JP2009063503A - 車両用光スキャン装置 - Google Patents

車両用光スキャン装置 Download PDF

Info

Publication number
JP2009063503A
JP2009063503A JP2007233163A JP2007233163A JP2009063503A JP 2009063503 A JP2009063503 A JP 2009063503A JP 2007233163 A JP2007233163 A JP 2007233163A JP 2007233163 A JP2007233163 A JP 2007233163A JP 2009063503 A JP2009063503 A JP 2009063503A
Authority
JP
Japan
Prior art keywords
optical
scanning device
light
light emitting
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007233163A
Other languages
English (en)
Inventor
Hiroshi Ezawa
寛 江澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Imaging Corp
Original Assignee
Olympus Imaging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Imaging Corp filed Critical Olympus Imaging Corp
Priority to JP2007233163A priority Critical patent/JP2009063503A/ja
Publication of JP2009063503A publication Critical patent/JP2009063503A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【課題】耐久性、信頼性の高い車両用光スキャン装置を提供することである。
【解決手段】この車両用光スキャン装置は、レーザダイオード55と、該レーザダイオード55からの光を所定の第1の方向に走査させるレンズ34、35、36とを有している。そして、レーザダイオード55は、ホルダ51内の板バネによって、その光軸方向に移動されて照射され、照射光の大きさが変化される。
【選択図】 図3

