JP2007235097A - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP2007235097A
JP2007235097A JP2006332509A JP2006332509A JP2007235097A JP 2007235097 A JP2007235097 A JP 2007235097A JP 2006332509 A JP2006332509 A JP 2006332509A JP 2006332509 A JP2006332509 A JP 2006332509A JP 2007235097 A JP2007235097 A JP 2007235097A
Authority
JP
Japan
Prior art keywords
multiplication
gate electrode
transfer
electrode
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006332509A
Other languages
English (en)
Other versions
JP4212623B2 (ja
Inventor
Shinko Oda
真弘 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006332509A priority Critical patent/JP4212623B2/ja
Priority to US11/670,861 priority patent/US7619196B2/en
Publication of JP2007235097A publication Critical patent/JP2007235097A/ja
Application granted granted Critical
Publication of JP4212623B2 publication Critical patent/JP4212623B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14806Structural or functional details thereof
    • H01L27/14812Special geometry or disposition of pixel-elements, address lines or gate-electrodes

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】キャリアを増倍することが可能であるとともに、装置を小型化することが可能な撮像装置を提供する。
【解決手段】この撮像装置(CMOSイメージセンサ)は、光電変換機能を有するとともに、光電変換により生成された電子を蓄積するためのフォトダイオード部15と、電界による衝突電離により電子を増倍するための電界を印加する増倍ゲート電極13を含む増倍部25と、フォトダイオード部15と増倍ゲート電極13との間に、フォトダイオード部15および増倍ゲート電極13に隣接するように設けられた1つの転送ゲート電極12とを備えている。
【選択図】図2

