件については、実施例5と同じである。
 この場合、図5に示した単位面積(400μm□)に相当する面内に含まれる直線状クラックの総長は、4423μm、総合計長は、4326μmとなり、クラック割合は、98%と高い値が得られた。また、クラック割合と相関する偏波度についても、4822と大きな値が得られ、高い偏波特性を有するものとなった。更に、可視光反射率と電波透過減衰量についても、良好な結果が得られた。
[実施例7]
 実施例5と異なり、下層のクラック層に、50nmのAZOを用いた。屈曲延伸処理は、実施例5と異なり、長尺方向「β」にてフィルムを「60回」往復搬送させた。その他の条件については、実施例5と同じである。
 この場合、図5に示した単位面積(400μm□)に相当する面内に含まれる直線状クラックの総長は、3861μm、総合計長は、3762μmとなり、クラック割合は、97%と高い値が得られた。また、クラック割合と相関する偏波度についても、3229と大きな値が得られ、高い偏波特性を有するものとなった。更に、可視光反射率と電波透過減衰量についても、良好な結果が得られた。
[実施例8]
 実施例5と異なり、上層の金属層には、50nmの銅(Cu)を用い、下層のクラック層には、50nmのITOを用いた。尚、ITOは、実施例1と同様に、In2O3に対してSnO2を10wt%含有させたものである。屈曲延伸処理は、実施例5と異なり、長尺方向「β」にてフィルムを「60回」往復搬送させた。その他の条件については、実施例5と同じである。
 この場合、図5に示した単位面積(400μm□)に相当する面内に含まれる直線状クラックの総長は、5582μm、総合計長は、5572μmとなり、クラック割合は、99%と高い値が得られた。また、クラック割合と相関する偏波度については、10872と非常に大きな値が得られ、偏波特性については非常に良好な結果が得られた。電波透過減衰量についても、良好な結果が得られたが、可視光反射率については、実施例5等と比較して劣るものとなった。
[実施例9]
 実施例5と異なり、上層にクラック層を、下層に金属層を配置した。金属層には、実施例5と同様に、アルミニウム(Al)を用いたが、その厚みは、20nmとした。一方、クラック層には、実施例5と異なり、45nmのクロム(Cr)を用いた。屈曲延伸処理は、実施例1と同様に、往復搬送処理を2回行った。その他の条件については、実施例1と同じである。尚、前述した図7は、この実施例で得られた金属フィルム表面の光学顕微鏡像を二値化処理した画像を示している。
 この場合、図5に示した単位面積(400μm□)に相当する面内に含まれる直線状クラックの総長は、9762μm、総合計長は、6079μmとなり、クラック割合は、62%となった。また、クラック割合と相関する偏波度については、30と小さな値となった。このように、クラック割合や偏波度については、実施例5等よりも劣る結果となったが、その一方で、電磁波透過性については、-0.6dBと、実施例5等よりも良好な結果が得られた。更に、可視光反射率と電波透過減衰量についても、良好な結果が得られた。
[比較例9]
 実施例5と異なり、屈曲延伸処理は行わなかった。その他の条件については、実施例5と同じである。
 この場合は、金属光沢については良好な結果が得られたが、電磁波透過性については不十分な結果となった。
<8.評価>
 実施例及び比較例から明らかなように、金属層又はクラック層の一方だけでは、金属光沢と電磁波透過性の双方を満足する結果は得られなかった(比較例5乃至8)。従って、少なくとも金属層とクラック層の双方を設ける必要がある。
 また、金属層とクラック層を設けた場合であっても、屈曲延伸処理を行わない場合(比較例1乃至3、5、7、9)、或いは、加熱処理(比較例4)を行った場合には、良好な結果は得られなかった。
 更に、金属層がクラック層よりも厚い場合には、モース硬度の相異にもよるであろうが、良好な結果は得られにくい(実施例1及び比較例1、実施例2及び比較例2)。
 また、多層フィルムに、長尺方向と交差する方向だけでなく、長尺方向にも、直線状クラックを発生させることにより、格子状(基盤目状)に直線状クラックを形成した場合には、電磁波透過性が更に向上する結果が得られた(実施例3)。
 更にまた、優れた偏波特性を得ることも可能であり(実施例5乃至8)、その一方で、偏波特性が小さい場合には良好な電磁波透過性が得られることが明らかとなった(実施例9)。
 本発明は前記実施例に限定されるものではなく、発明の趣旨から逸脱しない範囲で適宜変更して具体化することもできる。
 本発明に係る金属フィルムや金属部材は、例えば、フロントグリル、エンブレム、バンパーといった自動車のフロント部分に搭載されるミリ波レーダーのカバー部材を装飾するために好適に用いることができる。また、レドーム等のレーダー用カバーとして、又は、基地局等の偏波用のアンテナに用いることもできる。しかしながら、勿論、これに限定されるものではなく、例えば、携帯電話やスマートフォン、タブレット型PC、ノート型PC、冷蔵庫など、意匠性と電磁波透過性の双方が要求される様々な用途にも利用できる。
1 金属部材
3、3A 金属フィルム
10 基材フィルム
11 金属層
11’ 直線状クラック
12 クラック層
12’ 直線状クラック
15 直線状クラック
20 多層フィルム