Description

本発明は、レーザ光を照射し、反射光より障害物の検出等を行う車載用測距装置などに設けられる光を走査する車両用光スキャン装置に関するものである。
近年、走行中の車両の前方を走査して障害物の存在をドライバに警告する赤外光スキャン方式の車載レーダ装置が実用化されている。
そして、例えば下記特許文献1には、発光凸レンズをコイルと磁石で移動させることによって、発光源からビーム光の広がり角を迅速に変えることができる車両用光レーダ装置が開示されている。この装置では、ビーム光の位置を変更する機構はなく、遠くを見る際にはビーム光を絞り、広く見る際にはビーム光を広げている。この場合、前方に障害物があることがわかり、その障害物までの距離も反射光が戻るまでの時間からわかるが、位置がわからないという不都合が生じる。
そこで、ビーム光の位置を変更する機構と組み合わせることが望ましい。これにより、障害物までの距離に加えて、障害物の位置を知ることができる。ビーム光を絞って強くし、その位置を変えてスキャンすることで、遠くを見る場合でも、ビーム光の大きさより広い範囲を検出することができ、高性能な光レーダ装置とすることができる。
特開平6−308239号公報
ところで、上記特許文献1に記載の装置では、凸レンズの駆動方式は、磁石とコイルよりなるボイスコイル型アクチュエータとして、迅速なビーム光の広がり角制御を可能としている。しかしながら、支持方式は、凸レンズを保持したボビンをコア20の外周面上を前後に移動する形の摺動支持となっているため、長期間の使用では磨耗による動作不良が発生することがある。
車両用の光スキャン装置では、10年以上に渡り使用されることもあること、障害物を避けるという安全性を高める用途に使用させることより、長期に渡る耐久性、高い信頼性が求められるため、動作不良が発生する可能性のある構成では問題がある。
したがって本発明は、上記の実情に鑑みてなされたものであり、その目的は、耐久性、信頼性の高い車両用光スキャン装置を提供することである。
すなわち請求項1に記載の発明は、発光素子と、該発光素子からの光を所定の第1の方向に走査させる第1の光学素子及び光の大きさを変化させる第2の光学素子とを有し、上記発光素子及び第2の光学素子の少なくとも何れか一方を光軸方向に移動させて照射する光の大きさを変化させる変化手段とを少なくとも備えた車両用光スキャン装置に於いて、上記発光素子及び第2の光学素子の少なくとも何れか一方を上記光軸方向に移動可能に弾性支持した弾性支持部材を具備することを特徴とする。
そして、請求項1に記載の発明によれば、耐久性、信頼性を高めることができる。
請求項2に記載の発明は、請求項1に記載の発明に於いて、上記弾性支持部材により発光素子及び第2の光学素子の少なくとも何れか一方を弾性支持した部位の基本共振周波数が40Hz以上であることを特徴とする。
請求項2に記載の発明によれば、高性能化を図ることができる。
請求項3に記載の発明は、請求項第1項若しくは2に記載の発明に於いて、上記弾性支持部材は、金属製の板バネで作製され、上記発光素子及び第2の光学素子の少なくとも何れか一方を上記光軸方向に移動可能に支持することを特徴とする。
請求項3に記載の発明によれば、信頼性を高めることができる。
請求項4に記載の発明は、請求項第1項若しくは2に記載の発明に於いて、上記弾性支持部材は合成樹脂製のリンク機構によって構成され、上記発光素子及び第2の光学素子の少なくとも何れか一方を上記光軸方向に移動可能に支持することを特徴とする。
請求項4に記載の発明によれば、低価格化を図ることができる。
請求項5に記載の発明は、請求項3若しくは4に記載の発明に於いて、上記弾性支持部材は、上記発光素子及び第2の光学素子の少なくとも何れか一方を光軸方向に移動させるその固定部を基準として、上記第1の方向と光軸に直交する方向に延在していることを特徴とする。
請求項5に記載の発明によれば、精度を高め、高性能化を図ることができる。
請求項6に記載の発明は、請求項5に記載の発明に於いて、上記支持部材は、上記発光素子及び第2の光学素子の少なくとも何れか一方を光軸方向に移動させて、上記発光素子から照射される光の大きさの第1の方向の寸法を変化させることを特徴とする。
請求項6に記載の発明によれば、よりよく効果を享受することができる。
請求項7に記載の発明は、請求項1乃至6の何れか1項に記載の発明に於いて、上記発光素子から照射される光の大きさの所定の第1の方向の寸法をA、該所定の第1の方向と直交する第2の方向の寸法をBとすると、B≧A×3であることを特徴とする。
請求項7に記載の発明によれば、よりよく効果を享受することができる。
請求項8に記載の発明は、請求項1乃至7の何れか1項に記載の発明に於いて、上記第1の光学素子は、上記発光素子から照射される光を上記第1の方向と、該第1の方向に直交する第2の方向に移動可能に支持するもので、上記光の走査は、上記第1の方向への移動により行い、上記第2の方向に関する走査する位置の変更を上記第2の方向への移動により行うことを特徴とする。
請求項8に記載の発明によれば、よりよく効果を享受することができる。
請求項9に記載の発明は、請求項8に記載の発明に於いて、上記第1の方向は地面に水平な方向であることを特徴とする。
請求項9に記載の発明によれば、よりよく効果を享受することができる。
請求項10に記載の発明は、第1の光学素子と、該第1の光学素子を備えたホルダと、該ホルダを上記第1の光学素子の光軸に垂直な第1の方向に移動可能に支持する第1の支持手段と、該第1の支持手段を上記第1の光学素子の光軸に垂直な方向に移動させる駆動手段と、発光素子とを少なくとも備え、該発光素子からの光を前記第1の光学素子に通し、該第1の光学素子を移動することによって、光を走査し、照射する車両用光スキャン装置に於いて、光の大きさを変化させる第2の光学素子と、上記発光素子及び第2の光学素子の少なくとも何れか一方を、上記光軸方向に移動可能に支持する第2の支持部材と、を具備することを特徴とする。
請求項10に記載の発明によれば、耐久性、信頼性を高めることができる。
請求項11に記載の発明は、請求項10に記載の発明に於いて、上記第2の支持部材は、弾性支持部材により構成されることを特徴とする。
請求項11に記載の発明によれば、耐久性、信頼性を高めることができる。
請求項12に記載の発明は、請求項11に記載の発明に於いて、上記弾性支持部材は、金属製の板バネで作製され、上記発光素子及び第2の光学素子の少なくとも何れか一方を上記光軸方向に移動可能に支持することを特徴とする。
請求項12に記載の発明によれば、信頼性を高めることができる。
請求項13に記載の発明は、請求項11に記載の発明に於いて、上記弾性支持部材は、合成樹脂製のリンク機構によって構成され、上記発光素子及び第2の光学素子の少なくとも何れか一方を上記光軸方向に移動可能に支持することを特徴とする。
請求項13に記載の発明によれば、低価格化を図ることができる。
請求項14に記載の発明は、請求項11に記載の発明に於いて、上記弾性支持部材は、上記発光素子及び第2の光学素子の少なくとも何れか一方を光軸方向に移動させるその固定部を基準として、上記第1の方向と光軸に直交する方向に延在していることを特徴とする。
請求項14に記載の発明によれば、精度を高め、高性能化を図ることができる。
請求項15に記載の発明は、請求項11に記載の発明に於いて、上記弾性支持部材は、上記発光素子及び第2の光学素子の少なくとも何れか一方を光軸方向に移動させて、上記発光素子から照射される光の大きさの第1の方向の寸法を変化させることを特徴とする。
請求項15に記載の発明によれば、よりよく効果を享受することができる。
請求項16に記載の発明は、請求項15に記載の発明に於いて、上記発光素子から照射される光の大きさの所定の第1の方向の寸法をA、該所定の第1の方向と直交する第2の方向の寸法をBとすると、B≧A×3であることを特徴とする。
請求項16に記載の発明によれば、よりよく効果を享受することができる。
請求項17に記載の発明は、請求項11乃至16の何れか1項に記載の発明に於いて、上記第1の光学素子は、上記発光素子から照射される光を上記第1の方向と、該第1の方向に直交する第2の方向に移動可能に支持され、上記光の走査は、上記第1の方向への移動により行い、上記第2の方向に関する走査する位置の変更を上記第2の方向への移動により行うことを特徴とする。
請求項17に記載の発明によれば、よりよく効果を享受することができる。
請求項18に記載の発明は、請求項17に記載の発明に於いて、上記第1の方向は地面に水平な方向であることを特徴とする。
請求項18に記載の発明によれば、よりよく効果を享受することができる。
請求項19に記載の発明は、請求項11に記載の発明に於いて、上記弾性支持部材は、上記発光素子及び第2の光学素子の少なくとも何れか一方を弾性支持した部位の基本共振周波数が40Hz以上であることを特徴とする。
請求項19に記載の発明によれば、高性能化を図ることができる。
請求項20に記載の発明は、光を所定の範囲に渡り走査する車両用光スキャン装置であって、対象物に向けて光を照射する発光素子と、前記発光素子からの光を走査させる第1の光学素子と、光の大きさを変化させる第2の光学素子と、上記発光素子及び第2の光学素子の少なくとも何れか一方を、上記光軸方向に移動可能に支持する支持部材と、前記光学素子より照射された光の反射光を検知する受光素子と、を具備することを特徴とする。
請求項20に記載の発明によれば、耐久性、信頼性を高めることができる。
請求項21に記載の発明は、請求項20に記載の発明に於いて、上記支持部材は、弾性支持部材により構成されることを特徴とする。
請求項21に記載の発明によれば、耐久性、信頼性を高めることができる。
請求項22に記載の発明は、請求項21に記載の発明に於いて、上記弾性支持部材は、金属製の板バネで作製され、上記発光素子及び第2の光学素子の少なくとも何れか一方を上記光軸方向に移動可能に支持することを特徴とする。
請求項22に記載の発明によれば、信頼性を高めることができる。
請求項23に記載の発明は、請求項21に記載の発明に於いて、上記弾性支持部材は、合成樹脂製のリンク機構によって構成され、上記発光素子及び第2の光学素子の少なくとも何れか一方を上記光軸方向に移動可能に支持することを特徴とする。
請求項23に記載の発明によれば、低価格化を図ることができる。
請求項24に記載の発明は、請求項21に記載の発明に於いて、上記弾性支持部材は、上記発光素子及び第2の光学素子の少なくとも何れか一方を光軸方向に移動させるその固定部を基準として、所定の第1の方向と光軸に直交する方向に延在していることを特徴とする。
請求項24に記載の発明によれば、精度を高め、高性能化を図ることができる。
請求項25に記載の発明は、請求項21に記載の発明に於いて、上記弾性支持部材は、上記発光素子及び第2の光学素子の少なくとも何れか一方を光軸方向に移動させて、上記発光素子から照射される光の大きさの第1の方向の寸法を変化させることを特徴とする。
請求項25に記載の発明によれば、よりよく効果を享受することができる。
請求項26に記載の発明は、請求項25に記載の発明に於いて、上記発光素子から照射される光の大きさの所定の第1の方向の寸法をA、該所定の第1の方向と直交する第2の方向の寸法をBとすると、B≧A×3であることを特徴とする。
請求項16に記載の発明によれば、よりよく効果を享受することができる。
請求項27に記載の発明は、請求項21乃至26の何れか1項に記載の発明に於いて、上記第1の光学素子は、上記発光素子から照射される光を上記第1の方向と、該第1の方向に直交する第2の方向に移動可能に支持され、上記光の走査は、上記第1の方向への移動により行い、上記第2の方向に関する走査する位置の変更を上記第2の方向への移動により行うことを特徴とする。
請求項27に記載の発明によれば、よりよく効果を享受することができる。
請求項28に記載の発明は、請求項27に記載の発明に於いて、上記第1の方向は地面に水平な方向であることを特徴とする。
請求項28に記載の発明によれば、よりよく効果を享受することができる。
請求項29に記載の発明は、請求項21に記載の発明に於いて、上記弾性支持部材は、上記発光素子及び第2の光学素子の少なくとも何れか一方を弾性支持した部位の基本共振周波数が40Hz以上であることを特徴とする。
請求項29に記載の発明によれば、高性能化を図ることができる。
本発明によれば、耐久性、信頼性の高い車両用光スキャン装置を提供することができる。
以下、図面を参照して本発明の実施形態を説明する。
(第1の実施形態)