Description

本発明は、撮像装置に関し、特に、電子を増倍するための増倍部を備えた撮像装置に関する。
従来、電子を増倍するための増倍部を備えたCCD(Charge Coupled Device)イメージセンサ(撮像装置)が知られている(たとえば、特許文献1参照)。
図12は、上記特許文献1に開示された従来のCCDイメージセンサの構造を示した断面図である。まず、図12を参照して、従来の一例によるCCDイメージセンサでは、シリコン基板101の表面上にゲート酸化物102が形成されている。また、ゲート酸化物102の上面上の所定領域には、所定の間隔を隔てて4つのゲート電極103〜106が設けられている。このゲート電極103〜106には、4相のクロック信号Φ1〜Φ4が供給されるように構成されている。また、ゲート電極103〜106下の転送チャネル107には、それぞれ、画素分離障壁、一時的蓄積井戸、電荷転送障壁、および、電荷集積井戸が形成されている。この画素分離障壁は、一時的蓄積井戸と隣接する画素の電荷集積井戸とを区分するとともに、隣接する画素の電荷集積井戸の電子を一時的蓄積井戸に転送する機能を有している。また、一時的蓄積井戸は、隣接する画素から転送された電子を一時的に蓄積しておく機能を有している。また、電荷転送障壁は、一時的蓄積井戸と電荷集積井戸とを区分するとともに、一時的蓄積井戸に蓄積された電子を電荷集積井戸に転送する機能を有している。また、電荷集積井戸は、一時的蓄積井戸から転送された電子を蓄積する機能を有するとともに、電界による衝突電離により電子を増倍するための増倍領域としての機能も有している。なお、電荷蓄積井戸とゲート電極106とにより増倍部が構成されている。すなわち、電荷転送障壁と電荷集積井戸との界面には、高い電位に調整された高電界領域109が形成されており、一時的蓄積井戸に蓄積された電子が高電界領域109に注入されると、注入された電子は、高電界領域109からエネルギを得る。そして、エネルギを得た電子は、高電界領域109を移動中にシリコン基板101の格子原子と衝突し、その衝突により、電子および正孔が生成される。生成された電子および正孔のうち、高電界領域109中の電界によって電子のみが電荷集積井戸に集められる。これによって、電子の増倍が行われる。なお、この電子の増倍は、受光領域のフォトダイオード108により生成された電子を転送する過程において行われている。
次に、図12を参照して、従来のCCDイメージセンサの増倍動作について説明する。
まず、ゲート電極103にHレベルのクロック信号Φ1を供給してゲート電極103をオン状態にするとともに、隣接する画素のゲート電極106をオフ状態にする。これにより、隣接する画素の電荷集積井戸に蓄積された電子が画素分離障壁に転送される。
そして、ゲート電極104にHレベルのクロック信号Φ2を供給してゲート電極104をオン状態にするとともに、ゲート電極103にLレベルのクロック信号Φ1を供給してゲート電極103をオフ状態にする。これにより、画素分離障壁に転送された電子が一時的蓄積井戸に転送される。
次に、ゲート電極106にHレベルのクロック信号Φ4を供給してゲート電極106をオン状態にする。これにより、ゲート電極106に高電圧が印加されて、電荷転送障壁と電荷集積井戸との界面に高電界領域109が形成される。その後、ゲート電極106をオン状態にしたまま、ゲート電極104にLレベルのクロック信号Φ4を供給してゲート電極104をオフ状態にすることによって、一時的蓄積井戸に蓄積された電子が電荷転送障壁を越えて電荷集積井戸に転送される。これにより、転送された電子が高電界による衝突電離によって増倍されるとともに、増倍された電子が電荷集積井戸に蓄積される。なお、ゲート電極105には、一定の電圧が供給されていることにより、電荷転送障壁は、所定の電位に調整され、一定である。
図13は、図12に示した従来のCCDイメージセンサの構造をCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ(撮像装置)に適用した場合の断面図である。図13を参照して、従来のCCDイメージセンサの構造を適用したCMOSイメージセンサでは、シリコン基板201の表面近傍の所定領域にn型不純物領域201aが形成されるとともに、シリコン基板201の表面上のn型不純物領域201aに対応する領域にゲート酸化物202が形成されている。また、ゲート酸化物202の上面上の所定領域には、従来のCCDイメージセンサと同様の機能を有する4つのゲート電極203〜206に加えて、さらに、フローティングディフュージョン領域208に電子を転送してデータを読み出すためのゲート電極207が設けられている。また、従来のCCDイメージセンサの構造を適用したCMOSイメージセンサは、1画素内に、電子を生成するフォトダイオード209と、フローティングディフュージョン領域208と、上記5つのゲート電極203〜207とが設けられている。
特許第3483261号公報
しかしながら、図12に示した従来のCCDイメージセンサでは、フォトダイオード108から転送された電子(キャリア)を、電子を増倍するための増倍領域である電荷集積井戸に転送するために、画素分離障壁、一時的蓄積井戸、および、電荷転送障壁をそれぞれ形成するための3つのゲート電極103〜105が必要であるという不都合がある。そのため、撮像装置(CCDイメージセンサ)の小型化が困難であるという問題点がある。また、従来のイメージセンサの構造をCMOSイメージセンサに適用した場合も、上記従来のCCDイメージセンサの場合と同様に、フォトダイオード209で生成された電子(キャリア)を、電子を増倍するための増倍領域である電荷集積井戸に転送するために、画素分離障壁、一時的蓄積井戸、および、電荷転送障壁をそれぞれ形成するための3つのゲート電極203〜205が必要であるという不都合がある。そのため、従来のCCDイメージセンサの構造をCMOSイメージセンサに適用した場合でも、上記従来のCCDイメージセンサの場合と同様に、撮像装置(CMOSイメージセンサ)の小型化が困難であるという問題点がある。
この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、キャリアを増倍することが可能であるとともに、装置を小型化することが可能な撮像装置を提供することである。
課題を解決するための手段および発明の効果
上記目的を達成するために、この発明の一の局面における撮像装置は、光電変換機能を有するとともに、光電変換により生成されたキャリアを蓄積するためのキャリア蓄積部と、電界による衝突電離によりキャリアを増倍するための電界を印加する増倍電極を含む増倍部と、キャリア蓄積部と増倍電極との間に、キャリア蓄積部および増倍電極に隣接するように設けられた1つの第1転送電極とを備えている。なお、本発明のキャリアは、電子または正孔を意味する。
この一の局面による撮像装置では、上記のように、1つの第1転送電極をキャリア蓄積部と増倍電極との間に、キャリア蓄積部および増倍電極に隣接するように設けることによって、キャリア蓄積部と増倍電極との間に設けられた第1転送電極に電圧を印加することにより、キャリア蓄積部に蓄積されたキャリアを、電界による衝突電離によりキャリアを増倍する増倍部に転送することができるので、1つの第1転送電極のみで、キャリアが蓄積されているキャリア蓄積部からキャリアを増倍するための増倍部へキャリアの転送を行うことができる。このため、キャリアの一時的な蓄積および増倍部への転送動作を行うために、3つのゲート電極を用いる場合とは異なり、ゲート電極の数を少なくすることができるので、装置を小型化することができる。また、キャリアを増倍するための増倍部を備えることによって、増倍部に転送されたキャリアが、増倍部の電界による衝突電離により、キャリアを増倍することができる。また、キャリアを蓄積するためのキャリア蓄積部を、光電変換機能を有するように構成することによって、別途光電変換部を設ける必要がなくなるので、その分、さらに素子を小型化することができる。
上記一の局面による撮像装置において、好ましくは、キャリアを衝突電離により増倍させることが可能な電圧を増倍電極に印加した後、キャリア蓄積部から増倍部へとキャリアを転送するように第1転送電極の電圧を制御する。このように構成すれば、1つの第1転送電極の電圧を制御することによって、光電変換機能を有するとともに、キャリアが蓄積されたキャリア蓄積部から、キャリアを増倍する増倍部へとキャリアを転送することができるので、1つの電極で、キャリアが蓄積されているキャリア蓄積部からキャリアを増倍するための増倍部へキャリアの転送を行うことができる。このため、光電変換により生成したキャリアの一時的な蓄積および増倍部への転送動作を行うために3つのゲート電極を用いる場合とは異なり、ゲート電極の数を少なくすることができるので、容易に装置を小型化することができる。