Claims (23)

  1.  金属層とクラック層とを含み、
     前記金属層と前記クラック層は、それぞれの各面内に、互いに実質的に平行な複数の直線状クラックを有し、
     前記金属層の直線状クラックと前記クラック層の直線状クラックは、それぞれの層を厚み方向に貫通し、且つ、厚み方向において連続していることを特徴とする電磁波透過性金属部材。
  2.  前記金属層又は前記クラック層の少なくとも一方の面内に含まれる相隣り合う前記直線状クラックが互いに成す角度が、±10°以下である請求項1に記載の電磁波透過性金属部材。
  3.  前記金属層又は前記クラック層の400μm□の面内に含まれる複数の前記直線状クラックの中から任意に選択した2本の直線状クラックが互いに成す角度のうち40%以上が±10°以下である請求項1又は2に記載の電磁波透過性金属部材。
  4.  前記金属層又は前記クラック層の400μm□の面内に含まれる複数の前記直線状クラックの中から任意に選択した2本の直線状クラックに関して、前記選択された2本の直線状クラックが互いに成す角度のうち40%以上が±10°以下であり、且つ、40%以上が80°以上且つ100°以下である請求項3に記載の電磁波透過性金属部材。
  5.  前記金属層又は前記クラック層の400μm□の面内に含まれる複数の前記直線状クラックのうち、80%以上が基準直線に対して±5°以下の範囲にある請求項1又は2に記載の電磁波透過性金属部材。
  6.  基材フィルム上に金属層とクラック層とを積層して成る多層フィルムを、前記基材フィルム側に折り返した状態で一方向にのみ屈曲延伸することにより、前記金属層と前記クラック層に直線状クラックが形成された請求項1又は2に記載の電磁波透過性金属部材。
  7.  前記金属層又は前記クラック層の400μm□の面内に含まれる複数の前記直線状クラックのうち、基準直線に対して±5°以下の範囲にあるものが、70%以下である請求項1又は2に記載の電磁波透過性金属部材。
  8.  基材フィルム上に金属層とクラック層とを積層して成る多層フィルムを、前記基材フィルム側に折り返した状態で複数の方向に屈曲延伸することにより、前記金属層と前記クラック層に直線状クラックが形成された請求項1又は2に記載の電磁波透過性金属部材。
  9.  前記直線状クラックの長さが200μm以上である請求項1乃至8のいずれかに記載の電磁波透過性金属部材。
  10.  前記金属層と前記クラック層が所定の曲率で屈曲されているときに、屈曲側から遠い側に配置された層に生じる前記直線状クラックの幅が、0.1nm~100nm以下である請求項1乃至9のいずれかに記載の電磁波透過性金属部材。
  11.  前記金属層の厚さと前記クラック層の厚さの比が0.1~20以下である請求項1乃至10のいずれかに記載の電磁波透過性金属部材。
  12.  前記金属層の厚さが、10nm~1000nmである請求項1乃至11のいずれかに記載の電磁波透過性金属部材。
  13.  前記クラック層の厚さが、5nm~5000nmである請求項1乃至12のいずれかに記載の電磁波透過性金属部材。
  14.  前記クラック層が、モース硬度が4以上の金属、該金属を主成分とする合金、およびセラミックスから選択された少なくとも一種を含む物質から成る請求項1乃至13のいずれかに記載の電磁波透過性金属部材。
  15.  前記セラミックスが、金属、シリコン、及びホウ素から選択された少なくとも一種を含む元素の酸化物、窒化物、炭化物、酸窒化物のいずれかを含有する請求項14に記載の電磁波透過性金属部材。
  16.  前記金属層のモース硬度が1以上4未満である請求項1乃至15のいずれかに記載の電磁波透過性金属部材。
  17.  前記金属層が、Al、Cu、Ag、Au、Znから選択された少なくとも一種の金属、および該金属を主成分とする合金のいずれかを含む請求項16に記載の電磁波透過性金属部材。
  18.  請求項1乃至17のいずれかに記載の電磁波透過性金属部材と、基材フィルムとを含む、電磁波透過性金属フィルム。
  19.  請求項1乃至17のいずれかに記載の電磁波透過性金属部材と、樹脂成形物基材とを含む、電磁波透過性金属樹脂部材。
  20.  請求項1乃至17のいずれかに記載の電磁波透過性金属部材、又は、請求項18に記載の電磁波透過性金属フィルム、又は、請求項19に記載の電磁波透過性金属樹脂部材を用いた、車載用レーダー装置。
  21.  請求項5または6に記載の電磁波透過性金属部材を含む、レーダー用カバー。
  22.  請求項5または6に記載の電磁波透過性金属部材を含む、偏波用アンテナ。
  23.  長尺の基材フィルム上に金属層とクラック層とを積層して成る多層フィルムを該多層フィルムの長尺方向と交差する方向に沿って前記基材フィルム側に折り返した状態で該多層フィルムを前記長尺方向に屈曲延伸することにより、前記金属層と前記クラック層に直線状クラックを形成することを特徴とする電磁波透過性金属フィルムの製造方法。
PCT/JP2017/023734 2016-06-30 2017-06-28 電磁波透過性金属部材、これを用いた物品、及び、電磁波透過性金属フィルムの製造方法 WO2018003847A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/313,338 US11351753B2 (en) 2016-06-30 2017-06-28 Electromagnetic wave transmissive metal member, article using the same, and production method for electromagnetic wave transmissive metal film
CN201780038483.6A CN109311262B (zh) 2016-06-30 2017-06-28 电磁波透过性金属部件、使用该部件的物品、及电磁波透过性金属膜的制造方法
KR1020187037715A KR102425042B1 (ko) 2016-06-30 2017-06-28 전자파 투과성 금속 부재, 이것을 사용한 물품, 및 전자파 투과성 금속 필름의 제조 방법
JP2018525204A JP7305350B2 (ja) 2016-06-30 2017-06-28 電磁波透過性金属部材、これを用いた物品、及び、電磁波透過性金属フィルムの製造方法
EP17820201.6A EP3480007A4 (en) 2016-06-30 2017-06-28 ELECTROMAGNETIC WAVE TRANSMITTING ELEMENT, ARTICLE USING THE SAME AND METHOD FOR PRODUCING ELECTROMAGNETIC WAVE TRANSMITTING METAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016130450 2016-06-30
JP2016-130450 2016-06-30