図1乃至図17は本発明の第1の実施形態を示すもので、図1は車両用光スキャン装置の斜視図、図2は図1と反対側から見た車両用光スキャン装置の斜視図、図3はレーザダイオードのレーザ光の光軸上Y−Z平面で切った車両用光スキャン装置の断面斜視図、図4は位置検出用発光ダイオードの光の光軸上Y−Z平面で切った車両用光スキャン装置の断面斜視図、図5はレーザダイオードのレーザ光の光軸上Z−X平面で切った車両用光スキャン装置の断面斜視図、図6は車両用光スキャン装置全体の一部分解斜視図、図7はヨークに固定されたレンズ部分の分解斜視図、図8は車両用光スキャン装置を構成する2軸アクチュエータのヨークを外した分解斜視図、図9は図8で外したヨークを除いた2軸アクチュエータの斜視図、図10は図9の2軸アクチュエータより、更にレンズホルダ部組を外した分解斜視図、図11はレンズホルダ部組の分解斜視図、図12は車両用光スキャン装置を構成するレーザ部組の斜視図、図13及び図14はレーザ部組の分解斜視図、図15は本車両用光スキャン装置の使用例の説明図、図16及び17は使用例の動作を説明するための図である。
図1に示されるように、本実施形態の車両用光スキャン装置25は、その本体となるベース30に、バネ受け31と、ヨーク32及び33とから成る2軸アクチュエータ125と、レンズ36を有したホルダ37等が搭載されて構成されている。
先ず、図5及び図11を参照して、レンズホルダ部組60の構成について説明する。
ガラス繊維入りのポリフェニレンサルファイド樹脂で製作されたレンズホルダ61の中央部には、開口62が形成されており、この開口62に設けられた段状部に、レンズ34が接着固定されている。
図11に於いて、上記レンズホルダ61の開口62の上下(Y軸)方向及び左側の端部には、複数の凸部63a〜63cが形成されている。このうち、凸部63a、63bは、銅クラッドアルミ線で巻線された空芯コイルのエレベーションコイル81a、81bの内側の開口部が嵌挿されて接着固定されている。同様に、上記凸部63cには、銅クラッドアルミ線で巻線された空芯コイルのアジマスコイル80の内側の開口部が嵌挿されて、接着固定されている。
更に、上記凸部63a及び63bの左右両側には、それぞれ後述するワイヤバネ108a〜108e、108f〜108j、108k〜108o、108p〜108tを通すための開口64a、64b、64c、64dが、それぞれ設けられている。また、開口62の周囲には、基板70を介してホルダ85を装着するための、円形断面を有する複数の柱部65a〜65dが設けられている。そして、図11に於いて、レンズホルダ61の右側、すなわち凸部63a〜63cが設けられていない側には、図5に示されるように溝140が設けられており、そこに真鍮製のバランサ67が接着固定されている。これは、X軸方向の一方側に配されたアジマスコイル80により、X軸方向の重心がずれるので、このバランサ67によりバランスを取っている。したがって、レンズホルダ部組60の重心は、X軸方向に於いてエレベーションコイル81a、81bの中心位置となるようにされている。
上記レンズホルダ61には、基板70も接着固定されている。レンズホルダ61に設けられている複数の柱部65a〜65dに、上記基板70に形成された穴72a〜72dが挿入されることにより、位置決めされている。但し、柱部65a〜65dと穴72a〜72dの全て大きさ、間隔を一致させるのは公差があり困難である。そこで、穴72cは柱部65cより僅かに大きな直径を有し、穴72bは穴72c、72bを結ぶ方向に平行な直線部を有する長穴とし、直線部の距離は柱部65bより僅かに大きくされ、この2箇所でX軸、Y軸方向に、基板70がレンズホルダ61に対して位置決めされている。
穴72a、72dは柱部65a、65dより大きくされ、位置決めに支障がないようになっている。柱部65a、65dは位置決めには関与しないが、穴72a、72dへの挿入部で接着固定され、レンズホルダ部組60の剛性を高める役割を持たせている。柱部65b、65cと、穴72b、72cも、同様に接着固定されている。基板70の中央部には、レンズ34を避けるために、開口71が設けられている。
上記基板70には、また、後述するワイヤバネ108a〜108e、108f〜108j、108k〜108o、108p〜108tを通すための複数の穴73a〜73e、73f〜73j、73k〜73o、73p〜73tが、それぞれ設けられている。更に、基板70には、発光ダイオード(LED)76a、76b及びサーミスタ77が半田付けによって固定されている。発光ダイオード76a、76bは、基板70に形成された開口74a、74bに発光部分が露出する状態で、基板70のレンズホルダ61側に固定されている。これら発光ダイオード76a、76bから照射された光は、図11に於いてホルダ85側に射出される。
また、サーミスタ77は、基板70のレンズホルダ61側に固定されている。図9に示されるように、レンズホルダ61の対応する部分に開口110が設けられており、サーミスタ77はレンズホルダ61周辺の温度を検出するようになっている。尚、図示されていないが、アジマスコイル80、エレベーションコイル81a、81の端末は、基板70に半田付けされている。
図11に於いて、基板70のレンズホルダ61と反対側には、カーボン繊維入りの液晶ポリマで製作されているホルダ85が接着固定されている。これらのレンズホルダ61及びホルダ85、基板70等から成る部組をレンズホルダ部組60と称する。ホルダ85の中央部には開口86が形成されており、更にこの開口86の周囲には複数の穴87a〜87dが設けられている。これらの穴87a〜87dは、レンズホルダ61に形成された柱部65a〜65dに通されている。穴87a〜87dと柱部65a〜65dの関係は、基板70の穴72a〜72dとの関係と同様で、この部分で、ホルダ85はレンズホルダ61に位置決めされている。レンズ34及び基板70は、レンズホルダ61に接着固定されるだけでなく、レンズホルダ61とホルダ85に挟まれる形態となり、より強固に固定される。
また、レンズホルダ61、ホルダ85、基板70とZ軸方向に距離をおいてX−Y平面に広がる面状の構造物が重なることで、レンズホルダ部組60の剛性を軽量ながら高めることができる。
ホルダ85には、基板70の発光ダイオード76a、76bに対応する位置に、スリット87a、87bが設けられており、それぞれの光を通すようになっている。スリット87a、87bの長手方向は、スリット87aはY軸方向に、スリット87bはX軸方向となっている。
ホルダ85の外縁部には、X軸方向にアジマス用凸部88a〜88dと、Y軸方向にエレベーション用凸部89a〜89dが形成されている。これらは、後述するヨークと共同して、レンズホルダ部組60の移動量ストッパを形成している。
次に、図2乃至図5及び図10を参照して、バネ受け部組41について説明する。
図4に示されるように、ガラス入りのポリフェニレンサルファイド樹脂で製作されたバネ受け31の穴部150aに、レンズ155、156が、そして穴部150bにレンズ157、158が、それぞれ接着固定されている。
図5、図10に示されるように、磁石92a、93a、93bが接着固定されたヨーク32も、バネ受け31に固定されている。ヨーク32は、図2に示されるネジ170a〜170dにより、間にバネ受け31を挟みこむ状態でネジ止めされている。ネジ170a〜170dは、ヨーク32のネジ穴95a〜95dにねじ込まれる形態となっている。ヨーク32は、ヨーク32に設けられた切り欠き99と穴100と、バネ受け31の凸部142a、142bによって位置決めされている。
ヨーク32を固定するときに、ヨーク32とバネ受け31に挟まれる形態で、ポリフェニレンサルファイド樹脂で製作されたフード101a、101bも固定されている。
バネ受け31には、図2に示されるように、基板171、175も、ネジ181a、181bによってネジ止めされている。ネジ181a、181bは、ヨーク32のネジ穴96a、96bにねじ込まれる形態となっている。雌ネジ部をバネ受け31に設けても良いが、バネ受け31は樹脂製のため、雌ネジ部の耐久性等、長期にわたる信頼性が金属に比べ劣ってしまう。金属性の雌ネジ部材をインサート成型等によって埋め込むという方法もあるが、バネ受けが高価になってしまう。
そこで、本実施形態のように、磁気回路を形成するために金属でなくてはならないヨークを利用することにより、安価に信頼性の高い構造とすることができる。基板171、175は、各々に設けられた穴172a、172b及び176a、176bと、バネ受け31の凸部173a、173b及び177a、177bで位置決めされている。
以上、バネ受け31及びヨーク32、基板171、175等から成る部組をバネ受け部組41と称される。
図10、図11に示されるように、基板70には、複数の穴73a〜73tが設けられている。これらの穴73a〜73tには、20本のベリリウム銅製(金属製)のワイヤバネ108a〜108tが挿入され、端部が半田付けされている(但し、半田は図示されていない)。半田付け作業は、レンズホルダ61に形成された開口64a〜64dより行われる。これにより、レンズホルダ部組60が完成してから、ワイヤバネ108a〜108tの半田付けを行うことができる。
ワイヤバネ108a〜108tは、基板70を介して、アジマスコイル80、エレベーションコイル81a、81b、発光ダイオード76a、76b、サーミスタ77と接続されている。エレベーションコイル81a、81bは基板70で直列接続されており、発光ダイオード76a、76bのカソードは2つまとめて共通に配線されるので、基板70から外部への配線は9本となる。
ワイヤバネ108a〜108tは20本存在するので、各配線に対しワイヤバネを2本ずつ対応させ、2本のワイヤバネを並列接続する形式としてワイヤバネの抵抗値を低くしている。また、2本×9=18本で2本余るが、電流値が大きいアジマスコイル80はワイヤバネ3本で配線し、更に、抵抗値が低くなるようにしている。ワイヤバネ108a〜108tのレンズホルダ部組60に半田付けした反対側は、ヨーク32の穴94a〜94dを通し、バネ受け31の穴105a〜105dに挿入されている。
ここで、バネ受け31の穴105a〜105dの内部を、穴105dで代表して、図4を参照して説明する。
穴105dは、基板175側に斜面152aが設けられて、細い形状となる。図示されていないが、更に基板175側でワイヤバネ108p〜108tより僅かに大きい径を有する細い5つの穴となっている。穴152b、105dの部分は、5本のワイヤバネ108p〜108tが挿入されているが、穴152b、105dは5本で1つとなっている。穴152bには、紫外線硬化形のシリコンゲルが充填されている。この充填は、バネ受け31が切り欠かれ、ヨーク32との間に形成された隙間152cから行われる。
尚、穴105c、105dの充填は、これらの隙間から行われるが、穴105a、105b側にはバネ受け31の切り欠き部がないので、穴105bでは、バネ受け31に設けられた穴152dから充填が行われる。穴105aについても、同様に穴が設けられている。
充填作業は、Z+側を上にして行われ、シリコンゲルは斜面152aで、穴152bに誘導される。そして、穴152bがいっぱいになって、斜面152aにはみ出てきたところで作業は終わりとなる。このとき、正確には、図示されていない穴152bの基板175側の細い5つの穴にもシリコンゲルが流れていくが、シリコンゲルは硬化前でも粘度が高く、狭い隙間には流れにくい。
そこで、手早く作業を行い、紫外線により硬化させることで、穴152bの基板175側の細い5つの穴へのシリコンゲルの流れ込みを防ぐことができる。このシリコンゲルにより、ワイヤバネ108a〜108jの振動のダンピングが取られている。ワイヤバネ108p〜108tは、図2に示されるように、Z軸の−側方向にバネ受け31より突出し、基板171、175の穴180p〜180tに挿入され、半田付けされている。基板171、175は、図2には示されない制御基板45に接続されている。
アジマスコイル80、エレベーションコイル81a、81b、発光ダイオード76a、76b、サーミスタ77は、ワイヤバネ108p〜108tを介して、制御基板45に接続されていることになる。レンズホルダ部組60は、ワイヤバネ108p〜108tによりX軸方向及びY軸方向に移動可能に支持されていることになる。ここで、レンズホルダ部組60を単純にX軸方向及びY軸方向に移動可能に支持するだけであれば、ワイヤバネは4本で十分である。本実施形態で20本となっているのは、上述したように、アジマスコイル80、エレベーションコイル81a、81b、発光ダイオード76a、76b、サーミスタ77の配線をするためである。更に、ワイヤバネ2本並列として、抵抗値を下げるために本数が多くなっている。
次に、図8に示されるように、磁石92b、93c、93dが接着された鉄製のヨーク33が、図7に示されるように、Z軸の+側方向からレンズホルダ部組60を覆うような形態で、バネ受け部組41に固定される。
また、図示されていないが、バネ受け31のベース30側の面には、X軸方向に離れた凸部が2つ設けられており、その間にヨーク33のベース30側の折り曲げ部114aが入る形態で位置決めされる。ヨーク33は、磁石92b、93c、93dの吸引力だけでもヨーク32に吸着されるが、振動等で外れることがないように、図8に示されるように、ネジ120a、120bによって、バネ受け31にネジ止めされている。ネジ120a、120bは、バネ受け31に設けられた穴に挿入され、ヨーク33に形成されたネジ穴117a、117bに締め付けられている。
