JP2007218089A - 内燃機関のスロットル制御装置 - Google Patents

内燃機関のスロットル制御装置 Download PDF

Info

Publication number
JP2007218089A
JP2007218089A JP2006036035A JP2006036035A JP2007218089A JP 2007218089 A JP2007218089 A JP 2007218089A JP 2006036035 A JP2006036035 A JP 2006036035A JP 2006036035 A JP2006036035 A JP 2006036035A JP 2007218089 A JP2007218089 A JP 2007218089A
Authority
JP
Japan
Prior art keywords
throttle valve
driving
internal combustion
combustion engine
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006036035A
Other languages
English (en)
Other versions
JP4728832B2 (ja
Inventor
Hideki Asano
英樹 浅野
Katsumi Ishida
克己 石田
Kiwamu Miyazaki
究 宮崎
Kazuhiro Minamitani
和広 南谷
Shigeru Kamio
神尾  茂
Kazutaka Miyaji
和孝 宮地
Akihiro Kamiya
明宏 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Denso Corp
Toyota Motor Corp
Original Assignee
Aisan Industry Co Ltd
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd, Denso Corp, Toyota Motor Corp filed Critical Aisan Industry Co Ltd
Priority to JP2006036035A priority Critical patent/JP4728832B2/ja
Priority to DE102007007082.0A priority patent/DE102007007082B4/de
Priority to US11/705,514 priority patent/US7509939B2/en
Publication of JP2007218089A publication Critical patent/JP2007218089A/ja
Application granted granted Critical
Publication of JP4728832B2 publication Critical patent/JP4728832B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/107Safety-related aspects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/106Detection of demand or actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D2011/108Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type with means for detecting or resolving a stuck throttle, e.g. when being frozen in a position

Abstract

【課題】環境条件の違いに拘わらずスロットル弁の氷結を確実に検出し、スロットル弁の強固な氷結をも解除すること。
【解決手段】スロットル制御装置は、吸気通路4に設けられるスロットル弁6と、スロットル弁6を駆動させるモータ7と、モータ7を制御する電子制御装置(ECU)2と、スロットル弁6の実開度を検出するスロットルセンサ8とを備える。ECU2は、モータ7の駆動時間が所定時間以上経過しても実開度が目標開度にならないときにスロットル弁6が氷結していると判定し、そのときの実開度を氷結開度として記憶する。ECU2は、氷結解除のためにモータ7に必要な駆動トルクを発揮させるよう駆動デューティを供給しオープン制御で駆動デューティを反転させ、かつ目標開度と氷結開度との偏差の積算がゼロになるようにモータ7を制御することで、スロットル弁6を繰り返し揺動させる。
【選択図】図1