この場合において、好ましくは、衝突電離によって増倍されたキャリアをキャリア蓄積部に戻すように、第1転送電極および増倍電極の電圧を制御し、増倍部からキャリア蓄積部に戻されたキャリアを、再び増倍部に転送するように、第1転送電極の電圧を制御する。このように構成すれば、衝突電離によるキャリアの増倍動作を複数回行うことができるので、キャリアの増倍率を向上させることができる。このため、光電変換機能を有するキャリア蓄積部によって生成されたキャリアの数をより有効に増加させることができる。
上記衝突電離によって増倍されたキャリアをキャリア蓄積部に戻すように、第1転送電極および増倍電極の電圧を制御する撮像装置において、好ましくは、増倍電極に、隣接する第1転送電極に印加されている電圧よりも小さい電圧を印加した後、増倍部からキャリア蓄積部へとキャリアを転送するように第1転送電極の電圧を制御する。このように構成すれば、増倍電極下の転送チャネルの電位が、第1転送電極下の転送チャネルの電位よりも小さい電位に調整されるので、増倍電極下の転送チャネルに蓄積されたキャリアを容易に第1転送電極下の転送チャネルに転送することができるとともに、第1転送電極の電圧を制御することによって、第1転送電極下の転送チャネルに転送されたキャリアを容易にキャリア蓄積部へと転送することができる。
上記一の局面による撮像装置において、好ましくは、増倍されたキャリアによる電流を電圧に変換するキャリア数電圧変換部と、キャリア数電圧変換部へのキャリアの転送を行うための読出電極とをさらに備え、キャリア蓄積部、増倍電極を有する増倍部、第1転送電極、キャリア数電圧変換部および読出電極を1つの画素内に含む。このように1つの画素内にキャリア蓄積部、増倍電極を有する増倍部、1つの第1転送電極、キャリア数電圧変換部および読出電極を含むように構成することによって、小型化することが可能なCMOSイメージセンサを提供することができる。
上記キャリア数電圧変換部および読出電極をさらに備える撮像装置において、好ましくは、読出電極は、増倍電極とキャリア数電圧変換部との間に、増倍電極およびキャリア数電圧変換部と隣接するように設けられている。このように構成すれば、読出電極に電圧を印加することにより、容易に、増倍電極下の転送チャネルに蓄積されたキャリアをキャリア数電圧変換部に転送することができる。
上記キャリア数電圧変換部および読出電極をさらに備える撮像装置において、好ましくは、読出電極は、キャリア蓄積部とキャリア数電圧変換部との間に、キャリア蓄積部およびキャリア数電圧変換部と隣接するように設けられている。このように構成すれば、キャリア蓄積部の光電変換機能により発生したキャリアを読出電極およびキャリア数電圧変換部を介してキャリア蓄積部から排出することができるので、撮像期間経過後から読出動作が開始されるまでの間に、キャリア蓄積部に発生したキャリアを容易に排出することができる。これにより、撮像期間経過後から読出動作が開始されるまでの時間が各画素により異なる場合にも、撮像期間経過後から読出動作が開始されるまでの間にキャリア蓄積部に発生したキャリアが、撮像時間経過後の信号に対応するキャリアに混入するのを抑制することができるので、撮像期間経過後から読出動作が開始されるまでの時間が各画素により異なる場合にも、各画素の撮像時間経過後の信号を正確に読み出すことができる。
上記一の局面による撮像装置において、好ましくは、キャリア蓄積部上に、第1転送電極と隣接するように設けられた第2転送電極をさらに備える。このように構成すれば、第2転送電極に印加する電圧を制御することにより、キャリア蓄積部に蓄積されたキャリアを容易に第1転送電極下の転送チャネルに転送することができるとともに、第1転送電極下の転送チャネルに位置するキャリアを容易にキャリア蓄積部に転送することができる。
以下、本発明の実施形態を図面に基づいて説明する。なお、以下の実施形態の説明では、撮像装置の一例であるパッシブ(Passive)型のCMOSイメージセンサに本発明を適用した場合について説明する。
(第1実施形態)
図1は、本発明の第1実施形態によるCMOSイメージセンサの全体構成を示した平面図であり、図2は、図1に示した第1実施形態によるCMOSイメージセンサの構造を示した断面図である。また、図3は、図1に示した第1実施形態によるCMOSイメージセンサの画素を示した平面図であり、図4は、図1に示した第1実施形態によるCMOSイメージセンサの構成を示した回路図である。まず、図1〜図4を参照して、第1実施形態によるCMOSイメージセンサの構造について説明する。
第1実施形態によるCMOSイメージセンサは、図1に示すように、複数の画素1を含む撮像部2と、行選択レジスタ3と、列選択レジスタ4とを備えている。また、画素1は、図2に示すように、p型シリコン基板10と、ゲート絶縁膜11と、1つの転送ゲート電極12、1つの増倍ゲート電極13および1つの読出ゲート電極14の3つのゲート電極と、フォトダイオード部(PD)15と、n型不純物領域からなるフローティングディフュージョン領域16と、素子分離領域17とにより構成されている。また、ゲート絶縁膜11は、p型シリコン基板10の表面上に所定の間隔を隔てて形成されている。また、転送ゲート電極12、増倍ゲート電極13および読出ゲート電極14は、ゲート絶縁膜11の上面上の所定領域に所定の間隔を隔てて形成されている。また、フォトダイオード部15は、p型シリコン基板10の表面近傍に形成されるとともに、入射光量に応じて電子を生成し、その生成された電子を蓄積する機能を有している。なお、フォトダイオード部15は、本発明の「キャリア蓄積部」の一例であり、フローティングディフュージョン領域16は、本発明の「キャリア数電圧変換部」の一例である。また、読出ゲート電極14は、本発明の「読出電極」の一例である。
ここで、第1実施形態では、転送ゲート電極12は、フォトダイオード部15と増倍ゲート電極13との間に、フォトダイオード部15および増倍ゲート電極13に隣接するように形成されている。なお、転送ゲート電極12は、本発明の「第1転送電極」の一例であり、増倍ゲート電極13は、本発明の「増倍電極」の一例である。
また、n型不純物領域からなるフローティングディフュージョン領域16は、p型シリコン基板10の表面に形成されるとともに、転送された電子による電荷信号を電圧に変換するために設けられている。このフローティングディフュージョン領域16は、転送ゲート電極12、増倍ゲート電極13および読出ゲート電極14を介して、フォトダイオード部15と対向するとともに、読出ゲート電極14に隣接するように形成されている。また、フォトダイオード部15とフローティングディフュージョン領域16との間に位置するp型シリコン基板10の表面近傍には、n型不純物領域からなる転送チャネル19が形成されている。この転送チャネル19は、フローティングディフュージョン領域16の不純物濃度(n)よりも低い不純物濃度(n)を有する。また、素子分離領域17は、p型シリコン基板10の表面近傍であるとともに、フォトダイオード部15と、隣接する画素1のフローティングディフュージョン領域16との間に形成されている。この素子分離領域17は、隣接する画素1のフォトダイオード部15によって生成された電子が、画素1内のフローティングディフュージョン領域16に混入するのを抑制する機能を有している。なお、図2に示すように、フォトダイオード部15、フローティングディフュージョン領域16および素子分離領域17が形成されている領域のp型シリコン基板10の表面上には、ゲート絶縁膜11は、形成されていない。
また、図3に示すように、転送ゲート電極12、増倍ゲート電極13および読出ゲート電極14には、それぞれ、電圧制御のためのクロック信号を供給するための配線層20、21および22がそれぞれコンタクト部12a、13aおよび14aを介して電気的に接続されている。また、フローティングディフュージョン領域16には、信号を取り出すための信号線18がコンタクト部16aで電気的に接続されている。
また、図2に示すように、転送ゲート電極12、増倍ゲート電極13、および、読出ゲート電極14にクロック信号のオン信号(Hレベルの信号)が供給されることによって、転送ゲート電極12および読出ゲート電極14には、約2.9Vの電圧が印加されるとともに、増倍ゲート電極13には、約24Vの電圧が印加される。これにより、転送ゲート電極12下の転送チャネル19、および、読出ゲート電極14下の転送チャネル19は、約4Vに電位が調整された状態になるとともに、増倍ゲート電極13下の転送チャネル19は、約25Vの高い電位に調整された状態となる。なお、クロック信号のオフ信号(Lレベルの信号)が供給されている状態では、転送ゲート電極12下の転送チャネル19、増倍ゲート電極13下の転送チャネル19、および、読出ゲート電極14下の転送チャネル19は、いずれも、約1Vに電位が調整された状態となっている。また、フォトダイオード部15およびフローティングディフュージョン領域16は、それぞれ、約3Vおよび約5Vに電位が調整された状態となっている。