Publications (1)

Publication Number Publication Date
WO2018003847A1 true WO2018003847A1 (ja) 2018-01-04

Family

ID=60787006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023734 WO2018003847A1 (ja) 2016-06-30 2017-06-28 電磁波透過性金属部材、これを用いた物品、及び、電磁波透過性金属フィルムの製造方法

Country Status (7)

Country Link
US (1) US11351753B2 (ja)
EP (1) EP3480007A4 (ja)
JP (1) JP7305350B2 (ja)
KR (1) KR102425042B1 (ja)
CN (1) CN109311262B (ja)
TW (1) TWI791445B (ja)
WO (1) WO2018003847A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180476A1 (ja) * 2017-03-31 2018-10-04 ソニー株式会社 構造体、加飾フィルム、構造体の製造方法、及び加飾フィルムの製造方法
WO2018221099A1 (ja) * 2017-05-30 2018-12-06 ソニー株式会社 構造体、加飾フィルム、構造体の製造方法、及び加飾フィルムの製造方法
KR20200036649A (ko) * 2018-09-28 2020-04-07 (주)엘지하우시스 전자파 투과커버
CN111162371A (zh) * 2019-12-31 2020-05-15 Oppo广东移动通信有限公司 电子设备
CN112020422A (zh) * 2018-04-23 2020-12-01 日东电工株式会社 电磁波透过性金属光泽物品、及装饰构件
WO2021182381A1 (ja) * 2020-03-09 2021-09-16 日東電工株式会社 電磁波透過性金属光沢部材、及びその製造方法
JP2022534508A (ja) * 2019-05-31 2022-08-01 スリーエム イノベイティブ プロパティズ カンパニー パターン化された転写物品
US20230033148A1 (en) * 2019-12-27 2023-02-02 Dai Nippon Printing Co., Ltd. Metal tone decorative sheet and metal tone decorative molded body provided with metal tone decorative sheet