Description

この発明は、内燃機関の吸気通路に設けられるスロットル弁を駆動手段により駆動させることで、スロットル弁の氷結に対処するようにした内燃機関のスロットル制御装置に関する。
従来、この種の装置として、例えば、下記の特許文献1に記載されたスロットル制御装置が知られている。このスロットル制御装置は、低温時のアイシング(氷結)を防止するためにスロットル弁を制御するようになっている。ここで、スロットル弁の氷結は、エンジン暖機運転時に吸気温度が低温でかつ湿度が高い場合に、吸気中の水蒸気及び燃料がスロットル弁に氷結してしまい、ついには吸気通路が閉塞してしまう現象を意味する。場合によっては、この氷結によりエンジンが停止してしまうこともある。そこで、このスロットル制御装置は、エンジン運転状態を検出する運転状態検出手段と、氷結状態にあるか否かを検出する氷結検出手段と、スロットル弁を電気的に開閉動作させるスロットル弁開閉手段と、スロットル弁開閉手段を制御する制御回路とを備える。ここで、運転状態検出手段として、アクセル開度センサが使用される。氷結検出手段として、温度センサ及び湿度センサが使用される。スロットル弁開閉手段は、DCサーボモータ及びその駆動回路を含む。そして、制御回路は、アクセル開度センサからの信号に基づきエンジンの運転状態に応じてDCサーボモータ等を駆動すると共に、温度センサ及び湿度センサ等からの信号に基づきスロットル弁の氷結状態を検出し、氷結状態を検出したときは、スロットル弁をそのときの運転状態に応じた開度近傍でエンジン回転速度を変動させない範囲の微小開度、所定周期で揺動させるようにDCサーボモータ等を制御する、すなわち「氷結解除制御」を実行するようになっている。
特公平4−4452号公報
ところが、特許文献1に記載したスロットル制御装置では、アクセル開度、温度及び湿度から決まる特定の環境条件を満たさない限り、制御回路が氷結状態を検出して氷結解除のための制御を実行することがなかった。このため、特定の環境条件以外の環境条件下で氷結が発生しても対処することができなかった。また、アクセル開度、温度及び湿度から決まる特定の環境条件は、氷結が起き易い状態を想定したものに過ぎず、氷結の発生を見込んだものに過ぎない。そのため、この環境条件に基づいて氷結の発生を判断したとしても、実際には氷結が発生していないこともあり得る。つまり、このスロットル制御装置では、特定の環境条件から見込みで氷結を検出しているに過ぎず、氷結の検出精度の点で問題があった。また、このスロットル制御装置では、氷結解除のために、ある目標開度の近傍でスロットル弁を揺動させるだけであることから、スロットル弁に十分なトルクを発生させることができなかった。このため、スロットル弁を動作させることで得られる氷結解除力が不十分となり、強固な氷結を解除できない懸念があった。
この発明は上記事情に鑑みてなされたものであって、その目的は、環境条件の違いにかかわらずスロットル弁の氷結を確実に検出することを可能にした内燃機関のスロットル制御装置を提供することにある。この発明の別の目的は、スロットル弁の強固な氷結を解除することを可能とした内燃機関のスロットル制御装置を提供することにある。
上記目的を達成するために、請求項1に記載の発明は、内燃機関の吸気通路に設けられるスロットル弁と、スロットル弁を駆動させる駆動手段と、駆動手段を制御するための制御手段とを備えた内燃機関のスロットル制御装置において、スロットル弁を駆動させるために制御手段が駆動手段に供給する駆動電流が所定値以上にて所定時間以上継続した場合に、スロットル弁が氷結していると判定する氷結判定手段を備えたこと趣旨とする。
上記発明の構成によれば、駆動手段が必要以上に動作しようとしている場合、つまりスロットル弁が実際に駆動しない場合を、スロットル弁が氷結しているときと判定することとなり、スロットル弁の氷結を実際的に検出することとなる。
上記目的を達成するために、請求項2に記載の発明は、内燃機関の吸気通路に設けられるスロットル弁と、スロットル弁を駆動させる駆動手段と、駆動手段を制御するための制御手段とを備えた内燃機関のスロットル制御装置において、スロットル弁の動作を検出するための動作検出手段と、スロットル弁を駆動させるために制御手段が駆動手段に供給する駆動電流が所定値以上にて所定時間以上継続し、かつ検出される動作の変化量が所定値以下となる場合に、スロットル弁が氷結していると判定する氷結判定手段とを備えたことを趣旨とする。
上記発明の構成によれば、駆動手段が必要以上に動作しようとしている場合であってスロットル弁が実際にほとんど駆動しない場合を、スロットル弁が氷結しているときと判定することとなり、スロットル弁の氷結を実際的に検出することとなる。
上記目的を達成するために、請求項3に記載の発明は、内燃機関の吸気通路に設けられるスロットル弁と、スロットル弁を駆動させる駆動手段と、駆動手段を制御するための制御手段とを備えた内燃機関のスロットル制御装置において、スロットル弁を駆動させるために制御手段が駆動手段に供給する駆動デューティが所定値以上にて所定時間以上継続した場合に、スロットル弁が氷結していると判定する氷結判定手段を備えたことを趣旨とする。
上記発明の構成によれば、駆動手段が必要以上に動作しようとしている場合、つまりはスロットル弁が実際に駆動しない場合を、スロットル弁が氷結しているときと判定することとなり、スロットル弁の氷結を実際的に検出することとなる。
上記目的を達成するために、請求項4に記載の発明は、内燃機関の吸気通路に設けられるスロットル弁と、スロットル弁を駆動させる駆動手段と、駆動手段を制御するための制御手段とを備えた内燃機関のスロットル制御装置において、スロットル弁の動作を検出するための動作検出手段と、スロットル弁を駆動させるために制御手段が駆動手段に供給する駆動デューティが所定値以上にて所定時間以上継続し、かつ検出される動作の変化量が所定値以下となる場合に、スロットル弁が氷結していると判定する氷結判定手段とを備えたことを趣旨とする。
上記発明の構成によれば、駆動手段が必要以上に動作しようとしている場合であってスロットル弁が実際にほとんど駆動しない場合を、スロットル弁が氷結しているときと判定することとなり、スロットル弁の氷結を実際的に検出することとなる。
上記目的を達成するために、請求項5に記載の発明は、内燃機関の吸気通路に設けられるスロットル弁と、スロットル弁を駆動させる駆動手段と、駆動手段を制御するための制御手段とを備えた内燃機関のスロットル制御装置において、スロットル弁の開度を検出するための開度検出手段と、スロットル弁を駆動させるために制御手段が駆動手段を制御する駆動時間が所定時間以上経過しても検出される開度が目標開度にならない場合に、スロットル弁が氷結していると判定する氷結判定手段とを備えたことを趣旨とする。
上記発明の構成によれば、駆動手段を実際に制御してもスロットル弁が実際に目標開度に達しない場合を、スロットル弁が氷結しているときと判定することとなり、スロットル弁の氷結を実際的に検出することとなる。
上記目的を達成するために、請求項6に記載の発明は、内燃機関の吸気通路に設けられるスロットル弁と、スロットル弁を駆動させる駆動手段と、駆動手段を制御するための制御手段とを備えた内燃機関のスロットル制御装置において、スロットル弁の開度を検出するための開度検出手段と、スロットル弁を駆動させるために制御手段が駆動手段を制御する駆動時間が所定時間以上経過しても検出される開度が目標開度にならず、かつ検出される開度の変化量が所定値以下となる場合に、スロットル弁が氷結していると判定する氷結判定手段とを備えたことを趣旨とする。
上記発明の構成によれば、駆動手段を実際に制御してもスロットル弁が実際に目標開度に達しない場合であってスロットル弁が実際にほとんど駆動しない場合を、スロットル弁が氷結しているときと判定することとなり、スロットル弁の氷結を実際的に検出することとなる。
上記目的を達成するために、請求項7に記載の発明は、内燃機関の吸気通路に設けられるスロットル弁と、スロットル弁を駆動させる駆動手段と、駆動手段を制御するための制御手段とを備えた内燃機関のスロットル制御装置において、吸気通路の吸気流量を検出するための吸気流量検出手段と、スロットル弁を駆動させるために制御手段が駆動手段を制御する駆動時間が所定時間以上経過しても検出される吸気流量が目標流量にならない場合に、スロットル弁が氷結していると判定する氷結判定手段とを備えたことを趣旨とする。
上記発明の構成によれば、駆動手段を実際に制御しても吸気流量が目標流量にならないようなスロットル弁の動きがない場合を、スロットル弁が氷結しているときと判定することとなり、スロットル弁の氷結を実際的に検出することとなる。
上記目的を達成するために、請求項8に記載の発明は、内燃機関の吸気通路に設けられるスロットル弁と、スロットル弁を駆動させる駆動手段と、駆動手段を制御するための制御手段とを備えた内燃機関のスロットル制御装置において、スロットル弁の動作を検出するための動作検出手段と、スロットル弁を駆動させるために制御手段が駆動手段に供給する駆動電流が所定値以上にて所定時間以上継続し、かつ検出される動作の変化量が所定値以下となる場合であって、併せてスロットル弁を駆動させるために制御手段が駆動手段に供給する駆動デューティが所定値以上にて所定時間以上継続した場合に、スロットル弁が氷結していると判定する氷結判定手段とを備えたことを趣旨とする。
上記発明の構成によれば、駆動手段が必要以上に動作しようとしている場合であってスロットル弁が実際にほとんど駆動しない場合又はスロットル弁が実際に駆動しない場合を、スロットル弁が氷結しているときと判定することとなり、スロットル弁の氷結を実際的に検出することとなる。
上記目的を達成するために、請求項9に記載の発明は、内燃機関の吸気通路に設けられるスロットル弁と、スロットル弁を駆動させる駆動手段と、駆動手段を制御するための制御手段とを備えた内燃機関のスロットル制御装置において、スロットル弁の動作を検出するための動作検出手段と、スロットル弁の開度を検出するための開度検出手段と、スロットル弁を駆動させるために制御手段が駆動手段に供給する駆動電流が所定値以上にて所定時間以上継続し、かつ検出される動作の変化量が所定値以下となる場合であり、併せてスロットル弁を駆動させるために制御手段が駆動手段に供給する駆動デューティが所定値以上にて所定時間以上継続した場合であって、併せてスロットル弁を駆動させるために制御手段が駆動手段を制御する駆動時間が所定時間以上経過しても検出される開度が目標開度にならない場合に、スロットル弁が氷結していると判定する氷結判定手段とを備えたことを趣旨とする。
上記発明の構成によれば、駆動手段が必要以上に動作しようとしている場合であってスロットル弁が実際にほとんど駆動しない場合又はスロットル弁が実際に駆動しない場合であり、併せて駆動手段を実際に制御してもスロットル弁が実際に目標開度に達しない場合を、スロットル弁が氷結しているときと判定することとなり、スロットル弁の氷結を実際的に検出することとなる。
上記目的を達成するために、請求項10に記載の発明は、内燃機関の吸気通路に設けられるスロットル弁と、スロットル弁を駆動させる駆動手段と、駆動手段を制御するための制御手段とを備えた内燃機関のスロットル制御装置において、スロットル弁の動作を検出するための動作検出手段と、吸気通路の吸気流量を検出するための吸気流量検出手段と、スロットル弁を駆動させるために制御手段が駆動手段に供給する駆動電流が所定値以上にて所定時間以上継続し、かつ検出される動作の変化量が所定値以下となる場合であり、併せてスロットル弁を駆動させるために制御手段が駆動手段に供給する駆動デューティが所定値以上にて所定時間以上継続した場合であって、併せてスロットル弁を駆動させるために制御手段が駆動手段を制御する駆動時間が所定時間以上経過しても検出される吸気流量が目標流量にならない場合に、スロットル弁が氷結していると判定する氷結判定手段とを備えたことを趣旨とする。
上記発明の構成によれば、駆動手段が必要以上に動作しようとしている場合であってスロットル弁が実際にほとんど駆動しない場合又はスロットル弁が実際に駆動しない場合であり、併せて駆動手段を実際に制御しても吸気流量が目標流量にならないようなスロットル弁の動きがない場合を、スロットル弁が氷結しているときと判定することとなり、スロットル弁の氷結を実際的に検出することとなる。
上記目的を達成するために、請求項11に記載の発明は、内燃機関の吸気通路に設けられるスロットル弁と、スロットル弁を駆動させる駆動手段と、駆動手段を制御するための制御手段とを備えた内燃機関のスロットル制御装置において、スロットル弁の動作を検出するための動作検出手段と、スロットル弁の開度を検出するための開度検出手段と、吸気通路の吸気流量を検出するための吸気流量検出手段と、スロットル弁を駆動させるために制御手段が駆動手段に供給する駆動電流が所定値以上にて所定時間以上継続し、かつ検出される動作の変化量が所定値以下となる場合であり、併せてスロットル弁を駆動させるために制御手段が駆動手段に供給する駆動デューティが所定値以上にて所定時間以上継続した場合であり、併せてスロットル弁を駆動させるために制御手段が駆動手段を制御する駆動時間が所定時間以上経過しても検出される開度が目標開度にならない場合であって、併せてスロットル弁を駆動させるために制御手段が駆動手段を制御する駆動時間が所定時間以上経過しても検出される吸気流量が目標流量にならない場合に、スロットル弁が氷結していると判定する氷結判定手段とを備えたことを趣旨とする。
上記発明の構成によれば、駆動手段が必要以上に動作しようとしている場合であってスロットル弁が実際にほとんど駆動しない場合又はスロットル弁が実際に駆動しない場合であり、併せて駆動手段を実際に制御してもスロットル弁が実際に目標開度に達しない場合であって、併せて駆動手段を実際に制御しても吸気流量が目標流量にならないようなスロットル弁の動きがない場合を、スロットル弁が氷結しているときと判定することとなり、スロットル弁の氷結を実際的に検出することとなる。
上記目的を達成するために、請求項12に記載の発明は、内燃機関の吸気通路に設けられるスロットル弁と、スロットル弁を駆動させる駆動手段と、駆動手段を制御するための制御手段とを備えた内燃機関のスロットル制御装置において、制御手段は、スロットル弁の氷結を解除するために、駆動手段に必要な駆動トルクを発揮させるように駆動デューティを供給すると共に、オープン制御で駆動デューティを反転させることを趣旨とする。ここで、「必要な駆動トルク」とは、氷結を解除できるトルク以上の値であり、ギヤ等の駆動部品が破損しない駆動部品の強度・摩耗防止が確保できるトルク以下の値を意味する(他の請求項において同じ)。
上記発明の構成によれば、スロットル弁の氷結を解除するために駆動手段に必要な駆動トルクを発揮させるので、スロットル弁の動作が必要に速くなり、氷結の破壊に有効な衝撃力が与えられる。また、駆動手段に供給される駆動デューティがオープン制御で反転されるので、駆動手段の駆動トルクが大きくなり、スロットル弁の作動速度が速くなる。
上記目的を達成するために、請求項13に記載の発明は、内燃機関の吸気通路に設けられるスロットル弁と、スロットル弁を駆動させる駆動手段と、駆動手段を制御するための制御手段とを備えた内燃機関のスロットル制御装置において、スロットル弁の開度を検出するための開度検出手段と、制御手段は、スロットル弁の氷結を解除するために、駆動手段に必要な駆動トルクを発揮させるように駆動デューティを供給すると共に、オープン制御で駆動デューティを反転させ、かつスロットル弁の目標開度と検出される開度との偏差の積算がゼロになるように駆動手段を制御することとを備えたことを趣旨とする。
上記発明の構成によれば、スロットル弁の氷結を解除するために駆動手段に必要な駆動トルクを発揮させるので、スロットル弁の動作が最大限に速くなり、氷結の破壊に有効な衝撃力が与えられる。また、駆動手段に供給される駆動デューティがオープン制御で反転されるので、駆動手段の駆動トルクが大きくなり、スロットル弁の作動速度が速くなる。更に、スロットル弁の目標開度と検出される開度との偏差の積算がゼロになるように駆動手段が制御されるので、吸気流量の変動を抑えながらスロットル弁を揺動させることが可能となり、氷結に対しスロットル弁を繰り返し衝突させて衝撃力を与えることとなる。
上記目的を達成するために、請求項14に記載の発明は、内燃機関の吸気通路に設けられるスロットル弁と、スロットル弁を駆動させる駆動手段と、駆動手段を制御するための制御手段とを備えた内燃機関のスロットル制御装置において、吸気通路の吸気流量を検出するための吸気流量検出手段と、スロットル弁の開度を検出するための開度検出手段と、制御手段は、スロットル弁の氷結を解除するために、駆動手段に必要な駆動トルクを発揮させるように駆動デューティを供給すると共に、オープン制御で駆動デューティを反転させ、かつスロットル弁の目標流量と検出される流量又は検出される開度の流量換算値との偏差の積算がゼロになるように駆動手段を制御することとを備えたことを趣旨とする。
上記発明の構成によれば、スロットル弁の氷結を解除するために駆動手段に必要な駆動トルクを発揮させるので、スロットル弁の動作が最大限に速くなり、氷結の破壊に有効な衝撃力が与えられる。また、駆動手段に供給される駆動デューティがオープン制御で反転されるので、駆動手段の駆動トルクが大きくなり、スロットル弁の作動速度が速くなる。更に、スロットル弁の目標流量と検出される流量又は検出される開度の流量換算値との偏差の積算がゼロになるように駆動手段が制御されるので、吸気流量の変動を抑えながらスロットル弁を揺動させることが可能となり、氷結に対しスロットル弁を繰り返し衝突させて衝撃力を与えることとなる。
上記目的を達成するために、請求項15に記載の発明は、内燃機関の吸気通路に設けられるスロットル弁と、スロットル弁を駆動させる駆動手段と、駆動手段を制御するための制御手段とを備えた内燃機関のスロットル制御装置において、スロットル弁の開度を検出するための開度検出手段と、スロットル弁が氷結しているときに検出される開度を記憶し、スロットル弁の氷結が緩んだときに検出される開度を更新して記憶するための開度記憶手段と、制御手段は、スロットル弁の氷結を解除するために、駆動手段に必要な駆動トルクを発揮させるように駆動デューティを供給すると共に、オープン制御で駆動デューティを反転させ、かつスロットル弁の目標開度と記憶された開度との偏差の積算がゼロになるように駆動手段を制御することとを備えたことを趣旨とする。
上記発明の構成によれば、スロットル弁の氷結を解除するために駆動手段に必要な駆動トルクを発揮させるので、スロットル弁の動作が最大限に速くなり、氷結の破壊に有効な衝撃力が与えられる。また、駆動手段に供給される駆動デューティがオープン制御で反転されるので、駆動手段の駆動トルクが大きくなり、スロットル弁の作動速度が速くなる。更に、スロットル弁の目標開度と記憶された開度との偏差の積算がゼロになるように駆動手段が制御されるので、吸気流量が目標流量に近付けられると共に吸気流量の変動が抑えられながらスロットル弁が揺動して、スロットル弁により氷に繰り返し衝撃力が与えられる。
上記目的を達成するために、請求項16に記載の発明は、内燃機関の吸気通路に設けられるスロットル弁と、スロットル弁を駆動させる駆動手段と、駆動手段を制御するための制御手段とを備えた内燃機関のスロットル制御装置において、スロットル弁の開度を検出するための開度検出手段と、スロットル弁が氷結しているときに検出される開度を記憶し、スロットル弁の氷結が緩んだときに検出される開度を更新して記憶するための開度記憶手段と、制御手段は、スロットル弁の氷結を解除するために、駆動手段に必要な駆動トルクを発揮させるように駆動デューティを供給すると共に、オープン制御で駆動デューティを反転させ、かつスロットル弁の目標開度と記憶された開度との偏差の積算がゼロになるように駆動手段を制御すると共に、その制御のためのパラメータを前記目標開度と前記記憶された開度との偏差に応じて変更することとを備えたことを趣旨とする。
上記発明の構成によれば、スロットル弁の氷結を解除するために駆動手段に必要な駆動トルクを発揮させるので、スロットル弁の動作が最大限に速くなり、氷結の破壊に有効な衝撃力が与えられる。また、駆動手段に供給される駆動デューティがオープン制御で反転されるので、駆動手段の駆動トルクが大きくなり、スロットル弁の作動速度が速くなる。更に、スロットル弁の目標開度と記憶された開度との偏差の積算がゼロになるように駆動手段が制御されるので、吸気流量が目標流量に近付けられると共に吸気流量の変動が抑えられながらスロットル弁が揺動して、スロットル弁により氷に繰り返し衝撃力が与えられる。加えて、制御のためのパラメータが目標開度と記憶された開度との偏差に応じて変更されることで、吸気流量の目標流量への収束性が向上する。
上記目的を達成するために、請求項17に記載の発明は、請求項15又は16に記載の発明において、制御手段は、スロットル弁の氷結を解除するために、スロットル弁が全閉付近の使用する開度になるまで駆動手段を制御することを趣旨とする。
上記発明の構成によれば、請求項15又は16に記載の発明の作用に加え、スロットル弁が全閉付近まで駆動されるので、全閉付近の氷結が解除される。
上記目的を達成するために、請求項18に記載の発明は、請求項12乃至17の何れかに記載の発明において、スロットル弁の氷結を解除するために駆動手段を駆動する回数又は駆動する時間が所定値を超えたときに異常と判定して駆動手段の制御を中止させる異常処理手段を更に備えたことを趣旨とする。
上記発明の構成によれば、請求項12乃至17の何れかに記載の発明の作用に加え、異常が判定されたときに駆動手段の制御が中止されるので、異常時に駆動手段を無駄に動作させることがない。
上記目的を達成するために、請求項19に記載の発明は、請求項12乃至17の何れかに記載の発明において、内燃機関の始動前にスロットル弁が氷結しているか否かを判定する始動前氷結判定手段を更に備えたことを趣旨とする。
上記発明の構成によれば、請求項12乃至17の何れかに記載の発明の作用に加え、内燃機関の始動前に判定された氷結につき、氷結解除が行われる。
上記目的を達成するために、請求項20に記載の発明は、請求項12乃至17の何れかに記載の発明において、内燃機関の始動前にスロットル弁が氷結しているか否かを判定する始動前氷結判定手段を更に備え、スロットル弁が氷結していると判定されたときに開度記憶手段は検出される開度を記憶することを趣旨とする。
上記発明の構成によれば、請求項12乃至17の何れかに記載の発明の作用に加え、内燃機関の始動前に判定された氷結につき、内燃機関の始動後にスロットル弁が記憶された開度に近づいたとき初めてスロットル弁を揺動させることになる。
上記目的を達成するために、請求項21に記載の発明は、請求項20に記載の発明において、制御手段は、スロットル弁が氷結していると判定されたとき、内燃機関の始動前にスロットル弁の氷結を解除するためにスロットル弁を開方向へ駆動させるよう駆動手段を制御することを趣旨とする。
上記発明の構成によれば、請求項20に記載の発明の作用に加え、内燃機関の始動前にスロットル弁による氷結の解除が始められる。また、スロットル弁を開方向へ駆動させるので、スロットル弁の作動角度が大きくなり、その作動速度が高くなる。
上記目的を達成するために、請求項22に記載の発明は、請求項20又は21に記載の発明において、開度記憶手段は、内燃機関の暖機中に氷結が緩んだときに検出される開度を更新して記憶し、制御手段は、更新して記憶された開度に基づいて駆動手段を制御することを趣旨とする。
上記発明の構成によれば、請求項20又は21に記載の発明の作用に加え、内燃機関の暖気中に氷結が緩んだときは、そのときに更新された開度に基づいてスロットル弁が揺動するので、氷結の緩みに応じてスロットル弁の作動範囲が変更される。
上記目的を達成するために、請求項23に記載の発明は、請求項12乃至17の何れかに記載の発明において、内燃機関の始動前にスロットル弁が氷結しているか否かを判定する始動前氷結判定手段を更に備え、開度記憶手段は、氷結していると判定されたときに検出される開度を氷結開度として記憶し、制御手段は、内燃機関の始動後にスロットル弁の目標開度と記憶された氷結開度との偏差が所定値より大きいときに氷結を解除するための駆動手段の制御を中断することを趣旨とする。
上記発明の構成によれば、請求項12乃至17の何れかに記載の発明の作用に加え、内燃機関の始動前に判定された氷結につき、内燃機関の始動後に目標開度と氷結開度との偏差が所定値より大きくなったときにスロットル弁の揺動が中断される。
上記目的を達成するために、請求項24に記載の発明は、請求項12乃至17の何れかに記載の発明において、内燃機関の始動後にスロットル弁が氷結しているか否かを判定する始動後氷結判定手段を更に備え、制御手段は、氷結していると判定されたとき内燃機関の始動後において氷結を解除するために駆動手段を制御することを趣旨とする。
上記発明の構成によれば、請求項12乃至17の何れかに記載の発明の作用に加え、内燃機関の始動後に判定された氷結につき、その解除のために駆動手段が制御される。
請求項1に記載の発明によれば、環境条件の違いにかかわらずスロットル弁の氷結を確実に検出することができる。
請求項2に記載の発明によれば、環境条件の違いにかかわらずスロットル弁の氷結をより確実に検出することができる。
請求項3に記載の発明によれば、環境条件の違いにかかわらずスロットル弁の氷結を確実に検出することができる。
請求項4に記載の発明によれば、環境条件の違いにかかわらずスロットル弁の氷結をより確実に検出することができる。
請求項5に記載の発明によれば、環境条件の違いにかかわらずスロットル弁の氷結を確実に検出することができる。
請求項6に記載の発明によれば、環境条件の違いにかかわらずスロットル弁の氷結をより確実に検出することができる。
請求項7に記載の発明によれば、環境条件の違いにかかわらずスロットル弁の氷結を確実に検出することができる。
請求項8に記載の発明によれば、環境条件の違いにかかわらずスロットル弁の氷結を確実に検出することができる。
請求項9に記載の発明によれば、環境条件の違いにかかわらずスロットル弁の氷結を確実に検出することができる。
請求項10に記載の発明によれば、環境条件の違いにかかわらずスロットル弁の氷結を確実に検出することができる。
請求項11に記載の発明によれば、環境条件の違いにかかわらずスロットル弁の氷結を確実に検出することができる。
請求項12に記載の発明によれば、スロットル弁による氷破壊力を大きくすることができ、スロットル弁の強固な氷結をより確実に解除することができる。また、スロットル弁の作動による吸気流量の変動を抑えることができる。
請求項13に記載の発明によれば、スロットル弁による氷結解除力をより大きくすることができ、スロットル弁の強固な氷結をより一層確実に解除することができる。また、スロットル弁の作動による吸気流量変動を抑えることができ、内燃機関の出力変動を抑えることができる。
請求項14に記載の発明によれば、スロットル弁による氷結解除力をより大きくすることができ、スロットル弁の強固な氷結をより一層確実に解除することができる。また、スロットル弁の作動による吸気流量変動を抑えることができ、内燃機関の出力変動を抑えることができる。
請求項15に記載の発明によれば、スロットル弁による氷破壊力をより大きくすることができ、スロットル弁の強固な氷結をより一層確実に解除することができる。また、スロットル弁の作動による吸気流量の変動を抑えることができ、内燃機関の出力変動を抑えることができる。
請求項16に記載の発明によれば、スロットル弁による氷破壊力をより大きくすることができ、スロットル弁の強固な氷結をより一層確実に解除することができる。また、スロットル弁の作動による吸気流量の変動を精度良く抑えることができ、内燃機関の出力変動を抑えることができる。
請求項17に記載の発明によれば、請求項15又は16に記載の発明の効果に加え、全閉付近を含む広範囲にわたって氷結を解除することができる。
請求項18に記載の発明によれば、請求項12乃至17の何れかに記載の発明の効果に加え、異常時に駆動手段を無理に動作させないことで駆動手段の劣化を抑えることができ、無駄なエネルギー消費を抑えることができる。
請求項19に記載の発明によれば、請求項12乃至17の何れかに記載の発明の効果に加え、内燃機関の始動に際して早めに氷結を解除することができる。
請求項20に記載の発明によれば、請求項15乃至17の何れかに記載の発明の効果に加え、氷結解除を必要とする開度に近づいたときだけスロットル弁を揺動させることができ、無駄なエネルギー消費を抑えることができる。
請求項21に記載の発明によれば、請求項20に記載の発明の効果に加え、内燃機関の始動に際して早めに氷結を解除することができる。また、スロットル弁により氷結解除に効果的な衝撃力を最初に得ることができ、強固な氷結に有効に対処することができる。
請求項22に記載の発明によれば、請求項20又は21に記載の発明の効果に加え、内燃機関の始動後早い段階からスロットル弁の氷結を有効に解除することができる。
請求項23に記載の発明によれば、請求項16乃至17の何れかに記載の発明の効果に加え、内燃機関の始動後における氷結解除のためのスロットル弁の揺動幅を小さく抑えることができ、無駄なエネルギー消費と駆動手段の耐久性悪化を抑えることができる。
請求項24に記載の発明によれば、請求項12乃至17の何れかに記載の発明の効果に加え、内燃機関の始動後にもスロットル弁の氷結を解除することができる。
[第1実施形態]
以下、本発明における内燃機関のスロットル制御装置を具体化した第1実施形態につき図面を参照して詳細に説明する。
図1に、自動車に搭載されるガソリンエンジンシステムを概略構成図により示す。このガソリンエンジンシステムは、本発明のスロットル制御装置を含む。スロットル制御装置は、電子スロットル1と、電子スロットル1を制御する電子制御装置(ECU)2とを備える。電子スロットル1は、本発明の内燃機関としてのエンジン3の出力を調節するために、吸気通路4を構成するスロットルボディ5に設けられる。電子スロットル1は、スロットル弁6と、スロットル弁6を開閉駆動させる本発明の駆動手段としてのモータ7と、スロットル弁6の実際の開度(実開度)TAを検出するためのスロットルセンサ8と、スロットル弁6をオープナ開度に保持するためのオープナ機構9とを備える。スロットル弁6は、運転席に設けられたアクセルペダル10の操作に機械的には連動しないリンクレスタイプである。すなわち、アクセルペダル10の操作量がアクセルセンサ11により検出され、その検出された操作量に基づきECU2がモータ7を制御し、そのモータ7の駆動力を受けることでスロットル弁6がアクセルペダル10の操作量に応じて開閉駆動するようになっている。
スロットル弁6は、スロットルボディ5のボア5a(図2参照)を貫通して設けられる弁軸12によりスロットルボディ5に回動可能に支持される。弁軸12の一端には、モータ7が連結され、その他端にはスロットルセンサ8が連結される。スロットルセンサ8は、本発明の動作検出手段及び開度検出手段に相当し、例えば、ポテンショメータより構成される。アクセルセンサ11は、スロットル弁6に係る目標開度RAを設定するために、運転者によるアクセルペダル10の操作量を目標開度RAとして検出する。このセンサ11は、例えば、ポテンショメータより構成される。
オープナ機構9は、モータ7への通電が停止されたときに、スロットル弁6を全閉状態から若干開いたオープナ開度に保持する機構である。図2に、オープナ機構9を含む電子スロットル1の概念構成図を示す。図3に、オープナ機構9によるスロットル弁6の動作説明図に示す。図2に示すように、電子スロットル1及びオープナ機構9は、スロットルボディ5に一体的に設けられる。スロットル弁6は弁軸12を中心にスロットルボディ5に回動可能に支持される。弁軸12の一端及び他端には、それぞれモータ7とスロットルセンサ8が連結される。ここで、図3に示すように、スロットル弁6の開閉につき、その全閉位置Sから全開位置Fへ向かう方向を開方向とし、全開位置Fから全閉位置Sへ向かう方向を閉方向とする。
図2に示すように、オープナ機構9は、エンジン3の停止時、すなわちモータ7の非通電時に、スロットル弁6を所定のオープナ開度位置N(図3参照)に保持するためのオープナレバー21を備える。オープナレバー21には、リターンスプリング22の一端が固定され、同スプリング22の他端は、スロットルボディ5に固定される。リターンスプリング22はオープナレバー21を介してスロットル弁6を閉方向へ付勢する。オープナレバー21は所定の回動位置で全開ストッパ23に係合して停止する。スロットルボディ5には、スロットル弁6を全閉位置S(図3参照)に保持するための全閉ストッパ24が設けられる。オープナレバー21には、オープナスプリング25の一端が固定される。オープナスプリング25の他端は、弁軸12に固定される。オープナスプリング25は、スロットル弁6を開方向へ付勢する。この実施の形態では、オープナレバー21、リターンスプリング22、全開ストッパ23、全閉ストッパ24及びオープナスプリング25等により、オープナ機構9が構成される。
ここで、リターンスプリング22の付勢力は、モータ7の駆動力よりも小さく、モータ7への非通電時におけるディテントトルクよりも大きく設定される。このように設定するのは、モータ7への通電時には、リターンスプリング22又はオープナスプリング25の付勢力に抗してスロットル弁6を開閉させ、モータ7への非通電時には、リターンスプリング22とオープナスプリング25との釣り合いにより、スロットル弁6を所定のオープナ開度位置Nに保持するためである。
図3に示すオープナ開度位置Nは、エンジン3の停止時にモータ7への通電が停止されているときには、エンジン3の始動を可能とする初期開度となる。一方、オープナ開度位置Nは、エンジン3の運転中にモータ7への通電が停止されているときには、自動車を路肩へ退避走行可能にする程度の出力レベルをエンジン3に持続させる開度となる。エンジン3の停止時、あるいは、モータ7への非通電時には、弁軸12及びオープナレバー21がリターンスプリング22により閉方向へ付勢される。これと同時に、弁軸12がオープナスプリング25により開方向へ付勢される。そして、これらリターンスプリング22及びオープナスプリング25の釣り合いにより、スロットル弁6がオープナ開度位置Nに保持される。
スロットル弁6をオープナ開度位置Nから全開位置Fへ開くには、モータ7の駆動力がリターンスプリング22の付勢力に抗して弁軸12に作用してオープナレバー21が全開ストッパ23に係合するまで弁軸12を回動させる。一方、スロットル弁6をオープナ開度位置Nから全閉位置Sまで閉じるには、モータ7の駆動力がオープナスプリング25の付勢力に抗して弁軸12に作用して弁軸12が全閉ストッパ24に係合するまで弁軸12を回動させることになる。
ここで、エンジン3の運転時には、アクセルペダル10の操作に基づいてECU2がモータ7を制御することで、スロットル弁6が所定開度に開かれる。このとき、スロットル弁6の開度は、アクセルペダル10の操作量に応じて、図3に示すように全閉位置Sから全開位置Fまでの作動範囲の中で決定される。全開位置Fでは、オープナレバー21が全開ストッパ23に係合することから、ボア5aが最大限に開かれた状態でスロットル弁6が保持される。この全開ストッパ23があることから、スロットル弁6が全開位置Fを超えて開き方向へ余分に回動することがない。一方、全閉位置Sでは、弁軸12が全閉ストッパ24に係合することから、ボア5aが全閉となる状態でスロットル弁6が保持される。この全閉ストッパ24があることから、スロットル弁6が全閉位置Sを超えて閉じ方向へ余分に回動することがない。そして、モータ7への通電が停止されたときには、前述したようにリターンスプリング22及びオープナスプリング25の釣り合いにより、スロットル弁6が全閉位置Sから若干開いたオープナ開度位置Nに保持される。
図1に示すように、ECU2には、吸気通路4の吸気温度THAを検出するための吸気温センサ31、吸気通路4の吸気流量QAを検出するためのエアフローメータ32、エンジン3の冷却水温度THWを検出するための水温センサ33、エンジン3の回転速度NEを検出するための回転速度センサ34、並びに、エンジン3を始動・停止させるために操作されるイグニションスイッチ35がそれぞれ接続される。エアフローメータ32は、本発明の吸気流量検出手段に相当する。また、ECU2には、運転席に設けられたアラームランプ36が接続される。ECU2は、周知のように中央処理装置(CPU)、読み出し書き換えメモリ(RAM)及び読み出し専用メモリ(ROM)等を備える。ROMには、エンジン3及び電子スロットル1に関する制御プログラムが記憶される。特に、この実施形態で、ECU2は、スロットル弁6に係るアイシング(氷結)に対処するための氷結解除制御を実行する。ECU2は、本発明における制御手段、氷結判定手段、開度記憶手段、異常処理手段及び始動前氷結判定手段に相当する。
ここで、ECU2は、スロットルセンサ8から出力される実開度TAに係る信号、並びに、アクセルセンサ11から出力される目標開度RAに係る信号がそれぞれ入力する。ECU2は、PID制御の手法に従い、入力した実開度TA及び目標開度RAに係る信号に基づきモータ7を制御する。すなわち、ECU2は、入力した各信号に基づき目標開度RAと実開度TAとの開度偏差を算出し、その開度偏差に基づいて所定の計算式に従いモータ7の制御量を算出する。そして、ECU2は、その制御量に応じた制御信号(駆動デューティDY)を出力してモータ7を制御する。このようにしてモータ7をフィードバック制御することで、スロットル弁6の実開度TAを目標開度RAに近付ける通常制御を行うようになっている。
ここで、図4に、この実施形態のモータ7に係る「モータ特性」を、図5にスロットル弁6に係る「開度−流量特性」等をそれぞれグラフに示す。図4のグラフは、横軸にモータ7のトルクを、左右縦軸にモータ7の回転数と電流を示す。このグラフで、右下がりの直線がトルクと回転数の関係(T−N特性)を示し、右上がりの直線がトルクと電流との関係(T−I特性)を示す。図5のグラフは、横軸にスロットル弁6の開度を、左右縦軸に吸気通路4における吸気流量と吸気差圧(スロットル弁上流と下流の圧力差)を示す。このグラフで、右下がりの曲線が開度と差圧との関係を示し、右上がりの曲線が開度と流量との関係を示す。
次に、ECU2が実行する氷結解除制御の内容を図6〜21に従って詳細に説明する。図6,7に、氷結解除制御の内容をフローチャートにより示す。ECU2は、このルーチンを所定間隔毎に周期的に実行する。
図6のフローチャートは、氷結解除制御の全体の流れを示す。ECU2は、このルーチンを所定間隔毎に周期的に実行する。このルーチンの処理が開始されると、ECU2は、ステップ100で、イグニションスイッチ35の操作によりイグニション(IG)がONとなるのを待って処理をステップ110へ移行する。ステップ110で、ECU2は、吸気温センサ32及び水温センサ33により検出される吸気温度THA及び冷却水温度THWそれぞれ読み込む。
その後、ステップ120で、ECU2は、読み込んだ吸気温度THA及び冷却水温度THWに基づき低温状態であるか否かを判断する。すなわち、ECU2は、外気とエンジン3が低温状態にあることでスロットル弁6に氷結発生のおそれがあるか否かを判断するのである。この判断結果が否定である場合、ECU2は、その後の処理を一旦終了する。この判断結果が肯定である場合、低温状態であることから、ECU2は、ステップ130で、IG・ON処理が終了したか否かを判断する。ここで、IG・ON処理は、氷結確認のための処理と氷結解除のための処理を含む。IG・ON処理が終了した場合、ECU2は、そのまま処理をステップ140へ移行する。IG・ON処理が終了していない場合、ECU2は、ステップ200で、IG・ON処理を実行した後、処理をステップ140へ移行する。このIG・ON処理の詳細については後述する。
そして、ステップ140では、ECU2は、回転速度センサ34により検出される回転速度NEに基づいてエンジン3が始動したか否かを判断する。この判断結果が否定である場合、ECU2は、その後の処理を一旦終了する。この判断結果が肯定である場合、ECU2は、ステップ300で、エンジン3の始動後における閉じ側解氷処理を実行し、その後の処理を一旦終了する。この閉じ側解氷処理の詳細についても後述する。
ここで、上記したステップ200の「IG・ON処理」の内容について詳しく説明する。図7に、このIG・ON処理をフローチャートに示す。
先ず、ステップ210で、ECU2は、閉じ側氷結判定動作を実行する。すなわち、ECU2は、スロットル弁6が閉じ側へ動かない「閉じ側氷結」の状態にあるか否かを判定すべく、スロットル弁6を閉じ側へ駆動させるためにモータ7を制御する。このとき、ECU2は、例えば、全閉から少し開いた開度(eqg開度)を所定開度としてモータ7を制御する。ここで、エンジン3の始動前には、前述したオープナ機構9によりスロットル弁6が全閉状態から若干開いたオープナ開度に保持されている。従って、スロットル弁6は、このオープナ開度から全閉方向へ駆動しようとするが、スロットル弁6に閉じ側氷結が発生していた場合は、スロットル弁6がボア5aに固着して動き難くなる。一方、スロットル弁6に閉じ側氷結が発生していない場合は、スロットル弁6が所定開度まで閉じることになる。
次に、ステップ220で、ECU2は、閉じ側氷結があるか否かを判定する。この実施形態で、詳しくは、この判定のために、図9に示すように、ステップ210の処理開始から所定時間(例えば「2秒以内」)以上が経過しても実開度TAが目標開度RAにならないか否かを判断する。ここでは、目標開度RAを「全閉状態」としている。つまり、この判断では、所定時間以上モータ7を駆動しても実開度TAが全閉状態にならなかったときに、スロットル弁6が実質的に動いていないものとして、「閉じ側氷結」であると判定することになる。図7に戻って、閉じ側氷結がある場合、ECU2は、ステップ230で、閉じ側氷結フラグを「ON」とし、ステップ240で、そのときの実開度TAを氷結開度FAとしてRAMに記憶し、処理をステップ260へ移行する。一方、閉じ側氷結がない場合、ECU2は、ステップ250で、閉じ側氷結フラグを「OFF」とし、処理をステップ260へ移行する。つまり、ステップ210〜250で、ECU2は、エンジン3の始動前にスロットル弁6の氷結を確認する。
ステップ240又は250から移行してステップ260では、ECU2は、開き側解氷作動を実行する。すなわち、ECU2は、瞬間的に目標開度RAを比較的大きな値に設定し、その目標開度RAへ向けてスロットル弁6を開かせるためにモータ7を制御することで、開き側の解氷を図る。このとき、ECU2は、目標開度RAを、例えば「10°以上」に設定する。また、ECU2は、スロットル弁6の氷結を解除するために、モータ7に必要な駆動トルクを発揮させるようにモータ電流又は駆動デューティDYを供給する。ここで、「必要な駆動トルク」とは、氷結を解除できるトルク以上の値であり、ギヤ等の駆動部品が破損しない駆動部品の強度・摩耗防止が確保できるトルク以下の値を意味する。
図8に、「IG・ON処理」における実開度TAと目標開度RAの挙動をタイムチャートにより示す。図8に示すように、初めの2秒以内に「閉じ側氷結判定作動」を実施することで「氷結確認」が行われる。このとき、「閉じ側氷結あり」と判定されたときは、そのときの実開度TAが氷結開度FAとして記憶されることになる。その後、「氷結解除実施」の期間において、「開き側解氷作動」により目標開度RAが「10°以上」に設定され、スロットル弁6が一旦大きく動かされることで実開度TAが一旦大きく増減変化する。この開き側解氷作動により、スロットル弁6の下流側にできた氷を破壊することができる。
次に、上記したステップ300の「閉じ側解氷処理」の内容について詳しく説明する。図10,11に、この閉じ側解氷処理の内容をフローチャートにより示す。
先ず、ステップ301で、ECU2は、閉じ側解氷処理のための実行条件が成立したか否かを判断する。ECU2は、例えば、アクセルペダル10が無操作状態で、かつ、上記した閉じ側氷結フラグが「ON」となるときに実行条件成立と判断する。アクセルペダル10が無操作であるか否かは、ECU2は、アクセルセンサ11の検出信号に基づいて判断することができる。ECU2は、実行条件が成立していない場合はその後の処理を一旦終了し、実行条件が成立している場合は処理をステップ302へ移行する。
ステップ302で、ECU2は、氷結解除が終了したか否かを判断する。そして、ECU2は、氷結解除が終了している場合はその後の処理を一旦終了し、氷結解除が終了していない場合は処理をステップ303へ移行する。
ステップ303で、ECU2は、氷結開度FAを更新して記憶する。この更新に係る氷結開度FAは、図7のステップ240で氷結開度FAとして記憶された実開度TAを意味する。
次に、ステップ304で、ECU2は、実開度TAが目標開度RA以上であるか否かを判断する。ここで、実開度TAが目標開度RA以上である場合、ECU2は、ステップ305で、実開度TAと目標開度RAとのプラス側偏差を積算して、処理をステップ307へ移行する。一方、実開度TAが目標開度RAより小さい場合、ECU2は、ステップ306で、実開度TAと目標開度RAとのマイナス側偏差を積算して、処理をステップ307へ移行する。
ステップ305又は306から移行してステップ307では、ECU2は、実開度TAと目標開度RAとの偏差がマイナスからプラスへ反転したか否かを判断する。この判断結果が肯定である場合、ECU2は、ステップ310で、プラス積算値をクリアする。一方、ステップ307の判断結果が否定である場合、ECU2は、ステップ308で、実開度TAと目標開度RAとの偏差がプラスからマイナスへ反転したか否かを判断する。この判断結果が否定である場合、ECU2は、ステップ310で、プラス積算値をクリアする。一方、ステップ308の判断結果が肯定である場合、ECU2は、ステップ309で、マイナス積算値をクリアしてから、ステップ310で、プラス積算値をクリアする。
つまり、上記したステップ304〜310では、ECU2は、実開度TAと目標開度RAとの偏差の積算値を算出することになる。
その後、ステップ311で、ECU2は、面積補正係数αを算出する。ここで、ECU2は、図12に示すマップを参照することにより、目標開度RAと氷結開度FAとの偏差から面積補正係数αを算出する。次に、ECU2は、ステップ312で、開側反転時間Toを算出し、ステップ313で、閉側反転時間Tcを算出する。ここで、ECU2は、図13に示すマップを参照することにより、目標開度RAと氷結開度FAとの偏差から開側反転時間To及び閉側反転時間Tcを算出する。これら一連のステップ311〜313において、ECU2は、判定前準備を行う。
次に、ステップ314で、ECU2は、開or閉フラグが「開」か「閉」かを判断する。このフラグが「閉」である場合、ECU2は、処理をステップ315へ移行する。そして、ステップ315で、ECU2は、実開度TAがロック状態であるか否かを判断する。すなわち、ECU2は、実開度TAに変化がないか否かを判断する。この判断結果が肯定である場合、ECU2は、ステップ317で、開or閉フラグを「開」に設定し、処理をステップ321へ移行する。一方、ステップ315の判断結果が否定である場合、ECU2は、ステップ316で、所定時間が経過したか否かを判断する。ここで、所定時間とは、上記した閉側反転時間Tcである。このステップ316の判断結果が肯定である場合、ECU2は、ステップ317で、開or閉フラグを「開」に設定し、処理をステップ321へ移行する。一方、ステップ316の判断結果が否定である場合、ECU2は、そのまま処理をステップ321へ移行する。
また、ステップ314で、開or閉フラグが「開」である場合、ECU2は、処理をステップ318へ移行する。そして、ステップ318で、ECU2は、上記したプラス積算値がマイナス積算値と等しいか否かを判断する。この判断を行うのは、プラス積算値とマイナス積算値とが一致する直前で駆動デューティDYを早めに反転させるためである。この判断結果が肯定である場合、ECU2は、ステップ320で、開or閉フラグを「閉」に設定し、処理をステップ321へ移行する。一方、ステップ318の判断結果が否定である場合、ECU2は、ステップ319で、所定時間が経過したか否かを判断する。ここで、所定時間とは、上記した開側反転時間Toである。このステップ319の判断結果が肯定である場合、ECU2は、ステップ320で、開or閉フラグを「閉」に設定し、処理をステップ321へ移行する。一方、ステップ319の判断結果が否定である場合、ECU2は、そのまま処理をステップ321へ移行する。
つまり、上記したステップ314〜320では、ECU2は、スロットル弁6の開閉判定を行うことになる。
そして、ステップ316、317、319又は320から移行してステップ321では、ECU2は、駆動デューティDYの出力値を所定値にセットする。ここでは、開or閉フラグが「開」又は「閉」となるのに対応して、ECU2は、駆動デューティDYを、モータ7の駆動トルクを必要なトルクを得る値に発揮させるために、例えば、「+20〜+100%」又は「−20〜−100%」にセットする。
つまり、ECU2は、上記したステップ301〜321で、スロットル弁6の氷結を解除するために、モータ7に必要な駆動トルクを発揮させるように駆動デューティDYを供給すると共に、オープン制御で駆動デューティDYを反転させる。加えて、ECU2は、スロットル弁6の目標開度RAと検出される実開度TA(記憶された氷結開度FA)との偏差の積算がゼロになるようにモータ7を制御する。更に加えて、ECU2は、上記制御のためのパラメータである面積補正係数α、開側反転時間To及び閉側反転時間Tcを、目標開度RAと氷結開度FAとの偏差に応じて変更する。
その後、ECU2は、ステップ322で、スロットル制御装置の異常を判定するために、所定時間以上経過したか、又は、所定回数以上経過したか否かを判断する。ここで、所定時間は、氷結解除のためにモータ7を駆動させた時間を意味し、例えば「2秒以内の値」を当てはめることができる。また、所定回数は、同じく氷結解除のためにモータ7を駆動させた回数を意味し、例えば「100回以内の値」を当てはめることができる。この判断結果が肯定である場合、スロットル制御装置に異常が発生したものとして、ECU2は、ステップ323でシステムダウンを行い、その後の処理を一旦終了する。一方、スロットル制御装置に異常が発生していない場合は、ステップ322からそのまま処理を一旦終了する。ここで、システムダウンの内容として、ECU2は、モータ7の駆動を停止すると共に、アラームランプ36を点灯させ、異常が発生したことを示す異常コードをバックアップRAMに記憶する。この異常コードは、エンジン3のメンテナンス時に履歴情報として読み出し可能である。
上記した「閉じ側解氷処理」では、第1に、ECU2は、モータ7に必要な駆動トルクを発揮させるべく、駆動デューティDYを「+20〜+100%」又は「−20〜−100%」としてモータ7をオープン制御で駆動させる。つまり、ECU2は、モータ7に「+20〜+100%」の駆動デューティDYを供給すると共に、オープン制御で駆動デューティDYを反転させる。第2に、ECU2は、目標開度RAと実開度TA(記憶された氷結開度FA)の偏差の積算がゼロになるようにスロットル弁6を開閉作動させる。これにより、エンジン3が要求する吸気流量QAを満たしながら、スロットル弁6を揺動させるようになっている。
図14に、「閉じ側解氷処理」につき、目標開度RAが氷結開度FAよりも大きい場合におけるスロットル弁の実開度TA、駆動デューティDY、プラス偏差面積(プラス積算値)及びマイナス偏差面積(マイナス積算値)の挙動をタイムチャートに示す。
図14において、時刻t1で、駆動デューティDYが「+20〜+100%」に設定されると、時刻t2で、実開度TAが増加し始め、これに伴いプラス偏差面積が増加し始める。その後、開側反転時間Tcが過ぎて時刻t3で、駆動デューティDYが「−20〜−100%」に反転すると、少し遅れて実開度TAが減少し始め、時刻t4で、実開度TAが目標開度RAを下回り始め、これに伴いマイナス偏差面積が増加を始める。このとき、スロットル弁6が閉方向へ駆動されるので、スロットル弁6の氷結に衝撃が加えられ、実開度TAが、初期氷結開度OMGA(最初に記憶された氷結開度FA)をわずかに下回り、そのときの実開度TAが新たな氷結開度FAとして更新して記憶される。
その後、時刻t3から閉側変転時間Tcが経過すると、時刻t5で、駆動デューティDYが「+20〜+100%」に反転し、少し遅れて実開度TAが増加し始め、時刻t6で、実開度TAが目標開度RAを超えると、プラス偏差面積が「0」にリセットされて再び増加し始める。その後、開側反転時間Toが過ぎて時刻t7で、駆動デューティDYが「−20〜−100%」に反転すると、少し遅れて実開度TAが減少し始め、時刻t8で、実開度TAが目標開度RAを下回り始め、これに伴いマイナス偏差面積が「0」にリセットされて再び増加し始める。このとき、スロットル弁6の氷結に更に衝撃が加えられ、実開度TAが、前回の氷結開度FAを下回り、そのときの実開度TAが新たな氷結開度FAとして更新して記憶される。
その後、時刻t7から閉側変転時間Tcが経過すると、時刻t9で、駆動デューティDYが「+20〜+100%」に反転し、少し遅れて実開度TAが増加し始め、時刻t10で、実開度TAが目標開度RAを超えると、プラス偏差面積が「0」にリセットされて再び増加し始める。その後、開側反転時間Toが過ぎて時刻t11で、駆動デューティDYが「−20〜−100%」に反転すると、少し遅れて実開度TAが減少し始め、時刻t12で、実開度TAが目標開度RAを下回り始め、これに伴いマイナス偏差面積が「0」にリセットされて再び増加し始める。このとき加えられる衝撃によりスロットル弁6の氷結が解除されると、実開度TAが全閉まで変化することができ、時刻t13で、「閉じ側解氷処理」が終了し、駆動デューティDYが通常のPID制御でフィードバックされることになり、通常制御へ移行する。
図14から分かるように、開側から閉側への駆動デューティDYの反転は、目標開度RAに対する実開度TAの偏差の面積(偏差面積)で制御し、反転後は開側反転時間Toにより時間的制限をかける。これに対し、閉側から開側への駆動デューティDYの反転は、スロットル弁6の氷結への突き当たり(氷結開度FA)を検出して反転し、反転後は閉側反転時間Tcにより時間的制限をかける。このとき、開側反転時間To及び閉側反転時間Tcは、図13に示すマップを参照することで算出される。また、駆動デューティDYの反転は、スロットル弁6の応答遅れを見込んで、早めのタイミングで実施するようにしている。
すなわち、上記した「閉じ側解氷処理」によれば、エンジン3の始動後に解氷作動を実施し、図15に示すように、目標開度RAを中心にスロットル弁6を繰り返し揺動させ、氷結開度FAが緩むと氷結開度FAを更新して記憶し、実開度TAが全閉になるまで、つまりスロットル弁6が全閉付近に達するまで解氷作動を続けるのである。このような「閉じ側解氷処理」により、スロットル弁6の上流側にできた氷にスロットル弁6を繰り返し衝突させて衝撃力を与えることができ、その氷を破壊することができる。
ここで、上記した氷結解除制御による氷結解除メカニズムを図16〜19を参照して説明する。スロットル弁6に氷結が発生すると、図16に示すように、氷Icはスロットル弁6の上流側と下流側の両方向へ発達して延びる。
「IG・ON処理」において、エンジン3の始動前にスロットル弁6の閉じ側氷結があると判定されると、図16に示す状態において、「開き側解氷作動」によりスロットル弁6が開き方向へ1回駆動される。これにより、図17に示すように、スロットル弁6の開き力により、スロットル弁6の下流側の氷Icが破断して剥離する。
その後、エンジン3が始動すると、「閉じ側解氷処理」において、図18に示すように、スロットル弁6が開状態から閉じ側へ駆動され、スロットル弁6が氷Icに衝突する。そして、スロットル弁6を揺動させることでスロットル弁6を繰り返し氷Icに衝突させて氷Icに繰り返し衝撃力を与える。これにより、図19に示すように、スロットル弁6の上流側の氷Icを破断して剥離し、この結果としてスロットル弁6の氷結を全て解除することができる。
以上説明したこの実施形態のスロットル制御装置によれば、「氷結確認」において、図9に示すように、モータ7を制御する時間が所定時間以上経過しても検出される実開度TAが目標開度RAにならない場合に、スロットル弁6に氷結が発生していると判定するようにしている。ここで、モータ7を制御してから所定時間以上経過しても実開度TAが目標開度RAにならない場合とは、モータ7を動作させようと所定時間以上制御してもスロットル弁6が目標開度RAに達しない場合を意味する。従って、モータ7を実際に制御してもスロットル弁6が実際に目標開度RAに達しない場合を、スロットル弁6が氷結しているときと判定することとなり、スロットル弁6の氷結を実際的に検出することとなる。この結果、環境条件の違いにかかわらずスロットル弁6の氷結を確実に検出することができる。また、このようにスロットル弁6の氷結を確実に検出できることから、氷結解除のためのスロットル弁6の動作を、必要時にのみ限定できることになり、この意味でモータ7での電気エネルギーの消費を抑えることができ、モータ7の耐久性悪化を抑えることができる。
この実施形態によれば、「IG・ON処理」にて実行する「開き側解氷作動」において、エンジン3の始動前にスロットル弁6を一旦開方向へ駆動させることで氷結の解除が始められる。このため、エンジン3の始動に際して早めにスロットル弁6の氷結を解除することができ、通常制御によりスロットル弁6を好適に開閉できるようにすることができる。また、スロットル弁6を開方向へ駆動させるので、スロットル弁6の作動角度が大きくなり、スロットル弁6の作動速度が高くなる。このため、スロットル弁6により氷結解除に効果的な衝撃力を最初に得ることができ、この意味でスロットル弁6の強固な氷結にも有効に対処してその氷結を解除することができる。更に、この「開き側解氷作動」において、モータ7に必要な駆動トルクを発揮させるように駆動デューティDYを供給するので、このことによってもスロットル弁6の動作が最大限に速くなり、氷の破壊に有効な衝撃力が与えられる。この意味でもスロットル弁6の強固な氷結に有効に対処してその氷結を解除することができる。
また、この実施形態によれば、「閉じ側解氷処理」において、スロットル弁6の氷結を解除するために、駆動デューティDYを「+20〜+100%」又は「−20〜−100%」にセットすることで、モータ7に必要な駆動トルクを発揮させるので、スロットル弁6の動作が最大限に速くなり、氷の破壊に有効な衝撃力が与えられる。加えて、モータ7に供給される駆動デューティDYがオープン制御で反転されるので、その意味でもモータ7の駆動トルクが大きくなり、スロットル弁6の作動速度が速くなる。更に、スロットル弁6の目標開度RAと記憶された氷結開度FAとの偏差の積算がゼロになるようにモータ7が制御されるので、吸気流量QAが目標流量に近付けられると共に吸気流量QAの変動が抑えられながらスロットル弁6が揺動して、スロットル弁6が氷に繰り返し衝突して、スロットル弁6により氷に繰り返し衝撃力が与えられる。このため、スロットル弁6による氷破壊力をより大きくすることができ、スロットル弁6の強固な氷結をより一増確実に解除することができる。また、スロットル弁6の揺動による吸気流量の変動を抑えることができ、エンジン3の出力変動を抑えることができる。この意味で、スロットル弁6の揺動による吸気流量QAの変動を抑えながら、より広範囲にできた氷結を排除することができる。
特に、この実施形態では、スロットル弁6の目標開度RAと記憶された氷結開度FAとの偏差の積算がゼロになるようにモータ7を制御するために、その制御のためのパラメータである面積補正係数α、開側反転時間To及び閉側反転時間Tcを、目標開度RAと氷結開度FAとの偏差に応じて変更するようにしている。従って、吸気流量QAの目標流量への収束性が向上する。この意味で、スロットル弁6による吸気流量の変動を精度良く抑えることができ、エンジン3の出力変動を抑えることができる。
また、この実施形態では、「閉じ側解氷処理」において、スロットル弁6が全閉付近になるまでモータ7が制御されるので、全閉付近の氷結が解除される。このため、全閉付近を含む広範囲にわたってできた氷結を解除することができる。
この実施形態では、「IG・ON処理」において、エンジン3の始動前にスロットル弁6が氷結しているか否かを判定し、氷結していると判定したときにそのときの実開度TAを氷結開度FAとして記憶するようにしている。また、「閉じ側解氷処理」いおいて、エンジン3の始動前に記憶した氷結開度FAに基づきスロットル弁6を揺動させるようにしている。従って、エンジン3の始動前に判定された氷結につき、エンジン3の始動後に、スロットル弁6が氷結開度FAに近づいたとき初めてスロットル弁6を揺動させることとなる。このため、スロットル弁6が、氷結解除を必要とする氷結開度FAに近づいたときだけモータ7を動作させてスロットル弁6を揺動させることができ、モータ7での無駄な電気エネルギーの消費を抑えることができる。
この実施形態では、エンジン3の始動後の暖機中(ファーストアイドル中)に氷結が緩んだときには、そのときの実開度TAが氷結開度FAとして更新されて記憶され、その更新された氷結開度FAに基づいてモータ7を制御することでスロットル弁6を揺動させるので、氷結の緩みに応じてスロットル弁6の作動範囲が変更される。このため、エンジン3の始動後に早い段階で氷結を有効に解除することができ、エンジン3の始動後に通常制御においてスロットル弁6を好適に開閉できるようにすることができる。また、比較的エンジン音の大きい暖気中に解氷処理を行うので、スロットル弁6が氷をたたく打音を聞こえ難くすることができる。
この実施形態では、スロットル弁6又はモータ7の動作に係る異常が判定されたときに、モータ7の制御が中止されるので、異常時にモータ7を無駄に動作させることがない。このため、異常時にモータ7を無理に動作させないことで、モータ7の劣化を抑えることができ、モータ7での無駄な電気エネルギーの消費を抑えることができる。
[第2実施形態]
次に、本発明における内燃機関のスロットル制御装置を具体化した第2実施形態につき図面を参照して詳細に説明する。
この実施形態では、氷結解除制御の内容において、第1実施形態と構成が異なる。詳しくは、この実施形態では、エンジン3の始動後に発生する氷結に対処するための制御内容となっている。図20に、氷結解除制御の全体の流れをフローチャートにより示す。ECU2は、このルーチンを所定間隔毎に周期的に実行する。
このルーチンの処理が開始されると、ECU2は、ステップ400で、エンジン3の始動後か否かを判断する。ECU2は、この判断を回転速度センサ34により検出される回転速度NEに基づいて判断する。エンジン3の始動後でない場合、ECU2は、その後の処理を一旦終了する。エンジン3の始動後である場合、ステップ410で、ECU2は、吸気温センサ32及び水温センサ33により検出される吸気温度THA及び冷却水温度THWそれぞれ読み込む。
その後、ステップ420で、ECU2は、読み込んだ吸気温度THA及び冷却水温度THWに基づいて低温状態であるか否かを判断する。すなわち、ECU2は、外気とエンジン3が低温状態にあることでスロットル弁6に氷結発生のおそれがあるかを判断するのである。低温状態でない場合、ECU2は、その後の処理を一旦終了する。低温状態である場合、ステップ430で、ECU2は、氷結ありか否かを判定する。すなわち、スロットル弁6に氷結が発生しているか否かを判定する。この判定内容は、図9に示すそれと同じである。そして、氷結がある場合、ECU2は、ステップ440で、氷結フラグを「ON」とし、ステップ450で、そのときの実開度TAを氷結開度FAとしてRAMに記憶し、処理をステップ500へ移行する。
ステップ500で、ECU2は、「解氷処理」を実行してからその後の処理を一旦終了する。この「解氷処理」の内容は、図6のステップ300の内容、すなわち図10,11に示す内容と同じである。
一方、ステップ430で、氷結がない場合、ECU2は、ステップ460で、氷結フラグが「ON]であるか否かを判断する。そして、氷結フラグが「ON」である場合、ECU2は、処理をステップ450へ移行する。氷結フラグが「ON」でない場合、ECU2は、その後の処理を一旦終了する。
従って、この実施形態の氷結解除制御によれば、エンジン3の始動後にもスロットル弁6が氷結しているか否かが判定され、氷結していると判定されたときには、氷結を解除するためにモータ7が制御されてスロットル弁3が揺動する。このため、エンジン3の始動後にできたスロットル弁6の氷結を有効に解除することができる。それ以外の作用効果は、第1実施形態のそれと基本的に同じである。
図21に、氷結解除制御を実行したときのスロットル弁6の実開度TAの挙動をタイムチャートに示す。このタイムチャートからも分かるように、スロットル弁6の氷結により実開度TAが目標開度RAに追従しなくなると、氷結が検出されてそのときの実開度TAが氷結開度FAとして記憶される。その後、氷結開度FAを基準にスロットル弁6が揺動することで氷結が解除すると、実開度TAが目標開度RAに追従するようになる。
[第3実施形態]
次に、本発明における内燃機関のスロットル制御装置を具体化した第3実施形態につき図面を参照して詳細に説明する。
この実施形態では、氷結解除制御の内容において、第1実施形態と構成が異なる。詳しくは、この実施形態では、図10のステップ301の処理内容の点で異なる。すなわち、この実施形態では、ステップ301で、ECU2は、閉じ側解氷処理のための実行条件として、アクセルペダル10が無操作状態であること、上記した閉じ側氷結フラグが「ON」であること、目標開度RAと氷結開度FAとの偏差が所定値A(例えば「10deg以内の値」)より小さいこと、の全てを満たすことが要求される。
つまり、この実施形態で、ECU2は、エンジン3の始動前にスロットル弁6が氷結しているか否かを判定し、氷結していると判定されたときに検出される実開度TAを氷結開度FAとして記憶する。そして、ECU2は、エンジン3の始動後にスロットル弁6の目標開度RAと記憶された氷結開度FAとの偏差が所定値Aより大きいときには、氷結を解除するためのモータ7の制御(スロットル弁6を揺動させる制御)を中断するようになっている。
従って、この実施形態によれば、エンジン3の始動前に判定された氷結につき、エンジン3の始動後に氷結解除のためにモータ7によりスロットル弁6を揺動させていても、目標開度RAと氷結開度FAとの偏差が所定値Aより大きくなったときには、モータ7によるスロットル弁6の揺動が中断される。このため、氷結解除のためのスロットル弁6の揺動幅を所定値Aの範囲内に小さく抑えることができる。これにより、モータ7を必要以上に駆動させる必要がなく、モータ7での無駄な電気エネルギー消費とモータ7の耐久性悪化を抑えることができる。それ以外の作用効果は、第1実施形態のそれと基本的に同じである。
図22に、氷結解除制御を実行したときのスロットル弁6の実開度TA、目標開度RA及び氷結開度FAの挙動をタイムチャートに示す。このタイムチャートからも分かるように、エンジン3の始動後の時刻t1〜t2において、目標開度RAと氷結開度FAとの偏差が所定値Aよりも小さいときは、スロットル弁6が揺動すること実開度TAが目標開度RAを中心に変動する。その後、時刻t2で、目標開度RAと氷結開度FAとの偏差が所定値Aより大きくなると、スロットル弁6の揺動が中断され、実開度TAが目標開度RAに保持される。その後、時刻t3で、再び目標開度RAと氷結開度FAとの偏差が所定値Aよりも小さくなると、スロットル弁6が揺動して実開度TAが目標開度RAを中心に変動する。このようにしてスロットル弁6が揺動するときの実開度TAの変化幅が大きくなり過ぎないよう抑えられる。
尚、この発明は前記各実施形態に限定されるものではなく、発明の趣旨を逸脱することのない範囲で構成の一部を変更することで以下のように実施することもできる。
(1)前記各実施形態では、図7のステップ220で、閉じ側氷結ありを判定するために、図9に示すように、ステップ210の処理開始から「所定時間以上経過しても実開度TAが目標開度RAにならない」か否かを判断したが、閉じ側氷結ありを判定するために、図23〜28に示すような判断を行ってもよい。
すなわち、図23に示すように、ステップ210の処理開始から「所定時間(例えば「2秒以内の値」)以上が経過しても実開度TAが目標開度RA(全閉状態)にならない、かつ、実開度TAの変化量が所定値(例えば「3°」以内の値)以下」であるか否かを判断するようにしてもよい。この場合、図9に示す判断内容に対し、実開度TAの変化量の判断を加味しているので、スロットル弁6の実質的な動きをより的確にとらえることができる。ここで、図23に示す判断内容において、モータ7を制御する駆動時間が所定時間以上経過しても検出される実開度TAが目標開度RAにならない場合は、モータ7を動作させようと所定時間以上制御してもスロットル弁6が目標開度RAに達しない場合を意味する。また、検出される実開度TAの変化量が所定値以下となる場合は、スロットル弁6が実際にほとんど駆動しない場合を意味する。従って、モータ7を実際に制御してもスロットル弁6が実際に目標開度RAに達しない場合であってスロットル弁6が実際にほとんど駆動しない場合を、スロットル弁6が氷結しているときと判定することが可能となり、スロットル弁6の氷結を実際的に検出することとなる。このため、環境条件の違いにかかわらずスロットル弁6にできた氷結の有無をより確実に検出することができる。
また、モータ7に供給される駆動電流としてのモータ電流を制御することでモータ7の出力を制御するようにした構成においては、図24に示すように、「モータ電流が所定値(例えば「ロック電流の20%以上の値」)以上にて所定時間(例えば「2秒以内の値」)以上継続した」か否かを判断するようにしてもよい。ここで、モータ電流の所定値以上の状態が所定時間以上継続するということは、モータ電流が供給されるにもかかわらずモータ7が動いていないことを意味する、つまりは、スロットル弁6が動いていないことを意味する。従って、この場合もスロットル弁6の実質的な動きを的確にとらえることで、閉じ側氷結の有無を判定することができる。ここで、図24に示す判断内容において、モータ電流が所定値以上にて所定時間以上継続する場合とは、モータ7を動作させようと制御してもモータ7が所定時間以上動作しない場合を意味する。従って、モータ7が必要以上に動作しようとしている場合、つまりスロットル弁6が実際に駆動しない場合を、スロットル弁6が氷結しているときと判定することが可能となり、スロットル弁6の氷結を実際的に検出することとなる。このため、環境条件の違いにかかわらずスロットル弁6にできた氷結の有無をより確実に検出することができる。
また、モータ7に供給されるモータ電流を制御することでモータ7の出力を制御するようにした構成においては、図25に示すように、「モータ電流が所定値(例えば「ロック電流の20%以上の値」)以上にて所定時間(例えば「2秒以内の値」)以上継続し、かつ、実開度TAの変化量が所定値(例えば「3°」以内の値)以下」であるか否かを判断するようにしてもよい。この場合、図11に示す判断内容に対し、実開度TAの変化量の判断を加味しているので、スロットル弁6の実質的な動きをより的確にとらえることができる。ここで、図25に示す判断内容において、モータ電流が所定値以上にて所定時間以上継続する場合とは、モータ7を動作させようと制御してもモータ7が所定時間以上動作しない場合を意味する。また、検出される実開度TAの変化量が所定値以下となる場合とは、スロットル弁6が実際にほとんど動作しない場合を意味する。従って、モータ7が必要以上に動作しようとしている場合であってスロットル弁6が実際にほとんど駆動しない場合を、スロットル弁6が氷結しているときと判定することが可能となり、スロットル弁6の氷結を実際的に検出することとなる。このため、環境条件の違いにかかわらずスロットル弁6にできた氷結の有無をより確実に検出することができる。
また、モータ7に供給される駆動デューティDYを制御することでモータ7の出力を制御するようにした構成においては、図26に示すように、「駆動デューティDYが所定値(例えば「50%以上の値」)以上で所定時間(例えば「2秒以内の値」)以上継続」したか否かを判断するようにしてもよい。ここで、駆動デューティDYが所定値以上の状態で所定時間以上継続するということは、駆動デューティDYが供給されているにもかかわらずモータ7が動いていないことを意味する、つまりは、スロットル弁6が動いていないことを意味する。従って、この場合もスロットル弁6の実質的な動きを的確にとらえることで、閉じ側氷結の有無を判定することができる。ここで、図26に示す判断内容において、駆動デューティDYが所定値以上にて所定時間以上継続した場合とは、モータ7を動作させようと制御してもモータ7が所定時間以上動作しない場合を意味する。従って、モータ7が必要以上に動作しようとしている場合、つまりはスロットル弁6が実際に駆動しない場合を、スロットル弁6が氷結しているときと判定することが可能となり、スロットル弁6の氷結を実際的に検出することとなる。このため、環境条件の違いにかかわらずスロットル弁6にできた氷結の有無を確実に検出することができる。
また、モータ7に供給される駆動デューティDYを制御することでモータ7の出力を制御するようにした構成においては、図27に示すように、「駆動デューティDYが所定値(例えば「50%以上の値」)以上で所定時間(例えば「2秒以内の値」)以上継続、かつ、実開度TAの変化量が所定値(例えば「3°」以内の値)以下」であるか否かを判断するようにしてもよい。この場合、図13に示す判断内容に対し、実開度TAの変化量の判断を加味しているので、スロットル弁6の実質的な動きをより的確にとらえることができる。ここで、図27に示す判断内容において、駆動デューティDYが所定値以上にて所定時間以上継続した場合とは、モータ7を動作させようと制御してもモータ7が所定時間以上動作しない場合を意味する。また、検出される実開度TAの変化量が所定値以下となる場合とは、スロットル弁6が実際にほとんど駆動しない場合を意味する。従って、モータ7が必要以上に動作しようとしている場合であってスロットル弁6が実際にほとんど駆動しない場合を、スロットル弁6が氷結しているときと判定することが可能となり、スロットル弁6の氷結を実際的に検出することとなる。このため、環境条件の違いにかかわらずスロットル弁6にできた氷結の有無をより確実に検出することができる。
更に、エアフローメータ32により検出される吸気流量QAを利用することで、図28に示すように、ステップ210の処理開始から「所定時間(例えば「5秒以内の値」)以上経過しても吸気流量QAが所定の目標流量にならない」か否かを判断するようにしてもよい。ここで、所定時間以上経過しても吸気流量QAが目標流量にならないということは、スロットル弁6を動かしたにもかかわらず吸気流量QAが変化していないということ、つまりは、スロットル弁6が動いていないことを意味する。従って、この場合もスロットル弁6の実質的な動きを的確にとらえることで、閉じ側氷結の有無を判定することができる。ここで、図28に示す判断内容において、モータ7を制御する駆動時間が所定時間以上経過しても検出される吸気流量QAが目標流量にならない場合は、モータ7を動作させようと所定時間以上制御してもスロットル弁6が駆動せず、吸気流量QAが目標流量に達しない場合を意味する。従って、モータ7を実際に制御しても吸気流量QAが目標流量になるようなスロットル弁6の動きがない場合を、スロットル弁6が氷結しているときと判定してスロットル弁6の氷結を実際的に検出することとなる。このため、環境条件の違いにかかわらずスロットル弁6にできた氷結の有無を確実に検出することができる。
(2)前記各実施形態では、図7のステップ220で、閉じ側氷結ありを判定するために、図9に示す判断内容を判断するようにしたが、閉じ側氷結ありを判定するために、図9、図23〜28に示す各判断内容を適宜組み合わせた判断内容を判断するようにしてもよい。
例えば、図25に示す判断条件と、図26に示す判断条件とを併合した判断内容を判断するようにしてもよい。すなわち、「モータ電流が所定値(例えば「ロック電流の20%以上の値」)以上にて所定時間(例えば「2秒以内の値」)以上継続し、かつ、実開度TAの変化量が所定値(例えば「3°」以内の値)以下となる場合であって、併せて駆動デューティDYが所定値(例えば「50%以上の値」)以上で所定時間(例えば「2秒以内の値」)以上継続」したか否かを判断するようにしてもよい。この場合、モータ7が必要以上に動作しようとしている場合であってスロットル弁6が実際にほとんど駆動しない場合又はスロットル弁6が実際に駆動しない場合を、スロットル弁6が氷結しているときと判定することとなり、スロットル弁6の氷結を実際的に検出することとなる。このため、環境条件の違いにかかわらずスロットル弁6にできた氷結の有無を確実に検出することができる。
また、図25に示す判断条件と、図26に示す判断条件と、図9に示す判断条件とを併合した判断内容を判断するようにしてもよい。すなわち、「モータ電流が所定値(例えば「ロック電流の20%以上の値」)以上にて所定時間(例えば「2秒以内の値」)以上継続し、かつ、実開度TAの変化量が所定値(例えば「3°」以内の値)以下となる場合であり、併せて駆動デューティDYが所定値(例えば「50%以上の値」)以上で所定時間(例えば「2秒以内の値」)以上継続した場合であって、併せてステップ210の処理開始から所定時間(例えば「2秒以内」)以上が経過しても実開度TAが目標開度RAにならない」か否かを判断するようにしてもよい。この場合、モータ7が必要以上に動作しようとしている場合であってスロットル弁6が実際にはほとんど駆動しない場合又はスロットル弁6が実際に駆動しない場合であり、併せてモータ7を実際に制御してもスロットル弁6が実際に目標開度RAに達しない場合を、スロットル弁6が氷結しているときと判定することとなり、スロットル弁6の氷結を実際的に検出することとなる。このため、環境条件の違いにかかわらずスロットル弁6にできた氷結の有無を確実に検出することができる。
また、図25に示す判断条件と、図26に示す判断条件と、図28に示す判断条件とを併合した判断内容を判断するようにしてもよい。すなわち、「モータ電流が所定値(例えば「ロック電流の20%以上の値」)以上にて所定時間(例えば「2秒以内の値」)以上継続し、かつ、実開度TAの変化量が所定値(例えば「3°」以内の値)以下となる場合であり、併せて駆動デューティDYが所定値(例えば「50%以上の値」)以上で所定時間(例えば「2秒以内の値」)以上継続した場合であって、併せてステップ210の処理開始から所定時間(例えば「5秒以内の値」)以上経過しても吸気流量QAが所定の目標流量にならない」か否かを判断するようにしてもよい。この場合、モータ7が必要以上に動作しようとしている場合であってスロットル弁6が実際にほとんど駆動しない場合又はスロットル弁6が実際に駆動しない場合であり、併せてモータ7を実際に制御しても吸気流量QAが目標流量にならないようなスロットル弁6の動きがない場合を、スロットル弁6が氷結しているときと判定することとなり、スロットル弁6の氷結を実際的に検出することとなる。このため、環境条件の違いにかかわらずスロットル弁6にできた氷結の有無を確実に検出することができる。
また、図25に示す判断条件と、図26に示す判断条件と、図9に示す判断条件と、図28に示す判断条件とを併合した判断内容を判断するようにしてもよい。すなわち、「モータ電流が所定値(例えば「ロック電流の20%以上の値」)以上にて所定時間(例えば「2秒以内の値」)以上継続し、かつ、実開度TAの変化量が所定値(例えば「3°」以内の値)以下となる場合であり、併せて駆動デューティDYが所定値(例えば「50%以上の値」)以上で所定時間(例えば「2秒以内の値」)以上継続した場合であり、併せてステップ210の処理開始から所定時間(例えば「2秒以内」)以上が経過しても実開度TAが目標開度RAにならない場合であって、併せてステップ210の処理開始から所定時間(例えば「5秒以内の値」)以上経過しても吸気流量QAが所定の目標流量にならない」」か否かを判断するようにしてもよい。この場合、モータ7が必要以上に動作しようとしている場合であってスロットル弁6が実際にはほとんど駆動しない場合又はスロットル弁6が実際に駆動しない場合であり、併せてモータ7を実際に制御してもスロットル弁6が実際に目標開度RAに達しない場合であって、併せてモータ7を実際に制御しても吸気流量QAが目標流量にならないようなスロットル弁6の動きがない場合を、スロットル弁6が氷結しているときと判定することとなり、スロットル弁6の氷結を実際的に検出することとなる。このため、環境条件の違いにかかわらずスロットル弁6にできた氷結の有無を確実に検出することができる。
(3)この他、図9、図23〜28に示す各判断内容を以下のように組み合わせた判断内容を判断するようにしてもよい。
すなわち、図24に示す判断条件と、図26に示す判断条件とを併合した判断内容を判断するようにしてもよい。あるいは、図24に示す判断条件と、図26に示す判断条件とに加え、「スロットル弁6の動作を検出する動作検出手段(例えば、スロットルセンサ8)により検出される動作(例えば、実開度TA)の変化量が所定値以下である場合」という判断条件を併合した判断内容を判断するようにしてもよい。
また、図24に示す判断条件と、図26に示す判断条件と、図9に示す判断条件とを併合した判断内容を判断するようにしてもよい。あるいは、図24に示す判断条件と、図26に示す判断条件と、図9に示す判断条件とに加え、「スロットル弁6の動作を検出する動作検出手段(例えば、スロットルセンサ8)により検出される動作(例えば、実開度TA)の変化量が所定値以下である場合」という判断条件を併合した判断内容を判断するようにしてもよい。
また、図24に示す判断条件と、図26に示す判断条件と、図9に示す判断条件と、図28に示す判断条件とを併合した判断内容を判断するようにしてもよい。あるいは、図24に示す判断条件と、図26に示す判断条件と、図9に示す判断条件と、図28に示す判断条件とに加え、「スロットル弁6の動作を検出する動作検出手段(例えば、スロットルセンサ8)により検出される動作(例えば、実開度TA)の変化量が所定値以下である場合」という判断条件を併合した判断内容を判断するようにしてもよい。
また、図24に示す判断条件と、図9に示す判断条件とを併合した判断内容を判断するようにしてもよい。あるいは、図24に示す判断条件と、図9に示す判断条件とに加え、「スロットル弁6の動作を検出する動作検出手段(例えば、スロットルセンサ8)により検出される動作(例えば、実開度TA)の変化量が所定値以下である場合」という判断条件を併合した判断内容を判断するようにしてもよい。
また、図24に示す判断条件と、図9に示す判断条件と、図28に示す判断条件とを併合した判断内容を判断するようにしてもよい。あるいは、図24に示す判断条件と、図9に示す判断条件と、図28に示す判断条件とに加え、「スロットル弁6の動作を検出する動作検出手段(例えば、スロットルセンサ8)により検出される動作(例えば、実開度TA)の変化量が所定値以下である場合」という判断条件を併合した判断内容を判断するようにしてもよい。
また、図24に示す判断条件と、図28に示す判断条件とを併合した判断内容を判断するようにしてもよい。あるいは、図24に示す判断条件と、図28に示す判断条件とに加え、「スロットル弁6の動作を検出する動作検出手段(例えば、スロットルセンサ8)により検出される動作(例えば、実開度TA)の変化量が所定値以下である場合」という判断条件を併合した判断内容を判断するようにしてもよい。
また、図26に示す判断条件と、図9に示す判断条件とを併合した判断内容を判断するようにしてもよい。あるいは、図26に示す判断条件と、図9に示す判断条件とに加え、「スロットル弁6の動作を検出する動作検出手段(例えば、スロットルセンサ8)により検出される動作(例えば、実開度TA)の変化量が所定値以下である場合」という判断条件を併合した判断内容を判断するようにしてもよい。
また、図26に示す判断条件と、図9に示す判断条件と、図28に示す判断条件とを併合した判断内容を判断するようにしてもよい。あるいは、図26に示す判断条件と、図9に示す判断条件と、図28に示す判断条件とに加え、「スロットル弁6の動作を検出する動作検出手段(例えば、スロットルセンサ8)により検出される動作(例えば、実開度TA)の変化量が所定値以下である場合」という判断条件を併合した判断内容を判断するようにしてもよい。
また、図26に示す判断条件と、図28に示す判断条件とを併合した判断内容を判断するようにしてもよい。あるいは、図26に示す判断条件と、図28に示す判断条件とに加え、「スロットル弁6の動作を検出する動作検出手段(例えば、スロットルセンサ8)により検出される動作(例えば、実開度TA)の変化量が所定値以下である場合」という判断条件を併合した判断内容を判断するようにしてもよい。
更に、図9に示す判断条件と、図28に示す判断条件とを併合した判断内容を判断するようにしてもよい。あるいは、図9に示す判断条件と、図28に示す判断条件とに加え、「スロットル弁6の動作を検出する動作検出手段(例えば、スロットルセンサ8)により検出される動作(例えば、実開度TA)の変化量が所定値以下である場合」という判断条件を併合した判断内容を判断するようにしてもよい。
(4)前記各実施形態では、ECU2は、スロットル弁6の氷結を解除するために、モータ7に必要な駆動トルクを発揮させるように駆動デューティDYを供給すると共に、オープン制御で駆動デューティDYを反転させ、かつスロットル弁6の目標開度RAと検出される実開度TAとの偏差の積算がゼロになるようにモータ7を制御するようにした。これに対し、ECU2は、スロットル弁6の氷結を解除するために、モータ7に必要な駆動トルクを発揮させるように駆動デューティDYを供給すると共に、オープン制御で駆動デューティDYを反転させ、かつスロットル弁6の目標流量と検出される吸気流量QA又は検出される実開度TAから換算される流量換算値との偏差の積算がゼロになるようにモータ7を制御するようにしてもよい。この場合、スロットル弁6の氷結を解除するためにモータ7に必要な駆動トルクを発揮させるので、スロットル弁6の動作が最大限に速くなり、氷結の破壊に有効な衝撃力が与えられる。また、モータ7に供給される駆動デューティDYがオープン制御で反転されるので、モータ7の駆動トルクが大きくなり、スロットル弁6の作動速度が速くなる。更に、スロットル弁6の目標流量と検出される吸気流量QA又は検出される実開度TAの流量換算値との偏差の積算がゼロになるようにモータ7が制御されるので、吸気流量QAの変動を抑えながらスロットル弁6を揺動させることが可能となり、氷結に対しスロットル弁6を繰り返し衝突させて衝撃力を与えることとなる。このため、スロットル弁6による氷結解除力をより大きくすることができ、スロットル弁6の強固な氷結をより一層確実に解除することができる。また、スロットル弁6の作動による吸気流量QAの変動を抑えることができ、エンジン3の出力変動を抑えることができる。
ガソリンエンジンシステムを示す概略構成図。 オープナ機構を含む電子スロットルを示す概念構成図。 オープナ機構によるスロットル弁の動作を説明する図。 モータ特性を示すグラフ。 開度−流量特性等を示すグラフ。 氷結解除制御の内容を示すフローチャート。 氷結解除制御の内容を示すフローチャート。 IG・ON処理での実開度と目標開度の挙動を示すタイムチャート。 閉じ側氷結判定の内容を示す図。 閉じ側解氷処理の内容を示すフローチャート。 閉じ側解氷処理の内容を示すフローチャート。 目標開度と氷結開度との偏差に対する面積補正係数の関係を示すマップ。 目標開度と氷結開度との偏差に対する開側反転時間及び閉側反転時間の関係を示すマップ。 閉じ側解氷処理における各種パラメータの挙動を示すタイムチャート。 実開度、目標開度及び氷結開度の挙動を示すタイムチャート。 氷結解除メカニズムを示すスロットルボディの断面図。 氷結解除メカニズムを示すスロットルボディの断面図。 氷結解除メカニズムを示すスロットルボディの断面図。 氷結解除メカニズムを示すスロットルボディの断面図。 氷結解除制御の内容を示すフローチャート。 実開度、目標開度及び氷結開度の挙動を示すタイムチャート。 実開度、目標開度及び氷結開度の挙動を示すタイムチャート。 閉じ側氷結判定の内容を示す図。 閉じ側氷結判定の内容を示す図。 閉じ側氷結判定の内容を示す図。 閉じ側氷結判定の内容を示す図。 閉じ側氷結判定の内容を示す図。 閉じ側氷結判定の内容を示す図。
符号の説明
2 ECU(制御手段、氷結判定手段、開度記憶手段、異常処理手段、始動前氷結判定
手段、始動後氷結判定手段)
3 エンジン(内燃機関)
4 吸気通路
6 スロットル弁
7 モータ(駆動手段)
8 スロットルセンサ(動作検出手段、開度検出手段)
32 エアフローメータ(吸気流量検出手段)
QA 吸気流量
TA 実開度
RA 目標開度
FA 氷結開度
DY 駆動デューティ

Claims (25)

  1. 内燃機関の吸気通路に設けられるスロットル弁と、
    前記スロットル弁を駆動させる駆動手段と、
    前記駆動手段を制御するための制御手段と
    を備えた内燃機関のスロットル制御装置において、
    前記スロットル弁を駆動させるために前記制御手段が前記駆動手段に供給する駆動電流が所定値以上にて所定時間以上継続した場合に、前記スロットル弁が氷結していると判定する氷結判定手段を備えたこと特徴とする内燃機関のスロットル制御装置。
  2. 内燃機関の吸気通路に設けられるスロットル弁と、
    前記スロットル弁を駆動させる駆動手段と、
    前記駆動手段を制御するための制御手段と
    を備えた内燃機関のスロットル制御装置において、
    前記スロットル弁の動作を検出するための動作検出手段と、
    前記スロットル弁を駆動させるために前記制御手段が前記駆動手段に供給する駆動電流が所定値以上にて所定時間以上継続し、かつ前記検出される動作の変化量が所定値以下となる場合に、前記スロットル弁が氷結していると判定する氷結判定手段と
    を備えたことを特徴とする内燃機関のスロットル制御装置。
  3. 内燃機関の吸気通路に設けられるスロットル弁と、
    前記スロットル弁を駆動させる駆動手段と、
    前記駆動手段を制御するための制御手段と
    を備えた内燃機関のスロットル制御装置において、
    前記スロットル弁を駆動させるために前記制御手段が前記駆動手段に供給する駆動デューティが所定値以上にて所定時間以上継続した場合に、前記スロットル弁が氷結していると判定する氷結判定手段を備えたことを特徴とする内燃機関のスロットル制御装置。
  4. 内燃機関の吸気通路に設けられるスロットル弁と、
    前記スロットル弁を駆動させる駆動手段と、
    前記駆動手段を制御するための制御手段と
    を備えた内燃機関のスロットル制御装置において、
    前記スロットル弁の動作を検出するための動作検出手段と、
    前記スロットル弁を駆動させるために前記制御手段が前記駆動手段に供給する駆動デューティが所定値以上にて所定時間以上継続し、かつ前記検出される動作の変化量が所定値以下となる場合に、前記スロットル弁が氷結していると判定する氷結判定手段と
    を備えたことを特徴とする内燃機関のスロットル制御装置。
  5. 内燃機関の吸気通路に設けられるスロットル弁と、
    前記スロットル弁を駆動させる駆動手段と、
    前記駆動手段を制御するための制御手段と
    を備えた内燃機関のスロットル制御装置において、
    前記スロットル弁の開度を検出するための開度検出手段と、
    前記スロットル弁を駆動させるために前記制御手段が前記駆動手段を制御する駆動時間が所定時間以上経過しても前記検出される開度が目標開度にならない場合に、前記スロットル弁が氷結していると判定する氷結判定手段と
    を備えたことを特徴とする内燃機関のスロットル制御装置。
  6. 内燃機関の吸気通路に設けられるスロットル弁と、
    前記スロットル弁を駆動させる駆動手段と、
    前記駆動手段を制御するための制御手段と
    を備えた内燃機関のスロットル制御装置において、
    前記スロットル弁の開度を検出するための開度検出手段と、
    前記スロットル弁を駆動させるために前記制御手段が前記駆動手段を制御する駆動時間が所定時間以上経過しても前記検出される開度が目標開度にならず、かつ前記検出される開度の変化量が所定値以下となる場合に、前記スロットル弁が氷結していると判定する氷結判定手段と
    を備えたことを特徴とする内燃機関のスロットル制御装置。
  7. 内燃機関の吸気通路に設けられるスロットル弁と、
    前記スロットル弁を駆動させる駆動手段と、
    前記駆動手段を制御するための制御手段と
    を備えた内燃機関のスロットル制御装置において、
    前記吸気通路の吸気流量を検出するための吸気流量検出手段と、
    前記スロットル弁を駆動させるために前記制御手段が前記駆動手段を制御する駆動時間が所定時間以上経過しても前記検出される吸気流量が目標流量にならない場合に、前記スロットル弁が氷結していると判定する氷結判定手段と
    を備えたことを特徴とする内燃機関のスロットル制御装置。
  8. 内燃機関の吸気通路に設けられるスロットル弁と、
    前記スロットル弁を駆動させる駆動手段と、
    前記駆動手段を制御するための制御手段と
    を備えた内燃機関のスロットル制御装置において、
    前記スロットル弁の動作を検出するための動作検出手段と、
    前記スロットル弁を駆動させるために前記制御手段が前記駆動手段に供給する駆動電流が所定値以上にて所定時間以上継続し、かつ前記検出される動作の変化量が所定値以下となる場合であって、併せて前記スロットル弁を駆動させるために前記制御手段が前記駆動手段に供給する駆動デューティが所定値以上にて所定時間以上継続した場合に、前記スロットル弁が氷結していると判定する氷結判定手段と
    を備えたことを特徴とする内燃機関のスロットル制御装置。
  9. 内燃機関の吸気通路に設けられるスロットル弁と、
    前記スロットル弁を駆動させる駆動手段と、
    前記駆動手段を制御するための制御手段と
    を備えた内燃機関のスロットル制御装置において、
    前記スロットル弁の動作を検出するための動作検出手段と、
    前記スロットル弁の開度を検出するための開度検出手段と、
    前記スロットル弁を駆動させるために前記制御手段が前記駆動手段に供給する駆動電流が所定値以上にて所定時間以上継続し、かつ前記検出される動作の変化量が所定値以下となる場合であり、併せて前記スロットル弁を駆動させるために前記制御手段が前記駆動手段に供給する駆動デューティが所定値以上にて所定時間以上継続した場合であって、併せて前記スロットル弁を駆動させるために前記制御手段が前記駆動手段を制御する駆動時間が所定時間以上経過しても前記検出される開度が目標開度にならない場合に、前記スロットル弁が氷結していると判定する氷結判定手段と
    を備えたことを特徴とする内燃機関のスロットル制御装置。
  10. 内燃機関の吸気通路に設けられるスロットル弁と、
    前記スロットル弁を駆動させる駆動手段と、
    前記駆動手段を制御するための制御手段と
    を備えた内燃機関のスロットル制御装置において、
    前記スロットル弁の動作を検出するための動作検出手段と、
    前記吸気通路の吸気流量を検出するための吸気流量検出手段と、
    前記スロットル弁を駆動させるために前記制御手段が前記駆動手段に供給する駆動電流が所定値以上にて所定時間以上継続し、かつ前記検出される動作の変化量が所定値以下となる場合であり、併せて前記スロットル弁を駆動させるために前記制御手段が前記駆動手段に供給する駆動デューティが所定値以上にて所定時間以上継続した場合であって、併せて前記スロットル弁を駆動させるために前記制御手段が前記駆動手段を制御する駆動時間が所定時間以上経過しても前記検出される吸気流量が目標流量にならない場合に、前記スロットル弁が氷結していると判定する氷結判定手段と
    を備えたことを特徴とする内燃機関のスロットル制御装置。
  11. 内燃機関の吸気通路に設けられるスロットル弁と、
    前記スロットル弁を駆動させる駆動手段と、
    前記駆動手段を制御するための制御手段と
    を備えた内燃機関のスロットル制御装置において、
    前記スロットル弁の動作を検出するための動作検出手段と、
    前記スロットル弁の開度を検出するための開度検出手段と、
    前記吸気通路の吸気流量を検出するための吸気流量検出手段と、
    前記スロットル弁を駆動させるために前記制御手段が前記駆動手段に供給する駆動電流が所定値以上にて所定時間以上継続し、かつ前記検出される動作の変化量が所定値以下となる場合であり、併せて前記スロットル弁を駆動させるために前記制御手段が前記駆動手段に供給する駆動デューティが所定値以上にて所定時間以上継続した場合であり、併せて前記スロットル弁を駆動させるために前記制御手段が前記駆動手段を制御する駆動時間が所定時間以上経過しても前記検出される開度が目標開度にならない場合であって、併せて前記スロットル弁を駆動させるために前記制御手段が前記駆動手段を制御する駆動時間が所定時間以上経過しても前記検出される吸気流量が目標流量にならない場合に、前記スロットル弁が氷結していると判定する氷結判定手段と
    を備えたことを特徴とする内燃機関のスロットル制御装置。
  12. 内燃機関の吸気通路に設けられるスロットル弁と、
    前記スロットル弁を駆動させる駆動手段と、
    前記駆動手段を制御するための制御手段と
    を備えた内燃機関のスロットル制御装置において、
    前記制御手段は、前記スロットル弁の氷結を解除するために、前記駆動手段に必要な駆動トルクを発揮させることを特徴とする内燃機関のスロットル制御装置。
  13. 内燃機関の吸気通路に設けられるスロットル弁と、
    前記スロットル弁を駆動させる駆動手段と、
    前記駆動手段を制御するための制御手段と
    を備えた内燃機関のスロットル制御装置において、
    前記制御手段は、前記スロットル弁の氷結を解除するために、前記駆動手段に必要な駆動トルクを発揮させるように駆動デューティを供給すると共に、オープン制御で前記駆動デューティを反転させることを特徴とする内燃機関のスロットル制御装置。
  14. 内燃機関の吸気通路に設けられるスロットル弁と、
    前記スロットル弁を駆動させる駆動手段と、
    前記駆動手段を制御するための制御手段と
    を備えた内燃機関のスロットル制御装置において、
    前記スロットル弁の開度を検出するための開度検出手段と、
    前記制御手段は、前記スロットル弁の氷結を解除するために、前記駆動手段に必要な駆動トルクを発揮させるように駆動デューティを供給すると共に、オープン制御で前記駆動デューティを反転させ、かつ前記スロットル弁の目標開度と前記検出される開度との偏差の積算がゼロになるように前記駆動手段を制御することと
    を備えたことを特徴とする内燃機関のスロットル制御装置。
  15. 内燃機関の吸気通路に設けられるスロットル弁と、
    前記スロットル弁を駆動させる駆動手段と、
    前記駆動手段を制御するための制御手段と
    を備えた内燃機関のスロットル制御装置において、
    前記吸気通路の吸気流量を検出するための吸気流量検出手段と、
    前記スロットル弁の開度を検出するための開度検出手段と、
    前記制御手段は、前記スロットル弁の氷結を解除するために、前記駆動手段に必要な駆動トルクを発揮させるように駆動デューティを供給すると共に、オープン制御で前記駆動デューティを反転させ、かつ前記スロットル弁の目標流量と前記検出される流量又は前記検出される開度の流量換算値との偏差の積算がゼロになるように前記駆動手段を制御することと
    を備えたことを特徴とする内燃機関のスロットル制御装置。
  16. 内燃機関の吸気通路に設けられるスロットル弁と、
    前記スロットル弁を駆動させる駆動手段と、
    前記駆動手段を制御するための制御手段と
    を備えた内燃機関のスロットル制御装置において、
    前記スロットル弁の開度を検出するための開度検出手段と、
    前記スロットル弁が氷結しているときに前記検出される開度を記憶し、前記スロットル弁の氷結が緩んだときに前記検出される開度を更新して記憶するための開度記憶手段と、
    前記制御手段は、前記スロットル弁の氷結を解除するために、前記駆動手段に必要な駆動トルクを発揮させるように駆動デューティを供給すると共に、オープン制御で前記駆動デューティを反転させ、かつ前記スロットル弁の目標開度と前記記憶された開度との偏差の積算がゼロになるように前記駆動手段を制御することと
    を備えたことを特徴とする内燃機関のスロットル制御装置。
  17. 内燃機関の吸気通路に設けられるスロットル弁と、
    前記スロットル弁を駆動させる駆動手段と、
    前記駆動手段を制御するための制御手段と
    を備えた内燃機関のスロットル制御装置において、
    前記スロットル弁の開度を検出するための開度検出手段と、
    前記スロットル弁が氷結しているときに前記検出される開度を記憶し、前記スロットル弁の氷結が緩んだときに前記検出される開度を更新して記憶するための開度記憶手段と、
    前記制御手段は、前記スロットル弁の氷結を解除するために、前記駆動手段に必要な駆動トルクを発揮させるように駆動デューティを供給すると共に、オープン制御で前記駆動デューティを反転させ、かつ前記スロットル弁の目標開度と前記記憶された開度との偏差の積算がゼロになるように前記駆動手段を制御すると共に、その制御のためのパラメータを前記目標開度と前記記憶された開度との偏差に応じて変更することと
    を備えたことを特徴とする内燃機関のスロットル制御装置。
  18. 前記制御手段は、前記スロットル弁の氷結を解除するために、前記スロットル弁が全閉付近になるまで前記駆動手段を制御することを特徴とする請求項16又は17に記載の内燃機関のスロットル制御装置。
  19. 前記スロットル弁の氷結を解除するために前記駆動手段を駆動する回数又は駆動する時間が所定値を超えたときに異常と判定して前記駆動手段の制御を中止させる異常処理手段を更に備えたことを特徴とする請求項12乃至18の何れかに記載の内燃機関のスロットル制御装置。
  20. 前記内燃機関の始動前に前記スロットル弁が氷結しているか否かを判定する始動前氷結判定手段を更に備えたことを特徴とする請求項12乃至18の何れかに記載の内燃機関のスロットル制御装置。
  21. 前記内燃機関の始動前に前記スロットル弁が氷結しているか否かを判定する始動前氷結判定手段を更に備え、前記スロットル弁が氷結していると判定されたときに前記開度記憶手段は前記検出される開度を記憶することを特徴とする請求項12乃至18の何れかに記載の内燃機関のスロットル制御装置。
  22. 前記制御手段は、前記スロットル弁が氷結していると判定されたとき、前記内燃機関の始動前に前記スロットル弁の氷結を解除するために前記スロットル弁を開方向へ駆動させるよう前記駆動手段を制御することを特徴とする請求項21に記載の内燃機関のスロットル制御装置。
  23. 前記開度記憶手段は、前記内燃機関の暖機中に前記氷結が緩んだときに前記検出される開度を更新して記憶し、前記制御手段は、前記更新して記憶された開度に基づいて前記駆動手段を制御することを特徴とする請求項21又は22に記載の内燃機関のスロットル制御装置。
  24. 前記内燃機関の始動前に前記スロットル弁が氷結しているか否かを判定する始動前氷結判定手段を更に備え、前記開度記憶手段は、前記氷結していると判定されたときに前記検出される開度を氷結開度として記憶し、前記制御手段は、前記内燃機関の始動後に前記スロットル弁の目標開度と前記記憶された氷結開度との偏差が所定値より大きいときに前記氷結を解除するための前記駆動手段の制御を中断することを特徴とする請求項12乃至18の何れかに記載の内燃機関のスロットル制御装置。
  25. 前記内燃機関の始動後に前記スロットル弁が氷結しているか否かを判定する始動後氷結判定手段を更に備え、前記制御手段は、前記氷結していると判定されたとき前記内燃機関の始動後において前記氷結を解除するために前記駆動手段を制御することを特徴とする請求項12乃至18の何れかに記載の内燃機関のスロットル制御装置。
JP2006036035A 2006-02-14 2006-02-14 内燃機関のスロットル制御装置 Active JP4728832B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006036035A JP4728832B2 (ja) 2006-02-14 2006-02-14 内燃機関のスロットル制御装置
DE102007007082.0A DE102007007082B4 (de) 2006-02-14 2007-02-13 Drosselregelungsgerät für eine Verbrennungsmaschine
US11/705,514 US7509939B2 (en) 2006-02-14 2007-02-13 Throttle control apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006036035A JP4728832B2 (ja) 2006-02-14 2006-02-14 内燃機関のスロットル制御装置

Publications (2)

Publication Number Publication Date
JP2007218089A true JP2007218089A (ja) 2007-08-30
JP4728832B2 JP4728832B2 (ja) 2011-07-20

Family

ID=38367051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006036035A Active JP4728832B2 (ja) 2006-02-14 2006-02-14 内燃機関のスロットル制御装置

Country Status (3)

Country Link
US (1) US7509939B2 (ja)
JP (1) JP4728832B2 (ja)
DE (1) DE102007007082B4 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021434A (ja) * 2013-07-19 2015-02-02 トヨタ自動車株式会社 内燃機関のスロットル制御装置
JP2016125383A (ja) * 2014-12-26 2016-07-11 マツダ株式会社 エンジンの制御装置
JP2016156301A (ja) * 2015-02-24 2016-09-01 日野自動車株式会社 ディーゼルエンジンの制御装置
JP2017066909A (ja) * 2015-09-29 2017-04-06 日立オートモティブシステムズ株式会社 内燃機関の制御装置
JP2017115683A (ja) * 2015-12-24 2017-06-29 株式会社デンソー スロットル診断装置
KR20180023089A (ko) * 2016-08-23 2018-03-07 현대자동차주식회사 스로틀밸브 결빙 방지방법

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534950B2 (ja) * 2005-10-20 2010-09-01 株式会社デンソー 排気ガス還流制御装置
JP5393506B2 (ja) * 2010-01-27 2014-01-22 三菱重工業株式会社 エンジンの吸気系に用いられる制御弁の制御装置及び制御方法
CN105971740A (zh) * 2016-07-25 2016-09-28 北京汽车研究总院有限公司 一种汽车发动机节流阀体破冰的方法、装置及汽车
US10100751B2 (en) 2016-08-17 2018-10-16 Ford Global Technologies, Llc Methods and systems for clearing throttle obstruction
JP6583339B2 (ja) 2017-04-11 2019-10-02 トヨタ自動車株式会社 内燃機関の制御装置
CN109404132B (zh) * 2018-10-29 2020-04-21 浙江吉利动力总成有限公司 发动机节气门保护方法、装置、控制器和车辆
DE102019219093A1 (de) * 2019-12-06 2021-06-10 Robert Bosch Gmbh Verfahren zum Betreiben eines Ventils mit einem Ventilantrieb
CN113266480B (zh) * 2020-02-14 2022-12-23 广州汽车集团股份有限公司 一种发动机节气门的控制方法、装置及汽车
CN113187615A (zh) * 2021-05-31 2021-07-30 一汽奔腾轿车有限公司 一种节气门破冰控制方法、装置、设备及车辆
CN114592975A (zh) * 2021-06-25 2022-06-07 长城汽车股份有限公司 发动机的控制方法和装置
CN113431686B (zh) * 2021-07-19 2022-10-28 中国第一汽车股份有限公司 汽油机节气门露水清洁控制方法、装置、设备及存储介质
US11753974B2 (en) 2021-11-05 2023-09-12 Ford Global Technologies, Llc Methods and system for de-icing a valve of an exhaust system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188050A (ja) * 1983-03-15 1984-10-25 Mazda Motor Corp エンジンのスロツトル制御装置
JP3189717B2 (ja) * 1996-12-18 2001-07-16 トヨタ自動車株式会社 スロットル制御装置
JP2005325741A (ja) * 2004-05-13 2005-11-24 Toyota Motor Corp スロットル制御装置
JP2005325753A (ja) * 2004-04-16 2005-11-24 Toyota Motor Corp 内燃機関の制御装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3743309A1 (de) * 1987-12-21 1989-06-29 Bosch Gmbh Robert Verfahren und einrichtung zur erkennung und lockerung verklemmter stellelemente
JPH044452A (ja) 1990-04-23 1992-01-08 Hitachi Ltd データ転送制御方式
JP3724964B2 (ja) * 1998-11-18 2005-12-07 株式会社デンソー モータ駆動装置
JP3275898B2 (ja) * 1999-03-18 2002-04-22 株式会社デンソー モータ駆動装置
JP2000320348A (ja) 1999-05-13 2000-11-21 Toyota Motor Corp 内燃機関のスロットル制御装置
US6431144B1 (en) * 1999-09-02 2002-08-13 Siemens Vdo Automotive Inc. Electronic throttle control system
DE19959095A1 (de) * 1999-12-08 2001-06-13 Mann & Hummel Filter Verfahren und Vorrichtung zum Antrieb eines Stellelementes in einem Kraftfahrzeug
DE10017546B4 (de) * 2000-04-08 2006-11-09 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
JP2003262178A (ja) 2002-03-07 2003-09-19 Denso Corp 内燃機関の制御装置
JP4498699B2 (ja) 2003-07-25 2010-07-07 トヨタ自動車株式会社 電子スロットル凍結防止制御
US7114487B2 (en) * 2004-01-16 2006-10-03 Ford Motor Company Ice-breaking, autozero and frozen throttle plate detection at power-up for electronic motorized throttle
JP2005325751A (ja) 2004-04-16 2005-11-24 Toyota Motor Corp スロットルバルブおよびそのスロットルバルブを備えた内燃機関の制御装置
JP4462073B2 (ja) * 2005-03-08 2010-05-12 株式会社デンソー 車両用内燃機関の電子スロットル制御装置
JP2007023933A (ja) 2005-07-19 2007-02-01 Mitsubishi Electric Corp 内燃機関の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188050A (ja) * 1983-03-15 1984-10-25 Mazda Motor Corp エンジンのスロツトル制御装置
JP3189717B2 (ja) * 1996-12-18 2001-07-16 トヨタ自動車株式会社 スロットル制御装置
JP2005325753A (ja) * 2004-04-16 2005-11-24 Toyota Motor Corp 内燃機関の制御装置
JP2005325741A (ja) * 2004-05-13 2005-11-24 Toyota Motor Corp スロットル制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021434A (ja) * 2013-07-19 2015-02-02 トヨタ自動車株式会社 内燃機関のスロットル制御装置
JP2016125383A (ja) * 2014-12-26 2016-07-11 マツダ株式会社 エンジンの制御装置
JP2016156301A (ja) * 2015-02-24 2016-09-01 日野自動車株式会社 ディーゼルエンジンの制御装置
JP2017066909A (ja) * 2015-09-29 2017-04-06 日立オートモティブシステムズ株式会社 内燃機関の制御装置
JP2017115683A (ja) * 2015-12-24 2017-06-29 株式会社デンソー スロットル診断装置
KR20180023089A (ko) * 2016-08-23 2018-03-07 현대자동차주식회사 스로틀밸브 결빙 방지방법
KR102554925B1 (ko) * 2016-08-23 2023-07-12 현대자동차주식회사 스로틀밸브 결빙 방지방법

Also Published As

Publication number Publication date
DE102007007082A1 (de) 2007-11-22
US20070186900A1 (en) 2007-08-16
DE102007007082B4 (de) 2016-04-07
JP4728832B2 (ja) 2011-07-20
US7509939B2 (en) 2009-03-31

Similar Documents

Publication Publication Date Title
JP4728832B2 (ja) 内燃機関のスロットル制御装置
US7434565B2 (en) Electronic throttle control apparatus
JP4600923B2 (ja) エンジンの制御装置
US7248959B2 (en) Electronic control apparatus which responds to shut-down command by executing specific processing prior to ceasing operation
JP5449500B2 (ja) 空気遮断バルブおよびこれを用いた再始動安定化方法
JP3474872B2 (ja) 内燃機関のスロットル制御装置
JP4655002B2 (ja) 内燃機関の制御装置
US20080098986A1 (en) ETC control system and method
JP6088865B2 (ja) 還元剤供給装置の制御方法
JP4378641B2 (ja) 内燃機関のスロットル制御装置
US7114487B2 (en) Ice-breaking, autozero and frozen throttle plate detection at power-up for electronic motorized throttle
JP3684966B2 (ja) エンジンの電磁動弁制御装置
TWI354060B (ja)
RU2698615C2 (ru) Способ предотвращения неисправной работы комбинированного узла клапана и аспиратора моторного транспортного средства и моторное транспортное средство
JP4730448B2 (ja) 内燃機関の制御装置
JP4458023B2 (ja) 内燃機関の制御装置
JP4977903B2 (ja) 排気バルブ制御装置
JP4518075B2 (ja) エンジンの開閉弁制御装置
JP6490446B2 (ja) ディーゼルエンジンの制御装置
JP2011007115A (ja) 内燃機関のスロットル制御装置
JP2003227343A (ja) 可変ノズルターボチャージャの制御装置
JP2004316559A (ja) スロットル装置
JP2006233888A (ja) 電制スロットル装置
JP4717839B2 (ja) 自動二輪車のエンジン制御装置
JP2005325751A (ja) スロットルバルブおよびそのスロットルバルブを備えた内燃機関の制御装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4728832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250