ここで、第1実施形態では、図2に示すように、フォトダイオード部15は、光電変換によって電子を生成するとともに、生成した電子を蓄積する機能を有している。また、転送ゲート電極12は、電圧が印加されることによって、フォトダイオード部15に蓄積された電子を、増倍ゲート電極13下の転送チャネル19へと転送する機能を有している。また、増倍ゲート電極13に約24Vの高電圧が印加されることによって、増倍ゲート電極13下の転送チャネル19は、高い電位(約25V)に調整された状態となる。これにより、転送ゲート電極12下の転送チャネル19と増倍ゲート電極13下の転送チャネル19との境界に、高電界が印加された高電界領域19aが形成される。そして、フォトダイオード部15に蓄積された電子が転送されて、高電界領域19aに達すると、高電界領域19aの高電界による衝突電離によって、転送された電子が増倍される。また、増倍ゲート電極13と増倍ゲート電極13下の転送チャネル19とにより増倍部25が構成されている。
また、読出ゲート電極14は、電圧が印加されることによって、高電界領域19aによって増倍された電子による電荷信号を電圧信号として読み出すためのフローティングディフュージョン領域16に転送する機能を有している。また、図4に示すように、第1実施形態によるCMOSイメージセンサは、撮像部2に行列状(マトリックス状)に配置された複数の画素1の列毎に信号を取り出すための、リセットゲートトランジスタ23と、トランジスタTr1と、トランジスタTr1に接続される選択トランジスタTr2と、1つのトランジスタTr3とを備えている。また、リセットゲートトランジスタ23は、読み出し後に、信号線18の電圧をリセット電圧VRD(約5V)にリセットするとともに、読み出し時に、フローティングディフュージョン領域16を電気的に浮いた状態に保持する機能を有する。このリセットゲートトランジスタ23のゲートには、リセット信号が供給される。また、リセットゲートトランジスタ23のドレインには、リセット電圧VRD(約5V)が印加される。また、リセットゲートトランジスタ23のソースは、信号線18に接続されている。また、信号線18は、トランジスタTr1のゲートに接続されており、トランジスタTr1のドレインには、電源電圧VDDが接続されるとともに、トランジスタTr1のソースには、選択トランジスタTr2のドレインが接続される。また、選択トランジスタTr2のゲートには、列選択線が接続されるとともに、選択トランジスタTr2のソースには、出力線が接続される。また、トランジスタTr3のドレインは、出力線に接続されるとともに、トランジスタTr3のソースは、接地されている。また、トランジスタTr3のゲートには、トランジスタTr3を定電流源として機能させるための所定の電圧が印加されている。また、各列のトランジスタTr1と、トランジスタTr3とによって、ソースフォロワ回路が構成されている。
次に、図4を参照して、第1実施形態によるCMOSイメージセンサの読出動作について説明する。まず、所定の行の配線層22に、Hレベルの信号を供給することによって、撮像部2の1行分の画素1の読出ゲート電極14をオン状態にする。これにより、1行分の画素1のフォトダイオード部15で生成された電子を信号線18に読み出す。なお、この状態では、選択トランジスタTr2がオフ状態であるため、トランジスタTr1およびTr3からなるソースフォロワ回路には電流は流れない。この状態から、列選択線に順次Hレベルの信号を供給することによって、撮像部2の1列分の画素1毎に、選択トランジスタTr2を順次オン状態にする。これによって、各列のトランジスタTr1および選択トランジスタTr2と、トランジスタTr3とを介して、順次電流が流れるので、各画素1毎の信号が出力される。そして、全ての出力が終了すると、リセットゲートトランジスタ23をオン状態にすることによって、信号線18の電位をリセットする。上記の動作を繰り返すことによって、第1実施形態によるCMOSイメージセンサの読出動作が行われる。
図5は、図1に示した第1実施形態によるCMOSイメージセンサの増倍動作を説明するための断面図である。図6は、図1に示した第1実施形態によるCMOSイメージセンサの増倍動作を説明するための信号波形図である。次に、図5および図6を参照して、本発明の第1実施形態によるCMOSイメージセンサの増倍動作について説明する。
まず、図5に示すように、フォトダイオード部15に光が入射されると、図6の期間Aにおいて、光電変換により、フォトダイオード部15に電子が生成される。次に、図6の期間Bにおいて、転送ゲート電極12をオフ状態のまま、増倍ゲート電極13をオン状態にすることにより、増倍ゲート電極13下の転送チャネル19の電位を、約25Vに調整する。このとき、転送ゲート電極12下の転送チャネル19は、約1Vに電位が調整された状態となっている。フォトダイオード部15は、約3Vに電位が調整されているため、生成された電子は、フォトダイオード部15よりも電位が低い転送ゲート電極12下の転送チャネル19には転送されずに、フォトダイオード部15に蓄積された状態となる。
次に、図6の期間Cにおいて、増倍ゲート電極13をオン状態にしておくとともに、転送ゲート電極12をオン状態にする。すなわち、増倍ゲート電極13下の転送チャネル19が、約25Vの高い電位に調整された状態で、転送ゲート電極12下の転送チャネル19を、約4Vの電位に調整する。これにより、フォトダイオード部15に蓄積された電子は、フォトダイオード部15の電位(約3V)よりも高い電位(約4V)に調整された転送ゲート電極12下の転送チャネル19へと転送されるとともに、転送ゲート電極12下の転送チャネル19に転送された電子は、転送ゲート電極12下の転送チャネル19の電位(約4V)よりも、さらに高い電位(約25V)に調整された増倍ゲート電極13下の転送チャネル19へと転送される。この時、転送ゲート電極12下の転送チャネル19から増倍ゲート電極13下の転送チャネル19へと転送された電子は、転送ゲート電極12下の転送チャネル19と増倍ゲート電極13下の転送チャネル19との境界に形成された高電界領域19aを移動中に、高電界領域19aの高電界からエネルギを得るとともに、エネルギを得た電子は、シリコン原子と衝突して電子と正孔とが生成される(衝突電離)ことによって新たな電子が生成される。その後、フォトダイオード部15から転送された電子および衝突電離によって生成した電子は、高電界領域19aの電界によって、増倍ゲート電極13下の転送チャネル19に蓄積される。
図7は、図1に示した第1実施形態によるCMOSイメージセンサの逆転送動作を説明するための断面図である。図8は、図1に示した第1実施形態によるCMOSイメージセンサの逆転送動作を説明するための信号波形図である。次に、図7および図8を参照して、本発明の第1実施形態によるCMOSイメージセンサの逆転送動作について説明する。なお、逆転送動作とは、増倍ゲート電極13下の転送チャネル19に蓄積された電子を、フォトダイオード部15に転送する動作をいう。
まず、図8の期間Dにおいて、転送ゲート電極12をオン状態にしておくとともに、増倍ゲート電極13をオフ状態にする。これにより、図7および図8に示すように、転送ゲート電極12下の転送チャネル19が、約4Vに電位が調整された状態で、増倍ゲート電極13下の転送チャネル19が、約1Vに電位が調整される。このため、増倍ゲート電極13下の転送チャネル19に蓄積された電子は、増倍ゲート電極13下の転送チャネル19の電位(約1V)よりも高い電位(約4V)に調整されている転送ゲート電極12下の転送チャネル19へと転送される。次に、図8の期間Eにおいて、増倍ゲート電極13をオフ状態にしておくとともに、転送ゲート電極12もオフ状態にする。これにより、増倍ゲート電極13下の転送チャネル19が、約1Vに電位が調整された状態で、転送ゲート電極12下の転送チャネル19も、約4Vに電位が調整された状態から、増倍ゲート電極13下の転送チャネル19と同じ約1Vに電位が調整された状態となる。また、フォトダイオード部15は、転送ゲート電極12下の転送チャネル19の電位(約1V)および増倍ゲート電極13下の転送チャネル19の電位(約1V)よりも高い電位(約3V)に調整された状態にある。このため、転送ゲート電極12下の転送チャネル19に転送された電子は、より高い電位に調整されているフォトダイオード部15へと転送される。このようにして、増倍ゲート電極13下の転送チャネル19に蓄積された電子は、フォトダイオード部15へと転送される。そして、フォトダイオード部15へと転送された電子は、再び上記増倍動作によって、フォトダイオード部15から高電界領域19aを経て、増倍ゲート電極13下の転送チャネル19へと転送されるとともに、上記増倍動作および上記逆転送動作が繰り返される。これによって、電子の増倍が繰り返されるとともに、増倍された電子は、電荷信号として増倍ゲート電極13下の転送チャネル19に蓄積される。また、そのように増倍されて蓄積された電子による電荷信号は、上述した読出動作のように、フローティングディフュージョン領域16および信号線18を介して、電圧信号として読み出される。
