JP2006324363A - キャパシタおよびその製造方法 - Google Patents

キャパシタおよびその製造方法 Download PDF

Info

Publication number
JP2006324363A
JP2006324363A JP2005144780A JP2005144780A JP2006324363A JP 2006324363 A JP2006324363 A JP 2006324363A JP 2005144780 A JP2005144780 A JP 2005144780A JP 2005144780 A JP2005144780 A JP 2005144780A JP 2006324363 A JP2006324363 A JP 2006324363A
Authority
JP
Japan
Prior art keywords
lower electrode
tantalum oxide
oxide
capacitor
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005144780A
Other languages
English (en)
Inventor
Shinpei Iijima
晋平 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Memory Japan Ltd
Original Assignee
Elpida Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpida Memory Inc filed Critical Elpida Memory Inc
Priority to JP2005144780A priority Critical patent/JP2006324363A/ja
Priority to US11/434,877 priority patent/US7382014B2/en
Publication of JP2006324363A publication Critical patent/JP2006324363A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/90Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions
    • H01L28/91Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions made by depositing layers, e.g. by depositing alternating conductive and insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3141Deposition using atomic layer deposition techniques [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31637Deposition of Tantalum oxides, e.g. Ta2O5
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/09Manufacture or treatment with simultaneous manufacture of the peripheral circuit region and memory cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02356Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Memories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】
ギガビット級DRAM用キャパシタの誘電体に用いる酸化タンタルの高誘電率化のために結晶化すると、結晶粒界が膜厚方向に貫通してリーク電流のパスが生成され電荷保持特性が劣化する。リーク電流の増大を回避し、酸化タンタルを含む誘電体のEOTが2nm以下となる、MIM構造でスタックトレンチ型のキャパシタおよびその製造方法を提供する。
【解決手段】
酸化タンタルを原子層蒸着法で形成し、ポスト酸化アニールを不要とし、金属下部電極の酸化剥離を防止する。酸化タンタルの結晶化が容易な4〜4.8nmの膜厚で形成し非酸化性雰囲気で結晶化する。その上に厚さ0.5〜1.5nmの結晶分断層を形成し、さらに酸化タンタルおよび結晶分断層を積層して多層化する。これにより、酸化タンタル積層時のエピタキシャル成長を抑止して結晶粒界の膜方向貫通を防止する。
【選択図】図1

Description

本発明は、DRAM(Dynamic Random Access Memory)に用いられるスタックトレンチ型のキャパシタおよびその製造方法に係り、キャパシタの主たる誘電体に酸化タンタルを用い、上下部電極に金属材料を用いるMIM(Metal Insulator Metal)構造で、ギガビット級の集積度を有するDRAM用のキャパシタおよびその製造方法に関する。
近年、半導体装置の大容量化が進展し、特にDRAMにおいては、最小加工寸法を100nmとするギガビット級メモリが製品化されつつあり、さらに最小加工寸法90nm以降に対応するDRAMの開発が進められている。このような素子の微細化に伴い、DRAMの主要構成要素であるキャパシタに許容される平面面積も必然的に縮小され、所望の容量を確保することが困難な状況になってきた。
このような状況にあって、従来、スタックトレンチ型キャパシタで一般的に用いられている構造では、表面に凹凸(HSG:Hemispherical Silicon Grain)を有するシリコンからなる下部電極を、深さ2000nm程度のトレンチ(深孔)内面に設け、その上に誘電体および上部電極を形成している。HSGはキャパシタの容量を確保するために電極の表面積を拡大する目的で形成される。現状ではHSGを形成すると、HSGを含む下部電極全体の厚さ、すなわちトレンチ側壁からHSGの頂上までの高さがおよそ80nmにも及んでいる。トレンチの開口短辺が、例えば250nmと比較的広い場合には、上記HSGを形成しても片側から80nmで、両側合計160nmしか占有されないため、残る中央空間短辺は90nmとなる。90nm確保できれば、その上に誘電体および上部電極を形成することは十分可能である。
しかし、DRAMの微細化がさらに進んで上記短辺が200nm程度になってくると、HSG形成後に残る中央空間短辺は40nm程度になってしまう。その結果、トレンチの中に底部までのカバレージを確保した状態で、誘電体や上部電極を形成するのが困難となる。特に誘電体のカバレージ確保は、DRAMの電荷保持機能を維持する上で必須要件となる。カバレージが不良の状態、すなわち、膜厚が薄くなる部分があると、その部分でリーク電流が増大し、電荷を蓄積できなくなる問題が生じるからである。そのため、微細化されたトレンチであっても、誘電体のカバレージを確保するための空間が必要であり、空間を狭めてしまうHSGの適用が極めて困難な状況となってくる。
上記のようなキャパシタは、窒化チタンなどの金属系上部電極と、シリコンからなる下部電極で誘電体を挟む構造であることからMIS(Metal Insulator Semiconductor)構造と呼ばれている。MIS構造における、他の問題は、下部電極材料がシリコンであるために、どのように細心の注意を払ってキャパシタを製造しても、シリコン下部電極表面に意図しない自然酸化膜が形成されてしまい、意図して形成した誘電体と自然酸化膜との積層膜が最終的なキャパシタの誘電体となってしまう。意図せずに形成された自然酸化膜すなわち酸化シリコンは、比誘電率が3.9と小さく、大きなキャパシタ容量を得ることの障害となる。さらに、他の問題は、下部電極がn型シリコンであるために上部電極側が負電圧でバイアスされた場合、電極表面に空乏層が形成され、容量損失が拡大することにある。
ギガビット級のDRAMに適用できるキャパシタにはEOT(Equivalent Oxide Thickness)が2nm以下の誘電体が望まれる。しかし、MIS構造では、自然酸化膜の形成や空乏層が形成される問題によりEOTで3.5nm以下を達成するのは困難である。ここで、EOTは、酸化シリコンの誘電率で規格化した電気的換算膜厚を表している。例えば、比誘電率3.9で、厚さ10nmの酸化シリコンのEOTは、10nmとする。比誘電率が39の誘電体を厚さ10nmで形成した場合、誘電率が酸化シリコンの10倍となるのでEOTは10分の1の1nmとなる。EOTが小さいほど大きな容量が得られることを示している。
そこで、EOT薄膜化の障害となる酸化シリコンの形成を回避し、且つ空乏層の発生を抑止できる金属系材料を下部電極とするMIM構造で、誘電率が酸化シリコンよりも大きい酸化タンタルを誘電体とするキャパシタが提案されている。
しかし、通常のCVD法で形成する酸化タンタルは酸化性雰囲気での熱処理が必須であり、MIM構造では、その熱処理に起因する問題が発生する。発明者の検討によれば、タングステンや窒化チタンを下部電極材料とし、誘電体に酸化タンタルを用い酸化性雰囲気で結晶化させると、その結晶化熱処理の間に電極が酸化され、剥がれてしまう問題が発生した。電極が剥離してしまうと当然のことながらキャパシタは構成できない。
上述した、CVD法で堆積する酸化タンタルは、原料が有機物であることに起因して、膜中に炭素不純物が含有される。それを排除するためには、膜堆積後に酸化性雰囲気での熱処理が必須となる。しかし、その熱処理によって下部電極金属材料が酸化されてしまいキャパシタを構成できないという問題が発生する。この問題を解決する手段として、原子層蒸着法で酸化タンタルを形成し、後の酸化性雰囲気での熱処理を不要とする方法が提案されている。原子層蒸着法は、原料ガスと反応ガスとを交互に半導体基板表面に供給し、原料ガスの吸着ステップと吸着した原料の反応ステップを、繰り返して所望の厚さの材料を形成する方法である。反応ガスとしては、酸化性、窒化性、還元性などの選択が可能であり、結果として酸化物、窒化物、金属を生成することができる。本方法は、上記のように表面反応が支配的で、通常のCVDで発現する気相中の反応を抑制できるため、トレンチの内部にも一様な厚さの膜を形成でき、また基本的には一層ごとの反応堆積であるため、不純物含有量が極めて少ない特徴がある。
したがって、原子層蒸着法を用いて酸化タンタルを形成すれば、不純物の含有量が極めて少ないため、膜形成後の酸化性雰囲気での熱処理を不要とすることができる。以下の特許文献には、酸化タンタルの原子層蒸着法に関する発明が開示されている。