ヨーク33には、また、折り曲げ部115a〜115dが設けられている。レンズホルダ部組60のX軸方向の動きをアジマス方向の動きと称する。アジマス方向に大きく移動したとき、ホルダ85に設けられたアジマス用凸部88a〜88dが、折り曲げ部115a〜115dと衝突する。それ以上はレンズホルダ部組60が移動できず、これらが、アジマス方向のストッパとなっている。
一方、レンズホルダ部組60のY軸方向の動きをエレベーション方向の動きと称する。エレベーション方向に大きく移動したとき、ホルダ85に設けられたエレベーション用凸部89a〜89dが折り曲げ部114a、114bと衝突する。それ以上はレンズホルダ部組60が移動できず、これらがエレベーション方向のストッパとなっている。
ヨーク33のアジマス方向のストッパ部分は、ストッパとしての役割のみを持つ折り曲げ部115a〜115であったが、エレベーション方向では、ヨーク32の折り曲げ部114a、114bは、ストッパとバネ受け部組41に固定するための構造部を兼ねている。
以上のように構成されたレンズホルダ部組60を移動可能にバネ受け部組41に支持し、移動させるための駆動手段として、磁石92a、92b、93a〜93d等を備えた部組を、2軸アクチュエータ125と称する。
図4、図6に示されるように、バネ受け部組41には、基板56が、ネジ57a、57bによってネジ止めされている。ネジ57a、57bは、ヨーク32のネジ穴98a、98b(ネジ穴98aは陰になっているため図示されない)にねじ込まれている。基板56には、光の重心位置により出力電流が変化するポジションセンサ153a、153bが半田付けされている。図示されていないが、基板56は電線を介して制御基板45に接続されており、ポジションセンサ153a、153bは制御基板45に接続されている。
図4で明らかなように、発光ダイオード76aからの光は、スリット87aを通り、レンズ156、155を経て、ポジションセンサ153aに入射する。ポジションセンサ153aは、1方向の位置を検出する1次元のセンサであり、X軸方向の動きを検出するため、内部の長方形状の検出素子は長手方向がX軸方向となるように取り付けられている。
スリット87aからの光は、レンズホルダ部組60がアジマス方向に移動するとX軸方向に移動するが、レンズ156、155は、このX軸方向の移動量が小さくなるように縮小する役割を有している。Y軸方向については、レンズ作用は有していない。レンズホルダ部組60のアジマス方向の移動量は大きく、スリット87aからの光を直接ポジションセンサ153aに入射させると、検出範囲の長いポジションセンサが必要となる。ポジションセンサの価格は検出範囲の長さが長いほど高く、一般に長さに比例でなく、それ以上の割合で価格が上昇する。
レンズ156、155によって、移動量を小さくすることで、安価な検出範囲の短いポジションセンサを使用することが可能となる。
上述したように、検出範囲が長くなると価格は大きく上昇するので、レンズ156、155や固定部分を作成する費用が追加となっても、移動量を縮小する光学系を使ったほうが、低価格となる。発光ダイオード76bからの光は、スリット87bを通り、レンズ158、157を経てポジションセンサ153bに入射する。ポジションセンサ153bは、Y軸方向の動きを検出するため、内部の長方形状の検出素子は長手方向がY軸方向となるように取り付けられている。スリット87bからの光は、レンズホルダ部組60がエレベーション方向に移動するとY軸方向に移動し、ポジションセンサ153bで位置が検出される。
一方、レンズホルダ部組60がアジマス方向に移動すると、スリット87bからの光は、ポジションセンサ153bでX軸方向に移動する。ポジションセンサ153b内の検出素子は、X軸方向の長さは短い長方形状で、X軸方向に大きく動くと光が検出素子から外れ、位置が検出できなくなってしまう。
これを防ぐには、スリット87bのX軸方向の長さを長くすれば良いが、発光ダイオード76bからの光はある角度で広がるので、スリット87bのX軸方向の長さを長くすると、発光ダイオード76bとスリット87bの距離を大きくしなくてはならず、レンズホルダ部組60が大型化してしまう。
そこで、レンズ158はスリット87bのX軸方向の位置にかかわらず、X軸方向にポジションセンサ153bの中心付近に集光する役割を有している。これによって、レンズホルダ部組60がアジマス方向に大きく移動しても、ポジションセンサ153bに光が当たるようになっている。Y軸方向については、レンズ作用は有していない。
ところで、このままではスリット87bを通した発光ダイオード76bが広がってしまい、ポジションセンサ153b部分では広がった光が移動するだけで、精度の良い位置検出ができなくなってしまう。そのため、レンズ157でY軸方向に広がった光を集光し、ポジションセンサ153bに適切なサイズのスリット87bの像が投影されるようにされている。レンズ157はY軸方向にのみレンズ作用を持ち、X軸方向についてはレンズ作用を有していない。
尚、レンズ156、158とスリット87a、87bの間にフード101a、101bが取り付けられているが、これらは、発光ダイオード76a、76bの光を、なるべく外に漏らさないようにするためと、逆にレーザダイオード55からの光等、発光ダイオード76a、76b以外の光をポジションセンサ153a、153bに入射させないためである。そのため、光路はバネ受け31に設けられた穴150a、150b、151を通し、外部の遮断も行っている。
また、スリット87a、87bの光が干渉しないように、途中、穴150aと150b、フード101aと101bと2つの光路も別空間としている。レンズホルダ部組60に搭載されるレンズ34を移動させることにより、レーザダイオード55からの光の照射位置を移動させるが、照射位置がレーザダイオード55の光軸に対して傾きが0度の位置になる等の所望の位置となったときに、ポジションセンサ153a、153bの出力が0位置を示す出力となるように、基板56はX−Y平面内での位置調整がなされ、固定されている。このため、基板56に於いてネジ57a、57bが通る部分は、調整代分を見て大きめとなっている。
図1、図3、図5及び図7に示されるように、ヨーク33には、レンズ35が接着されたガラス入りのポリフェニレンサルファイド樹脂で製作されたホルダ135が、ネジ136a、136bによって固定されている。ネジ136a、136bは、ホルダ135に形成された穴を通され、ヨーク33のネジ穴131b、131cにねじ込まれている。ホルダ135には、図5に示されるように、凸部141a、141bが設けられており、ヨーク33の穴132a、132bに嵌挿する形態で位置決めされている。
ヨーク33には、更に、レンズ36が接着されたガラス繊維入りのポリフェニレンサルファイド樹脂で製作されたホルダ37が、ネジ138a、138bによって固定されている。ネジ138a、138bは、ホルダ37及びホルダ135に設けられた穴を通され、ヨーク33のネジ穴131a、131dにねじ込まれている。ホルダ37は、ホルダ135を挟んで、ヨーク33に固定する形態となっている。更に、ホルダ37には、図示されないが凸部が設けられており、ヨーク33の穴133a、133bに嵌挿される形態で位置決めされている。
図2、図3及び図6に示されるように、バネ受け部組41には、レーザ部組50がネジ53a、53bで固定されている。ネジ53a、53bは、カーボン繊維入りのポリフェニレンサルファイド樹脂で製作されたホルダ201に形成された穴を通され、ヨーク32のネジ穴97a、97bにねじ込まれている。
ここで、ホルダ201の穴は大きめとなっており、X−Y平面内で位置調整可能である。つまり、レンズ34を所定の位置にしたときに、レーザダイオード55から照射された光が、Z軸方向に曲がらずに直進するように調整してネジ止めされる。
次に、レーザ部組50について詳細に説明する。
図3、図13及び図14に示されるように、レーザダイオード55は、ガラス繊維入りのポリフェニレンサルファイド樹脂で製作されたホルダ(変化手段、支持部材)51に形成された穴212に軽圧入された上で接着固定されている。レーザダイオード55は、垂直拡がり角の方向がX軸方向となるように固定されている。そして、Z軸方向に於いて、上記穴212の先(レンズ34側)には、レーザ光を通すための穴213が形成されている。ホルダ51には基板54も固定されており、レーザダイオード55が接続されている。尚、基板54は、ここでは模式化して外形が示されているだけであるが、実際は基板とその上に装着される部品から成っている。
ホルダ51には、ガラス繊維入りのポリフェニレンサルファイド樹脂で製作されたホルダ218が接着固定されている。このホルダ218の内部には、発光ダイオード217が固定されている。また、図3に於いて、ホルダ218のY軸方向下側には、発光ダイオード217からの光が通るスリット223が形成されている。このスリット223は、X軸方向に縦長の形状となっている。
前記ホルダ51には、フランジ部214a〜214cが形成されており、フランジ部214bとフランジ部214cの間にはコイル215が巻回されている。尚、ホルダ51は、コイル215が巻回された後に固定される。更に、フランジ部214a、214cには、弾性支持部材であるステンレス製の板バネ233a、233bの端が、各々接着固定されている。
前記コイル215、発光ダイオード217の配線は、2軸アクチュエータ125とは異なり、バネではなく、レーザダイオード55とまとめて、基板54から図示されないフレキシブル基板によって行われる。板バネ233a、233bは、その長手方向がY軸方向とされ、他端は、ガラス繊維入りのポリフェニレンサルファイド樹脂で製作されたホルダ201の立ち上げ部202に接着固定されている。尚、信頼性を高めるために、接着でなく超音波溶着等の方法により板バネ233a、233bを固定してもよい。
図3に示されるように、板バネ233a、233bを立ち上げ部202への固定した部分で形成される隅に、板バネ233a、233bと立ち上げ部202を両者にブリッジするような形式でシリコンゲル231が塗布される。このシリコンゲル231は、流出することがないように、2軸アクチュエータ125で使用したものより硬めのものが用いられる。このシリコンゲル231によって、板バネ233a、233bのダンピングが取られる。
図3及び図12に示されるように、ホルダ51は、ホルダ201に、板バネ233a、233bによって、Z軸方向に移動可能に支持されていることになる。2軸アクチュエータ125のように、ワイヤバネではなく板バネで支持されているので、Z軸方向以外のX軸方向には移動しないようになっている。この板バネ233a、233bによって、弾性支持された部位の基本共振周波数は、例えば40Hzとなるように、板バネ233a、233bの幅及び厚さが選択されている。
ホルダ201の凹部236には鉄製のヨーク206が嵌挿され、接着固定されている。図3及び図5に示されるように、レーザ部組50がバネ受け部組41に固定された状態では、ヨーク206は、バネ受け31とホルダ201に挟まれた形となるため、接着が万が一取れたとしても脱落することはない。
ヨーク206の折り曲げ部240a、240bには、磁石211a、211bが接着されている。また、ヨーク206の折り曲げ部242には、ポジションセンサ219が取り付けられた基板220が、ネジ221によって止められている。ヨーク206は、磁石211a、211b及び前記基板220が固定された状態で、ホルダ201、ホルダ51と板バネ233a、233bが接着された後に、ホルダ201に固定される。このとき、磁石211a、211b及びヨーク206の折り曲げ部240a、240bは、ホルダ201に形成された穴235a、235bを通す形状で組み立てられる。
ヨーク206の折り曲げ部240bには、レーザ部組50をバネ受け部組41に固定する際のネジ53bの頭の部分を避けるための穴241が形成されている。また、ヨーク206には、レーザダイオード55の光を通すための穴208も形成されており、ホルダ201にも同様に、穴205が形成されている。
ポジションセンサ219は、図3に示されるように、スリット223と対向する位置関係にあり、発光ダイオード217からの光がスリット223を通して入射するようになっている。基板220は、ホルダ51が所定の位置にあるときに、ポジションセンサ219の出力が0位置にあるときの出力になるように位置調整されている。この調整は、レーザ部組50をバネ受け部組41に固定する前に行われる。
図3及び図5に示されるように、レーザダイオード55から発射されたレーザ光は、レンズ34、35、36を通り、外部へ照射される。尚、レーザダイオード55の波長は870nmと赤外線であり、実際にはその光を目視することはできない。
図6に於いて、ヨーク33の下側方向には、アルミダイカスト製のベース30が固定されている。ヨーク33とベース30は、該ベース30に形成された凸部30a、30bが、図8に示されるヨーク33の切り欠き122と穴123に嵌挿される形態で位置決めされる。