第1実施形態では、上記のように、1つの転送ゲート電極12をフォトダイオード部15と増倍ゲート電極13との間に、フォトダイオード部15および増倍ゲート電極13に隣接するように設けることによって、フォトダイオード部15と増倍ゲート電極13との間に設けられた転送ゲート電極12に電圧を印加することにより、フォトダイオード部15に蓄積された電子を、電界による衝突電離により電子を増倍する高電界領域19aに転送することができるので、1つの転送ゲート電極12のみで、電子が蓄積されているフォトダイオード部15から電子を増倍するための高電界領域19aへ電子の転送を行うことができる。このため、電子の一時的な蓄積および高電界領域19aへの転送動作を行うために、3つのゲート電極を用いる場合とは異なり、ゲート電極の数を少なくすることができるので、装置を小型化することができる。
また、第1実施形態では、電子を衝突電離により増倍させることが可能な電圧を増倍ゲート電極13に印加した後、フォトダイオード部15から高電界領域19aへと電子を転送するように転送ゲート電極12の電圧を制御するように構成することによって、1つの転送ゲート電極12の電圧を制御することによって、電子が蓄積されたフォトダイオード部15から、電子を増倍する高電界領域19aへと電子を転送することができるので、1つの転送ゲート電極12のみで、電子が蓄積されているフォトダイオード部15から電子を増倍するための高電界領域19aへ電子の転送を行うことができる。このため、電子の一時的な蓄積および高電界領域19aへの転送動作を行うために、3つのゲート電極を用いる場合とは異なり、ゲート電極の数を少なくすることができるので、容易に装置を小型化することができる。
また、第1実施形態では、衝突電離によって増倍された電子をフォトダイオード部15に戻すように、転送ゲート電極12および増倍ゲート電極13の電圧を制御し、増倍ゲート電極13下の転送チャネル19からフォトダイオード部15に戻された電子を、再び高電界領域19aに転送するように、転送ゲート電極12の電圧を制御するように構成することによって、衝突電離による電子の増倍動作を複数回行うことができるので、電子の増倍率を向上させることができる。このため、フォトダイオード部15によって生成された電子の数をより有効に増加させることができる。
また、第1実施形態では、増倍ゲート電極13に、隣接する転送ゲート電極12に印加されている電圧よりも小さい電圧を印加した後、増倍ゲート電極13下の転送チャネル19からフォトダイオード部15へと電子を転送するように転送ゲート電極12の電圧を制御するように構成することによって、増倍ゲート電極13下の転送チャネル19の電位が、転送ゲート電極12下の転送チャネル19の電位よりも小さい電位に調整されるので、増倍ゲート電極13下の転送チャネル19に蓄積された電子を容易に転送ゲート電極12下の転送チャネル19に転送することができるとともに、転送ゲート電極12の電圧を制御することによって、転送ゲート電極12下の転送チャネル19に転送された電子を容易にフォトダイオード部15へと転送することができる。
また、第1実施形態では、読出ゲート電極14を、増倍ゲート電極13とフローティングディフュージョン領域16との間に、増倍ゲート電極13およびフローティングディフュージョン領域16と隣接するように設けることによって、読出ゲート電極14に電圧を印加することにより、容易に、増倍ゲート電極13下の転送チャネルに蓄積された電子をフローティングディフュージョン領域16に転送することができる。
(第2実施形態)
図9は、本発明の第2実施形態によるCMOSイメージセンサの構造を示した断面図である。図9を参照して、この第2実施形態では、上記第1実施形態と異なり、フォトダイオード部15が読出ゲート電極14と隣接するように形成された画素30を含むCMOSイメージセンサの構造について説明する。
この第2実施形態によるCMOSイメージセンサの画素30の断面構造としては、図9に示すように、p型シリコン基板10の表面に、各画素30をそれぞれ分離するため素子分離領域17が形成されている。また、素子分離領域17によって囲まれる各画素30のp型シリコン基板10の表面には、素子分離領域17の一方から所定の間隔を隔てて、n型不純物領域からなる転送チャネル31を挟むように、フォトダイオード部15が形成されている。また、各画素30のp型シリコン基板10の表面には、フォトダイオード部15から所定の間隔を隔てて、n型不純物領域からなる転送チャネル32を挟むように、フローティングディフュージョン領域16が形成されている。また、転送チャネル31および32は、フローティングディフュージョン領域16の不純物濃度(n)よりも低い不純物濃度(n)を有する。また、フローティングディフュージョン領域16は、素子分離領域17の他方と隣接するように形成されている。
ここで、第2実施形態では、転送チャネル31の上面上には、ゲート絶縁膜33が形成されている。このゲート絶縁膜33の上面上の所定領域には、所定の間隔を隔てて転送ゲート電極12および増倍ゲート電極13が形成されている。この転送ゲート電極12は、フォトダイオード部15と隣接するように形成されているとともに、増倍ゲート電極13は、素子分離領域17の一方と隣接するように形成されている。また、転送チャネル32の上面上には、ゲート絶縁膜34が形成されている。このゲート絶縁膜34の上面上の所定領域には、読出ゲート電極14が形成されている。この読出ゲート電極14は、フォトダイオード部15とフローティングディフュージョン領域16との間に、フォトダイオード部15およびフローティングディフュージョン領域16と隣接するように形成されている。また、増倍ゲート電極13と増倍ゲート電極13下の転送チャネル31とにより増倍部35が構成されている。
また、第2実施形態では、転送ゲート電極12下の転送チャネル31は、転送ゲート電極12にクロック信号のオン信号(Hレベルの信号)が供給されている場合に、約4Vの電位に調整されるとともに、転送ゲート電極12にクロック信号のオフ信号(Lレベルの信号)が供給されている場合に、約1Vの電位に調整されている。また、増倍ゲート電極13下の転送チャネル31は、増倍ゲート電極13にクロック信号のオン信号(Hレベルの信号)が供給されている場合に、約25Vの電位に調整されるとともに、増倍ゲート電極13にクロック信号のオフ信号(Lレベルの信号)が供給されている場合に、約1Vの電位に調整されている。また、読出ゲート電極14下の転送チャネル32は、読出ゲート電極14にクロック信号のオン信号(Hレベルの信号)が供給されている場合に、約4Vの電位に調整されるとともに、読出ゲート電極14にクロック信号のオフ信号(Lレベルの信号)が供給されている場合に、約1Vの電位に調整されている。
なお、第2実施形態のその他の構造は、上記第1実施形態と同様である。
図10は、本発明の第2実施形態によるCMOSイメージセンサの撮像動作を説明するための回路図である。次に、図9および図10を参照して、第2実施形態によるCMOSイメージセンサの撮像動作について説明する。
まず、全ての画素30のフォトダイオード部15の初期化を行う。具体的には、図10に示すように、全てのリセットゲートトランジスタ23および読出ゲート電極14をオン状態にすることにより、フォトダイオード部15に蓄積されていた電子を排出する。
次に、全ての画素30において撮像を行う。具体的には、全てのリセットゲートトランジスタ23および読出ゲート電極14をオフ状態にする。このとき、全ての転送ゲート電極12をオフ状態にする。これにより、フォトダイオード部15には、入射光量に応じて発生する電子が蓄積される。
次に、所定の撮像期間経過後に、上記第1実施形態と同様の増倍動作が全ての画素30において行われる。そして、増倍動作が複数回行われた後、増倍された電子が増倍ゲート電極13下の転送チャネル31(図9参照)に蓄積される。なお、このとき、全ての転送ゲート電極12はオフ状態である。