特開2001-237401号公報 特開2003-100908号公報 特開2004-23043号公報
前述のように、酸化タンタルの膜中に不純物が含有されることを回避して、形成後の酸化熱処理を不要とするためには、原子層蒸着法により形成することが有効である。しかし、原子層蒸着法で形成しただけでは酸化タンタルの高誘電率特性を引き出すことはできない。酸化タンタルは膜形成段階では、非晶質であり、比誘電率は25程度の値しか示さない。さらに比誘電率を高めるためには、膜を結晶化させる必要がある。
上記の必要性に基づき、発明者は酸化タンタルの誘電率を向上できる結晶化に関して実験検討を行なった結果、以下に述べる二つの問題のあることが明らかとなった。
(1)膜厚10nm程度の酸化タンタルを単層で形成し、結晶化させると結晶粒界起因の凹凸が生じ、リーク電流が著しく増大する。
(2)一方、酸化タンタルの膜厚が薄すぎると、750℃、1分程度の通常使用条件では結晶化が困難となり、高誘電率化が達成できなくなる。
以下、上記(1)の結晶粒界起因の問題について、図10および図11を用いて説明する。
図10(a)、(b)、(c)は、酸化タンタルの結晶化の様子を透過型電子顕微鏡により観察した結果を模式的に示す平面図である。
最初に、図10(a)は、厚さ10nmの酸化タンタルの結晶化初期段階の様子を示している。結晶化初期においては、非晶質酸化タンタル1001の中に第一結晶核1002、第二結晶核1003、第三結晶核1004、第四結晶核1005が点在していた。
次に、図10(b)は、前記各結晶核が成長し、結晶化が完結した状態の様子を示している。第一結晶核1002は、結晶粒界1010で囲まれた第一結晶粒1006に成長した。同じく、第二結晶核1003は第二結晶粒1007に、第三結晶核1004は第三結晶粒1008に、第四結晶核1005は第四結晶粒1009に各々成長した。図に示されているように、個々の結晶が成長し、隣接する結晶が接触した段階で結晶粒界1010を形成し、成長は停止していた。一方の結晶粒が隣接する他方の結晶粒を侵食してさらに成長している様子は見られなかった。最初に形成された結晶核が大きいほど大きな結晶粒に成長していた。また、個々の結晶粒内には、結晶粒界1010とは異なる擬似粒界1011が多数存在していることが明らかとなった。
個々の結晶粒は、結晶核が存在した部分を中心に成長し、結晶核中心の長手方向から延在する方向に擬似粒界1011を伴う結晶が直線状に成長している直線状領域1012と、中心の両側に位置して擬似粒界を伴う結晶が不定形な不定形領域1013で構成されていた。これらの観察結果は、酸化タンタルの結晶化が、結晶化に伴って発生する結晶歪みを、擬似粒界を形成することにより開放しながら進行していることを示唆している。
また、図10(c)は、(b)図のAで示した結晶粒界と擬似粒界が接触している円内をさらに拡大して結晶格子像を観察した結果である。図中の細い線は、結晶格子1014を示している。第一結晶粒1006の結晶格子端と第二結晶粒1007の結晶格子端は一致せず、格子不連続点となって結晶粒界1010を形成していた(粒界を示す太い線は便宜上示したもので、実際の観察像では線は観察されていない)。擬似粒界に相当する部分では、結晶格子が新たに発生している不連続格子端1015や元の結晶格子から連続している連続格子端1016が混在していた。擬似粒界を境界にして隣接している結晶格子は同じ結晶方位にはならず、結晶方位をわずかにずらして歪みを開放しながら成長していることが示されている。
さらに詳細な知見を得るため、図10(b)の表面状態を原子間力顕微鏡(Atomic Force Microscope)を用いて観察すると、結晶粒界および擬似粒界は谷に相当し、擬似粒界と擬似粒界の間は峰に相当する山脈状の凹凸状態になっていることがわかった。
また、上記の凹凸状態をさらに確認するために透過電子顕微鏡による断面方向からの観察を試みた。図11(a)は、半導体基板1101上に、厚さ10nmの酸化タンタル1102を形成した段階の状態を示している。形成した段階での酸化タンタルは、非晶質であり結晶格子は観察されなかった。また、表面も極めて平坦であった。(b)図は、熱処理により結晶化が完結した段階の状態を示している。図10(c)と同様に明瞭な結晶格子を観察することができ、非晶質酸化タンタルは、多結晶酸化タンタル1103に変化していた。個々の結晶は、酸化タンタルの表面から底面まで貫通する結晶粒界1104により分離されていた。結晶粒界1104の表面部分は、前述の山脈の谷に相当するように凹部を形成していることがわかった。
上記のように、厚さ10nmの酸化タンタルを結晶化すると、酸化タンタルの表面から底面まで貫通する結晶粒界および擬似粒界が多数発生する。それと同時に表面の凹凸が大きくなる。これらの結晶粒界の存在と粒界部分の膜厚が薄くなることが、リーク電流の増大をもたらす。
次に、酸化タンタルを結晶化する場合の第二の問題として膜厚が薄くなりすぎると結晶化が困難となる現象について、図12を用いて説明する。
図12は、薄い酸化タンタルを積層して結晶化を試みた試料の透過電子顕微鏡による断面観察結果を示している。半導体基板1201上に厚さ2.5nmの酸化タンタル1202と、厚さ2.5nmの窒化シリコン膜1203との積層膜を4層に形成して、酸化タンタルの合計膜厚が10nmとなるようにした。積層化した後、厚さ10nmの単層酸化タンタルを結晶化できる条件で熱処理を施した。しかし、観察の結果、酸化タンタルの結晶化は認められず、結晶格子も結晶粒界も存在していなかった。すなわち、酸化タンタルを薄くしすぎると結晶化が困難となることが明らかとなった。結晶化が達成されないと酸化タンタルの高誘電率化が困難となり、EOTが2nm以下の誘電体を得ることができない。
上記特開2001-237401号公報の特許文献には、厚さ1nm以下の酸化タンタルと厚さ0.5nm以下の酸化チタンの積層膜が開示されているが、上述のように、このような薄い酸化タンタルは効果的に結晶化することは困難であり、750℃以下の熱処理温度で高誘電率化は達成できない問題がある。
上記問題に鑑み、本発明の目的は、酸化タンタルの結晶化に伴う結晶粒界発生に起因するリーク電流の増大を抑制しつつ、誘電体のEOTが2nm以下となるスタックトレンチ型のキャパシタおよびその製造方法を提供することにある。
酸化タンタルは、リーク電流抑制のためには、薄く形成して結晶化することが望ましいが、薄すぎると結晶化が困難となる相反する特徴を有している。
発明者は、種々実験検討の結果、以下の知見を得た。酸化タンタルの膜厚が4nmより薄くなると、極めて結晶化しにくくなる。ギガビット級DRAMでは、既に半導体基板表面に形成されている半導体素子の特性に影響を与えないように、スタックトレンチ型のキャパシタ形成工程で許容される熱処理温度は750℃である。この温度で効果的に結晶化し得る酸化タンタルの膜厚は4nm以上となる。2.5nmの膜厚では、800℃で熱処理しても結晶化は困難である。結晶化しないと酸化タンタルの誘電率は向上せず、EOTが2nm以下のキャパシタ誘電体を得ることは困難となる。したがって、効果的に酸化タンタルを結晶化させるためには膜厚を4nm以上とする必要がある。また、一旦結晶化した後の酸化タンタルの膜厚は任意に調整することが可能で、結晶状態を維持したまま薄膜化を図ることができる。
本発明の上記目的を達成するために、本発明におけるキャパシタは、半導体基板表面に接続するプラグを介するキャパシタであって、(1)金属もしくは金属化合物からなる下部電極と、(2)厚さ3nm〜4.8nmの多結晶酸化タンタルと、前記多結晶酸化タンタル上に形成された結晶分断層とからなる積層膜を基本構成とし、前記積層膜が少なくとも2層以上の構成で、前記下部電極上に設けられた誘電体と、(3)前記誘電体上に設けられた金属もしくは金属化合物からなる上部電極と、で構成されることを特徴とする。
また、本発明におけるキャパシタは、前記結晶分断層が酸化アルミニウムもしくは酸化ハフニウムからなることを含み、前記下部電極と多結晶酸化タンタルの間に、窒化タンタル、窒化アルミニウム、窒化ハフニウムから選択される酸化バリヤ層を含むことを特徴とする。
また、前記下部電極がルテニウムであることを含み、前記ルテニウム下部電極に接するプラグは、少なくとも、厚みが100nm以上のルテニウムプラグからなり、前記ルテニウムプラグの下に接するバリヤ層は窒化チタンからなり、前記窒化チタンの下に接するシリサイド層はルテニウムシリサイドであることをさらに含んでいることを特徴とする。
また、前記誘電体中の、多結晶酸化タンタルの合計の厚さが酸化シリコンの誘電率で規格化したEOTで0.7nm以下であり、多結晶酸化タンタル以外の膜の合計の厚さが酸化シリコンの誘電率で規格化したEOTで1.1nmから1.3nmの範囲であることを特徴とする。
本発明におけるキャパシタの製造方法は、半導体基板表面に接続するプラグを介して下部電極が形成され、(1)金属もしくは金属化合物からなる下部電極を形成する工程と、(2)前記下部電極上に厚さ4nm〜4.8nmの酸化タンタルを原子層蒸着法により形成する工程と、(3)前記酸化タンタル上に、結晶分断層を原子層蒸着法により形成する工程と、(4)前記(2)から(3)の工程を、少なくとも2回繰り返して誘電体を形成する工程と、(5)前記誘電体を形成した後、非酸化性雰囲気で酸化タンタルを結晶化する熱処理工程と、(6)前記誘電体上に、金属もしくは金属化合物からなる上部電極を形成する工程と、を有することを特徴とする。また、酸化タンタルを形成した直後に、酸化タンタルを結晶化する工程を含むことを特徴とする。
本発明におけるキャパシタの製造方法は、半導体基板表面に接続するプラグを介して下部電極が形成され、(1)金属もしくは金属化合物からなる下部電極を形成する工程と、(2)前記下部電極上に厚さ4nm〜4.8nmの酸化タンタルを原子層蒸着法により形成する工程と、(3)前記酸化タンタルを非酸化性雰囲気で結晶化する工程と、(4)前記結晶化された酸化タンタルの膜厚を調整する工程と、(5)前記膜厚が調整された多結晶酸化タンタル上に、結晶分断層を原子層蒸着法により形成する工程と、(6)前記(2)から(5)の工程を、少なくとも2回以上繰り返して誘電体を形成する工程と、(7)前記誘電体上に、金属もしくは金属化合物からなる上部電極を形成する工程と、を有することを特徴とする。
また、本発明におけるキャパシタの製造方法は、前記結晶分断層が酸化アルミニウムもしくは酸化ハフニウムからなることを含み、前記下部電極はタングステンおよびその化合物、窒化チタン、ルテニウムから選択されることを特徴とする。
さらに、前記下部電極がルテニウムである場合には、前記ルテニウム下部電極に接するプラグは、少なくとも、厚みが100nm以上のルテニウムプラグからなり、前記ルテニウムプラグの下に接するバリヤ層は窒化チタンからなり、前記窒化チタンの下に接するシリサイド層はルテニウムシリサイドであることを含み、前記ルテニウムは形成後、水素もしくはアンモニアを含む還元性雰囲気で熱処理する工程をさらに含み、緻密化されていることを特徴とする。
また、本発明におけるキャパシタの製造方法は、前記下部電極と多結晶酸化タンタルの間に、窒化タンタル、窒化アルミニウム、窒化ハフニウムから選択される酸化バリヤ層が原子層蒸着法により形成される工程を含んでおり、前記酸化バリヤ層を原子層蒸着法により形成した後、アンモニア雰囲気で熱処理する工程をさらに含むことを特徴とする。
また、本発明における半導体記憶装置の製造方法は、前記下部電極上に、下部電極に接する酸化タンタルを形成した後、水素雰囲気中で熱処理する工程をさらに含み、下部電極表面に形成されている金属酸化物を還元することを特徴とする。
上記の構成により、本発明のキャパシタでは、例えば図13に示すように、第一多結晶酸化タンタル1301と第一結晶分断層1302の積層膜を2層に形成して、第二多結晶酸化タンタル1303と第二結晶分断層1304を含む合計4層で構成されている。したがって、第一多結晶酸化タンタル1301内の結晶粒界1305と第二多結晶酸化タンタル1303の結晶粒界1306とは第一結晶分断層1302で分断されており、結晶粒界が酸化タンタルの表面から底面に貫通することがない。また、結晶粒界で凹部を形成することも無いので局所的に薄くなる部分がなくなり、リーク電流を低減することができる、また、酸化タンタルは多結晶状態で構成されているので高誘電率となっており、容量を増大できる効果がある。