また、ヨーク33は、Z軸方向に、ベース30に設けられた3点の台座42a〜42cで接するようにされ、ベース30の精度を、これらの台座42a〜42c部分のみ出せばよいようにされている。更に、ヨーク33は、そのネジ穴118a〜118cにベース30の穴を介して、ネジ43a〜43cをねじ込むことによって、ベース30に固定されている。
ベース30の内部には、制御基板45がネジ46a〜46dによって固定されている。このとき、制御基板45の発熱の大きい電気素子は、熱伝導性の良いゲル状シートを介してベース30に接するようにされ、ベース30に放熱するようにされている。尚、ベース30には、本装置を取り付けるための穴44a〜44dが設けられている。
次に、以上のように構成された第1の実施形態の車両用光スキャン装置の動作について説明する。
図15は、本発明の第1の実施形態の車両用光スキャン装置を備えた車載用測距装置を簡略に示した図である。
同図に於いて、レーザダイオード55より出射されたレーザ光は、ワイヤバネ(ここでは代表的に108として記す)108に支持されたレンズホルダ61のレンズ34が、図示矢印250のように左右方向に移動されることにより、図示矢印251のように左右方向に振られる。更に、光はレンズ35、36によって振れ幅が図示矢印252のように拡大されて、照射される。照射された光253が障害物(対象物)254に当たって反射した光255は、受光レンズ256を介してフォトデイテクタ257に至り、図示されない電気回路により障害物254までの距離が計算される。尚、実際には、レンズ34は左右方向だけでなく、上下方向にも振られ、光も上下方向にも振られる。
ここで、照射されるレーザ光の形状について説明する。
レーザ光の形状260は、障害物254の所定位置263に当たったレーザ光を、図示矢印264の方向から見たものである(但し、大きさは説明のために拡大している)。すなわち、寸法261はX軸方向寸法、寸法262はY軸方向寸法となる。照射されるレーザ光の形状は、図示260のようにY軸方向を長手方向とした長方形形状であり、例えば、寸法261は角度で表すと0.3度、寸法262は1.5度となっている。この場合、レーザ光の形状260に於ける寸法の関係は、Y軸方向がX軸方向の5倍となっている。
ここで、ホルダ51に固定されたレーザダイオード55を、図示矢印258のようにZ軸方向に移動させることで、照射されるレーザ光の寸法261を0.1〜0.5度の範囲で変化させることができる。このとき、寸法262も多少変化するが、±0.1度程度の変化であり、寸法262は元が1.5度と大きいため、実質的には変化なしと見ることができる。
次に、レンズ34を上下左右方向に移動させる仕組みについて、更に詳細に説明する。
図5に示されるように、アジマスコイル80は、ヨーク32に固定された磁石92aとヨーク33に固定された磁石92bに挟まれている。磁石92a、92bの極性は、図5に示される通りである。尚、磁極の境は分かりやすいように破線で示している。実際の磁石で境の部分は、幅0.2〜0.4mmの磁極の無いニュートラル領域となる。
アジマスコイル80の辺143a、143bには、図示矢印144a、144bの向きの磁界が及ぶ。図示矢印144aのように磁石92aから出た磁束は、磁石92bに入り、ヨーク33内を図示矢印145bのように進む。そして、再び磁石92bに入り、図示矢印144bのように磁石92bから出て、磁石92aに至る。更に、ヨーク32内を図示矢印145aのように進んで、磁石92aの元の部分に戻る。
アジマスコイル80の辺143a、143bに流れる電流の向きは逆であり、及ぶ磁界の向き144a、144bも逆であるので、発生する力の向きは同じである。力の向きは、電流の向きと磁界の向きに垂直なX軸方向となる。アジマスコイル80の残りの辺には、Y軸方向の力が発生するが、図示矢印144aと矢印144bの磁界から受ける力の向きが逆向きとなりキャンセルするので、Y軸方向に動くことはない。
以上のように、アジマスコイル80に電流を流すことで、レンズホルダ部組60及びそれに取り付けられたレンズ34をアジマス方向(X軸方向)に移動させることができる。
尚、エレベーションコイル81a、81bについては、Y軸方向の力が発生するように力を発生する辺の方向が90度変わり、磁石93a〜93dの磁石の磁極もこれに対応して90度変わっただけで基本は同一である。エレベーションコイル81a、81bで発生するY軸方向の力が同じ向きになるように直列接続される。これにより、エレベーションコイル81a、81bに電流を流すことで、レンズホルダ部組60及びそれに取り付けられたレンズ34をエレベーション方向(Y軸方向)に移動させることができる。
レンズホルダ部組60の位置は、上述したように、該レンズホルダ部組60に形成されたスリット87a、87bを通った光をポジションセンサ153a、153bで受光して行われる。そして、その位置情報を基にして、レンズホルダ部組60の移動が行われる。
次に、レーザダイオード55を固定したホルダ51をZ軸方向に移動させる仕組みについて、詳細に説明する。
図5に示されるように、コイル215は、ヨーク206に固定された磁石211aと211bに挟まれている。磁石211a、211bの極性は、図5に示される通りであり、N極同士が向かい合う同極対向となっている。コイル215の辺227a、227bには、図示矢印228a、228bの向きの磁界が及ぶ。
図示矢印228aのように、磁石211aから出た磁束は、対向する磁石211bも同極なので、図示矢印229aや229bのようにZ軸方向に広がり、ヨーク206に入る。そして、ヨーク206を通って、再び磁石211aに戻る。磁石211bについても同様に、図示矢印228bのように出た磁束は、矢印229cや229dのようにヨーク206に向かい、磁石211bに戻る。
コイル215の辺227a、227bに流れる電流の向きは逆であり、及ぶ磁界の向き228a、228bも逆であるので、発生する力の向きは同じである。また、力の向きは、電流の向きと磁界の向きに垂直なZ軸方向となる。
コイル215の残りの辺には、図示矢印228a、228bのように、磁石211a、211bから出た磁束の一部が戻る際に横切る。この横切る向きは、コイル215の内側から外向きとなり、力の働く方向はZ軸方向であるが、上記辺227a、227bに働く力の向きと逆になる。しかし、図示矢印228a、228bのように磁石211a、211bから出た磁束の大部分はZ軸方向に広がり、コイル215を横切ることなく磁石211a、211bに戻る。したがって、コイル215の辺227a、227b以外を横切る磁束は小さく、力の大きさも小さく、Z軸方向の駆動には支障はない。
尚、磁石211a、211bから出た磁束の大部分がZ軸方向に広がるように、ヨーク206の折り曲げ部240a、240bのZ軸方向寸法が磁石211a、211bのZ軸方向寸法より大きくされている。また、コイル215の辺227a、227b以外を横切って戻る磁束を小さくするため、ヨーク206のY軸方向寸法は、磁石211a、211bと同じとし、大きくしていない。
以上のように、コイル215に電流を流すことで、ホルダ51及びそれに取り付けられたレーザダイオード55を光軸方向(Z軸方向)に移動させることができる。ホルダ51の位置は、発光ダイオード217を備えたホルダ218のスリット223を通った光を、ポジションセンサ219で受光して行われ、その位置情報を基にしてホルダ51の移動が行われる。
本装置を車両に搭載する際には、X軸方向が地面に対して水平方向、Y軸方向が地面に対して垂直方向になるように搭載する。発光ダイオード55から照射されるビームは、X軸方向が狭く、Y軸方向が広い縦長形状となる。そして、このとき、主たる光の走査は、地面に対して水平なX軸方向に行われる。
ここで、図16を参照して、本第1の実施形態に於ける車両用光スキャン装置のレーザ照射について説明する。
レンズ34の光軸をレーザダイオード55の光軸と一致させたとき、光は曲がらずに、中心にレーザ光260が照射される。レンズ34をX軸の−側方向(図16に於いて左側)に大きく、Y軸の−側方向(図16に於いて下側)には少しシフトさせ、光267を照射する。Y軸方向の位置は変えずに、レンズ34をX軸の+側方向(図16に於いて右側)に移動させることにより、図示矢印271のように光を図示268の位置まで走査する。次に、レンズ34をX軸の−側方向(図16に於いて左側)に大きく、Y軸の+側方向(図16に於いて上側)には少しシフトさせ、光269を照射する。
尚、光268から269への移動の間は、レーザダイオード55を発光させず、光は照射されない。光269の位置からY軸方向の位置は変えずに、レンズ34をX軸の+側方向(図16に於いて右側)に移動させることにより、図示矢印272のように、光を270の位置まで走査する。そして、光が270に到達したら、レンズ34を再び光267を照射する位置に移動させる。光270から267への移動の間は、レーザダイオード55を発光させず、光は照射されない。このようにして、光を267より268、269より270へY軸方向の位置をずらした形でX軸方向に2回走査する。この1組を1回として、1秒間に10回繰り返す。
尚、ここではX軸方向の2回の走査を1組としたが、場合によってはY軸方向の位置を変え、3回を1組としても良く、逆にY軸方向の位置は変えずに走査しても良い。また、1秒間に繰り返す回数も10回に限らず、求める検出性能によって、回数は増減しても良い。光の走査はX軸方向に行って、障害物の検出を行う。Y軸方向の動作は、X軸方向の走査位置をずらすためであり、Y軸方向に光を走査して障害物を検出するような動作は行わない。
Y軸方向には275の範囲のように更に広く移動可能であるが、地面に水平なX軸方向は障害物検出のために広く走査する必要があるが、地面に垂直なY軸方向は、車両が進んで行くことでもY軸方向に見る位置を変える効果があり、必要以上に広い範囲を見なくてよい。広い範囲に移動可能になっているのは、例えば、車両の速度が変わった場合に、走査範囲の距離(車両からどの程度先を見るか)を変える等に、276から277のように、先の1組で光を走査するY軸方向の位置をオフセットさせるためである。277の範囲内の光の走査方法は、176と同じである。
ところで、光を走査した結果、278付近に障害物が発見されたとする。このとき、光を279の位置に移動すると同時に、ホルダ51をZ軸方向に移動させることにより、光のX軸方向寸法を0.3度より0.1度へ小さくする。X軸方向寸法が0.1度となった光279を280まで、図示矢印283のように走査する。
次に、X軸方向寸法が0.1度のままで、光281から282まで図示矢印284のように走査する。そして、図示276と同様にこれを何回か繰り返す。光のX軸方向寸法が小さくなっていることにより分解能が高くなり、これにより、図示285の範囲を、より精密に走査し、障害物の種類等を、より精度良く知ることができる。
本実施形態によれば、照射する光の大きさを変化させるために、移動させるレーザダイオード55を取り付けたホルダ51を、板バネ233a、233bによって支持し、ホルダ201に固定している。板バネ233a、233bは摺動部を持たないため、磨耗することなく、長期に渡って初期と同等の性能を確保することができ、耐久性を向上し、信頼性を高めることができる。
板バネは塑性変形や金属疲労によって機能を失うことがあるが、設計時に板バネの撓みによる応力を限界値より小さく設計することで防止することができ、信頼性を損なうことはない。金属の板バネでは、このような計算を正確に行うことができ、より信頼性を高めることができる。
また、板バネ233a、233bでホルダ51を弾性支持した部位の基本共振周波数は、例えば40Hzとなっている。上述した光の走査は、1秒間に10〜30回行われる。テレビカメラが1秒間に30フレームであるので、それに合わせて、通常30回を超えては行われない。このとき、ホルダ51を弾性支持した部位の基本共振周波数を、例えば10Hz以上離しておけば、光の走査の振動で板バネ233a、233bの共振が励起されず、高性能な装置とすることができる。基本共振周波数を高くすると、変位させるときに電流が多く必要となるが、変位量が小さいので問題はない。
本実施形態では、板バネ233a、233bの長手方向をY軸方向としている。板バネ233a、2335bの固定部であるホルダ201の立ち上げ部202から、板バネ233a、233bはY軸方向に延在している形となっている。
また、図17に示されるように、板バネ233が撓んで、破線で示される233′の位置に移動すると、ホルダ51がZ方向に移動すると共にY軸方向にも移動し、図示294の位置になる。尚、Y軸方向への移動量は、板バネ233の長さによって決まるもので、図17では誇張して表しているが、実際はZ軸方向への移動量に対して、僅かな比率で移動する。これにより、レーザダイオード55の光軸291は292へ移動し、Y軸方向にずれ量293だけずれることになる。このずれ量に対応して、照射される光の位置にずれが生じる。
ところで、板バネの方向がX軸方向であった場合、レーザダイオード55をZ軸方向に移動させ、照射する光の大きさを変更すると、照射される光のX軸方向の位置がずれてしまう。上述したように、ずれ量293は僅かであるが、X軸方向については光を走査する方向であり、X軸方向の位置を基準として検出した障害物までの演算を行うため、誤差が生じ、低性能な装置となってしまう。特に、障害物を検出したときにX軸方向の光の大きさを小さくし、X軸方向の分解能を上げようとしたときに、X軸方向に位置ずれが生じ、X軸方向の誤差が大きくなってしまうので、分解能を上げて精密に検出しようという効果を十分に得ることができない。
本実施形態では、板バネ233a、233bの長手方向を走査方向のX軸方向でなく、直交するY軸方向としているので、そのような不都合が生じず、精度の高い高性能な装置とすることができる。Y軸方向についてはずれが生じるが、Y軸方向は走査方向でないため、高い精度は求められず、僅かなずれ量293は問題とはならない。
また、本実施形態の装置では、光をX軸方向とY軸方向の両方に移動させることができるが、上述したように、Y軸方向には光を走査しない。光の移動可能な方向ではなく、走査方向に関して直交する方向に板バネの長手方向を合わせれば良い。
ここで、本実施形態では照射される光の大きさのX軸方向を変化させているが、X軸方向、Y軸方向同時に変化させるような場合であっても良く、Y軸方向のみを変化させるような場合であっても、走査方向の精度を損なわないという効果は得られる。板バネ233a、233bの長手方向を走査方向のX軸方向でなく、直交するY軸方向とすることの効果は、X軸方向の位置精度が高くなることなので、走査方向のX軸方向の分解能が高い方がより大きな効果を得られる。よって、X軸方向のみや、XY両軸方向のように、X軸方向の光の大きさが変化する場合の方が、大きな効果が得られる。
また、照射される光の大きさもX軸方向に分解能が高いような形式の方が大きな効果が得られ、Y軸方向の寸法がX軸方向の寸法の3倍以上であるような形状の方が高い効果が得られる。
尚、本実施形態では、照射される光の大きさのX軸方向のみを変化させているが、レーザダイオード55の垂直広がり角の方向をX軸方向とすることで、特殊な光学素子を用いることなく、レーザダイオード55をZ軸方向に移動させるだけで、主にX軸方向の寸法を変化させることができる。
更に、本実施形態では、X軸方向が地面に対して水平方向となるように設置している。必ずしも、X軸方向を地面に対して水平とする必要はないが、障害物を避けるという観点で、車両の進行方向に対して左右方向となる地面に水平方向に分解能が可変で検出できるのが望ましい。このようにしたときに、本実施形態の効果を、より良く得ることができる。
(第2の実施形態)
次に、本発明の第2の実施形態について説明する。
図18は本発明の第2の実施形態を示すもので、上述した図15に相当する車両用光スキャン装置の使用例を説明するためのもので、(a)は図15と同様にY軸方向から見た概念図、(b)は車両用スキャン装置のみをX軸方向から見た概念図である。
尚、以下に述べる第2の実施形態に於いて、車両用光スキャン装置の基本的な構成及び動作については、上述した第1の実施形態と同じであるので、説明の重複を避けるため、同一の部分には同一の参照番号を付して、その図示及び説明を省略し、異なる部分についてのみ説明する。
本第2の実施形態では、レーザダイオード55よりレンズ34までの部分が、上述した第1の実施形態と異なっている。
上述した第1の実施形態では、レーザダイオード55がZ軸方向に移動可能となっていたが、本第2の実施形態では、レーザダイオード55は固定されている。その代わりに、レーザダイオード55とレンズ34との間に、レンズ296が追加配置されている。レンズ296は、レーザ部組50でレーザダイオード55が、板バネ233に支持されたホルダ51に固定され、Z軸方向に移動可能な構成となっていたのと同様の機構で、Z軸方向に移動可能に固定されている。
レンズ296はホルダ297に固定されており、該ホルダ297はリンク機構305によってバネ受けに固定されたホルダ300に支持されて、Z軸方向に移動可能となっている。リンク機構305の詳細は後述するが、上述した第1の実施形態の板バネと同様、Z軸方向に移動可能に支持する機構である。図18(a)、(b)には示されていないが、レーザ部組50と同様に、駆動のために、コイル、磁石、ヨークより構成される駆動機構が、位置検出のために、発光ダイオード、スリット、ポジションセンサより構成される位置検出機構が設けられている。
ここで、図18(b)を参照して、リンク機構305について説明する。
尚、リンク機構305のX軸方向の形状は、図18(b)に示された形状のまま、X軸方向に延出したような形状となっている。リンク機構305のホルダ297への取り付け部301aからY軸の+側方向(同図に於いて左側)に2つの突出部306a、306bが設けられている。これらの突出部306a、306bは、合成樹脂のポリエステルエラストマにより製作されている。
突出部306a、306bのY軸方向の+側(図18(b)に於いて左側)に細いくびれ部302a、302bが設けられて入る。そして、Y軸方向の+側方向にて、上記くびれ部302a、302bの先は、再び太い部分303a、303bが形成されている。上記部分303a、303bには、インサート成型により、ステンレス製の板状部材304a、304bが固定されている。
板状部材304a、304bのY軸方向の+側方向は、上述したものと対称的な形状となっている。すなわち、板状部材304a、304bが、ポリエステルエラストマにより製作された太い部分303c、303dにインサート成型で固定され、これらの太い部分303c、303dのY軸方向の+側方向に細いくびれ部302c、302dが形成され、更にY軸方向の+側方向に再び太くなった突出部306c、306dが形成されている。そして、突出部306c、306dは取り付け部301bで繋がり、この取り付け部301bの部分でホルダ300に固定されている。
リンク機構305の細いくびれ部302a〜302dが、リンクの回転部分となる。この4箇所のくびれ部302a〜302dによって、リンク機構305は平行リンクとして働き、ホルダ297を傾けることなく、Z軸方向に移動させることができる。レンズ296は、バネ受け31に対し、Z軸方向に移動可能に固定されるもので、上述した第1の実施形態のレーザダイオード55とは異なり、X−Y平面内での位置調整機構は有していない。一方、レーザダイオード55は、Z軸方向に移動可能となっていないが、バネ受け31に固定する際に、X−Y平面内での位置調整は行われる。
この他の構成も、上述した第1の実施形態と同じである。
本第2の実施形態では、レンズ296を移動させることにより、照射される光の大きさを変化させることができる。加えて、第1の実施形態のように、レーザダイオード55を移動させると、余分な光学素子を追加する必要がなく、安価に構成することができる。しかし、一般的にレーザダイオードを駆動するための回路はレーザダイオードの直近に設ける必要があり、第1の実施形態でも基板54を一緒に動かしている。
本第2の実施形態のように、レンズ296を移動させる場合、可動部の質量を小さくしやすく、可動部の応答性を高める等、駆動機構部分の特性を向上させることができる。
また、本第2の実施形態では、リンク機構305によってホルダ297を支持している。一般的なリンク機構は回転部分を有しているが、リンク機構305では回転部分を合成樹脂のくびれ部302a〜302dによって形成し、これらのくびれ部の弾性によって回転させている。このように弾性を用いて支持することで、摺動部をなくすことができ、耐久性を増し、信頼性を向上させることができる。また、合成樹脂を用いることで、支持機構部分を射出成型により簡単に製作でき、安価にすることができる。
尚、第2の実施形態では、平行リンクの腕部分をステンレス製の板状部材304a、304bとしているが、これにより全てを合成樹脂で作製するのに比べ、温度による伸び縮みを抑え、温度による位置変化の少ない高性能な装置とすることができる。
また、本第2の実施形態では、光の大きさを変えるのにレンズを用いたが、その他の方法であっても良い。例えば、ウォラストンプリズムのような偏光で光を分ける偏光子や、プリズム、回折格子であっても良い。また、レンズ1枚でなく、複数のレンズの組み合わせであっても良い。
以上、本発明の実施形態について説明したが、本発明は上述した第1及び第2の実施形態に制限されることなく、本発明の用紙を逸脱しない範囲で種々の変形実施が可能であるのは勿論である。移動させる駆動機構や支持機構も、様々なものが考えられる。
磁石とコイルの配置は、第1及び第2の実施形態では、アジマスコイル、エレベーションコイルは磁石に挟まれる構成となっているが、片側のみに磁石を配し、反対側はヨークのみの構成としても良い。
また、レンズホルダ部組はワイヤバネで支持していたが、ワイヤバネでなく板バネで支持するような構成であっても良い。
光学系についても、上述した構成に限ったことではなく、様々な光学系に適用することができる。また、レンズから出射したレーザ光は、出射したレンズと異なる別のレンズで受光されるとしたが、再び同じレンズで受光し、受光した光を、例えば、光路分割素子で分離して検出するような光学系の光スキャン装置と受光装置を兼ねた装置にも適用が可能である。
更に、上述した実施形態には種々の段階の発明が含まれており、開示される複数の構成要件の適当な組合せにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成も発明として抽出され得る。
本発明の車両用光スキャン装置の第1の実施形態を示すもので、該車両用光スキャン装置の斜視図である。 本発明の車両用光スキャン装置の第1の実施形態を示すもので、図1と反対側から見た車両用光スキャン装置の斜視図である。 本発明の車両用光スキャン装置の第1の実施形態を示すもので、レーザダイオードのレーザ光の光軸上Y−Z平面で切った光学系駆動装置の断面斜視図である。 本発明の車両用光スキャン装置の第1の実施形態を示すもので、位置検出用発光ダイオードの光の光軸上Y−Z平面で切った車両用光スキャン装置の断面斜視図である。 本発明の車両用光スキャン装置の第1の実施形態を示すもので、レーザダイオードのレーザ光の光軸上Z−X平面で切った車両用光スキャン装置の断面斜視図である。 本発明の車両用光スキャン装置の第1の実施形態を示すもので、該車両用光スキャン装置全体の一部分解斜視図である。 本発明の車両用光スキャン装置の第1の実施形態を示すもので、ヨークに固定されたレンズ部分の分解斜視図である。 本発明の車両用光スキャン装置の第1の実施形態を示すもので、車両用光スキャン装置を構成する2軸アクチュエータのヨークを外した分解斜視図である。 本発明の車両用光スキャン装置の第1の実施形態を示すもので、図8で外したヨークを除いた2軸アクチュエータの分解斜視図である。 本発明の車両用光スキャン装置の第1の実施形態を示すもので、図9の2軸アクチュエータより、更にレンズホルダ部組を外した分解斜視図である。 本発明の車両用光スキャン装置の第1の実施形態を示すもので、レンズホルダ部組の分解斜視図である。 本発明の車両用光スキャン装置の第1の実施形態を示すもので、該車両用光スキャン装置を構成するレーザ部組の斜視図である。 本発明の車両用光スキャン装置の第1の実施形態を示すもので、レーザ部組の分解斜視図である。 本発明の車両用光スキャン装置の第1の実施形態を示すもので、レーザ部組の分解斜視図である。 本発明の車両用光スキャン装置の第1の実施形態を示すもので、本車両用光スキャン装置の使用例の説明図である。 本発明の車両用光スキャン装置の第1の実施形態を示すもので、使用例の動作を説明するための図である。 本発明の車両用光スキャン装置の第1の実施形態を示すもので、使用例の動作を説明するための図である。 本発明の車両用光スキャン装置の第2の実施形態を示すもので、図15に相当する車両用光スキャン装置の使用例を説明するためのもので、(a)は図15と同様にY軸方向から見た概念図、(b)は車両用スキャン装置のみをX軸方向から見た概念図である。
符号の説明
25…車両用光スキャン装置、30…ベース、31…バネ受け、32、33、206…ヨーク、34、35、36、155、156、157、158…レンズ、37、51、85、135、201…ホルダ、41…バネ受け部組、50…レーザ部組、54、56、70…基板、55…レーザダイオード、60…レンズホルダ部組、61…レンズホルダ、76a、76b、217…発光ダイオード(LED)、77…サーミスタ、80…アジマスコイル、81a、81b…エレベーションコイル、92a、92b、93a〜93d、211a、211b…磁石、108、108a〜108t…ワイヤバネ、125…2軸アクチュエータ、153a、153b、219…ポジションセンサ、202…立ち上げ部、233、233a、233b…板バネ、240a、240b…折り曲げ部。