次に、蓄積された電子の読出動作が各行毎に行われる。具体的には、全ての読出ゲート電極14およびリセットゲートトランジスタ23をオン状態にする。これにより、各行の読出動作が行われている間に、フォトダイオード部15において発生した電子が排出される。その後、全てのリセットゲートトランジスタ23をオフ状態にするとともに、読出動作が行われない行の読出ゲート電極14をオフ状態にすることにより、フローティングディフュージョン領域16を電気的に浮いた状態にする。次に、転送ゲート電極12をオン状態にするとともに、増倍ゲート電極13をオフ状態にすることにより、増倍ゲート電極13下の転送チャネル31に蓄積された電子が転送ゲート電極12下の転送チャネル31に転送される。そして、転送ゲート電極12をオフ状態にすることにより、転送ゲート電極12下の転送チャネル31に転送された電子を、フォトダイオード部15および読出ゲート電極14下の転送チャネル32(図9参照)を介してフローティングディフュージョン領域16に供給する。これにより、フローティングディフュージョン領域16に供給された電子に対応する信号が信号線18に現れる。次に、各列の選択トランジスタTr2を順次オン状態にすることにより、各列のトランジスタTr1および選択トランジスタTr2と、トランジスタTr3とを介して、順次電流が流れるので、読出しが行われる行の各画素30毎の信号が出力される。
次に、各行毎の読出動作を全ての行に対して行うことにより、CMOSイメージセンサの撮像動作が終了する。
第2実施形態では、上記のように、読出ゲート電極14を、フォトダイオード部15とフローティングディフュージョン領域16との間に、フォトダイオード部15およびフローティングディフュージョン領域16と隣接するように設けることによって、各行の読出動作が行われている間に、フォトダイオード部15に発生した電子を容易に排出することができる。これにより、撮像期間経過後から読出動作が開始されるまでの時間が各画素30により異なる場合にも、各行の読出動作が行われている間にフォトダイオード部15に発生した電子が、撮像時間経過後の信号に対応する増倍ゲート電極13下の転送チャネル31に蓄積された電子に混入するのを抑制することができるので、撮像期間経過後から読出動作が開始されるまでの時間が各画素30により異なる場合にも、各画素30の撮像時間経過後の電子に対応する信号を正確に読み出すことができる。すなわち、グローバルシャッタ機能を有するCMOSイメージセンサを得ることができる。
なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。
(第3実施形態)
図11は、本発明の第3実施形態によるCMOSイメージセンサの構造を示した断面図である。図11を参照して、この第3実施形態では、上記第1実施形態と異なり、フォトダイオード部15上に転送ゲート電極42が形成された画素40を含むCMOSイメージセンサの構造について説明する。
この第3実施形態によるCMOSイメージセンサの画素40の断面構造としては、図11に示すように、p型シリコン基板10のフォトダイオード部15および転送チャネル19と対応する上面上に、ゲート絶縁膜41が形成されている。このゲート絶縁膜41の上面上のフォトダイオード部15と対応する領域には、転送ゲート電極42が形成されている。なお、転送ゲート電極42は、本発明の「第2転送電極」の一例である。また、ゲート絶縁膜41の上面上の転送チャネル19と対応する領域には、転送ゲート電極12、増倍ゲート電極13および読出ゲート電極14がフォトダイオード部15側から順に所定の間隔を隔てて形成されている。また、転送ゲート電極42は、クロック信号のオン信号(Hレベルの信号)が供給されることにより、約2.9Vの電圧が印加されるように構成されている。また、転送ゲート電極42に約2.9Vの電圧が印加されている場合には、転送ゲート電極42下のフォトダイオード部15は、約4Vの電位に調整されている。なお、転送ゲート電極42にクロック信号のオフ信号(Lレベルの信号)が供給されている場合には、フォトダイオード部15は、約1Vの電位に調整されている。
なお、第3実施形態のその他の構造は、上記第1実施形態と同様である。
次に、図11を参照して、第3実施形態によるCMOSイメージセンサの電子の転送動作について説明する。
まず、撮像期間では、転送ゲート電極42をオン状態にするとともに、転送ゲート電極12をオフ状態にする。これにより、フォトダイオード部15が約4Vの電位に調整されるとともに、転送ゲート電極12下の転送チャネル19が約1Vの電位に調整される。したがって、フォトダイオード部15には、入射光量に応じて発生する電子が蓄積される。
そして、フォトダイオード部15に蓄積された電子を転送ゲート電極12下の転送チャネル19に転送する場合には、転送ゲート電極12をオン状態にするとともに、転送ゲート電極42をオフ状態にする。これにより、転送ゲート電極12下の転送チャネル19が約4Vの電位に調整されるとともに、フォトダイオード部15が約1Vの電位に調整される。したがって、フォトダイオード部15に蓄積された電子がより高い電位に調整された転送ゲート電極12下の転送チャネル19に転送される。
その一方、転送ゲート電極12下の転送チャネル19に位置する電子をフォトダイオード部15に転送する場合には、転送ゲート電極42をオン状態にするとともに、転送ゲート電極12をオフ状態にする。これにより、フォトダイオード部15が約4Vの電位に調整されるとともに、転送ゲート電極12下の転送チャネル19が約1Vの電位に調整される。したがって、転送ゲート電極12下の転送チャネル19に位置する電子がより高い電位に調整されたフォトダイオード部15に転送される。
第3実施形態では、上記のように、フォトダイオード部15上に転送ゲート電極42を設けることによって、転送ゲート電極42により、フォトダイオード部15に蓄積された電子を容易に転送ゲート電極12下の転送チャネル19に転送することができるとともに、転送ゲート電極12下の転送チャネル19に位置する電子を容易にフォトダイオード部15に転送することができる。
なお、第3実施形態のその他の効果は、上記第1実施形態と同様である。
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
たとえば、上記第1〜第3実施形態では、本発明を撮像装置の一例であるパッシブ(Passive)型のCMOSイメージセンサに適用する例を示したが、本発明はこれに限らず、パッシブ型のCMOSイメージセンサ以外のアクティブ(Active)型のCMOSイメージセンサに適用してもよい。
また、上記第1〜第3実施形態では、本発明を撮像装置の一例であるCMOSイメージセンサに適用する例を示したが、本発明はこれに限らず、CMOSイメージセンサ以外の撮像装置に適用してもよい。たとえば、CMOSイメージセンサ以外の撮像装置であるCCDイメージセンサに本発明を適用するようにしてもよい。
また、上記第1〜第3実施形態では、p型シリコン基板上に撮像装置を形成した例を示したが、本発明はこれに限らず、n型シリコン基板上にp型の不純物拡散領域を形成したものを基板として用いてもよい。
また、上記第1〜第3実施形態では、キャリアとして電子を用いた例を示したが、本発明はこれに限らず、基板不純物の電導型および印加する電圧の極性を全て反対にすることで、キャリアとして正孔を用いるようにしてもよい。
また、上記第1〜第3実施形態では、各列毎に共通のリセットゲートトランジスタ23を設ける例を示したが、本発明はこれに限らず、各画素毎にリセットゲートトランジスタを設けてもよい。
また、上記第1〜第3実施形態では、各行毎に読出動作を行う例を示したが、本発明はこれに限らず、各列毎に読出動作を行うようにしてもよい。
本発明の第1実施形態によるCMOSイメージセンサの全体構成を示した平面図である。 図1に示した第1実施形態によるCMOSイメージセンサの構造を示した断面図である。 図1に示した第1実施形態によるCMOSイメージセンサの画素を示した平面図である。 図1に示した第1実施形態によるCMOSイメージセンサの構成を示した回路図である。 図1に示した第1実施形態によるCMOSイメージセンサの増倍動作を説明するための断面図である。 図1に示した第1実施形態によるCMOSイメージセンサの増倍動作を説明するための信号波形図である。 図1に示した第1実施形態によるCMOSイメージセンサの逆転送動作を説明するための断面図である。 図1に示した第1実施形態によるCMOSイメージセンサの逆転送動作を説明するための信号波形図である。 本発明の第2実施形態によるCMOSイメージセンサの構造を示した断面図である。 本発明の第2実施形態によるCMOSイメージセンサの撮像動作を説明するための回路図である。 本発明の第3実施形態によるCMOSイメージセンサの構造を示した断面図である。 従来のCCDイメージセンサの構造を示した断面図である。 図12に示した従来の一例によるCCDイメージセンサの構造をCMOSイメージセンサに適用した場合の断面図である。
符号の説明
1、30、40 画素
12 転送ゲート電極(第1転送電極)
13 増倍ゲート電極(増倍電極)
14 読出ゲート電極(読出電極)
15 フォトダイオード部(キャリア蓄積部)
16 フローティングディフュージョン領域(キャリア数電圧変換部)
25、35 増倍部
42 転送ゲート電極(第2転送電極)