また、本発明のキャパシタの製造方法では、主たる誘電体となる酸化タンタル、および結晶分断層となる酸化アルミニウムもしくは酸化ハフニウムを原子層蒸着法により形成しているので、不純物が膜中に含有されることを抑止し、膜形成後の酸化性雰囲気での熱処理を不要とすることができる。したがって、下部電極の酸化による剥離を防止してキャパシタを構成できる効果がある。
また、酸化タンタルは4nm以上の厚さで形成するので、熱処理上限となる750℃以下の温度で容易に結晶化させることができ、高誘電率化が可能となる。
上記の主な効果により、誘電体のリーク電流増大を抑制しつつ、誘電体の高誘電率化を図ってEOTが2nm以下となるスタックトレンチ型のキャパシタを有するギガビット級のDRAMを提供できる効果がある。
以下、本発明の実施例について図を用いて詳細に説明する。
本第1の実施例では、スタックトレンチ型キャパシタを有するDRAMの一構成例について、図1を用いて説明する。図1は、第一のアルミニウム配線層が形成された状態までのDRAMの一断面模式図を示している。
p型シリコン基板101にnウエル102を設け、その内部に第一のpウエル103を設けている。また、nウエル102以外の領域には第二のp ウエル104を設け、素子分離領域105を設けている。第一のpウエル103は複数のメモリセルが配置されるメモリアレイ領域を、第二のpウエル104は周辺回路領域を各々便宜的に示している。
第一のpウエル103には個々のメモリセルの構成要素でワード線となるスイッチングトランジスタ106及び107を設けている。トランジスタ106は、ドレイン108、ソース109とゲート絶縁膜110を介してゲート電極111とで構成される。トランジスタ107は、ソース109を共通としドレイン112、ゲート絶縁膜110を介してゲート電極111で構成されている。トランジスタを被覆するように第一層間絶縁膜113を設けている。
ソース109に接続するように第一層間絶縁膜113の所定の領域にコンタクト孔114を設け、多結晶シリコン115からなるシリコンプラグを設けている。シリコンプラグの表面にチタンシリサイド116、窒化チタン117およびタングステン118からなるビット線コンタクトを設け、ビット線コンタクトに接続するように窒化タングステン119およびタングステン120からなるビット線を設けている。ビット線を被覆するように第二層間絶縁膜121を設けている。
トランジスタのドレイン108及び112に接続するように第一層間絶縁膜113及び第二層間絶縁膜121の所定の領域にコンタクト孔を設け、シリコンプラグ122を設けている。さらに、シリコンプラグ122の表面にはバリヤ層を含む金属シリサイド123を設けている。
金属シリサイド123に接続するようにキャパシタを設ける。まず、第二層間絶縁膜上に窒化シリコン膜124、厚さ2000nmの第三層間絶縁膜125を設け、所定の領域に下部電極を形成するためのトレンチ(深孔)126を設ける。この時、第三層間絶縁膜125を周辺回路領域に残存させるために用いるダミー溝129も同時に設ける。トレンチ内に下部電極127を設け、メモリアレー領域内の第三層間絶縁膜125の上側半分程度を除去し、下部電極127の外側にもキャパシタ領域128を設ける。下部電極127を覆うように誘電体130および上部電極131を設け、キャパシタが構成されている。誘電体130は厚さ4nm〜4.8nmの多結晶酸化タンタルと、その上に形成した厚さ1nm〜1.5nmの酸化アルミニウムとの積層膜を基本構成とし、その積層膜を2層で設けている。キャパシタを被覆するように、第四層間絶縁膜132を設けている。
一方、第二のpウエル104には周辺回路を構成するトランジスタが設けられ、ソース109、ドレイン112、ゲート絶縁膜110、ゲート電極111で構成されている。ドレイン112に接続するように、第一層間絶縁膜113の所定の領域にコンタクト孔133を設けている。チタンシリサイド116、窒化チタン117、タングステン118からなるコンタクトプラグを設け、その上に窒化タングステン119、タングステン120からなる第一の配線層を設けている。第一の配線層の一部は、第二層間絶縁膜121、第三層間絶縁膜125および第四層間絶縁膜132を貫通して形成されるコンタクト孔134を充填した窒化チタン135及びタングステン136を介して窒化チタン137、アルミニウム138、窒化チタン139からなる第二の配線層に接続している。
また、メモリアレイ領域に設けたキャパシタの上部電極131は、一部の領域で周辺回路領域に引き出し配線140として引き出される。そして、第四層間絶縁膜132の所定の領域に形成されたコンタクト孔を充填した窒化チタン141、タングステン142を介して、同じく窒化チタン143、アルミニウム144、窒化チタン145からなる第二の配線層に接続している。以下、層間絶縁膜の形成、コンタクトの形成、配線層の形成を必要に応じて繰り返し、DRAMを構成している。
本第2の実施例では、キャパシタ部分の構成について、図2および図3を用いて説明する。なお、キャパシタは、図1で説明したようにスタックトレンチ型の立体構造であるが、説明を容易にするため、図2ではプラグに接する深孔の底の部分を拡大した一断面を想定して示している。
図2はキャパシタの断面構造を、図3は製造ステップ(S1〜S8)を示している。なお、実際の詳細な製造ステップについては、後述の実施例5において述べることとする。
図2では、シリコンプラグとなる多結晶シリコン201上に、チタンシリサイド211および窒化チタン212からなるバリヤ層202が設けられ、バリヤ層202に接して窒化タングステンからなる下部電極203を設けている。下部電極203上に、誘電体204として、厚さ4.5nmの第一多結晶酸化タンタル213、厚さ1.5nmの酸化アルミニウムからなる第一結晶分断層214および厚さ4.5nmの第二多結晶酸化タンタル215、厚さ1.5nmの第二結晶分断層216が設けられ、さらに誘電体204の上に窒化チタンからなる上部電極205を設け、キャパシタを構成している。
図3は、図2に対応するS1からS8までの製造ステップを示している。まず、S1ステップでは、多結晶シリコン201からなるシリコンプラグを形成した。多結晶シリコンの形成には、モノシラン(SiH4)とホスフィン(PH3)を原料ガスとする通常のCVD(Chemical Vapor Deposition)法を用いた。次に、S2ステップでは、接触抵抗低減のために、チタン原料をシリコンプラグ表面に供給し、表面にチタンシリサイド211を形成した。さらに、S3ステップでは、連続的に窒化チタン212を堆積し、バリヤ層を形成した。窒化チタン212の堆積には、塩化チタン(TiCl4)とアンモニア(NH3)を原料とする通常のCVD法を用いた。S2ステップおよびS3ステップは、同一反応装置内で連続して処理することが望ましい。次いで、S4ステップでは窒化タングステン下部電極203を形成した。窒化タングステンの形成には、フッ化タングステン(WF6)と水素(H2)とアンモニア(NH3)を原料とする通常のCVD法を用いた。CVD法に代えて原子層蒸着法により形成することができる。また、窒化タングステンの形成に先立って、スパッタ法もしくはCVD法により、タングステンの種層を形成しておいてもよい。
次に、S5ステップでは、原子層蒸着法により第一酸化タンタルを形成した。酸化タンタルの形成には、前述の特許文献特開2004-23043号公報に記載されているように、複数枚の半導体基板を同時に処理できる炉体を用いたバッチ処理方式を用いた。このような装置は、日立国際電気や東京エレクトロンなどから縦型成膜炉として市販されている。ペンタエトキシタンタル(PET: Ta(OC2H5)5 )とH2Oを原料とする原子層蒸着法により、厚さ4.5nmの酸化タンタルを、窒化タングステン下部電極上に形成した。温度を300℃に維持した状態で、PETの導入、ガスパージ、H2Oの導入、ガスパージのサイクルを、厚さが4.5nmになるまで繰り返して形成した。原子層蒸着法であっても、PETの導入量が不足するとトレンチ内部の底まで一様な厚さの膜を形成するのが困難となる。また、H2Oの導入が不足すると酸化反応が不十分となって、不純物の除去効率が悪くなり、リーク電流の低減が困難となる。したがって、原料ガスの導入やパージのステップでは10秒オーダーの時間を必要とする。そのため、枚葉処理装置では生産性が不十分で実用的ではない。なお、原子層蒸着法に用いる酸化タンタルの原料としては、塩化タンタル(TaCl5)やテトラジメチルアミドタンタル(TDMATa: Ta(N(CH3)2)4 )などを用いることもできる。
次に、S6ステップでは、形成された酸化タンタルを非酸化性雰囲気で結晶化し、第一多結晶酸化タンタル213とした。温度は720℃、時間は30秒とした。下部電極の窒化タングステンは極めて酸化されやすく、酸化性雰囲気での熱処理は避ける必要がある。例えば、酸素濃度が1%程度の窒素雰囲気であっても、720℃では酸化タンタルを通して窒化タングステンは瞬時に酸化され、剥離してしまう。タングステンも同様であるが、窒化タングステンよりさらに酸化されやすい。非酸化性雰囲気には、窒素、アルゴンなどを用いることができるが、本実施例では窒素を用いた。
また、この熱処理は、より短時間に結晶化温度まで昇温することが望ましい。(発明が解決しようとする課題)の項でも延べたように、酸化タンタルの結晶化は、結晶核の生成と結晶成長により達成される。より瞬間的に結晶化させることにより、同時多発的に結晶核を生成できるので、結晶粒の成長を抑えられ、擬似粒界の少ない、小さくて均一な結晶粒で構成することができるからである。バッチ処理の炉体では、結晶化温度に到達、安定するまでに時間のばらつきが生じ、部分的に巨大な結晶粒が成長する結果となり、リーク電流の抑制には不都合である。
次に、S7ステップでは、第一結晶分断層214として、原子層蒸着法により、厚さ1.5nmの酸化アルミニウムを形成した。トリメチルアルミニウム(TMA:Al(CH3)3 )とH2Oを原料ガスとし、350℃で形成した。TMA導入、パージ、H2O導入、パージを1.5nmの厚さになるまで繰り返した。酸化アルミニウムの原子層蒸着においても、トレンチ内に形成する場合には、TMAの導入およびH2Oの導入には、10秒オーダーの時間が必要であり、バッチ式の炉体を用いることが望ましい。
結晶分断層として酸化アルミニウムを形成した後、多層化するために再度、原子層蒸着法による厚さ4.5nmの酸化タンタルの形成、非酸化性雰囲気での結晶化による第二多結晶酸化タンタル215、第二結晶分断層216としての厚さ1.5nmの酸化アルミニウムの形成を繰り返し、4層構造とした。次いで、CVD法により形成する窒化チタンからなる上部電極205を形成した。窒化チタン上部電極の形成にも原子層蒸着法を用いることもできる。
本実施例では、多結晶酸化タンタルと酸化アルミニウムの基本構成を2層(合計4層)で形成しているので多結晶酸化タンタルの結晶粒界は膜を貫通することなくリーク電流を低減できる効果がある。また、各々の合計膜厚は酸化タンタルが9nm、酸化アルミニウムが3nmとなる。この時、酸化タンタルのEOTは0.67nm、酸化アルミニウムのEOTは1.30nmとなる。したがって、合計EOTは2.0nm以下となり、ギガビット級DRAMへの適用が可能となる効果がある。
本実施例では、酸化タンタルの結晶分断層として酸化アルミニウムを用いたが、酸化ハフニウムを用いることもできる。酸化ハフニウムは、テトラエチルメチルアミドハフニウム(TEMAHf:Hf(N(CH3)(C2H5))4 )などの原料と、オゾン(O3)やH2Oなどの酸化剤を用い、温度300℃、パージを含む交互導入の繰り返しで形成することができる。酸化ハフニウムの場合は実験的に得られた比誘電率が20となる。したがって、EOT1.30nmに相当する酸化ハフニウムの物理膜厚としては6.6nmまで厚くすることができる。2回繰り返して誘電体を形成する場合の結晶分断層としては、酸化アルミニウムでは、1.5nmであったが、酸化ハフニウムでは3.3nmとすることができ、電界緩和を図ってリーク電流を低減できる効果がある。
なお、本実施例では、各々の酸化タンタルを形成した段階で結晶化しているが、第二結晶分断層の形成が終了した時点(4層形成した時点)で一度に結晶化させても良い。
また、本実施例では、窒化タングステン下部電極上に第一酸化タンタルを形成した後、もしくは非酸化性雰囲気で熱処理して第一多結晶酸化タンタルとした後、水素雰囲気中で、400℃、10分程度の熱処理を施してもよい。窒化タングステンは窒化チタンと異なり、酸化タンタルを構成する酸素を吸い取る性質がないので酸化タンタルを誘電体とする電極には適している。しかし、雰囲気に存在する酸化剤に対しては、耐酸化性がない。したがって、酸化タンタルの形成中に雰囲気に存在する酸化剤により酸化され得る。酸化タンタルの原子層蒸着は300℃の低温で行われるが、この場合でもタングステン表面には2nm程度の酸化タングステンが形成されてしまう。この酸化タングステンは誘電率が大きいためEOTの変動にはほとんど寄与しないが、極めて還元されやすい性質を持っている。通常、半導体装置の製造においては、ウエーハ製造工程の最終段階において、素子の安定化を図るために400℃から450℃程度の温度で水素熱処理が実施される。キャパシタの形成が終了している段階で水素熱処理が施されると、下部電極表面に形成されていた酸化タングステンが還元されタングステンとなる。この時、堆積収縮を伴うために誘電体に歪みが生じ、リーク電流増大の懸念がある。これを回避するために、酸化タンタル形成後の還元熱処理が効果的である。
また、本実施例では下部電極に窒化タングステンを用いたが、これに限るものではなく、ルテニウムを含む他の金属もしくは金属化合物を用いることができる。
ルテニウム下部電極を用いる場合には、バリヤ層202を構成するシリサイドは、ルテニウムシリサイドとすることが望ましい。また、ルテニウムを形成した後には水素もしくはアンモニアを含む還元性雰囲気熱処理することが望ましい。なお、ルテニウム下部電極上で本発明を適用する場合の例については後述の実施例6で詳細に説明する。
本第3の実施例では、実施例2で述べた酸化タンタルと結晶分断層の構成からなる誘電体構造において、下部電極表面の酸化による特性変動を抑止するための一方策として、下部電極表面に予め酸化バリヤ層を設けた構造および方法について、図4および図5を用いて説明する。図4は断面構造を、図5は図4に対応する製造ステップを示している。なお、実施例2と説明が重複する部分については詳細説明を省略する。
図4では、シリコンプラグとなる多結晶シリコン401上に、チタンシリサイド411および窒化チタン412からなるバリヤ層402が設けられ、バリヤ層402に接して窒化タングステンからなる下部電極403を設けている。下部電極403上に、下部電極表面の酸化を防止するための新たな窒化タンタルからなる酸化バリヤ層413を設けている。誘電体404として、第一多結晶酸化タンタル414、酸化アルミニウムからなる第一結晶分断層415および第二多結晶酸化タンタル416、第二結晶分断層417を設け、さらに誘電体404の上に窒化チタンからなる上部電極405が設けられ、キャパシタを構成している。
図5は、図4に対応するS1からS10までの製造ステップを示している。実施例2と同様に、S1ステップではシリコンプラグとなる多結晶シリコン401を形成した。S2ステップでは、チタンシリサイド411を形成した。S3ステップでは、窒化チタン412からなるバリヤ層402を形成した。S4ステップで窒化タングステン下部電極403を形成した。
次に、S5ステップでは、窒化タンタルからなる酸化バリヤ層413を形成した。窒化タンタルはPETとNH3を原料ガスとする原子層蒸着法により、温度350℃で、厚さが2nmになるように形成した。次いで、S6ステップでは、NH3雰囲気で窒化タンタルを熱処理し、緻密化を図った。熱処理条件は700℃、1分とした。
次に、S7ステップでは、原子層蒸着法で厚さ4.5nmの酸化タンタルを形成した。S8ステップでは、非酸化性雰囲気で酸化タンタルを結晶化し、第一多結晶酸化タンタル414を形成した。S9ステップでは、第一結晶分断層415を原子層蒸着法により形成した。この後、多層化のために再度S7ステップからS9ステップまで2回繰り返し、第二多結晶酸化タンタル416、第二結晶分断層417を形成した。S10ステップでは、窒化チタンからなる上部電極405を形成してキャパシタを構成した。
本実施例では、下部電極表面に窒化タンタルを酸化バリヤ層として形成している。したがって、酸化タンタルの形成時、雰囲気に存在する酸化剤で窒化タンタルが酸化されても、そこで形成される酸化物は、本来誘電体として用いる酸化タンタルであり、結果的に誘電体に何ら悪影響を及ぼすことなく、下部電極の酸化を防止することができる。
本実施例では、酸化バリヤ層413として窒化タンタルを用いたが、これに限るものではなく窒化アルミニウムなど他の窒化物を用いることもできる。窒化アルミニウムはTMAとNH3を原料ガスとして、温度300℃の原子層蒸着法により形成することができる。 発明者の実験によれば、窒化アルミニウムは形成直後の段階において、既に結晶化が認められるが、酸化タンタルの形成段階で酸化されると酸化アルミニウムとなって、非晶質に変換され、リーク電流の低減に寄与できる。窒化アルミニウムも酸化アルミニウムも比誘電率に差はなく、窒化アルミニウムが数原子層残存したとしても、EOTの維持には影響しない。バリヤ層に窒化アルミニウムを用いた場合には、第一結晶分断層の酸化アルミニウムと第二結晶分断層の酸化アルミニウムを含めて、比誘電率の同じ層が3層で構成されることになる。したがって、合計のEOTを1.3nm以内に維持するためには、各層の膜厚は1nmとして合計物理膜厚が3nmとなるようにすればよい。
また、酸化バリヤ層413として、窒化ハフニウムを用いることもできる。窒化ハフニウムは、テトラエトキシハフニウム(TEOHf:Hf(OC2H5)4 )などの原料と、NH3を用い、温度300℃、パージを含む交互導入の繰り返しで形成することができる。窒化ハフニウムの比誘電率は、酸化ハフニウムと同様20である。窒化アルミニウムよりも誘電率が大きいのでEOTの低減により効果的である。窒化アルミニウムや窒化ハフニウムを酸化バリヤに用いる場合には、酸化タンタルの結晶粒界が下部電極に直接接触することを防止できるので、リーク電流低減にさらに効果的となる。
なお、本実施例では、各々の酸化タンタルを形成した段階で結晶化しているが、最後の第二結晶分断層の形成が終了した時点で一度に結晶化させても良い。
本第4の実施例では、酸化タンタルと結晶分断層の構成からなる誘電体層を3層以上とする構造および方法について、図6および図7を用いて説明する。図6は断面構造を、図7は製造ステップを示している。なお、実施例2と説明が重複する部分については詳細説明を省略する。
図6では、シリコンプラグとなる多結晶シリコン601上に、チタンシリサイド611および窒化チタン612からなるバリヤ層602が設けられ、バリヤ層602に接して窒化タングステンからなる下部電極603を設けている。下部電極603上に、誘電体604として、第一多結晶酸化タンタル613、酸化アルミニウムからなる第一結晶分断層614および第二多結晶酸化タンタル615、第二結晶分断層616、第三多結晶シリコン617、第三結晶分断層618が設けられ、さらに誘電体604の上に上部電極605を設けて、キャパシタを構成している。
図7は、図6に対応するS1からS9までの製造ステップを示している。実施例2と同様にS1ステップでは、シリコンプラグとなる多結晶シリコン601を形成した。S2ステップでは、チタンシリサイド611を形成した。S3ステップでは、窒化チタン612からなるバリヤ層602を形成した。S4ステップで窒化タングステン下部電極603を形成した。S5ステップでは、原子層蒸着法により厚さ4.5nmの酸化タンタルを形成した。S6ステップでは、酸化タンタルを非酸化性雰囲気で結晶化し、第一多結晶酸化タンタル613を形成した。
次に、S7ステップでは、結晶化した酸化タンタルを薄膜化した。多結晶酸化タンタルの薄膜化には、塩素系ガスによるプラズマドライエッチングを用いた。塩素と酸素の混合ガス、圧力1Torr、プラズマパワー100Wの条件を用いることができる。他の条件も選択可能である。塩素ガス濃度を小さくして2nm程度エッチングされるように条件設定を行なう。酸化タンタルの残膜厚が3〜3.5nmとなるようにした。次いで、S8ステップでは、厚さ1nmの酸化アルミニウムからなる第一結晶分断層614を形成した。この後、多層化するためにS5からS8のステップを3回繰り返して3層構造とし、薄膜化された第二多結晶酸化タンタル615、第二結晶分断層616、薄膜化された第三多結晶酸化シリコン617、第三結晶分断層618を形成した。S9ステップでは、窒化チタン上部電極605を形成してキャパシタを構成した。
本実施例によれば、4nmより薄い膜厚では結晶化が困難な酸化タンタルを、結晶化が容易な膜厚で形成して結晶化を行ない、結晶化された酸化タンタルを一旦エッチングにより薄膜化し、その後結晶分断層を形成している。したがって、結果的に薄い膜厚の多結晶酸化タンタルで多層構造の誘電体を構成でき、リーク電流低減効果は、2層の場合に比べて大きくなる効果がある。本実施例では3層構造としたが、3層以上に構成することも可能である。酸化タンタルの厚さが4.5nmの状態で3層にした場合には、EOTが0.9nmとなってしまい、酸化アルミニウムの合計EOTが1.3nmであることを考慮すると、全体でEOTが2.2nmとなってしまい、EOT2nmを確保できなくなる。しかし、本実施例では、薄膜化して厚さ3nmの酸化タンタルで3層としているので、酸化タンタルの合計EOTは0.6nmとなり、全体でEOT1.9nmとなり、2nm以下を確保することができる。
本第5の実施例では、前述の実施例2、3および4に記載したキャパシタ構造の製造方法の詳細について、図8(a)〜(e)の一連の工程断面図を用いて説明する。ここでは、基板表面に形成されているトランジスタやビット線の製造方法については省略している。
最初に、図8(a)は、プラグを形成した段階の状態を示している。厚さ500nmの酸化シリコンからなる第二層間絶縁膜801を堆積して表面を平坦化した後、厚さ50nmの窒化シリコン膜802をCVD法により積層した。所定の領域にリソグラフィとドライエッチング法によりコンタクトホールを形成した後、不純物を含有する多結晶シリコンからなるシリコンプラグ803を形成した。シリコンプラグ803は、窒化シリコン膜802の厚みの範囲内で、コンタクトホール内に落ち込むように形成した。
次に、シリコンプラグ表面にシリサイドを形成するに先立ち、シリコンプラグ表面の清浄化処理を行なった。この清浄化処理で酸化シリコンからなる第二層間絶縁膜801がエッチングされないようにするために、窒化シリコン膜802を設けている。しかし、第二層間絶縁膜801が実質的にエッチングされない条件であれば、窒化シリコン膜802の形成を省略してもよい。次に、厚さ10nmのチタンシリサイド804とバリヤとなる窒化チタン805をホールが埋まるように堆積した。その後、CMP(Chemical Mechanical Polishing)法を用いて、コンタクトホール以外の表面に形成された窒化チタン805を除去した。
次に、図8(b)は、トレンチを形成するための厚い絶縁膜を形成した段階の状態を示している。まず、厚さ50nmの窒化シリコン膜806をCVD法により堆積した。窒化シリコン膜806は、その上の厚い絶縁膜にトレンチを形成する際のストッパーとして用いる。しかし、上述の窒化シリコン膜802が形成されている場合には、窒化シリコン膜806の形成を省略することができる。次に、厚さ2000nmの酸化シリコンからなる第三層間絶縁膜807をCVD法により堆積した。
次に、図8(c)は、所定の領域にキャパシタを形成するためのトレンチを形成し、トレンチ内に下部電極を形成した段階の状態を示している。ギガビット級のDRAMでは、許容されるトレンチの短辺は180nmとなる。このようなトレンチは、周知のドライエッチング法により形成するが、ホトレジストではエッチングのマスクとして不十分なため、図には示していないシリコンなどのハードマスクを用いて形成する。シリコンハードマスクを用い、第三層間絶縁膜807および窒化シリコン膜806をドライエッチングし、トレンチ808を形成した。ドライエッチングにはフッ素系のガスプラズマを用いた。表面に残存したシリコンハードマスクを除去した後、トレンチの底に露出した窒化チタン805の表面を清浄化する処理を行ない、厚さ20nmの窒化タングステンからなる下部電極809を全面に堆積した。
窒化タングステンは、WF6とH2とNH3を原料ガスとし、温度400℃のCVD法で形成した。NH3を導入せずに、タングステン下部電極とすることも可能である。温度450℃以下の範囲における酸化特性を比較すると、窒化タングステンの方がタングステンよりもわずかに耐酸化性が高い利点がある。下地との接着性を高めるためにスパッタ法により、タングステンの種層を形成しておいても良い。また、窒化タングステンは原子層蒸着法を用いて形成することもできる。
次に、トレンチ808内をホトレジストで充填し、ドライエッチングによりトレンチ以外の表面に露出している窒化タングステン809を除去した。その後、トレンチを充填したホトレジストを除去した。ホトレジストは、酸素プラズマアッシングで除去可能であるが、この時、窒化タングステンがわずかに酸化されるが、H2もしくはNH3雰囲気で熱処理し還元することができる。また、タングステンをエッチングしない溶液を用いてホトレジストだけを除去することも可能である。以上の手順により、トレンチ内壁に窒化タングステンからなる下部電極809を形成した。
図8(d)は、擬似王冠構造の下部電極を形成した段階の状態を示している。図1に示したダミー溝129を利用して周辺回路部の第三層間絶縁膜807(図1では第三層間絶縁膜125に相当)をホトレジストで被覆しておき、フツ酸系の溶液を用いて、メモリセル領域に露出している第三層間絶縁膜807を半分程度エッチング除去し、一部外壁が露出した擬似王冠構造の下部電極809を形成した。完全に除去すると下部電極自身が倒壊してしまうので好ましくない。
図8(e)は、キャパシタの誘電体を形成した段階の状態を示している。前の段階で周辺回路領域を覆っておいたホトレジストを除去した後、誘電体を形成した。実施例2と同様に、原子層蒸着法により厚さ4.5nmの酸化タンタルを形成した後、窒素雰囲気で750℃、30秒の熱処理を行ない第一多結晶酸化タンタル810を形成した。次いで、その上に原子層蒸着法により厚さ1.5nmの酸化アルミニウムからなる第一結晶分断層811を形成した。さらに、同じ工程を繰り返して、第二多結晶酸化タンタル812、第二結晶分断層813を積層した。酸化タンタルの結晶化熱処理は、全ての膜を積層した後で一度に行ってもよい。
さらに、窒化チタンからなる上部電極814を形成した。窒化チタンは、TiCl4とNH3を原料ガスとするCVD法により形成した。CVD法に代えて原子層蒸着法により形成することもできる。CVD法の場合には500〜550℃の温度範囲を選択でき、原子層蒸着法では350〜400℃の温度範囲でパージを含む原料の交互導入により形成できる。窒化チタンを形成した後、さらにタングステンなどの金属をスパッタ法により積層することもできる。これにより、キャパシタ構造が完成する。以降、図1と同様に、配線層の形成を経てDRAM構造を製造することができる。
本実施例では、下部電極を擬似王冠構造としているので、下部電極の一部外壁をもキャパシタとして利用でき、トレンチの深さを比較的浅くできる利点がある。また、本実施例5では、実施例1で説明した誘電体構造を用いたが、実施例2および4に示した構造および方法についても適用可能である。
また、(d)図の段階で、第三層間絶縁膜を除去しなければ、単純なスタックトレンチ型キャパシタを製造することができる。この場合、工程が簡略化でき、より高い歩留まりでDRAMを製造できる利点がある。
本第6実施例では、実施例2で述べたルテニウムを下部電極とする場合のキャパシタについて図9の断面図を用いて説明する。ルテニウムは、酸化特性がタングステンなどの金属と異なっている。タングステンでは、雰囲気から酸化剤が供給されるとタングステン自身が酸化されるために、酸化剤はタングステンで消費され、下層に拡散することはない。しかし、ルテニウムの場合は、酸化ルテニウムを形成するのに、酸素濃度および温度のしきい値が存在する。400℃程度で酸化タンタルを形成するために供給される酸化剤では、酸化ルテニウムは形成されず、ルテニウム中を酸化剤が拡散して下層の物質が酸化される結果となる。本発明の場合には、バリヤ層として形成する窒化チタンが酸化されてしまい、結果的にリーク電流を低減することが困難となる。したがって、誘電体に酸化タンタルを用い、下部電極にルテニウムを用いる場合には、下部電極の下に位置するバリヤを酸化させないようにする必要がある。
図9では、まず、第一層間絶縁膜901(図1の第一層間絶縁膜113に相当)および窒化シリコン膜902の所定の領域に第一コンタクトホールを形成し、シリコンプラグ903、ルテニウムシリサイド904、バリヤ層となる窒化チタン905を形成した。ルテニウムシリサイド904は、シリコンプラグ903表面にスパッタ法により厚さ10nmのルテニウムを形成し、600℃、1分の非酸化性雰囲気での熱処理により形成することができる。窒化チタンは前述の方法にしたがって形成した。窒化チタン905をコンタクトホールが埋まるように堆積した後、CMP法により不要な窒化チタンを除去した。
次いで、酸化シリコンからなる厚さ500nmの第二層間絶縁膜906(図1の第二層間絶縁膜121に相当)を堆積して表面を平坦化した後、所定の位置に第二コンタクトホールを形成した。その後、第二コンタクトホールが埋まるように、CVD法によりルテニウムを堆積した。ルテニウムの形成には、エチルシクロペンタジエニルルテニウム(Ru(EtCp)2:Ru(C2H5C5H4)2 )のテトラヒドロフラン溶液を気化させ、酸素と反応させるCVD法を用いた。CVD法に代えて、Ru(EtCp)2とNH3などを原料ガスとする原子層蒸着法により形成することもできる。他の原料を用いてもよい。
ルテニウムは堆積直後の段階では、表面凹凸が大きく、不純物含有量も多いので、堆積した後、水素雰囲気で750℃、1分熱処理した。この熱処理により、表面を平坦化でき、含有不純物を減少させることができる。水素の代わりにNH3を用いても良い。また、コンタクトホールが埋まらないように最初のルテニウムを堆積して水素熱処理を行なった後、残りのルテニウムを堆積して再度水素熱処理を行なう2段階で形成しても良い。熱処理により表面の平坦化を図った後、エッチバックしてコンタクトホール以外の表面に形成されている不要なルテニウムを除去し、ルテニウムプラグ907を形成した。ルテニウムのエッチバックは、酸素と塩素の混合ガスによるプラズマエッチングでおこなうことができる。また、CMP法を用いることができる。ルテニウムプラグの厚さは少なくとも100nm以上となるようにすることが望ましい。ここでは第二層間絶縁膜906の厚さを500nmとしているので充分である。
次に、厚さ50nmの窒化シリコン膜908と厚さ2000nmの酸化シリコンからなる第三層間絶縁膜909を堆積した後、所定の領域にトレンチを形成した。その後、厚さ20nmのルテニウムを前述のCVD法により堆積し、水素雰囲気で熱処理し、緻密化した。トレンチ以外の領域に形成されているルテニウムを除去してトレンチ内にルテニウム下部電極910を形成した。以下、前記実施例と同様に、厚さ4.5nmの多結晶酸化タンタルの形成と、厚さ1.5nmの酸化アルミニウムからなる結晶分断層の形成を繰り返し、誘電体とした。さらに、窒化チタンからなる上部電極を堆積してキャパシタを構成した。また、前記第5の実施例同様、単純スタックトレンチ型キャパシタとすることもできる。
本実施例では、下部電極をルテニウムで構成しているので、誘電体となる酸化タンタルとの電位障壁を高く維持することができ、リーク電流低減に効果的である。ルテニウムを下部電極とする場合には、その下に位置するシリコンとの接触はルテニウムシリサイドとすることにより、さらにリーク電流低減効果が増大する。また、CVD法でルテニウムを形成した後、還元性雰囲気で熱処理しているので、膜中に含有される不純物の除去および表面平坦化を図って緻密化するのに効果的である。この熱処理温度は、酸化タンタルの結晶化温度と同等以上に設定することが望ましい。
なお、本実施例では、各々の酸化タンタルを形成した段階で結晶化しているが、最後の第二結晶分断層の形成が終了した時点で一度に結晶化させても良い。
また、本実施例によれば、ルテニウム下部電極の下に接続されるプラグをルテニウムで構成しているので、第一多結晶酸化タンタルとバリヤの窒化チタンの間には、実質500nmのルテニウムが介在することになり、酸化タンタル形成時の雰囲気に存在する酸素がルテニウム中を拡散して窒化チタンに到達するまでの距離を確保することができる。その結果、窒化チタンバリヤ層の酸化が抑制され、リーク電流が低減されたキャパシタを得ることができる。ルテニウムはタングステンに比べて酸化タンタルに対する電位障壁が高いので、リーク電流低減には有利な電極であり、本実施例のように、バリヤの酸化に起因するリーク電流の増大を回避すれば、上述の誘電体構成の利点を生かしてEOTが2nm以下となるキャパシタを提供することができる。
以上述べたように、本発明によれば、容易に結晶化させることが可能な厚さ4〜4.8nmの酸化タンタルの多結晶化膜と酸化アルミニウムなどの結晶分断層の組み合わせを複数積層して誘電体としているので、酸化タンタルを結晶化させた場合に結晶粒界が膜中を貫通し、リーク電流が増大する問題を回避することができる。また、酸化タンタルを形成した後の酸化性雰囲気での熱処理を不要としているので、金属下部電極の酸化による剥離の問題を回避して、良好なMIM構造を提供できる。これにより、EOTが2nm以下のキャパシタを有するギガビット級DRAMを提供することができる。
本発明の実施例1のキャパシタを含むDRAMの構造を示す断面図。 本発明の実施例2のキャパシタ構造を示す断面図。 本発明の実施例2のキャパシタ製造ステップを示すフロー図。 本発明の実施例3のキャパシタ構造を示す断面図。 本発明の実施例3のキャパシタ製造ステップを示すフロー図。 本発明の実施例4のキャパシタ構造を示す断面図。 本発明の実施例4のキャパシタ製造ステップを示すフロー図。 本発明の実施例5のキャパシタ製造工程を示す(a)から(e)までの一連 の工程断面図。 本発明の実施例6のキャパシタ構造を示す断面図。 酸化タンタルの結晶状態を説明するための(a)から(c)までの平面図。 結晶酸化タンタルの結晶粒界が膜を貫通する従来の問題を説明するための (a)から(b)までの断面図。 薄い酸化タンタルの結晶化が困難となる、従来の問題を説明するための断 面図。 本発明のキャパシタ構造を説明するための断面図。
符号の説明
101、1101、1201 シリコン基板
102 nウエル
103 第一のpウエル
104 第二のpウエル
105 素子分離領域
106、107 トランジスタ
108、112 ドレイン
109 ソース
110 ゲート絶縁膜
111 ゲート電極
113、901 第一層間絶縁膜
114、133、134 コンタクト孔
115、201、401、601 多結晶シリコン
116、211、411、611、804 チタンシリサイド
117、135、137、139、141、143、145、212 窒化チタン
412、612、805、905 窒化チタン
118、120、136、142 タングステン
119 窒化タングステン
121、801、906 第二層間絶縁膜
122、803、903 シリコンプラグ
123 金属シリサイド
124、802、806、902、908、1203 窒化シリコン膜
125、807、909 第三層間絶縁膜
126、808 トレンチ
127、203、403、603、809 下部電極
128 外側のキャパシタ領域
129 ダミー溝
130、204、404、604 誘電体
131、205、405、605、814 上部電極
132 第四層間絶縁膜
138、144 アルミニウム
140 引出し配線
202、402、602 バリヤ層
213、414、613、810、1301 第一多結晶酸化タンタル
214、415、614、811、1302 第一結晶分断層
215、416、615、812、1303 第二多結晶酸化タンタル
216、417、616、813、1304 第二結晶分断層
413 酸化バリヤ層
617 第三多結晶酸化タンタル
618 第三結晶分断層
904 ルテニウムシリサイド
907 ルテニウムプラグ
910 ルテニウム下部電極
1001、1102、1202 非晶質酸化タンタル
1002 第一結晶核
1003 第二結晶核
1004 第三結晶核
1005 第四結晶核
1006 第一結晶粒
1007 第二結晶粒
1008 第三結晶粒
1009 第四結晶粒
1010、1104、1305、1306 結晶粒界
1011 擬似粒界
1012 直線状領域
1013 不定形領域
1014 結晶格子
1015 不連続格子端
1016 連続格子端
1103 多結晶酸化タンタル

Claims (15)

  1. 半導体基板表面に接続するプラグを介して設けられる下部電極を有するスタックトレンチ型キャパシタにおいて、
    (1)金属もしくは金属化合物からなる下部電極と、
    (2)厚さ3nm〜4.8nmの多結晶酸化タンタルと、前記多結晶酸化タンタル上に設けられた結晶分断層とからなる積層膜を基本構成とし、前記下部電極上に前記積層膜が少なくとも2層以上設けられた誘電体と、
    (3)前記誘電体上に設けられた金属もしくは金属化合物からなる上部電極と、
    で構成されることを特徴とするキャパシタ。
  2. 前記結晶分断層は、酸化アルミニウムもしくは酸化ハフニウムからなることを特徴とする請求項1記載のキャパシタ。
  3. 前記下部電極と多結晶酸化タンタルの間に、窒化タンタル、窒化アルミニウム、窒化ハフニウムから選択される酸化バリヤ層を含むことを特徴とする請求項1及び2記載のキャパシタ。
  4. 前記下部電極がルテニウムであって、前記ルテニウム下部電極に接するプラグは、少なくとも、厚みが100nm以上のルテニウムからなることを含み、前記ルテニウムプラグの下に接するバリヤ層は窒化チタンからなり、前記窒化チタンの下に接するシリサイド層はルテニウムシリサイドであることをさらに含むことを特徴とする請求項1乃至3記載のキャパシタ。
  5. 前記誘電体中の、多結晶酸化タンタルの合計の厚さが酸化シリコンの誘電率で規格化したEOTで0.7nm以下であり、多結晶酸化タンタル以外の膜の合計の厚さが酸化シリコンの誘電率で規格化したEOTで1.1nmから1.3nmの範囲であることを特徴とする請求項1乃至4記載のキャパシタ。
  6. 半導体基板表面に接続するプラグを介して下部電極が形成されるスタックトレンチ型キャパシタの製造方法において、
    (1)金属もしくは金属化合物からなる下部電極を形成する工程と、
    (2)前記下部電極上に厚さ4nm〜4.8nmの非晶質酸化タンタルを原子層蒸着法により形成する工程と、
    (3)前記非晶質酸化タンタル上に、結晶分断層を原子層蒸着法により形成する工程と、
    (4)前記(2)から(3)の工程を、少なくとも2回繰り返して誘電体を形成する工程と、
    (5)前記誘電体を形成した後、酸化タンタルを結晶化する熱処理工程と、
    (6)前記誘電体上に、金属もしくは金属化合物からなる上部電極を形成する工程と、
    を有することを特徴とするキャパシタの製造方法。
  7. 半導体基板表面に接続するプラグを介して下部電極が形成されるスタックトレンチ型キャパシタの製造方法において、
    (1)金属もしくは金属化合物からなる下部電極を形成する工程と、
    (2)前記下部電極上に厚さ4nm〜4.8nmの非晶質酸化タンタルを原子層蒸着法により形成する工程と、
    (3)前記非晶質酸化タンタルを非酸化性雰囲気で結晶化する工程と、
    (4)前記結晶化された酸化タンタル上に、結晶分断層を原子層蒸着法により形成する工程と、
    (5)前記(2)から(4)の工程を、少なくとも2回繰り返して誘電体を形成する工程と、
    (6)前記誘電体上に、金属もしくは金属化合物からなる上部電極を形成する工程と、
    を有することを特徴とするキャパシタの製造方法。
  8. 半導体基板表面に接続するプラグを介して下部電極が形成されるスタックトレンチ型キャパシタの製造方法において、
    (1)金属もしくは金属化合物からなる下部電極を形成する工程と、
    (2)前記下部電極上に厚さ4nm〜4.8nmの非晶質酸化タンタルを原子層蒸着法により形成する工程と、
    (3)前記非晶質酸化タンタルを非酸化性雰囲気で結晶化する工程と、
    (4)前記結晶化された酸化タンタルの膜厚を調整する工程と、
    (5)前記膜厚が調整された多結晶酸化タンタル上に、原子層蒸着法により結晶分断層を形成する工程と、
    (6)前記(2)から(5)の工程を、少なくとも2回以上繰り返して誘電体を形成する工程と、
    (7)前記誘電体上に、金属もしくは金属化合物からなる上部電極を形成する工程と、
    を有することを特徴とするキャパシタの製造方法。
  9. 前記結晶分断層は、酸化アルミニウムもしくは酸化ハフニウムからなることを特徴とする請求項6乃至8記載のキャパシタの製造方法。
  10. 前記下部電極は、タングステンおよびその化合物、窒化チタン、ルテニウムから選択されることを特徴とする請求項6乃至9記載のキャパシタの製造方法。
  11. 前記下部電極がルテニウムであって、前記ルテニウム下部電極に接するプラグは、少なくとも、厚みが100nm以上のルテニウムからなることを含み、前記ルテニウムプラグの下に接するバリヤ層は窒化チタンからなり、前記窒化チタンの下に接するシリサイド層はルテニウムシリサイドであることをさらに含むことを特徴とする請求項6乃至9記載のキャパシタの製造方法。
  12. 前記ルテニウムは形成後、水素もしくはアンモニアを含む還元性雰囲気で熱処理する工程をさらに含み、緻密化されていることを特徴とする請求項11記載のキャパシタの製造方法。
  13. 前記下部電極と多結晶酸化タンタルの間に、窒化タンタル、窒化アルミニウム、窒化ハフニウムから選択される酸化バリヤ層が原子層蒸着法により形成される工程を含むことを特徴とする請求項6乃至11記載のキャパシタの製造方法。
  14. 前記酸化バリヤ層を原子層蒸着法により形成した後、アンモニア雰囲気で熱処理する工程をさらに含むことを特徴とする請求項13記載のキャパシタの製造方法。
  15. 前記下部電極上に、下部電極に接する酸化タンタルを形成した後、水素雰囲気中で熱処理する工程をさらに含み、下部電極表面に形成されている金属酸化物を還元することを特徴とする請求項6乃至10記載のキャパシタの製造方法。
JP2005144780A 2005-05-17 2005-05-17 キャパシタおよびその製造方法 Pending JP2006324363A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005144780A JP2006324363A (ja) 2005-05-17 2005-05-17 キャパシタおよびその製造方法
US11/434,877 US7382014B2 (en) 2005-05-17 2006-05-17 Semiconductor device with capacitor suppressing leak current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005144780A JP2006324363A (ja) 2005-05-17 2005-05-17 キャパシタおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2006324363A true JP2006324363A (ja) 2006-11-30

Family

ID=37493341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005144780A Pending JP2006324363A (ja) 2005-05-17 2005-05-17 キャパシタおよびその製造方法

Country Status (2)

Country Link
US (1) US7382014B2 (ja)
JP (1) JP2006324363A (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244017A (ja) * 2007-03-26 2008-10-09 Ulvac Japan Ltd 半導体装置の製造方法
JP2011517089A (ja) * 2008-04-08 2011-05-26 マイクロン テクノロジー, インク. 高アスペクト比の開口部
JP2011155033A (ja) * 2010-01-26 2011-08-11 Hitachi Kokusai Electric Inc 半導体デバイスの製造方法および半導体デバイス
US8026184B2 (en) 2006-12-28 2011-09-27 Elpida Memory, Inc. Semiconductor device and method of manufacturing the same
JP2011258832A (ja) * 2010-06-10 2011-12-22 Renesas Electronics Corp 半導体装置及び半導体装置の製造方法
US8124492B2 (en) 2009-03-11 2012-02-28 Tokyo Electron Limited Semiconductor device manufacturing method
WO2017183390A1 (ja) * 2016-04-20 2017-10-26 ソニー株式会社 積層構造体及びその製造方法
KR20200051823A (ko) * 2017-10-04 2020-05-13 도쿄엘렉트론가부시키가이샤 상호접속부를 위한 루테늄 금속 피처 충전
KR20200094225A (ko) * 2017-12-27 2020-08-06 마이크론 테크놀로지, 인크 커패시터 절연체를 사이에 갖는 전도성 커패시터 전극 쌍을 포함하는 커패시터의 적어도 하나의 전도성 커패시터 전극의 적어도 일 부분을 형성하는데 사용되는 방법 및 커패시터를 형성하는 방법
CN112349792A (zh) * 2020-11-06 2021-02-09 浙江师范大学 一种单晶硅钝化接触结构及其制备方法
JPWO2021053761A1 (ja) * 2019-09-18 2021-03-25
US11043553B2 (en) 2018-09-19 2021-06-22 Samsung Electronics Co., Ltd. Integrated circuit device
JP2022077978A (ja) * 2020-11-12 2022-05-24 アプライド マテリアルズ インコーポレイテッド ダイナミックランダムアクセスメモリビット線金属を滑らかにするための方法及び装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100705936B1 (ko) * 2006-06-30 2007-04-13 주식회사 하이닉스반도체 반도체 소자의 비트라인 형성방법
US7666752B2 (en) * 2007-01-19 2010-02-23 Qimonda Ag Deposition method for a transition-metal-containing dielectric
US7989922B2 (en) * 2008-02-08 2011-08-02 International Business Machines Corporation Highly tunable metal-on-semiconductor trench varactor
US8124528B2 (en) * 2008-04-10 2012-02-28 Micron Technology, Inc. Method for forming a ruthenium film
US8686486B2 (en) * 2011-03-31 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Memory device
US9177826B2 (en) * 2012-02-02 2015-11-03 Globalfoundries Inc. Methods of forming metal nitride materials
US9728719B2 (en) * 2014-04-25 2017-08-08 Taiwan Semiconductor Manufacturing Co., Ltd. Leakage resistant RRAM/MIM structure
KR102368099B1 (ko) * 2015-06-25 2022-02-25 삼성전자주식회사 커패시터 및 이를 포함하는 반도체 장치
US11631680B2 (en) * 2018-10-18 2023-04-18 Applied Materials, Inc. Methods and apparatus for smoothing dynamic random access memory bit line metal

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677402A (ja) * 1992-07-02 1994-03-18 Natl Semiconductor Corp <Ns> 半導体デバイス用誘電体構造及びその製造方法
JPH09246494A (ja) * 1996-03-01 1997-09-19 Texas Instr Japan Ltd 誘電体キャパシタと誘電体メモリ装置、及びこれらの製造方法
JP2000058639A (ja) * 1998-08-04 2000-02-25 Matsushita Electron Corp 半導体装置およびその製造方法
JP2001267566A (ja) * 2000-02-11 2001-09-28 Sharp Corp 多層誘電体スタックおよびその方法
JP2002319583A (ja) * 2001-02-02 2002-10-31 Samsung Electronics Co Ltd 半導体素子の誘電体膜及びその製造方法
JP2003133534A (ja) * 2001-09-12 2003-05-09 Hynix Semiconductor Inc 半導体素子及びその製造方法
JP2003179164A (ja) * 2001-09-12 2003-06-27 Hynix Semiconductor Inc 半導体素子及びその製造方法
JP2003197772A (ja) * 2001-12-27 2003-07-11 Sony Corp キャパシタ、半導体記憶装置およびその製造方法
JP2003318284A (ja) * 2002-04-23 2003-11-07 Hynix Semiconductor Inc 二重誘電膜の構造を有した半導体素子のコンデンサ及びその製造方法
JP2004511909A (ja) * 2000-10-10 2004-04-15 エーエスエム インターナショナル エヌ.ヴェー. 誘電体界面被膜およびその方法
WO2004053997A1 (en) * 2002-12-09 2004-06-24 Interuniversitair Microelektronica Centrum (Imec) Method for forming a dielectric stack
JP2004356439A (ja) * 2003-05-29 2004-12-16 Toshiba Corp 半導体装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012796A (ja) * 1998-06-19 2000-01-14 Hitachi Ltd 半導体装置ならびにその製造方法および製造装置
JP2001015739A (ja) * 1999-06-30 2001-01-19 Nec Corp ゲート絶縁膜とその製造方法
JP2001024165A (ja) * 1999-07-06 2001-01-26 Hitachi Ltd 半導体装置およびその製造方法ならびに半導体製造装置
KR100705926B1 (ko) 1999-12-22 2007-04-11 주식회사 하이닉스반도체 반도체 소자의 캐패시터 제조방법
KR100415538B1 (ko) 2001-09-14 2004-01-24 주식회사 하이닉스반도체 이중 유전막을 구비한 캐패시터 및 그 제조 방법
US6818500B2 (en) * 2002-05-03 2004-11-16 Micron Technology, Inc. Method of making a memory cell capacitor with Ta2O5 dielectric
JP3670628B2 (ja) 2002-06-20 2005-07-13 株式会社東芝 成膜方法、成膜装置、および半導体装置の製造方法
US20040077142A1 (en) * 2002-10-17 2004-04-22 Taiwan Semiconductor Manufacturing Co., Ltd. Atomic layer deposition and plasma treatment method for forming microelectronic capacitor structure with aluminum oxide containing dual dielectric layer
US7092234B2 (en) * 2003-05-20 2006-08-15 Micron Technology, Inc. DRAM cells and electronic systems

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677402A (ja) * 1992-07-02 1994-03-18 Natl Semiconductor Corp <Ns> 半導体デバイス用誘電体構造及びその製造方法
JPH09246494A (ja) * 1996-03-01 1997-09-19 Texas Instr Japan Ltd 誘電体キャパシタと誘電体メモリ装置、及びこれらの製造方法
JP2000058639A (ja) * 1998-08-04 2000-02-25 Matsushita Electron Corp 半導体装置およびその製造方法
JP2001267566A (ja) * 2000-02-11 2001-09-28 Sharp Corp 多層誘電体スタックおよびその方法
JP2004511909A (ja) * 2000-10-10 2004-04-15 エーエスエム インターナショナル エヌ.ヴェー. 誘電体界面被膜およびその方法
JP2002319583A (ja) * 2001-02-02 2002-10-31 Samsung Electronics Co Ltd 半導体素子の誘電体膜及びその製造方法
JP2003133534A (ja) * 2001-09-12 2003-05-09 Hynix Semiconductor Inc 半導体素子及びその製造方法
JP2003179164A (ja) * 2001-09-12 2003-06-27 Hynix Semiconductor Inc 半導体素子及びその製造方法
JP2003197772A (ja) * 2001-12-27 2003-07-11 Sony Corp キャパシタ、半導体記憶装置およびその製造方法
JP2003318284A (ja) * 2002-04-23 2003-11-07 Hynix Semiconductor Inc 二重誘電膜の構造を有した半導体素子のコンデンサ及びその製造方法
WO2004053997A1 (en) * 2002-12-09 2004-06-24 Interuniversitair Microelektronica Centrum (Imec) Method for forming a dielectric stack
JP2006511934A (ja) * 2002-12-09 2006-04-06 アンテルユニヴェルシテール・ミクロ−エレクトロニカ・サントリュム・ヴェー・ゼッド・ドゥブルヴェ 誘電体スタックの形成方法
JP2004356439A (ja) * 2003-05-29 2004-12-16 Toshiba Corp 半導体装置

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8026184B2 (en) 2006-12-28 2011-09-27 Elpida Memory, Inc. Semiconductor device and method of manufacturing the same
JP2008244017A (ja) * 2007-03-26 2008-10-09 Ulvac Japan Ltd 半導体装置の製造方法
US9595387B2 (en) 2008-04-08 2017-03-14 Micron Technology, Inc. High aspect ratio openings
JP2011517089A (ja) * 2008-04-08 2011-05-26 マイクロン テクノロジー, インク. 高アスペクト比の開口部
US8760841B2 (en) 2008-04-08 2014-06-24 Micron Technology, Inc. High aspect ratio openings
US8124492B2 (en) 2009-03-11 2012-02-28 Tokyo Electron Limited Semiconductor device manufacturing method
US8314004B2 (en) 2009-03-11 2012-11-20 Tokyo Electron Limited Semiconductor device manufacturing method
JP2011155033A (ja) * 2010-01-26 2011-08-11 Hitachi Kokusai Electric Inc 半導体デバイスの製造方法および半導体デバイス
JP2011258832A (ja) * 2010-06-10 2011-12-22 Renesas Electronics Corp 半導体装置及び半導体装置の製造方法
US8946044B2 (en) 2010-06-10 2015-02-03 Renesas Electronics Corporation Semiconductor device and method of manufacturing semiconductor device
WO2017183390A1 (ja) * 2016-04-20 2017-10-26 ソニー株式会社 積層構造体及びその製造方法
US10889082B2 (en) 2016-04-20 2021-01-12 Sony Corporation Laminated structure and method for producing the same
KR20200051823A (ko) * 2017-10-04 2020-05-13 도쿄엘렉트론가부시키가이샤 상호접속부를 위한 루테늄 금속 피처 충전
JP7277871B2 (ja) 2017-10-04 2023-05-19 東京エレクトロン株式会社 相互接続のためのルテニウム金属機能フィリング
JP2020536395A (ja) * 2017-10-04 2020-12-10 東京エレクトロン株式会社 相互接続のためのルテニウム金属機能フィリング
KR102601862B1 (ko) * 2017-10-04 2023-11-13 도쿄엘렉트론가부시키가이샤 상호접속부를 위한 루테늄 금속 피처 충전
KR20200094225A (ko) * 2017-12-27 2020-08-06 마이크론 테크놀로지, 인크 커패시터 절연체를 사이에 갖는 전도성 커패시터 전극 쌍을 포함하는 커패시터의 적어도 하나의 전도성 커패시터 전극의 적어도 일 부분을 형성하는데 사용되는 방법 및 커패시터를 형성하는 방법
KR102433698B1 (ko) 2017-12-27 2022-08-18 마이크론 테크놀로지, 인크 커패시터 절연체를 사이에 갖는 전도성 커패시터 전극 쌍을 포함하는 커패시터의 적어도 하나의 전도성 커패시터 전극의 적어도 일 부분을 형성하는데 사용되는 방법 및 커패시터를 형성하는 방법
US11043553B2 (en) 2018-09-19 2021-06-22 Samsung Electronics Co., Ltd. Integrated circuit device
US11929389B2 (en) 2018-09-19 2024-03-12 Samsung Electronics Co., Ltd. Integrated circuit device
WO2021053761A1 (ja) * 2019-09-18 2021-03-25 株式会社Kokusai Electric 半導体装置の製造方法、記録媒体及び基板処理装置
JP7273168B2 (ja) 2019-09-18 2023-05-12 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置
JPWO2021053761A1 (ja) * 2019-09-18 2021-03-25
CN112349792A (zh) * 2020-11-06 2021-02-09 浙江师范大学 一种单晶硅钝化接触结构及其制备方法
JP2022077978A (ja) * 2020-11-12 2022-05-24 アプライド マテリアルズ インコーポレイテッド ダイナミックランダムアクセスメモリビット線金属を滑らかにするための方法及び装置
JP7206355B2 (ja) 2020-11-12 2023-01-17 アプライド マテリアルズ インコーポレイテッド ダイナミックランダムアクセスメモリビット線金属を滑らかにするための方法及び装置

Also Published As

Publication number Publication date
US20060273426A1 (en) 2006-12-07
US7382014B2 (en) 2008-06-03

Similar Documents

Publication Publication Date Title
JP2006324363A (ja) キャパシタおよびその製造方法
JP4047631B2 (ja) 王冠構造のキャパシタを有する半導体集積回路装置およびその製造方法
US7691743B2 (en) Semiconductor device having a capacitance element and method of manufacturing the same
JP4221421B2 (ja) 半導体装置およびその製造方法
KR100763745B1 (ko) 반도체 집적 회로 장치의 제조 방법
JP2012080094A (ja) 半導体記憶装置及びその製造方法
JP2006135364A (ja) 半導体集積回路装置の製造方法
JP2012104551A (ja) 半導体記憶装置及びその製造方法
JP4552835B2 (ja) キャパシタの製造方法
JP2004288710A (ja) 半導体集積回路装置およびその製造方法
JP2012151435A (ja) 半導体装置の製造方法
KR20060048000A (ko) 반도체 장치 및 그 제조방법
JP2014038960A (ja) 半導体装置及びその製造方法
JP2007141904A (ja) キャパシタおよびその製造方法
JP4257343B2 (ja) 半導体装置の製造方法
US7592249B2 (en) Method for manufacturing a semiconductor device
JP2008288408A (ja) 半導体装置及びその製造方法
JP4053226B2 (ja) 半導体集積回路装置およびその製造方法
KR20020032285A (ko) 반도체 집적회로장치의 제조방법
JP2015154028A (ja) 半導体装置の製造方法
JP2010262989A (ja) 半導体装置の製造方法
JP2007329286A (ja) 半導体装置、およびその製造方法
US20130285202A1 (en) Semiconductor device
US20090197384A1 (en) Semiconductor memory device and method for manufacturing semiconductor memory device
JP2006319315A (ja) キャパシタおよびその製造方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070203

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070411

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101117