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12249761B2 (en) * 2019-10-15 2025-03-11 Motherson Innovations Company Limited First surface decorative element
DE102019129507A1 (de) 2019-10-31 2021-05-06 Audi Ag Radom für einen Radarsensor eines Kraftfahrzeugs und Kraftfahrzeug
KR20210105254A (ko) * 2020-02-18 2021-08-26 삼성에스디아이 주식회사 음극 및 이를 포함하는 전고체 이차전지
KR20230032084A (ko) * 2021-08-30 2023-03-07 동우 화인켐 주식회사 안테나 소자 및 이를 포함하는 화상 표시 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069282A (ja) * 2001-08-30 2003-03-07 Takenaka Komuten Co Ltd 特定電磁波透過板
JP2006003909A (ja) * 2005-07-19 2006-01-05 Kimoto & Co Ltd 視界制御シートおよび視界制御シートの製造方法
JP2009286082A (ja) * 2008-05-30 2009-12-10 Toyoda Gosei Co Ltd 電磁波透過性光輝樹脂製品及び製造方法
JP2013256104A (ja) * 2012-05-17 2013-12-26 Nissan Motor Co Ltd 透明誘電体膜、熱反射構造体およびその製造方法、ならびにこれを用いた合わせガラス
WO2015050007A1 (ja) * 2013-10-02 2015-04-09 アイシン精機株式会社 金属調皮膜の製造方法及び車両用アウトサイドドアハンドル
JP2016144930A (ja) * 2015-02-03 2016-08-12 王子ホールディングス株式会社 遮熱フィルム、遮熱合わせガラス、遮熱フィルムの製造方法および遮熱合わせガラスの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19844021C2 (de) 1998-09-25 2001-05-10 Daimler Chrysler Ag Innerhalb des Strahlenganges eines Radargerätes liegendes Verkleidungsteil
JP2010005999A (ja) 2008-06-30 2010-01-14 Nissha Printing Co Ltd クラックを有する金属膜加飾シートの製造方法
CN102483480B (zh) * 2009-08-26 2014-03-05 东海橡塑工业株式会社 透明层叠膜及其制造方法
JP5465030B2 (ja) 2010-02-09 2014-04-09 関東化成工業株式会社 電磁波透過用金属被膜、電磁波透過用金属被膜の形成方法及び車載用レーダー装置
JP6023402B2 (ja) * 2010-12-27 2016-11-09 日東電工株式会社 透明導電性フィルムおよびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069282A (ja) * 2001-08-30 2003-03-07 Takenaka Komuten Co Ltd 特定電磁波透過板
JP2006003909A (ja) * 2005-07-19 2006-01-05 Kimoto & Co Ltd 視界制御シートおよび視界制御シートの製造方法
JP2009286082A (ja) * 2008-05-30 2009-12-10 Toyoda Gosei Co Ltd 電磁波透過性光輝樹脂製品及び製造方法
JP2013256104A (ja) * 2012-05-17 2013-12-26 Nissan Motor Co Ltd 透明誘電体膜、熱反射構造体およびその製造方法、ならびにこれを用いた合わせガラス
WO2015050007A1 (ja) * 2013-10-02 2015-04-09 アイシン精機株式会社 金属調皮膜の製造方法及び車両用アウトサイドドアハンドル
JP2016144930A (ja) * 2015-02-03 2016-08-12 王子ホールディングス株式会社 遮熱フィルム、遮熱合わせガラス、遮熱フィルムの製造方法および遮熱合わせガラスの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3480007A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180476A1 (ja) * 2017-03-31 2018-10-04 ソニー株式会社 構造体、加飾フィルム、構造体の製造方法、及び加飾フィルムの製造方法
WO2018221099A1 (ja) * 2017-05-30 2018-12-06 ソニー株式会社 構造体、加飾フィルム、構造体の製造方法、及び加飾フィルムの製造方法
CN112020422A (zh) * 2018-04-23 2020-12-01 日东电工株式会社 电磁波透过性金属光泽物品、及装饰构件
KR20200036649A (ko) * 2018-09-28 2020-04-07 (주)엘지하우시스 전자파 투과커버
KR102288137B1 (ko) 2018-09-28 2021-08-09 (주)엘엑스하우시스 전자파 투과커버
JP7516427B2 (ja) 2019-05-31 2024-07-16 スリーエム イノベイティブ プロパティズ カンパニー パターン化された転写物品
JP2022534508A (ja) * 2019-05-31 2022-08-01 スリーエム イノベイティブ プロパティズ カンパニー パターン化された転写物品
US20230033148A1 (en) * 2019-12-27 2023-02-02 Dai Nippon Printing Co., Ltd. Metal tone decorative sheet and metal tone decorative molded body provided with metal tone decorative sheet
US12246556B2 (en) * 2019-12-27 2025-03-11 Dai Nippon Printing Co., Ltd. Metal tone decorative sheet and metal tone decorative molded body provided with metal tone decorative sheet
CN111162371A (zh) * 2019-12-31 2020-05-15 Oppo广东移动通信有限公司 电子设备
JPWO2021182381A1 (ja) * 2020-03-09 2021-09-16
WO2021182381A1 (ja) * 2020-03-09 2021-09-16 日東電工株式会社 電磁波透過性金属光沢部材、及びその製造方法
JP7670683B2 (ja) 2020-03-09 2025-04-30 日東電工株式会社 電磁波透過性金属光沢部材、及びその製造方法