Claims (29)

  1. 発光素子と、該発光素子からの光を所定の第1の方向に走査させる第1の光学素子及び光の大きさを変化させる第2の光学素子を有し、上記発光素子及び第2の光学素子の少なくとも何れか一方を光軸方向に移動させて照射する光の大きさを変化させる変化手段とを少なくとも備えた車両用光スキャン装置に於いて、
    上記発光素子及び第2の光学素子の少なくとも何れか一方を上記光軸方向に移動可能に弾性支持した弾性支持部材を具備することを特徴とする車両用光スキャン装置。
  2. 上記弾性支持部材により発光素子及び第2の光学素子の少なくとも何れか一方を弾性支持した部位の基本共振周波数が40Hz以上であることを特徴とする請求項1に記載の車両用光スキャン装置。
  3. 上記弾性支持部材は、金属製の板バネで作製され、上記発光素子及び第2の光学素子の少なくとも何れか一方を上記光軸方向に移動可能に支持することを特徴とする請求項第1項若しくは2に記載の車両用光スキャン装置。
  4. 上記弾性支持部材は合成樹脂製のリンク機構によって構成され、上記発光素子及び第2の光学素子の少なくとも何れか一方を上記光軸方向に移動可能に支持することを特徴とする請求項第1項若しくは2に記載の車両用光スキャン装置。
  5. 上記弾性支持部材は、上記発光素子及び第2の光学素子の少なくとも何れか一方を光軸方向に移動させるその固定部を基準として、上記第1の方向と光軸に直交する方向に延在していることを特徴とする請求項3若しくは4に記載の車両用光スキャン装置。
  6. 上記弾性支持部材は、上記発光素子及び第2の光学素子の少なくとも何れか一方を光軸方向に移動させて、上記発光素子から照射される光の大きさの第1の方向の寸法を変化させることを特徴とする請求項5に記載の車両用光スキャン装置。
  7. 上記発光素子から照射される光の大きさの所定の第1の方向の寸法をA、該所定の第1の方向と直交する第2の方向の寸法をBとすると、B≧A×3であることを特徴とする請求項1乃至6の何れか1項に記載の車両用光スキャン装置。
  8. 上記第1の光学素子は、上記発光素子から照射される光を上記第1の方向と、該第1の方向に直交する第2の方向に移動可能に支持され、上記光の走査は、上記第1の方向への移動により行い、上記第2の方向に関する走査する位置の変更を上記第2の方向への移動により行うことを特徴とする請求項1乃至7の何れか1項に記載の車両用光スキャン装置。
  9. 上記第1の方向は地面に水平な方向であることを特徴とする請求項8項に記載の車両用光スキャン装置。
  10. 第1の光学素子と、該第1の光学素子を備えたホルダと、該ホルダを上記第1の光学素子の光軸に垂直な第1の方向に移動可能に支持する第1の支持手段と、該第1の支持手段を前記第1の光学素子の光軸に垂直な方向に移動させる駆動手段と、発光素子とを少なくとも備え、該発光素子からの光を上記第1の光学素子に通し、該第1の光学素子を移動することによって、光を走査し、照射する車両用光スキャン装置に於いて、
    光の大きさを変化させる第2の光学素子と、
    上記発光素子及び第2の光学素子の少なくとも何れか一方を、上記光軸方向に移動可能に支持する第2の支持部材と、
    を具備することを特徴とする車両用光スキャン装置。
  11. 上記第2の支持部材は、弾性支持部材を有して構成されることを特徴とする請求項10に記載の車両用光スキャン装置。
  12. 上記弾性支持部材は、金属製の板バネで作製され、上記発光素子及び第2の光学素子の少なくとも何れか一方を上記光軸方向に移動可能に支持することを特徴とする請求項11に記載の車両用光スキャン装置。
  13. 上記弾性支持部材は、合成樹脂製のリンク機構によって構成され、上記発光素子及び第2の光学素子の少なくとも何れか一方を上記光軸方向に移動可能に支持することを特徴とする請求項11に記載の車両用光スキャン装置。
  14. 上記弾性支持部材は、上記発光素子及び第2の光学素子の少なくとも何れか一方を光軸方向に移動させるその固定部を基準として、上記第1の方向と光軸に直交する方向に延在していることを特徴とする請求項11に記載の車両用光スキャン装置。
  15. 上記弾性支持部材は、上記発光素子及び第2の光学素子の少なくとも何れか一方を光軸方向に移動させて、上記発光素子から照射される光の大きさの第1の方向の寸法を変化させることを特徴とする請求項11に記載の車両用光スキャン装置。
  16. 上記発光素子から照射される光の大きさの所定の第1の方向の寸法をA、該所定の第1の方向と直交する第2の方向の寸法をBとすると、B≧A×3であることを特徴とする請求項15に記載の車両用光スキャン装置。
  17. 上記第1の光学素子は、上記発光素子から照射される光を上記第1の方向と、該第1の方向に直交する第2の方向に移動可能に支持され、上記光の走査は、上記第1の方向への移動により行い、上記第2の方向に関する走査する位置の変更を上記第2の方向への移動により行うことを特徴とする請求項11乃至16の何れか1項に記載の車両用光スキャン装置。
  18. 上記第1の方向は地面に水平な方向であることを特徴とする請求項17項に記載の車両用光スキャン装置。
  19. 上記弾性支持部材は、上記発光素子及び第2の光学素子の少なくとも何れか一方を弾性支持した部位の基本共振周波数が40Hz以上であることを特徴とする請求項11に記載の車両用光スキャン装置。
  20. 光を所定の範囲に渡り走査する車両用光スキャン装置であって、
    対象物に向けて光を照射する発光素子と、
    前記発光素子からの光を走査させる第1の光学素子と、
    光の大きさを変化させる第2の光学素子と、
    上記発光素子及び第2の光学素子の少なくとも何れか一方を、上記光軸方向に移動可能に支持する支持部材と、
    前記光学素子より照射された光の反射光を検知する受光素子と、
    を具備することを特徴とする車両用光スキャン装置。
  21. 上記支持部材は、弾性支持部材を有して構成されることを特徴とする請求項20に記載の車両用光スキャン装置。
  22. 上記弾性支持部材は、金属製の板バネで作製され、上記発光素子及び第2の光学素子の少なくとも何れか一方を上記光軸方向に移動可能に支持することを特徴とする請求項21に記載の車両用光スキャン装置。
  23. 上記弾性支持部材は、合成樹脂製のリンク機構によって構成され、上記発光素子及び第2の光学素子の少なくとも何れか一方を上記光軸方向に移動可能に支持することを特徴とする請求項21に記載の車両用光スキャン装置。
  24. 上記弾性支持部材は、上記発光素子及び第2の光学素子の少なくとも何れか一方を光軸方向に移動させるその固定部を基準として、所定の第1の方向と光軸に直交する方向に延在していることを特徴とする請求項21に記載の車両用光スキャン装置。
  25. 上記弾性支持部材は、上記発光素子及び第2の光学素子の少なくとも何れか一方を光軸方向に移動させて、上記発光素子から照射される光の大きさの第1の方向の寸法を変化させることを特徴とする請求項21に記載の車両用光スキャン装置。
  26. 上記発光素子から照射される光の大きさの所定の第1の方向の寸法をA、該所定の第1の方向と直交する第2の方向の寸法をBとすると、B≧A×3であることを特徴とする請求項25に記載の車両用光スキャン装置。
  27. 上記第1の光学素子は、上記発光素子から照射される光を上記第1の方向と、該第1の方向に直交する第2の方向に移動可能に支持され、上記光の走査は、上記第1の方向への移動により行い、上記第2の方向に関する走査する位置の変更を上記第2の方向への移動により行うことを特徴とする請求項21乃至26の何れか1項に記載の車両用光スキャン装置。
  28. 上記第1の方向は地面に水平な方向であることを特徴とする請求項27項に記載の車両用光スキャン装置。
  29. 上記弾性支持部材は、上記発光素子及び第2の光学素子の少なくとも何れか一方を弾性支持した部位の基本共振周波数が40Hz以上であることを特徴とする請求項21に記載の車両用光スキャン装置。
JP2007233163A 2007-09-07 2007-09-07 車両用光スキャン装置 Pending JP2009063503A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007233163A JP2009063503A (ja) 2007-09-07 2007-09-07 車両用光スキャン装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007233163A JP2009063503A (ja) 2007-09-07 2007-09-07 車両用光スキャン装置

Publications (1)

Publication Number Publication Date
JP2009063503A true JP2009063503A (ja) 2009-03-26

Family

ID=40558196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007233163A Pending JP2009063503A (ja) 2007-09-07 2007-09-07 車両用光スキャン装置

Country Status (1)

Country Link
JP (1) JP2009063503A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133674A (ja) * 2007-11-29 2009-06-18 Olympus Imaging Corp 車両用光スキャン装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112123A (ja) * 1985-11-12 1987-05-23 Copal Electron Co Ltd スポツト径制御装置
JPH0358014A (ja) * 1989-07-27 1991-03-13 Omron Corp ビームスキャニング装置
JPH06308239A (ja) * 1993-04-22 1994-11-04 Mitsubishi Electric Corp 車両用光レーダ装置
JPH074914A (ja) * 1992-10-08 1995-01-10 Tadaoki Yamashita 光学式微小変位、粗さ計
JPH10147197A (ja) * 1996-11-19 1998-06-02 Unisia Jecs Corp 障害物検知装置
JPH10260256A (ja) * 1997-03-18 1998-09-29 Unisia Jecs Corp 障害物検知装置
JPH11133153A (ja) * 1997-11-04 1999-05-21 Unisia Jecs Corp 障害物検知装置
JPH11160436A (ja) * 1997-11-28 1999-06-18 Unisia Jecs Corp 障害物検知装置
JPH11326517A (ja) * 1998-05-19 1999-11-26 Unisia Jecs Corp 障害物検知装置
JPH11326518A (ja) * 1998-05-19 1999-11-26 Unisia Jecs Corp 障害物検知装置
JP2000056018A (ja) * 1998-08-05 2000-02-25 Denso Corp 距離測定装置
JP2000206247A (ja) * 1999-01-11 2000-07-28 Unisia Jecs Corp 障害物検知装置
JP2002162470A (ja) * 2000-11-28 2002-06-07 Nhk Spring Co Ltd 物体検出装置及びその基準軸設定方法
JP2005304098A (ja) * 2004-04-06 2005-10-27 Nhk Spring Co Ltd 磁気駆動アクチュエータ

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112123A (ja) * 1985-11-12 1987-05-23 Copal Electron Co Ltd スポツト径制御装置
JPH0358014A (ja) * 1989-07-27 1991-03-13 Omron Corp ビームスキャニング装置
JPH074914A (ja) * 1992-10-08 1995-01-10 Tadaoki Yamashita 光学式微小変位、粗さ計
JPH06308239A (ja) * 1993-04-22 1994-11-04 Mitsubishi Electric Corp 車両用光レーダ装置
JPH10147197A (ja) * 1996-11-19 1998-06-02 Unisia Jecs Corp 障害物検知装置
JPH10260256A (ja) * 1997-03-18 1998-09-29 Unisia Jecs Corp 障害物検知装置
JPH11133153A (ja) * 1997-11-04 1999-05-21 Unisia Jecs Corp 障害物検知装置
JPH11160436A (ja) * 1997-11-28 1999-06-18 Unisia Jecs Corp 障害物検知装置
JPH11326517A (ja) * 1998-05-19 1999-11-26 Unisia Jecs Corp 障害物検知装置
JPH11326518A (ja) * 1998-05-19 1999-11-26 Unisia Jecs Corp 障害物検知装置
JP2000056018A (ja) * 1998-08-05 2000-02-25 Denso Corp 距離測定装置
JP2000206247A (ja) * 1999-01-11 2000-07-28 Unisia Jecs Corp 障害物検知装置
JP2002162470A (ja) * 2000-11-28 2002-06-07 Nhk Spring Co Ltd 物体検出装置及びその基準軸設定方法
JP2005304098A (ja) * 2004-04-06 2005-10-27 Nhk Spring Co Ltd 磁気駆動アクチュエータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133674A (ja) * 2007-11-29 2009-06-18 Olympus Imaging Corp 車両用光スキャン装置

Similar Documents

Publication Publication Date Title
KR100433603B1 (ko) 대물렌즈구동장치및광픽업장치
JP4799308B2 (ja) リニアアクチュエータ
JP5208488B2 (ja) 車両用光スキャン装置
JP6651110B1 (ja) 物体検出装置
JP2008281871A (ja) 光学系駆動装置及び車両用光スキャン装置
JP2009031348A (ja) 光スキャナ装置
JP4884139B2 (ja) スキャナ装置
JP2009063503A (ja) 車両用光スキャン装置
US7813019B2 (en) Optical scanning actuator
JP5198561B2 (ja) 光走査用アクチュエータおよび光走査用アクチュエータの製造方法
JP4928186B2 (ja) スキャナ装置
JP2008275782A (ja) 光スキャン装置及び該装置を搭載した測距装置
JP5065701B2 (ja) レーザスキャン装置
JP2009243971A (ja) 車両用光スキャン装置
JP4928242B2 (ja) スキャナ装置
JP2007212447A (ja) レーザレーダ用レンズ駆動装置
JP7097647B1 (ja) 光走査装置、物体検出装置、光走査装置の調整方法及びプログラム
JP5305749B2 (ja) 光スキャン装置
JP4989988B2 (ja) 光学系駆動装置およびレーザスキャン装置
JP3970290B2 (ja) 光ピックアップ装置
JP5214932B2 (ja) 光スキャン装置
JP2001273656A (ja) 光ピックアップの対物レンズ駆動装置
JP3639132B2 (ja) 光ピックアップ
JP4073417B2 (ja) 光ヘッド装置
JPH11167736A (ja) 対物レンズ駆動装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100902

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402