Claims (8)

  1. 光電変換機能を有するとともに、光電変換により生成されたキャリアを蓄積するためのキャリア蓄積部と、
    電界による衝突電離によりキャリアを増倍するための電界を印加する増倍電極を含む増倍部と、
    前記キャリア蓄積部と前記増倍電極との間に、前記キャリア蓄積部および前記増倍電極に隣接するように設けられた1つの第1転送電極とを備えた、撮像装置。
  2. キャリアを衝突電離により増倍させることが可能な電圧を前記増倍電極に印加した後、前記キャリア蓄積部から前記増倍部へとキャリアを転送するように前記第1転送電極の電圧を制御する、請求項1に記載の撮像装置。
  3. 前記衝突電離によって増倍されたキャリアを前記キャリア蓄積部に戻すように、前記第1転送電極および前記増倍電極の電圧を制御し、
    前記増倍部から前記キャリア蓄積部に戻されたキャリアを、再び前記増倍部に転送するように、前記第1転送電極の電圧を制御する、請求項2に記載の撮像装置。
  4. 前記増倍電極に、隣接する前記第1転送電極に印加されている電圧よりも小さい電圧を印加した後、前記増倍部から前記キャリア蓄積部へとキャリアを転送するように前記第1転送電極の電圧を制御する、請求項3に記載の撮像装置。
  5. 増倍されたキャリア数を電圧に変換するキャリア数電圧変換部と、
    前記キャリア数電圧変換部へのキャリアの転送を行うための読出電極とをさらに備え、
    前記キャリア蓄積部、前記増倍電極を有する増倍部、前記第1転送電極、前記キャリア数電圧変換部および前記読出電極を1つの画素内に含む、請求項1〜4のいずれか1項に記載の撮像装置。
  6. 前記読出電極は、前記増倍電極と前記キャリア数電圧変換部との間に、前記増倍電極および前記キャリア数電圧変換部と隣接するように設けられている、請求項5に記載の撮像装置。
  7. 前記読出電極は、前記キャリア蓄積部と前記キャリア数電圧変換部との間に、前記キャリア蓄積部および前記キャリア数電圧変換部と隣接するように設けられている、請求項5に記載の撮像装置。
  8. 前記キャリア蓄積部上に、前記第1転送電極と隣接するように設けられた第2転送電極をさらに備える、請求項1〜7のいずれか1項に記載の撮像装置。
JP2006332509A 2006-01-31 2006-12-08 撮像装置 Expired - Fee Related JP4212623B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006332509A JP4212623B2 (ja) 2006-01-31 2006-12-08 撮像装置
US11/670,861 US7619196B2 (en) 2006-01-31 2007-02-02 Imaging device including a multiplier electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006021609 2006-01-31
JP2006332509A JP4212623B2 (ja) 2006-01-31 2006-12-08 撮像装置