Also Published As

Publication number Publication date
US20190315093A1 (en) 2019-10-17
JP7305350B2 (ja) 2023-07-10
EP3480007A1 (en) 2019-05-08
TW201811591A (zh) 2018-04-01
JPWO2018003847A1 (ja) 2019-04-18
EP3480007A4 (en) 2020-02-19
KR20190025572A (ko) 2019-03-11
KR102425042B1 (ko) 2022-07-25
US11351753B2 (en) 2022-06-07
CN109311262A (zh) 2019-02-05
CN109311262B (zh) 2021-06-15
TWI791445B (zh) 2023-02-11

Similar Documents

Publication Publication Date Title
WO2018003847A1 (ja) 電磁波透過性金属部材、これを用いた物品、及び、電磁波透過性金属フィルムの製造方法
KR102271407B1 (ko) 전자파 투과성 금속 광택 부재, 이것을 사용한 물품 및 금속 박막
JP5237713B2 (ja) 電磁波透過性光輝塗装樹脂製品及び製造方法
CN107211549B (zh) 壳体部件、电子设备以及壳体部件的制造方法
TWI480776B (zh) 導電結構、觸控面板及其製備方法
JP2009286082A (ja) 電磁波透過性光輝樹脂製品及び製造方法
JP2009298006A (ja) 電磁波透過性光輝樹脂製品及び製造方法
CN108883607B (zh) 结构体、电子设备、装饰膜以及结构体的制造方法
JP2019123238A (ja) 電波透過性金属光沢部材、これを用いた物品、及びその製造方法
KR102679771B1 (ko) 전자파 투과성 금속 광택 물품, 및, 금속 박막
JPWO2016027391A1 (ja) 筐体部品、電子機器、筐体部品の製造方法
CN113632600A (zh) 电磁波抑制片及其制造方法
JP6944425B2 (ja) 電磁波透過性金属光沢部材、これを用いた物品、及び、金属薄膜
CN111629893A (zh) 电磁波透过性金属光泽膜
KR102511461B1 (ko) 구조체, 가식 필름, 구조체의 제조 방법, 및 가식 필름의 제조 방법
CN102769203A (zh) 超材料频选表面及由其制成的超材料频选天线罩和天线系统
KR20230164011A (ko) 안테나 필름
WO2018180476A1 (ja) 構造体、加飾フィルム、構造体の製造方法、及び加飾フィルムの製造方法
KR101918351B1 (ko) 금속광택을 갖는 전파 투과형 커버
KR102165274B1 (ko) 내열성을 갖는 전자기파 흡수 복합재
WO2019139122A1 (ja) 電波透過性金属光沢部材、これを用いた物品、及びその製造方法
CN218676351U (zh) 改善色差的低方阻薄膜、显示屏及电子设备
Jiang et al. A flexible and visible transparent MXene-mesh film for radar stealth in X-band
WO2023054028A1 (ja) 電磁波反射シート、ロール体、電磁波反射シートの製造方法および通信システム
CN112874030A (zh) 一种楔形雷达织物吸波结构及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820201

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018525204

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187037715

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017820201

Country of ref document: EP

Effective date: 20190130