Publications (2)

Publication Number Publication Date
JP2007235097A true JP2007235097A (ja) 2007-09-13
JP4212623B2 JP4212623B2 (ja) 2009-01-21

Family

ID=38321194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006332509A Expired - Fee Related JP4212623B2 (ja) 2006-01-31 2006-12-08 撮像装置

Country Status (2)

Country Link
US (1) US7619196B2 (ja)
JP (1) JP4212623B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205305A (ja) * 2011-03-23 2012-10-22 E2V Semiconductors 非常に大きなダイナミックレンジを有する画像センサー
DE112017002137T5 (de) 2016-04-22 2019-01-03 Sony Corporation Festkörper-bildgebungselement, treiberverfahren und elektronische vorrichtung

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026777A1 (ja) * 2005-08-30 2007-03-08 National University Corporation Shizuoka University 半導体測距素子及び固体撮像装置
JP2008060550A (ja) * 2006-07-31 2008-03-13 Sanyo Electric Co Ltd 撮像装置
JP5205002B2 (ja) * 2007-07-11 2013-06-05 ブレインビジョン株式会社 固体撮像素子の画素構造
US7969492B2 (en) * 2007-08-28 2011-06-28 Sanyo Electric Co., Ltd. Image pickup apparatus
JP2009130015A (ja) * 2007-11-21 2009-06-11 Sanyo Electric Co Ltd 撮像装置
JP2009135242A (ja) * 2007-11-30 2009-06-18 Sanyo Electric Co Ltd 撮像装置
FR2924862B1 (fr) * 2007-12-10 2010-08-13 Commissariat Energie Atomique Dispositif microelectronique photosensible avec multiplicateurs par avalanche
US20090152605A1 (en) * 2007-12-18 2009-06-18 Sanyo Electric Co., Ltd. Image sensor and cmos image sensor
US7952635B2 (en) * 2007-12-19 2011-05-31 Teledyne Licensing, Llc Low noise readout apparatus and method with snapshot shutter and correlated double sampling
US8077240B2 (en) * 2008-04-23 2011-12-13 Inernational Business Machines Corporation Methods for enhancing quality of pixel sensor image frames for global shutter imaging
JP5243100B2 (ja) * 2008-05-12 2013-07-24 ブレインビジョン株式会社 固体撮像素子の画素構造
JP2010003868A (ja) * 2008-06-20 2010-01-07 Sanyo Electric Co Ltd 撮像装置
JP2010021348A (ja) * 2008-07-10 2010-01-28 Sanyo Electric Co Ltd 撮像装置
JP2010027668A (ja) * 2008-07-15 2010-02-04 Sanyo Electric Co Ltd 撮像装置
US8009215B2 (en) * 2008-07-16 2011-08-30 International Business Machines Corporation Pixel sensor cell with frame storage capability
US8009216B2 (en) * 2008-07-16 2011-08-30 International Business Machines Corporation Pixel sensor cell with frame storage capability
JP5283216B2 (ja) * 2008-07-31 2013-09-04 国立大学法人静岡大学 高速電荷転送フォトダイオード、ロックインピクセル及び固体撮像装置
JP5473951B2 (ja) * 2009-02-13 2014-04-16 パナソニック株式会社 固体撮像装置及びカメラ
FR2945667B1 (fr) 2009-05-14 2011-12-16 Commissariat Energie Atomique Capteur d'image integre a tres grande sensibilite.
US9698196B2 (en) * 2009-08-14 2017-07-04 Heptagon Micro Optics Pte. Ltd. Demodulation pixel incorporating majority carrier current, buried channel and high-low junction
JP5648923B2 (ja) * 2009-10-09 2015-01-07 国立大学法人静岡大学 半導体素子及び固体撮像装置
FR2973160B1 (fr) * 2011-03-23 2013-03-29 E2V Semiconductors Capteur d'image a multiplication d'electrons
JP5573978B2 (ja) * 2012-02-09 2014-08-20 株式会社デンソー 固体撮像素子およびその駆動方法
EP3066689B1 (en) 2013-11-04 2020-07-08 Artto Aurola Improved semiconductor radiation detector
FR3031237B1 (fr) * 2014-12-29 2016-12-23 E2V Semiconductors Capteur d'image a pixels actifs en technologie cmos a multiplication d'electrons
EP3475987A4 (en) * 2016-06-21 2020-01-01 Shenzhen Xpectvision Technology Co., Ltd. IMAGE SENSOR BASED ON AVALANCHE PHOTODIODS
CN111787247B (zh) * 2020-06-19 2022-09-16 中国电子科技集团公司第四十四研究所 倍增寄存器结构以及包括该倍增寄存器结构的emccd
US20220061675A1 (en) * 2020-08-28 2022-03-03 Pixart Imaging Inc. Forehead temperature measurement system with high accuracy
CN112271187B (zh) * 2020-09-25 2023-10-27 华东光电集成器件研究所 一种背照式emccd背面结构及其制作方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912536A (en) * 1988-04-15 1990-03-27 Northrop Corporation Charge accumulation and multiplication photodetector
JPH04125965A (ja) 1990-09-17 1992-04-27 Hamamatsu Photonics Kk 半導体装置
US5401952A (en) * 1991-10-25 1995-03-28 Canon Kabushiki Kaisha Signal processor having avalanche photodiodes
JP3483261B2 (ja) 1992-07-10 2004-01-06 テキサス インスツルメンツ インコーポレイテツド イメージセンサ
JP3447326B2 (ja) 1993-06-25 2003-09-16 日本放送協会 固体撮像素子
US6278142B1 (en) * 1999-08-30 2001-08-21 Isetex, Inc Semiconductor image intensifier
JP2001135851A (ja) * 1999-11-05 2001-05-18 Minolta Co Ltd 光電変換素子および固体撮像装置
US7372495B2 (en) * 2002-08-23 2008-05-13 Micron Technology, Inc. CMOS aps with stacked avalanche multiplication layer and low voltage readout electronics
JP2005064304A (ja) 2003-08-15 2005-03-10 Koji Eto 高感度高速撮像素子
JP4128947B2 (ja) 2003-12-19 2008-07-30 株式会社東芝 固体撮像装置
JP2005268564A (ja) 2004-03-19 2005-09-29 Ricoh Co Ltd 固体撮像素子及び固体撮像素子の製造方法
US7045754B2 (en) * 2004-03-30 2006-05-16 Omnivision Technologies, Inc. Hybrid charge coupled CMOS image sensor having an amplification transistor controlled by a sense node
JP2006332509A (ja) 2005-05-30 2006-12-07 Kyocera Corp 粗面化法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205305A (ja) * 2011-03-23 2012-10-22 E2V Semiconductors 非常に大きなダイナミックレンジを有する画像センサー
DE112017002137T5 (de) 2016-04-22 2019-01-03 Sony Corporation Festkörper-bildgebungselement, treiberverfahren und elektronische vorrichtung

Also Published As

Publication number Publication date
JP4212623B2 (ja) 2009-01-21
US7619196B2 (en) 2009-11-17
US20070176213A1 (en) 2007-08-02

Similar Documents

Publication Publication Date Title
JP4212623B2 (ja) 撮像装置
JP4494492B2 (ja) 固体撮像装置及び固体撮像装置の駆動方法
US9621827B2 (en) Imaging element, driving method, and electronic apparatus
JP2009054870A (ja) 撮像装置
JP4200545B2 (ja) 固体撮像素子およびその駆動方法、並びにカメラシステム
WO2011058684A1 (ja) 固体撮像装置
US20130206965A1 (en) Driving method for solid-state imaging apparatus, and imaging system
EP2216820A2 (en) Solid-state image pickup device and camera system
JP2008060550A (ja) 撮像装置
JP4198166B2 (ja) 撮像装置
JP2009278241A (ja) 固体撮像装置の駆動方法および固体撮像装置
JP2008192648A (ja) 撮像装置
JP4735702B2 (ja) 固体撮像装置、固体撮像装置の駆動方法および撮像装置
JP2006093517A (ja) 固体撮像装置
JP2009130015A (ja) 撮像装置
JP2007027456A (ja) 撮像装置
JP2009147049A (ja) 撮像装置
JP2009038520A (ja) 撮像装置
JP2009130669A (ja) 撮像装置
JP2011061522A (ja) Mos型イメージセンサ、mos型イメージセンサの駆動方法、撮像装置
JP2010003868A (ja) 撮像装置
JPH1175114A (ja) 光電変換装置
JP2010010740A (ja) 撮像装置
JP2009059847A (ja) 撮像装置
JP2008258498A (ja) 固体撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees