JP3670628B2 - 成膜方法、成膜装置、および半導体装置の製造方法 - Google Patents

成膜方法、成膜装置、および半導体装置の製造方法 Download PDF

Info

Publication number
JP3670628B2
JP3670628B2 JP2002179743A JP2002179743A JP3670628B2 JP 3670628 B2 JP3670628 B2 JP 3670628B2 JP 2002179743 A JP2002179743 A JP 2002179743A JP 2002179743 A JP2002179743 A JP 2002179743A JP 3670628 B2 JP3670628 B2 JP 3670628B2
Authority
JP
Japan
Prior art keywords
gas
film
processed
film forming
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002179743A
Other languages
English (en)
Other versions
JP2004023043A (ja
Inventor
正弘 清利
順也 中平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Fujitsu Ltd
Original Assignee
Toshiba Corp
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Fujitsu Ltd filed Critical Toshiba Corp
Priority to JP2002179743A priority Critical patent/JP3670628B2/ja
Publication of JP2004023043A publication Critical patent/JP2004023043A/ja
Application granted granted Critical
Publication of JP3670628B2 publication Critical patent/JP3670628B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、化合物薄膜の成膜方法および成膜装置に係り、特にBST,STO,(Ti,Al)N,Ta−Ti−Oなどの化合物の薄膜をAtomic Layer Deposition(ALD)法を用いてバッチ式で成膜可能な成膜方法および成膜装置、ならびにこれらを用いた半導体装置の製造方法に関する。
【0002】
【従来の技術】
近年、電子デバイスのダウンサイジング化に伴い、電子デバイスを構成する各素子の投影面積を縮小しつつ、各素子の特性を低下させないために、各素子の配置を平面的な配置から立体的な配置に変更する必要が増している。特に、キャパシタ素子は、集積回路の最小加工寸法が小さくなっても、そのS/N比を低下させないために、所定のキャパシタ容量を確保する必要がある。4MDRAM以降の世代では、いわゆるスタックセルまたはトレンチセルなどの立体型のキャパシタ素子が採用されている。そして、集積度の向上に従って、さらに複雑な立体形状を有するキャパシタ素子の採用が不可避になりつつある。
【0003】
また、素子の立体化が進むということは、実質的に、多層構造からなる複数本の配線の各レイヤー間を接続するコンタクトホールのアスペクト比が増大することを意味する。この場合、プラグ電極膜やバリアメタル膜などを高アスペクト比のコンタクトホール内に均一に形成することが求められる。
【0004】
他方、素子の投影面積が小さくなるにつれて、素子に採用される各種の膜の薄膜化も当然厳しく要求される。例えば、複数の構成元素からなり、しかも多くの場合、複数の金属元素を構成元素として含む化合物膜の薄膜化が求められている。具体的には、キャパシタ誘電体膜としては、一般的なNO膜より酸化膜換算膜厚を大幅に薄膜化可能なTa25膜,Ta−Ti−O膜,Ba−Sr−Ti−O(BST)膜,Sr−Ti−O(STO)膜,あるいはPb−Zr−Ti−O(PZT)膜などの高誘電率薄膜である。また、バリアメタル膜としては、TiN膜、TaN膜、あるいはWN膜などよりも強靭な耐酸化性を示す(Ti,Al)N膜および(Ta,Si)N膜などである。さらに、高誘電率を発現するゲート絶縁膜としては、Al23膜、Hf−Si−O膜、あるいはZr−Si−O膜などである。
【0005】
しかも、前述したように、素子の立体化が進行する中で、これらの膜は段差被覆性を良好に保持して形成することが求められている。また、素子のシステムLSI等への混載を考慮すると、LSIのマスクパターンや素子の被覆率に依存しない成膜方法が求められている。
【0006】
前述したような多元系の化合物膜を段差被覆性良く形成するために、一般に用いられている熱CVD法を用いる場合、以下に述べるような問題がある。
【0007】
熱CVD法により多元系の化合物膜を段差被覆性良く成膜するためには、表面反応律速条件で成膜を行う必要がある。ところが、このような条件下では、得られる膜組成は膜表面での化学反応で決まるため、必ずしも所望の膜質や膜組成が得られるとは限らない。特に、深いコンタクトホールの内部などでは、原料によって拡散係数、化学反応速度係数、あるいは表面マイグレーションの速度などが異なるために、穴の上部と底部とで組成が異なってしまうことがある。また、表面反応律速条件では、成膜が成膜温度に強く依存するために、膜の下地の状態、例えば配線や電極、あるいはコンタクトホールの被覆率などによって基板温度が異なってしまう。特に、システムLSI等のように、マスクパターンや素子の被覆率が頻繁に変わる場合、それらの変化に合わせた頻繁な成膜条件出しを余儀なくされるなどの問題もある。
【0008】
このような熱CVD法の問題点を解決する手法として、近年、いわゆるAtomic Layer Deposition(ALD)法が注目されている。前述したような複数種類の金属元素を含む化合物膜を成膜する場合でも、ALD法では一元素ごとに成膜を行うために組成制御が容易である。また、通常、熱分解ではないが、ALD法は略完全に表面反応律速条件下で原子層成膜を行うために、段差被覆性も極めて良好である。しかし、ALD法は一般に成膜時間が長いという問題がある。ALD法は、通例、H2O,NH3,O3等の活性ガスの供給、真空排気によるパージ、AlCl3等の金属原料ガスの供給、真空排気によるパージ、再度H2O,NH3,O3等の活性ガスの供給、というシーケンスを複数回繰り返すことにより原子層単位で成膜するため、元来成膜時間が長くなる傾向がある。特に、複数種類の金属原料ガスを用いる場合、各金属原料ガス間の相互反応を抑止するために多元系で組成制御する必要が生じる。この場合、真空排気によるパージ時間が長大になる。
【0009】
そこで、ALD法においても、ウェーハ1枚あたりの正味のプロセス時間(RPT:raw process time)を短縮するために、バッチ処理により成膜可能な装置が検討されている。
【0010】
【発明が解決しようとする課題】
図10に、ALD法を用いてバッチ処理でAl23膜を成膜する装置の一例を示す。この成膜装置101は、通常のALD装置を大型化し、複数枚のウェーハ(基板)102に対して同時に成膜処理を施すことができるようにしたものである。Al23膜の各種原料ガスは、それらの処理室(反応容器)103内への供給状態をガス供給系104において制御される。各原料ガスは、チャンバー105の一端側(入口側)に設けられている整流板106を通過させられて層流状に処理室103内へ供給される。整流板106は、チャンバー105を大型化したため必須である。処理室103内へ供給された各原料ガスは、各ウェーハ102上を通過した後、チャンバー105の他端側(出口側)から排気系107により排気される。
【0011】
図11に、成膜装置101を用いて行われる成膜工程のシーケンスの一例を示す。
【0012】
この例では、チャンバー105が大型化されており、また整流板106の上流側での反応を抑制するために、パージ時間が長くなるという問題がある。また、チャンバー105が大型化したために、各原料ガスの消費速度が大きくなるという問題がある。これは、基板102表面に到達しない各原料ガスは成膜に寄与することなく排気され、また基板102表面で必要とされる各原料ガスの分圧を確保するためには反応容器103内全体で各原料ガスの分圧を高めなければならないためである。原料ガスの消費速度が大きくなると、成膜効率が低下して成膜コストが上昇し、ひいては半導体装置の製造コストも上昇する。また、通例、ALD法では、各シーケンス間のパージ時間を短くするために、チャンバー105内のデッドスペースをできる限り無くそうとする。すると、バッチ処理を行い難くなり、バッチ処理とパージ時間の短縮化との両立が困難になる。さらに、ALD法は、通例、ガスの流れの均一性等はあまり重視されない。ところが、バッチ処理では、各ウェーハ102の表面にできる限り均一にALD反応を起こさせる必要があるために、例えば整流板106のようなガスの流れを均一化させる装備が必要になる。これにより、パージ時間の短縮化がさらに困難になる。
【0013】
図12に、成膜装置101と同様に、ALD法を用いてバッチ処理でAl23膜を成膜する装置の他の例を示す。この成膜装置201では、バッチ処理に伴うパージ時間の増大を抑制するために、時間の掛かる真空パージではなく、短時間化の容易なガスパージが採用されている。それとともに、成膜装置201では、複数本のガスインジェクター202が、複数枚のウェーハ102が搭載されているサセプター203上を回転する設定となっている。これらにより、成膜装置201は、RPTの短縮化が図られている。成膜装置201の場合、4本のガスインジェクター202はそれぞれ、金属原料ガスとしてのAlCl3ガス、パージガスとしてのアルゴン(Ar)ガス、反応ガスとしてのH2Oガス、そしてパージガスとしてのArガスの供給に1本ずつ割り当てられている。そして、各ガスインジェクター202からは、ガスの種類を切り替えること無く、各ウェーハ102の表面に向けて各ガスが順番に常時供給される。すなわち、成膜装置201では、4本のガスインジェクター202を回転させて、各ウェーハ102に向けて供給されるガスの種類を、例えばAlCl3,Ar,H2O,Ar,再びAlCl3という順番で切り替えることにより、ALD成膜を行う。
【0014】
しかし、この例では次に述べるような問題がある。成膜装置201では、チャンバー204内に複数種類のガスが常時、同時供給されているために、チャンバー204内における各ガスの分離が困難である。したがって、チャンバー204内における各ガス同士の気相反応や、あるいはH2Oガス用インジェクター202aへのAlの堆積等、ガス系における好ましくない反応を適正な許容範囲内に抑制することが困難である。特に、BST膜やPZT膜等の多くの構成元素からなる化合物膜を成膜する場合、原料ガスの種類も多くなるので、各原料ガス間の反応抑制が極めて困難になる。それとともに、装置構成が複雑化するという問題もある。また、このような成膜装置201および成膜方法によれば、化合物膜の膜質が劣化し易く、ひいては半導体装置全体の品質の劣化を招くおそれがある。すると、半導体装置の製造歩留まりが低下して半導体装置の製造効率が低下するとともに、半導体装置の製造コストが上昇するおそれがある。
【0015】
本発明は、以上説明したような課題を解決するためになされたものであり、その目的とするところは、ALD法を用いてバッチ式処理により成膜作業を行う際に、パージを短時間で容易に行うことにより成膜作業の長時間化を容易に抑制でき、またガスの使用効率を容易に向上でき、さらには複数種類のガス同士の相互反応を容易に抑制して、良質な化合物膜を効率よく、かつ容易に成膜できる成膜方法および成膜装置を提供することにある。それとともに、良質な化合物膜を有する良質な半導体装置を効率よく、かつ容易に製造できる半導体装置の製造方法を提供することにある。
【0016】
【課題を解決するための手段】
前記課題を解決するために、本発明に係る成膜方法は、複数枚の被処理基板の表面上に化合物膜を原子層レベルで一括して成膜する成膜方法であって、前記成膜処理が行われる反応容器内に前記各被処理基板を互いに離間させて厚さ方向に沿って平行に配置する第1の工程と、隣接する前記各被処理基板間に向けて、前記反応容器内に所定のガスを供給する複数本のガス供給治具のうち、成膜反応を活性化させる活性化ガスを供給する活性化ガス供給治具から前記活性化ガスを供給するとともに、他のガス供給治具からパージガスを供給する第2の工程と、前記活性化ガス供給治具から供給するガスを前記活性化ガスから前記パージガスに切り替えるとともに、他のガス供給治具から前記パージガスを供給する第3の工程と、隣接する前記各被処理基板間に向けて、成膜すべき化合物膜の主な原料となる原料ガスを供給する原料ガス供給治具から前記原料ガスを供給するとともに、他のガス供給治具から前記パージガスを供給する第4の工程と、前記原料ガス供給治具から供給するガスを前記原料ガスから前記パージガスに切り替えるとともに、他のガス供給治具から前記パージガスを供給する第5の工程と、を含み、かつ、前記第2の工程から前記第5の工程を複数回繰り返すことを特徴とするものである。
【0017】
この成膜方法においては、成膜処理が行われる反応容器内に複数枚の被処理基板を互いに離間させて厚さ方向に沿って平行に配置した後、隣接する各被処理基板間に向けて、パージガスを供給しつつ、活性化ガスと原料ガスとを交互に切り替えて供給する工程を複数回繰り返す。これにより、複数枚の被処理基板の表面上に化合物膜を原子層レベルで一括して成膜する。この成膜方法によれば、反応容器内をパージする際にパージガスを用いるので、パージを短時間で容易に行うことができ、成膜作業の長時間化を容易に抑制できる。また、複数枚の被処理基板を、互いに離間させて厚さ方向に沿って並べて反応容器内に配置し、隣接する各被処理基板間に向けて活性化ガスおよび原料ガスを供給するので、ガスの使用効率を容易に向上できる。さらに、活性化ガスの供給と原料ガスの供給とを排他的に行うとともに、活性化ガスおよび原料ガスを供給する際にも、パージガスを隣接する各被処理基板間に向けて供給するので、複数種類のガス同士の相互反応を容易に抑制できる。
【0018】
また、前記課題を解決するために、本発明に係る成膜方法は、複数枚の被処理基板の表面上に化合物膜を一括して形成する成膜方法であって、前記各被処理基板の周りを流れるガスの流れを整えることができるように前記各被処理基板を互いに所定の間隔ずつ離間させて厚さ方向に沿って並べて配置し、成膜反応を活性化させるための活性化ガスおよび成膜すべき化合物膜の主な原料となる原料ガスのうち少なくとも前記原料ガスの前記各被処理基板に対する供給圧力を前記各被処理基板が配置されている雰囲気の圧力の10倍以上に設定するとともに、前記各被処理基板に向けてそれらの基板面と略平行な方向から、パージガスを連続的に供給しつつ前記活性化ガスと前記原料ガスとを交互に切り替えて供給することを特徴とするものである。
【0019】
この成膜方法においては、複数枚の被処理基板の周りを流れるガスの流れを整えることができるように、各被処理基板を互いに所定の間隔ずつ離間させて厚さ方向に沿って並べて配置する。そして、パージを行う際にパージガスを用いるとともに、各被処理基板に向けてそれらの基板面と略平行な方向からパージガスを供給する。これにより、パージを効率よく短時間で容易に行うことができるので、成膜作業の長時間化を容易に抑制できる。同様に、各被処理基板に向けてそれらの基板面と略平行な方向から活性化ガスおよび原料ガスを供給するので、ガスの使用効率を容易に向上できる。また、各被処理基板に向けてそれらの基板面と略平行な方向から、パージガスを連続的に供給しつつ活性化ガスと原料ガスとを交互に切り替えて供給するので、複数種類のガス同士の相互反応を容易に抑制できる。さらに、活性化ガスおよび原料ガスのうち少なくとも原料ガスの各被処理基板に対する供給圧力を各被処理基板が配置されている雰囲気の圧力の10倍以上に設定して、原料ガスを各被処理基板に向けて供給する。このような設定によれば、例えば成膜処理に酸化性のガスを用いる場合でも、原料ガスが雰囲気中の残留ガス等と不要な気相反応を起こすおそれを殆どなくすことができる。それとともに、成膜される化合物中からの配位子等の不要な有機物の脱離を効率的に行うことができる。また、各被処理基板に対する、より均等な原料ガス供給を行うことができるので、より均一な膜厚および膜組成分布を実現することができる。それとともに、ALD反応により各被処理基板の表面が被覆されるまでの時間が各被処理基板間で均一化されるため、原料ガス供給時間の短縮、ひいてはプロセス時間の短縮を実現することができる。
【0020】
また、前記課題を解決するために、本発明に係る成膜方法は、複数枚の被処理基板の表面上に化合物膜を一括して成膜する成膜処理が行われる処理室内に、前記各被処理基板の周りを流れるガスの流れを整えることができるように前記各被処理基板をそれらの表面を互いに所定の間隔ずつ離間させて厚さ方向に沿って並べて配置し、前記各被処理基板が配置された前記処理室内にパージガスを供給して前記処理室内をパージした後、パージされた前記処理室内に配置されている前記各被処理基板に向けてそれらの基板面と略平行な方向から、前記パージガスを供給し続けるとともに成膜反応を活性化させる活性化ガスを前記各被処理基板の表面上に供給し、前記各被処理基板に向けて前記パージガスを供給しつつ、前記活性化ガスの供給を断つとともに、前記化合物膜の主な原料となる原料ガスの前記各被処理基板に対する供給圧力を前記処理室内の圧力の10倍以上に設定して、前記各被処理基板に向けてそれらの基板面と略平行な方向から前記原料ガスを前記各被処理基板の表面上に供給することにより、前記各被処理基板の表面上に前記化合物膜を成膜することを特徴とするものである。
【0021】
この成膜方法においては、複数枚の被処理基板の周りを流れるガスの流れを整えることができるように、各被処理基板を互いに所定の間隔ずつ離間させて厚さ方向に沿って並べて、成膜処理が行われる処理室内に配置する。そして、処理室内をパージする際にパージガスを用いるとともに、各被処理基板に向けてそれらの基板面と略平行な方向からパージガスを供給する。これにより、パージを効率よく短時間で容易に行うことができるので、成膜作業の長時間化を容易に抑制できる。同様に、各被処理基板に向けてそれらの基板面と略平行な方向から活性化ガスおよび原料ガスを供給するので、ガスの使用効率を容易に向上できる。また、活性化ガスの供給と原料ガスの供給とを排他的に行うとともに、活性化ガスおよび原料ガスを供給する際にも、各被処理基板に向けてそれらの基板面と略平行な方向からパージガスを供給するので、複数種類のガス同士の相互反応を容易に抑制できる。さらに、原料ガスの各被処理基板に対する供給圧力を処理室内の圧力の10倍以上に設定して原料ガスを各被処理基板に向けて供給する。このような設定によれば、例えば成膜処理に酸化性のガスを用いる場合でも、原料ガスが処理室内の残留ガス等と不要な気相反応を起こすおそれを殆どなくすことができる。それとともに、成膜される化合物中からの配位子等の不要な有機物の脱離を効率的に行うことができる。また、各被処理基板に対する、より均等な原料ガス供給を行うことができるので、より均一な膜厚および膜組成分布を実現することができる。それとともに、ALD反応により各被処理基板の表面が被覆されるまでの時間が各被処理基板間で均一化されるため、原料ガス供給時間の短縮、ひいてはプロセス時間の短縮を実現することができる。
【0022】
また、本発明に係る成膜方法を実施するにあたり、その工程などの一部を以下に述べるような設定としても構わない。
【0023】
前記活性化ガスの供給と前記原料ガスの供給とを交互に複数回ずつ繰り返す。
【0024】
前記各被処理基板に向けて、前記活性化ガスを供給している状態と、前記原料ガスとを供給している状態との間に、前記各被処理基板に向けて、それらの基板面と平行な方向から、前記パージガスのみを供給する。
【0025】
前記原料ガスを複数種類用いるとともに、前記活性化ガスの供給と前記原料ガスの供給とを、前記原料ガスの種類ごとに所定の順番で複数回ずつ繰り返す。
【0026】
前記各ガスを、前記各被処理基板に向けて、それらの基板面と平行な方向から供給する際に、互いに隣接する前記各被処理基板同士の間および前記各被処理基板のそれぞれの表面に向けて前記各ガスを供給する。
【0027】
前記パージガス、前記活性化ガス、および前記原料ガスのうち、少なくとも前記原料ガスを前記処理室内に供給する際の圧力の大きさを、前記処理室内の圧力の大きさの10倍以上に設定する。
【0028】
前記パージガス、前記活性化ガス、および前記原料ガスを、前記各被処理基板を間に挟んで、前記各ガスが供給される側の反対側から前記処理室の外へ排気する。
【0029】
前記活性化ガスに、H2O,O3,NH3のうちの少なくとも1種類を含ませる。
【0030】
前記原料ガスに、アルカリ土類金属のシクロペンタジエニル化合物とチタンのアルコキシド化合物、または組成式がC11192で表されるアルコキシル基を含むジピバロイルメタナート錯体を含ませる。
【0031】
前記シクロペンタジエニル化合物として、シクロペンタジエニル環に結合する水素の一部が、アルキル基またはアルコキシル基に置換された物質も含ませる。
【0032】
前記パージガスに、O2およびN2Oの少なくとも一方を含ませる。
【0033】
本発明に係る成膜方法を実施するにあたり、その工程などの一部を以上述べたような各種設定とすることにより、成膜作業の長時間化および複数種類のガス同士の相互反応をより容易に抑制できるとともに、ガスの使用効率をより容易に向上できる。したがって、良質な化合物膜をより効率よく、かつ、より容易に成膜できる。
【0034】
また、前記課題を解決するために、本発明に係る成膜装置は、成膜処理に供される処理室と、この処理室内において、成膜処理が施される複数枚の被処理基板の周りを流れるガスの流れを整えることができるように、前記各被処理基板を互いに所定の間隔ずつ離間させつつ厚さ方向に沿って並べて支持可能な基板支持具と、前記各被処理基板の表面上に一括して成膜される化合物膜の主な原料となる原料ガス、および前記処理室内をパージするためのパージガスを、前記各被処理基板に向けてそれらの基板面と略平行な方向から供給する原料ガス供給治具と、前記原料ガスを前記原料ガス供給治具に供給する原料ガス供給系と、前記化合物膜が成膜される際の成膜反応を活性化させる活性化ガス、および前記パージガスを、前記各被処理基板に向けてそれらの基板面と略平行な方向から供給する活性化ガス供給治具と、前記活性化ガスを前記活性化ガス供給治具に供給する活性化ガス供給系と、前記パージガスを、前記原料ガスおよび前記活性化ガスと選択的に切り替えて前記原料ガス供給治具および前記活性化ガス供給治具に供給するパージガス供給系と、を具備してなり、前記原料ガスの前記各被処理基板に対する供給圧力は前記処理室内の圧力の10倍以上に設定されることを特徴とするものである。
【0035】
この成膜装置においては、成膜処理に供される処理室内において、成膜処理が施される複数枚の被処理基板の周りを流れるガスの流れを整えることができるように、基板支持具を用いて各被処理基板を互いに所定の間隔ずつ離間させつつ、厚さ方向に沿って並べて支持する。そして、原料ガス供給治具および活性化ガス供給治具を用いて、各被処理基板に向けてそれらの基板面と略平行な方向からパージガスを供給して、処理室内をパージする。これにより、パージを効率よく短時間で容易に行うことができるので、成膜作業の長時間化を容易に抑制できる。同様に、原料ガス供給治具および活性化ガス供給治具を用いて、各被処理基板に向けてそれらの基板面と略平行な方向から原料ガスおよび活性化ガスを供給するので、ガスの使用効率を容易に向上できる。また、パージガス供給系を用いてパージガスと原料ガスおよび活性化ガスとを選択的に切り替えて、原料ガス供給治具および活性化ガス供給治具に供給する。これにより、パージガスと原料ガスおよび活性化ガスとを選択的に切り替えて、各被処理基板に向けてそれらの基板面と略平行な方向からパージガスを供給できるので、複数種類のガス同士の相互反応を容易に抑制できる。さらに、原料ガスの各被処理基板に対する供給圧力は処理室内の圧力の10倍以上に設定される。このような設定によれば、例えば成膜処理に酸化性のガスを用いる場合でも、原料ガスが処理室内の残留ガス等と不要な気相反応を起こすおそれを殆どなくすことができる。それとともに、成膜される化合物中からの配位子等の不要な有機物の脱離を効率的に行うことができる。また、各被処理基板に対する、より均等な原料ガス供給を行うことができるので、より均一な膜厚および膜組成分布を実現することができる。それとともに、ALD反応により各被処理基板の表面が被覆されるまでの時間が各被処理基板間で均一化されるため、原料ガス供給時間の短縮、ひいてはプロセス時間の短縮を実現することができる。
【0036】
また、本発明に係る成膜装置を実施するにあたり、その構成などの一部を以下に述べるような設定としても構わない。
【0037】
前記活性化ガス供給治具および前記活性化ガス供給系は、前記活性化ガスの種類ごとに独立して設けられているとともに、前記活性化ガス供給系は、前記活性化ガスをその種類ごとに独立に前記活性化ガス供給治具に供給可能に設定されている。
【0038】
前記パージガスを、前記各被処理基板に向けて、それらの基板面と略平行な方向から供給するパージガス供給治具を具備するとともに、前記パージガス供給系は、前記パージガス供給治具に前記パージガスを供給可能に設定されている。
【0039】
前記原料ガス供給治具および前記活性化ガス供給治具には、前記各被処理基板が並べられている方向に沿って、隣接する前記各被処理基板同士の間および前記各被処理基板の基板面の少なくとも一方と略対向する位置に、前記各ガスを前記各被処理基板に向けて供給する吹き出し孔が複数個設けられている。
【0040】
前記処理室には、前記基板支持具に支持されて前記処理室内に配置された前記各被処理基板を間に挟んで、前記原料ガス供給治具および前記活性化ガス供給治具が設けられている側と対向する側に、前記各被処理基板が並べられている方向に沿って、隣接する前記各被処理基板同士の間および前記各被処理基板の基板面の少なくとも一方と略対向する位置に、前記原料ガス、前記活性化ガス、および前記パージガスを前記処理室の外に排気する排気孔が複数個設けられているとともに、前記基板支持具には、前記原料ガス供給治具および前記活性化ガス供給治具付近から前記各排気孔付近にかけて、前記各被処理基板をそれらの側方から囲む整流部材が設けられている。
【0041】
本発明に係る成膜装置を実施するにあたり、その構成などの一部を以上述べたような各種設定とすることにより、成膜作業の長時間化および複数種類のガス同士の相互反応をより容易に抑制できるとともに、ガスの使用効率をより容易に向上できる。したがって、良質な化合物膜をより効率よく、かつ、より容易に成膜できる。
【0042】
また、前記課題を解決するために、本発明に係る半導体装置の製造方法は、本発明に係る成膜方法により成膜された化合物膜を用いて半導体素子を形成することを特徴とするものである。
【0043】
この半導体装置の製造方法においては、本発明に係る成膜方法により成膜された化合物膜を用いて半導体素子を形成する。これにより、半導体装置の内部に組み込まれる各種の微細な半導体素子などを高い品質で効率よく形成して、半導体装置の品質および歩留まりを向上させることができる。
【0044】
【発明の実施の形態】
以下、本発明の詳細を図示の実施形態によって説明する。
【0045】
(第1の実施の形態)
先ず、本発明に係る第1実施形態を図1〜図4を参照しつつ説明する。図1は、第1実施形態に係る成膜装置を簡略化して示す図である。図2は、第1実施形態に係る成膜方法のシーケンスを示す図である。図3は、基板上にTa25膜が成膜される仕組みを模式的に示す工程断面図である。図4は、Ta25膜を成膜する際に発生するパーティクルの成膜サイクルに対する依存性をグラフにして示す図である。
【0046】
本実施形態では、具体的には、Atomic Layer Deposition(ALD)法をバッチ処理で実施することにより、化合物膜としてのTa25膜を成膜する際の成膜方法および成膜装置、Ta25膜の成膜条件、そして得られたTa25膜の特性について説明する。また、本実施形態の成膜方法および成膜装置を利用する半導体装置の製造方法について説明する。
【0047】
本実施形態の成膜プロセスでは、化合物膜の主な原料を含む原料ガスとしてペンタエトキシタンタル(PET)ガスを用いる。また、成膜反応を活性化させる活性化ガスとしてH2Oガスを用いる。さらに、パージガスとして酸素(O2)ガスおよびアルゴン(Ar)ガスを用いる。
【0048】
先ず、図1(a),(b)を参照しつつ、本実施形態の成膜装置1について説明する。
【0049】
図1(a)は、成膜装置1の概略構成を正面もしくは側面から臨んで示す図である。図1(b)は、成膜装置1を図1(a)中実線矢印の向きから臨んで示す平面図である。この成膜装置1は、主に原料ガス供給系2および反応系3からなる。原料ガス供給系2は、PETガス供給系4、およびH2Oガスを供給する活性化ガス供給系(H2Oガス供給系)5などからなる。本実施形態においては、活性化ガス供給系5を原料ガス供給系2の一部として構成したが、それらを互いに独立した個別の系として構成しても構わないのはもちろんである。
【0050】
PETガス供給系4は、主にPET原料容器6、PETの液体流量制御装置7、およびPET気化器8などからなる。気化温度は約180℃である。PET気化器8で気化されたPETガスは、約200℃に加熱されたPETガス配管9を通り、原料ガス供給治具としての石英製のPETガスインジェクター10に送られる。PETガスインジェクター10は、成膜処理が行われる処理室(反応容器)11内に設けられており、PETガスはPETガスインジェクター10を経て反応容器11内に供給(導入)される。PETガス配管9とPETガスインジェクター10との接続部分付近、すなわちPETガスインジェクター10の根元の部分には、PETガスインジェクター10に通すガスを、PETガスまたはArガスに選択的に切り替えることができるように、原料ガス供給系切り替えバルブ12が設けられている。
【0051】
2Oガス供給系5は、主にH2O容器13、このH2O容器13を約80℃に加熱するH2O加熱装置14、およびH2Oガスのガス流量制御装置15などからなる。H2Oガスは約150℃に加熱されたH2Oガス配管16を通り、活性化ガス供給治具としての石英製のH2Oガスインジェクター17に送られる。H2Oガスインジェクター17は、反応容器11内に設けられており、H2OガスはH2Oガスインジェクター17を経て反応容器11内に供給される。H2Oガス配管16とH2Oガスインジェクター17との接続部分付近、すなわちH2Oガスインジェクター17の根元の部分には、H2Oガスインジェクター17に通すガスを、H2Oガス、Arガス、またはO2ガスに選択的に切り替えることができるように、活性化ガス供給系切り替えバルブ18が設けられている。
【0052】
また、成膜装置1には、以上説明した2本のガスインジェクター10,17とは別に、反応容器11内にArガスおよびO2ガスを選択的に供給可能なパージガス供給治具としてのO2ガスインジェクター19が反応容器11内に設けられている。すなわち、成膜装置1は、合計3系統のガスインジェクター10,17,19を備えている。また、成膜装置1には、3本のガスインジェクター10,17,19にArガスまたはO2ガスを供給するパージガス供給系20が設けられている。ArガスおよびO2ガスは、パージガス供給系20が有するパージガス配管21を通り、各ガスインジェクター10,17,19に送られる。
【0053】
また、パージガス供給系20のうち、O2ガスインジェクター19に接続されているO2ガス系統は、その一部がオゾナイザー22に接続されている。これにより、パージガス供給系20は、オゾナイザー22を通してO3/O2混合ガスをO2ガスインジェクター19および反応容器11内に供給することが可能である。
【0054】
他方、反応系3は、成膜処理が施される被処理基板(ウェーハ)23を複数枚同時に収容可能である反応容器11、この反応容器11内において各ウェーハ23を一括して支持可能な基板支持具としてのボート24、反応容器11内に供給された原料ガス、活性化ガス、およびパージガスを反応容器11の外に排気する排気系25などからなる。本実施形態の反応容器11には、その内部の雰囲気および反応容器11内に収容された複数枚のウェーハ23を略均一に加熱できる容器加熱装置26が設けられた、いわゆるホットウォール式の反応容器11が採用されている。また、ボート24は、各ウェーハ23をそれらの表面(基板面)を互いに所定の間隔ずつ離間させつつ、互いに平行に、かつ、厚さ方向に沿って積層するように並べた状態で支持可能な構造となっている。さらに、ボート24は、ウェーハ23の枚数や、あるいは成膜される膜の種類やその膜厚などに応じて、成膜処理が適正な状態で効率よく行われるように、その形状を選択的できることが好ましい。
【0055】
また、前述したPETガスインジェクター10、H2Oガスインジェクター17、およびO2ガスインジェクター19には、反応容器11内に収容された複数枚のウェーハ23に向けて、それらの基板面と略平行な方向からPETガス、H2Oガス、O2ガス、およびArガスを供給できるように、複数個の吹き出し孔27がそれぞれ設けられている。具体的には、PETガスインジェクター10、H2Oガスインジェクター17、およびO2ガスインジェクター19には、各ウェーハ23が互いに離間されて積層されている方向に沿って、隣接する各ウェーハ23同士の間および各ウェーハ23の基板面の少なくとも一方と略対向する位置に、前記各ガスを各ウェーハ23に向けて供給する吹き出し孔27が複数個設けられている。すなわち、3本のガスインジェクター10,17,19は、それぞれ多孔ガスインジェクターとして形成されている。これにより、各ガスインジェクター10,17,19は、複数枚のウェーハ23の表面、もしくは各ウェーハ23同士の間に向けて、各ガスを集中的に効率よく供給できる。それとともに、各ウェーハ23の表面、もしくは各ウェーハ23同士の間に向けて、O2ガスまたはArガスを供給することにより、各ウェーハ23の表面付近、もしくは各ウェーハ23同士の間から、不要なガスを迅速かつ容易に排除できる。
【0056】
次に、図2および図3を参照しつつ、本実施形態の成膜方法について説明する。本実施形態の成膜方法は、具体的には、成膜装置1を用いて、以下に述べるシーケンスで化合物膜としてのTa25膜28を成膜するものである。
【0057】
複数枚のウェーハ23を反応容器11内に導入し、反応容器11内に配置されているボート24に支持させる。続けて、容器加熱装置26を用いて、反応容器11内の雰囲気および各ウェーハ23の温度が約280℃になるように略均一に加熱する。それとともに、PETガスインジェクター10、H2Oガスインジェクター17、およびO2ガスインジェクター19からそれぞれ約1SLMずつArガスを反応容器11内に供給して、反応容器11内の圧力を約0.6Torrに保つ。ヒートリカバリー時間は約10分間とする。反応容器11内の温度(炉内温度)が280℃±10℃程度で安定していることを確認した後、容器内圧力を約0.6Torrに保ちつつ、図2に示すシーケンスに基づいて以下に述べる成膜処理を実行する。
【0058】
先ず、反応容器11内に、H2Oガスインジェクター17からH2Oガスを約45秒間、約500sccm導入するとともに、PETガスインジェクター10およびO2ガスインジェクター19からArガスをそれぞれ約45秒間、約500sccmずつ供給する。反応容器11内に導入されたH2Oガスは、図3(a)に示すように、各ウェーハ23の表面に吸着する。
【0059】
次に、反応容器11内に、PETガスインジェクター10およびO2ガスインジェクター19からArガスを供給しつつ、H2Oガスインジェクター17から供給するガスをArガスに切り替える。そして、反応容器11内に、PETガスインジェクター10、O2ガスインジェクター19、およびH2Oガスインジェクター17からArガスをそれぞれ約20秒間、約1SLMずつ供給する。これにより、隣接する各ウェーハ23間を約20秒間パージする。
【0060】
次に、PET原料流量が約3sccmとなる条件で、PETガスを反応容器11内にPETガスインジェクター10より約20秒間導入する。この際、PETガスインジェクター10の内圧は、約23Torrである。また、O2ガスインジェクター19およびH2Oガスインジェクター17からは、Arガスをそれぞれ約20秒間、約500sccmずつ反応容器11内に供給する。
【0061】
通常、280℃前後ではPETの分解反応は殆ど起こらないが、各ウェーハ23の表面にはH2Oが吸着しているので、図3(b)に示すように、各ウェーハ23の表面に到達したPETガスは吸着しているH2Oとの間で加水分解反応を起こす。これにより、各ウェーハ23の表面上に、膜厚が約0.3nmのTaの酸化物の膜が成膜される。なお、図3(a),(b)においては、ウェーハ23の表面にTa25膜28が形成される仕組みを理解し易くするために、HO分子やPET分子などを模式的に描いた。
【0062】
次に、O2ガスインジェクター19およびH2Oガスインジェクター17からArガスを反応容器11内に供給しつつ、PETガスインジェクター10から供給するガスをArガスに切り替える。そして、反応容器11内に、PETガスインジェクター10、O2ガスインジェクター19、およびH2Oガスインジェクター17からArガスをそれぞれ約10秒間、約1SLMずつ供給する。これにより、隣接する各ウェーハ23間を約10秒間パージする。
【0063】
次に、反応容器11内に、PETガスインジェクター10からArガスを供給しつつ、O2ガスインジェクター19およびH2Oガスインジェクター17から供給するガスをO2ガスに切り替える。そして、反応容器11内に、PETガスインジェクター10からArガスを供給するとともに、O2ガスインジェクター19およびH2Oガスインジェクター17からはO2ガスをそれぞれ約20秒間、約1SLMずつ供給する。これにより、隣接する各ウェーハ23間を、ArガスおよびO2ガスを用いてさらに約20秒間パージする。
【0064】
次に、反応容器11内に、PETガスインジェクター10からArガスを供給しつつ、O2ガスインジェクター19およびH2Oガスインジェクター17から供給するガスをArガスに切り替える。そして、反応容器11内に、PETガスインジェクター10、O2ガスインジェクター19、およびH2Oガスインジェクター17からArガスをそれぞれ約5秒間、約1SLMずつ供給する。これにより、隣接する各ウェーハ23間を約5秒間パージする。
【0065】
以上説明した一連のシーケンス(手順)により、約120秒で各ウェーハ23の表面上に約0.3nmの膜厚を有するTaO膜28を略均一に成膜することができる。この約120秒のシーケンスを1サイクルとし、これを30回繰り返すことにより、各ウェーハ23の表面上にTa25膜28を約9nm堆積させる。その後、O2ガスインジェクター19からO3/O2混合ガスを反応容器11内に導入して、Ta25膜28に所定の処理を施すことにより、本実施形態の成膜プロセスを終了とする。なお、この成膜プロセスが実施されている間、反応容器11に供給され、不要となった各ガスは、反応容器11内の圧力、温度、および雰囲気の成分などが適正な状態に保持されるように適宜、排気系25から反応容器11の外へ排気される。
【0066】
図4に、PETガスインジェクター10に設けられている各吹き出し孔27の断面積(開口面積)を試験的に変えて、成膜回数とTa25膜28のパーティクルとの相関関係をモニタリングした結果を示す。図4中の表に示すように、各吹き出し孔27断面積を変えることにより、Ta25膜28の成膜時におけるPETガスインジェクター10の内部圧力が変化することが分かる。それとともに、PETガスインジェクター10の内圧が役5Torr以下になると、成膜回数の増加とともにパーティクルが増大することが分かる。
【0067】
本発明者らが行った調査によれば、パーティクルが増大した場合のPETガスインジェクター10の内部をHF洗浄してICP分光分析を行ったところ、PETガスインジェクター10の内部にTa25膜28が堆積していたことが判明した。これは、PETガスインジェクター10の内圧が低下すると、インジェクター10の内部に侵入したH2Oガスがインジェクター10の内部表面に吸着し、インジェクター10の内部でもALD反応が起こることを意味する。この結果によれば、ALD法に基づく成膜処理を適正な状態で実施するためには、多孔ガスインジェクターとしてのPETガスインジェクター10、H2Oガスインジェクター17、およびO2ガスインジェクター19のうち、少なくとも原料ガスインジェクターとしてのPETガスインジェクター10は、成膜時におけるインジェクターの内部圧力が反応容器11の内部圧力の約10倍以上となる形状に形成されることが好ましいことが分かる。
【0068】
以上説明したように、この第1実施形態においては、ALD成膜を採用することにより、複雑な立体形状からなる化合物膜28を成膜する場合においても、成膜時における膜組成の精密な制御が可能である。また、ALD成膜を採用することにより、化合物膜28による良好な段差被覆性の実現が可能である。また、原料ガスおよび活性化ガスを各ウェーハ23の表面もしくは各ウェーハ23の間に集中的に供給できるので、原料ガスおよび活性化ガスの濃度を、各ウェーハ23の間のみ選択的に高めることが可能である。これにより、原料ガスおよび活性化ガスの量が少ない場合でも、適正な状態で十分なALD成膜反応を実現できるので、各ガスの使用(利用)効率を向上できる。また、原料ガスの消費速度が増大することに伴う成膜コストの上昇、ひいては半導体装置の製造コストの上昇を抑制することができる。
【0069】
また、複数枚のウェーハ23をバッチ処理により一括して処理することができるので、成膜処理に掛かる正味のプロセス時間(RPT:raw process time)を短縮することができる。さらに、一般に時間の掛かる真空パージではなく、パージが短時間で済むガスパージを採用することにより、RPTの短縮が可能である。特に、隣接するウェーハ23同士が互いに整流板の働きをするので、ガスパージを効果的に行うことができる。この各ウェーハ23の整流板としての働きは、各ウェーハ23に原料ガスおよび活性化ガス供給する際にも、それら各ガスの使用効率を高める上で効果的であるのはもちろんである。
【0070】
また、成膜中は、各ウェーハ23間およびそれらの周囲に常時パージガスを供給しつつ、原料ガスまたは活性化ガスを選択的に切り替えて供給する。これにより、好ましくない雰囲気下において成膜プロセスが進行して、成膜される化合物膜28の膜質が劣化するおそれを殆どなくすことができる。
【0071】
また、各ウェーハ23に原料ガスを供給するのに先立って、各ウェーハ23の表面に活性化ガスを付着させておくので、通常では不可能な低温でALD反応を起こさせることができる。それとともに、成膜時における原料ガスインジェクター10の内部圧力を、反応容器11内の圧力に比べて10倍以上高く設定することで、成膜処理に酸化性のガスを用いても反応容器11内の残留原料ガスとの間で気相反応が起こるおそれが殆ど無い。しかも、成膜される化合物膜28中の配位子等の有機物の効率的な脱離が可能となる。
【0072】
さらに、ホットウォール式の加熱方式を採用することで、複数枚のウェーハ23を略均一に一括して加熱することが容易である。ホットウォール式を採用することにより、薄膜を形成する場合、ウェーハ23の下地構造やマスクパターンに依存することなく、成膜温度を略一定に保持することができる。通常、ホットウォール型の加熱方式では、ヒートリカバリー時間を長くとる必要があるが、ALD法では精密な温度制御は要求されない。したがって、本実施形態の成膜プロセスでは、長大なヒートリカバリー時間は不要であり、これはRPTの短縮する上で極めて効果的である。また、本実施形態の成膜装置1の装置構成は比較的簡素であるため、成膜する化合物膜の種類などに応じた装置構成の変更が容易である。
【0073】
このように、この第1実施形態によれば、ALD法を用いてバッチ式処理により成膜作業を行って、良質な化合物膜を効率よく、かつ容易に成膜できる。
【0074】
次に、本発明の第1実施形態に係る半導体装置の製造方法について簡潔に説明する。本実施形態の半導体装置の製造方法は、前述した本実施形態に係る成膜方法および成膜装置1により成膜された化合物膜(Ta25膜)28を用いて、半導体装置の内部に組み込まれる各種の微細な半導体素子などを形成する工程を含むものである。前述した成膜方法および成膜装置1によれば、良質な化合物膜を効率よく、かつ容易に成膜できる。したがって、本実施形態の半導体装置の製造方法によれば、半導体装置の内部に組み込まれる各種の微細な半導体素子などを高い品質で効率よく、かつ容易に形成して、半導体装置の品質および歩留まりを容易に向上させることができる。したがって、この第1実施形態に係る半導体装置の製造方法によれば、良質な化合物膜を有する良質な半導体装置を効率よく、かつ容易に製造できる。
【0075】
(第2の実施の形態)
次に、本発明に係る第2実施形態を図5〜図7を参照しつつ説明する。図5は、第2実施形態に係る成膜装置を簡略化して示す図である。図6は、第2実施形態に係る成膜方法のシーケンスを示す図である。図7は、第2実施形態に係る成膜方法により穴の内部および周囲に成膜されたSTO膜を簡略化して示す断面図である。なお、図1と同一部分は同一符号を付してその詳しい説明を省略する。
【0076】
本実施形態では、具体的には、Atomic Layer Deposition(ALD)法をバッチ処理で実施することにより、化合物膜としてのSTO膜およびBST膜を成膜する際の成膜方法および成膜装置、STO膜およびBST膜の成膜条件、そして得られたSTO膜およびBST膜の特性について説明する。
【0077】
本実施形態の成膜プロセスでは、原料ガスとして、ストロンチウムビストリイソプロピルシクロペンタジエニル(Sr(C5−i−Pr322)、バリウムビスペンタメチルシクロペンタジエニル(Ba(C5Me52)のテトラヒドロフラン(THF:C48O)溶液(溶液濃度は0.15モル/リットル)、およびテトライソプロポキシドチタン(TTIP)のそれぞれのガスを用いる。また、活性化ガスとしてH2Oガスを用いる。さらに、パージガスとして酸素(O2)ガスおよびアルゴン(Ar)ガスを用いる。
【0078】
先ず、図5(a),(b)を参照しつつ、本実施形態の成膜装置31について説明する。
【0079】
図5(a)は、成膜装置31の概略構成を正面もしくは側面から臨んで示す図である。図5(b)は、成膜装置31を図5(a)中実線矢印の向きから臨んで示す平面図である。この成膜装置31は、前述した第1実施形態と同様に、主に原料ガス供給系32および反応系33からなる。原料ガス供給系2は、Baガス供給系34、Srガス供給系35、TTIPガス供給系36、およびH2Oガス供給系5などからなる。なお、BaガスおよびSrガスの成膜条件は略等しいので、以下の説明においては、煩雑を避けるためにSrガスおよびその供給系35のみ、すなわちSTO膜を成膜する場合についてのみ説明する。また、前述したSrを含む原料には適当な略名が存在せず、正式名称を用いると記述が煩雑になるので、これを避けるために以下の説明では単にSr原料またはSrガスと略称することとする。
【0080】
Srガス供給系35は、主にSr原料容器37、Srの液体流量制御装置38、およびSr気化器39などからなる。気化温度は約200℃である。Sr気化器39で気化されたSrガスは、キャリアガスとしてのArガスと混合されて約250℃に加熱されたSrガス配管40を通り、原料ガス供給治具としての石英製のSrガスインジェクター(Sr−Moガスインジェクター)41に送られる。Srガスインジェクター41は反応容器11内に設けられており、SrガスはSrガスインジェクター41を経て反応容器11内に供給される。Srガス配管40とSrガスインジェクター41との接続部分付近、すなわちSrガスインジェクター41の根元の部分には、Srガスインジェクター41に通すガスを、Srガスと、ArガスまたはO2ガスとに選択的に切り替えることができるように、原料ガス供給系切り替えバルブ12aが設けられている。
【0081】
また、TTIPガス供給系36は、主にTTIP容器42、このTTIP容器42を約60℃に加熱するTTIP加熱装置43、およびTTIPのガス流量制御装置44などからなる。TTIPガスは、約100℃に加熱されたTTIPガス配管45を通り、原料ガス供給治具としての石英製のTTIPガスインジェクター46に送られる。TTIPガスインジェクター46は反応容器11内に設けられており、TTIPガスはTTIPガスインジェクター46を経て反応容器11内に供給される。TTIPガス配管45とTTIPガスインジェクター46との接続部分付近、すなわちTTIPガスインジェクター46の根元の部分には、TTIPガスインジェクター46に通すガスを、TTIPガスと、ArガスまたはO2ガスとに選択的に切り替えることができるように、原料ガス供給系切り替えバルブ12bが設けられている。
【0082】
2Oガス供給系5は、主にH2O容器13、このH2O容器13を約80℃に加熱するH2O加熱装置14、およびH2Oガスのガス流量制御装置15などからなる。H2Oガスは約150℃に加熱されたH2Oガス配管16を通り、活性化ガス供給治具としての石英製のH2Oガスインジェクター17に送られる。H2Oガスインジェクター17は、反応容器11内に設けられており、H2OガスはH2Oガスインジェクター17を経て反応容器11内に供給される。H2Oガス配管16とH2Oガスインジェクター17との接続部分付近、すなわちH2Oガスインジェクター17の根元の部分には、H2Oガスインジェクター17に通すガスを、H2Oガス、Arガス、またはO2ガスに選択的に切り替えることができるように、活性化ガス供給系切り替えバルブ18が設けられている。
【0083】
また、成膜装置31には、以上説明した3本(実際には、図示しないBaガスインジェクターも含めて4本)のガスインジェクター41,46,17とは別に、反応容器11内にArガスおよびO2ガスを選択的に供給可能なパージガス供給治具としてのO2ガスインジェクター19が反応容器11内に設けられている。すなわち、成膜装置31は、合計4系統(実際には、図示しないBaガスインジェクターも含めて5系統)のガスインジェクター41,46,17,19を備えている。また、成膜装置31には、3本のガスインジェクター41,46,17,19にArガスおよびO2ガスの少なくとも一方を供給するパージガス供給系20が設けられている。ArガスまたはO2ガスは、パージガス供給系20が有するパージガス配管21を通り、各ガスインジェクター41,46,17,19に送られる。
【0084】
また、Srガスインジェクター41、TTIPガスインジェクター46、H2Oガスインジェクター17、およびO2ガスインジェクター19は、それぞれ第1実施形態と同様に、多孔ガスインジェクターとして形成されている。
【0085】
他方、反応系33は、第1実施形態と同様に、成膜処理が施される被処理基板(ウェーハ)23を複数枚同時に収容可能であるとともに、それら各ウェーハ23を略均一に加熱できるように容器加熱装置26が設けられたホットウォール式の反応容器11、この反応容器11内において各ウェーハ23をそれらの表面を互いに所定の間隔離間させて支持可能な基板支持具としてのボート24、反応容器11内に供給された原料ガス、活性化ガス、およびパージガスを反応容器11の外に排気する排気系25などからなる。
【0086】
次に、図6を参照しつつ、本実施形態の成膜方法について説明する。本実施形態の成膜方法は、具体的には、成膜装置31を用いて、以下に述べるシーケンスで化合物膜としてのSTO膜47を成膜するものである。
【0087】
複数枚のウェーハ23を反応容器11内に導入し、反応容器11内に配置されているボート24に支持させる。続けて、容器加熱装置26を用いて、反応容器11内の雰囲気および各ウェーハ23の温度が約300℃になるように略均一に加熱する。それとともに、Srガスインジェクター41、TTIPガスインジェクター46、O2ガスインジェクター19、およびH2Oガスインジェクター17からそれぞれ約1SLMずつArガスを反応容器11内に供給して、反応容器11内の圧力を約1.5Torrに保つ。反応容器11内の温度(炉内温度)が300℃±10℃程度で安定していることを確認した後、容器内圧力を約1.5Torrに保ちつつ、図6に示すシーケンスに基づいて以下に述べる成膜処理を実行する。
【0088】
先ず、反応容器11内に、H2Oガスインジェクター17からH2Oガスを約20秒間、約500sccm導入するとともに、Srガスインジェクター41、TTIPガスインジェクター46、およびO2ガスインジェクター19からはO2ガスをそれぞれ約20秒間、約500sccmずつ供給する。反応容器11内に導入されたH2Oガスは、各ウェーハ23の表面に吸着する。
【0089】
次に、H2Oガスインジェクター17、TTIPガスインジェクター46、およびO2ガスインジェクター19から供給するガスをArガスに切り替える。それとともに、Srガスインジェクター41から供給するガスをSrガスに切り替えて、Sr原料ガスをそのTHF溶液流量が約3sccmとなる条件でSrガスインジェクター41から約10秒間、反応容器11内に導入する。キャリアガスとしてのArガスの流量は、約250sccmである。この際、Srガスインジェクター41の内圧は約35Torrであった。また、TTIPガスインジェクター46、O2ガスインジェクター19、およびH2Oガスインジェクター17からは、Arガスをそれぞれ約10秒間、約500sccmずつ反応容器11内に供給する。
【0090】
通常、280℃前後ではSr原料の分解反応は殆ど起こらないが、各ウェーハ23の表面にはH2Oが吸着しているので、各ウェーハ23の表面に到達したSr原料は吸着しているH2Oとの間で加水分解反応を起こす。これにより、各ウェーハ23の表面上に、図示しないSrの酸化物の膜が成膜される。
【0091】
次に、反応容器11内に、再びH2Oガスインジェクター17からH2Oガスを約20秒間、約500sccm導入するとともに、Srガスインジェクター41、TTIPガスインジェクター46、およびO2ガスインジェクター19からはO2ガスをそれぞれ約20秒間、約500sccmずつ供給する。これにより、各ウェーハ23の表面上に成膜されたSr酸化物膜中の炭素不純物が減少するとともに、導入されたH2OガスがSr酸化物膜の表面に吸着する。
【0092】
以上説明したH2Oガスの供給およびSrガスの供給を交互に4回ずつ繰り返すことにより、約120秒で各ウェーハ23の表面上に約0.3nmの膜厚を有するSr酸化物膜を略均一に成膜することができる。
【0093】
次に、H2Oガスインジェクター17から供給するガスをH2Oガスに切り替えて、反応容器11内にH2Oガスを約20秒間、約500sccm導入する。それとともに、Srガスインジェクター41、TTIPガスインジェクター46、およびO2ガスインジェクター19から供給するガスをO2ガスに切り替え、O2ガスをそれぞれ約20秒間、約500sccmずつ反応容器11内に供給する。
【0094】
次に、TTIPガスインジェクター46から供給するガスをTTIPガスに切り替えて、反応容器11内にTTIPガスを約10秒間、約150sccm導入する。それとともに、H2Oガスインジェクター17、Srガスインジェクター41、およびO2ガスインジェクター19から供給するガスをArガスに切り替え、Arガスをそれぞれ約10秒間、約500sccmずつ反応容器11内に供給する。
【0095】
通常、280℃前後で酸素が存在しない条件下では、TTIPの分解反応は殆ど起こらないが、各ウェーハ23の表面に成膜されたSr酸化物膜の表面にはH2Oが吸着しているので、Sr酸化物膜の表面に到達したTTIPガスのエトキシ基は吸着しているH2Oとの間で加水分解反応を起こす。これにより、各ウェーハ23の表面上に、図示しないTiの酸化物の膜が成膜され、さらにSr酸化物膜と反応する。
【0096】
次に、反応容器11内に、再びH2Oガスインジェクター17からH2Oガスを約20秒間、約500sccm導入するとともに、Srガスインジェクター41、TTIPガスインジェクター46、およびO2ガスインジェクター19からはO2ガスをそれぞれ約20秒間、約500sccmずつ供給する。すると、O2により、Ti酸化物膜中の炭素不純物が減少するとともに、導入されたH2OガスがTi−Sr酸化物膜の表面に吸着する。
【0097】
以上説明したH2Oガスの供給およびTTIPガスの供給を交互に3回ずつ繰り返す。これにより、各ウェーハ23の表面上に堆積したTi−Sr酸化物膜に含まれるTiとSrとのモル比が略等しくなり、ペロブスカイト型結晶構造(SrTiO3)を有するSTO膜47を、各ウェーハ23の表面上に約90秒で、約0.4nmの略均一な膜厚で成膜することができる。
【0098】
すなわち、前述したように、H2Oガスの供給およびSrガスの供給を交互に4回ずつ繰り返す一連のシーケンスを行った後、H2Oガスの供給およびTTIPガスの供給を交互に3回ずつ繰り返す一連のシーケンスを行うことにより、合計約210秒で各ウェーハ23の表面上に約0.4nmの膜厚を有するSTO膜47を略均一に成膜することができる。これら2種類のシーケンスからなる合計約210秒のシーケンスを1サイクルとし、これを30回繰り返すことにより、各ウェーハ23の表面上にSTO膜47を約12nm堆積させる。その後、N2ガスを反応容器11内に導入して、STO膜47に約400℃で加熱処理を施すことにより、本実施形態の成膜プロセスを終了とする。
【0099】
次に、図7に示すように、開口径Wが約70nm、深さDが約420nmで、アスペクト比が約6の穴48の内側および周辺にSTO膜を成膜する。この際、本実施形態の成膜方法および通常の熱CVD法のそれぞれに基づいてSTO膜を成膜する。そして、本実施形態によるSTO膜47、および通常の熱CVD法による図示しないSTO膜のそれぞれの膜厚および膜組成の均一性を、図7中▲1▼〜▲5▼の5箇所において評価する。この評価の結果を表1に示す。なお、膜厚は断面TEMにより、また膜組成はTEM−EDXにより評価を行った。
【0100】
熱CVD法の実施条件を次に示す。
【0101】
成膜温度を約400℃に、成膜圧力を約1Torrに設定する。それとともに、原料としてのSr(METHD)2、およびTi(MPD)(THD)2のnブチル酢酸溶液(約0.15モル/リットル)を総原料流量が約0.3sccmとなるように設定する。併せて約50%/50%のO2とN2Oとの混合ガスを用いる。このような実施条件下において、熱CVD法により非晶質のSTO膜を成膜した後、STO膜にN2を用いて約650℃でRTA(Rapid Thermal Anneal)を施して結晶化させる。この熱CVD法の実施条件は、通常、図示しない約150nm径のコンタクトホール内で略一様な膜厚と組成比とが得られるとされているものである。
【0102】
【表1】
Figure 0003670628
【0103】
表1より、従来の熱CVD法では、STO膜の膜厚の均一性を保持することはできても、穴48のようなアスペクト比が大きい、細くて深い穴内での膜組成の均一性までは保持でき無いことが分かる。この表1によれば、穴48の底では、殆どTiの酸化物膜しか成膜されないことを示す。すなわち、従来の熱CVD法では、現在そして将来に向けたLSIの微細化への追随が非常に困難であることが容易に予想される。
【0104】
また、図示しないキャパシタが有する平面形状のRu電極上に、本実施形態に基づいて成膜したSTO膜47、および従来の熱CVD法に基づいて成膜したSTO膜の、それぞれの電気的特性を評価した結果を表2に示す。この表2によれば、従来の熱CVD法に基づいて成膜したSTO膜に比べて、本実施形態に基づいて成膜したSTO膜47の方が、より高い比誘電率およびより低いリーク電流値を示している。これは従来の熱CVD法よりも、本実施形態のALD成膜法の方が、より良好な結晶性を有する化合物膜を成膜するのにより適しているためと考えられる。
【0105】
【表2】
Figure 0003670628
【0106】
また、本実施形態の成膜プロセスにおける成膜温度の最高値は約400℃であるが、これは本プロセスを用いて形成したキャパシタを、例えば熱に弱い図示しないアルミニウム多層配線上に形成することが十分可能であることを示している。これにより、キャパシタ、ひいてはこのキャパシタを備える半導体装置を製造する際に、汚染管理が容易になることを意味する。また、例えば多層配線構造を有するLSI内の任意の層にキャパシタを混載しても、キャパシタよりも下層の配線、ひいてはLSI内の殆ど全ての層の配線間におけるコンタクトホールのアスペクト比増大等の問題を招かない等の利点を有することを意味する。
【0107】
以上説明したように、この第2実施形態においては、前述した第1実施形態と同様の効果を得ることができる。また、Sr原料としてシクロペンタジエニル系の化合物を用い、Ti原料としてアルコキシド、またはアルコキシドを含むDPM錯体を用いることで、H2Oとの加水分解反応による配位子の一括除去が可能になり、低温での結晶化が容易になる。例えば、STO膜の場合、300℃程度での結晶化が可能である。さらに、Sr原料ガスやTi原料ガスは、約400℃以下においてそれぞれ単独では酸素(O2)や亜酸化窒素(N2O)と殆ど反応しないので、パージガスとしてO2やN2Oの使用が可能である。これは、配位子等に起因するSTO膜中の有機不純物の効率的な除去できる点で有効である。
【0108】
なお、前述したように、これら本実施形態に基づいて成膜したSTO膜47についての特性は、本実施形態に基づいて成膜するBST膜についても略同様に当てはまる。
【0109】
(第3の実施の形態)
次に、本発明に係る第3実施形態を図8および図9を参照しつつ説明する。図8は、第3実施形態に係る成膜装置を簡略化して示す図である。図9は、第3実施形態に係る成膜方法のシーケンスを示す図である。なお、図1と同一部分は同一符号を付してその詳しい説明を省略する。
【0110】
本実施形態では、具体的には、Atomic Layer Deposition(ALD)法をバッチ処理で実施することにより、化合物膜としてのTi−Al−N膜を成膜する際の成膜方法および成膜装置、Ti−Al−N膜の成膜条件、そして得られたTi−Al−N膜の特性について説明する。
【0111】
本実施形態の成膜プロセスでは、原料ガスとして、チタンクロライド(TiCl4)、およびアルミニウムクロライド(AlCl3)のそれぞれのガスを用いる。また、活性化ガスとしてNH3ガスを用いる。さらに、パージガスとしてアルゴン(Ar)ガスを用いる。
【0112】
先ず、図8(a),(b)を参照しつつ、本実施形態の成膜装置51について説明する。
【0113】
図8(a)は、成膜装置51の概略構成を正面もしくは側面から臨んで示す図である。図8(b)は、成膜装置51を図5(a)中実線矢印の向きから臨んで示す平面図である。この成膜装置51は、前述した第1実施形態および第2実施形態と同様に、主に原料ガス供給系52および反応系53からなる。原料ガス供給系52は、TiCl4ガス供給系54、AlCl3ガス供給系55、およびNH3ガス供給系56などからなる。
【0114】
TiCl4ガス供給系54は、主にTiCl4ガスボンベ56、このボンベ56を加熱するTiCl4加熱装置57、および高温仕様TiCl4ガス流量制御装置58などからなる。同様に、AlCl3ガス供給系55は、主にAlCl3ガスボンベ59、このボンベ59を加熱するAlCl3加熱装置60、および高温仕様AlCl3ガス流量制御装置61などからなる。TiCl4ガスボンベ56およびAlCl3ガスボンベ59の温度は、それぞれ約60℃である。TiCl4ガスよびAlCl3ガスは、それぞれ約80℃に加熱されたTiCl4ガス配管62およびAlCl3ガス配管63を通り、原料ガス供給治具としての石英製のTiCl4ガスインジェクター64およびAlCl3ガスインジェクター65に互いに独立に送られる。TiCl4ガスインジェクター64およびAlCl3ガスインジェクター65は互いに独立に反応容器11内に設けられており、TiCl4ガスよびAlCl3ガスはそれぞれTiCl4ガスインジェクター64およびAlCl3ガスインジェクター65を経て反応容器11内に供給される。
【0115】
TiCl4ガス配管62とTiCl4ガスインジェクター64との接続部分付近、すなわちTiCl4ガスインジェクター64の根元の部分には、TiCl4ガスインジェクター64に通すガスを、TiCl4ガスまたはArガスに選択的に切り替えることができるように、原料ガス供給系切り替えバルブ12cが設けられている。同様に、AlCl3ガス配管63とAlCl3ガスインジェクター65との接続部分付近、すなわちAlCl3ガスインジェクター65の根元の部分には、AlCl3ガスインジェクター65に通すガスを、AlCl3ガスまたはArガスに選択的に切り替えることができるように、原料ガス供給系切り替えバルブ12dが設けられている。
【0116】
2Oガス供給系56は、主にNH3ガスボンベ66およびNH3ガスのガス流量制御装置67などからなる。NH3ガスは約60℃に加熱されたNH3ガス配管68を通り、活性化ガス供給治具としての石英製のNH3ガスインジェクター69に送られる。NH3ガスインジェクター69は、反応容器11内に設けられており、NH3ガスはNH3ガスインジェクター69を経て反応容器11内に供給される。NH3ガス配管68とNH3ガスインジェクター69との接続部分付近、すなわちNH3ガスインジェクター69の根元の部分には、NH3ガスインジェクター69に通すガスを、NH3ガスまたはArガスに選択的に切り替えることができるように、活性化ガス供給系切り替えバルブ18aが設けられている。
【0117】
このように、成膜装置31は、3系統のガスインジェクター64,65,69を備えている。また、TiCl4ガスインジェクター64、AlCl3ガスインジェクター65、およびNH3ガスインジェクター69は、それぞれ第1実施形態および第2実施形態と同様に、多孔ガスインジェクターとして形成されている。
【0118】
他方、反応系53は、第1実施形態および第2実施形態と同様に、成膜処理が施される被処理基板(ウェーハ)23を複数枚同時に収容可能であるとともに、それら各ウェーハ23を略均一に加熱できるように容器加熱装置26が設けられたホットウォール式の反応容器11、この反応容器11内において各ウェーハ23をそれらの表面を互いに所定の間隔離間させて支持可能な基板支持具としてのボート24、反応容器11内に供給された原料ガス、活性化ガス、およびパージガスを反応容器11の外に排気する排気系25などからなる。それとともに、反応容器(チャンバー)11の内部をクリーニングするためのClF3ガスを反応容器11内に供給する、ClF3ガス供給系70を備えている。
【0119】
また、図8(a),(b)に示すように、本実施形態の反応容器11には、その内部に収容される各ウェーハ23を間に挟んで、3本のガスインジェクター64,65,69と対向する側(位置)に、反応容器11内の不要なガスを反応容器11の外に排気するためのスリット状の排気孔71が、各ウェーハ23の枚数に応じて複数個設けられている。それとともに、ボート24には、各排気孔71付近から3本のガスインジェクター64,65,69付近にかけて、各ウェーハ23をそれらの両側方から囲む整流部材としての遮蔽板(整流板)72が設けられている。これにより、3本のガスインジェクター64,65,69を通して反応容器11に供給された各ガスは、遮蔽板72の外側に殆ど流れ出すこと無く、ボート24に支持された各ウェーハ23を集中的に包むように、各ガスインジェクター64,65,69の吹き出し孔27から各排気孔71に向けて流れる。
【0120】
このような構造を採用することにより、第1に、反応容器11の内壁自体に金属膜が堆積(付着)することを抑制して、各ウェーハ23の温度を精密に制御することが可能になる。一般に、反応容器11の内壁を覆う金属膜が多くなる程、例えば容器加熱装置26などの外部熱源からの輻射熱が各ウェーハ23に到達し難くなるためである。ところが、本実施形態の反応容器11では、前述した構造により反応容器11の内壁に金属膜が堆積することを抑制できるので、容器加熱装置26により、反応容器11内に収容された各ウェーハ23の温度を精密に制御することができる。第2に、前述した構造により、原料ガス、活性化ガス、およびパージガスを、各ウェーハ23の表面付近や、各ウェーハ23同士の間など、各ウェーハ23の周りに実質的にガスを閉じ込めつつ流すことができる。これにより、成膜反応の反応速度を高めることができるとともに、各ガスの利用効率をより向上させることができる。さらに、反応容器11内、特に各ウェーハ23の周りのパージを容易かつ迅速に行うことができるという利点も生まれる。
【0121】
さらに、際膜プロセスを複数回繰り返す場合には、各プロセス間に反応容器11内にClF3ガスを供給することにより、反応容器11内をClF3クリーニングすることができる。これにより、成膜処理を行うのに先立って、反応容器11の内壁に堆積した金属膜を略完全に除去することが可能である。このように、本実施形態の成膜装置51によれば、より適正な状態で化合物膜を成膜できる。
【0122】
次に、図9を参照しつつ、本実施形態の成膜方法について説明する。本実施形態の成膜方法は、具体的には、成膜装置51を用いて、以下に述べるシーケンスで化合物膜としての図示しないTi0.7Al0.3N膜を成膜するものである。
【0123】
成膜処理が施される複数枚のウェーハ23には、Ti0.7Al0.3N膜が埋め込まれる開口径約130nmの図示しないコンタクトホールが予め形成されている。そして、各ウェーハ23の表面には、コンタクト抵抗を低減するために、予めロングスロースパッタ(LTS)により図示しないTi膜を約10nm形成しておく。それとともに、各ウェーハ23に対して、約600℃のRTAによりシリサイデーションを完了させておく。
【0124】
以上説明した処理が予め施された複数枚のウェーハ23を反応容器11内に導入し、反応容器11内に配置されているボート24に支持させる。続けて、容器加熱装置26を用いて、反応容器11内の雰囲気および各ウェーハ23の温度が約500℃になるように略均一に加熱する。それとともに、TiCl4ガスインジェクター64、AlCl3ガスインジェクター65、およびNH3ガスインジェクター69からそれぞれ約1SLMずつArガスを反応容器11内に供給して、反応容器11内の圧力を約1.0Torrに保つ。反応容器11内の温度(炉内温度)が500℃±20℃程度で安定していることを確認した後、容器内圧力を約1.0Torrに保ちつつ、図6に示すシーケンスに基づいて以下に述べる成膜処理を実行する。
【0125】
先ず、反応容器11内に、NH3ガスインジェクター69からNH3ガスを約10秒間、約1SLM導入するとともに、TiCl4ガスインジェクター64およびAlCl3ガスインジェクター65からはArガスをそれぞれ約10秒間、約500sccmずつ供給する。反応容器11内に導入されたNH3ガスは、各ウェーハ23の表面に吸着する。
【0126】
次に、AlCl3ガスインジェクター65から反応容器11内にArガスを供給しつつ、NH3ガスインジェクター69から供給するガスをArガスに切り替える。それとともに、TiCl4ガスインジェクター64から供給するガスをTiCl4ガスに切り替えて、反応容器11内にTiCl4ガスを約5秒間、約1SLM導入する。AlCl3ガスインジェクター65およびNH3ガスインジェクター69から、Arガスをそれぞれ約5秒間、約500sccmずつ反応容器11内に供給する。
【0127】
通常、500℃前後ではTiCl4の分解反応は殆ど起こらないが、各ウェーハ23の表面にはNH3が吸着しているので、各ウェーハ23の表面に到達したTiCl4ガスは吸着しているNH3との間で分解反応を起こす。これにより、各ウェーハ23の表面上に、図示しないTiの窒化物の膜が成膜される。
【0128】
次に、反応容器11内に、再びNH3ガスインジェクター69からNH3ガスを約10秒間、約1SLM導入するとともに、TiCl4ガスインジェクター64およびAlCl3ガスインジェクター65からはArガスをそれぞれ約10秒間、約1SLMずつ供給する。これにより、各ウェーハ23の表面上に堆積されたTiが略完全に窒化されるとともに、このTiの窒化物の膜中に残留していたTi原料中の塩素が塩化アンモニウムとなって離脱する。さらには、導入されたNH3ガスがTi窒化物膜の表面に吸着する。
【0129】
以上説明したNH3ガスの供給およびTiCl4ガスの供給を交互に5回ずつ、約75秒間かけて繰り返す。
【0130】
次に、NH3ガスインジェクター69からから供給するガスをNH3ガスに切り替えて、反応容器11内にNH3ガスを約10秒間、約1SLM導入する。また、AlCl3ガスインジェクター65からArガスを反応容器11内に供給しつつ、TiCl4ガスインジェクター64から供給するガスをArガスに切り替える。AlCl3ガスインジェクター65およびTiCl4ガスインジェクター64からは、Arガスをそれぞれ約10秒間、約1SLMずつ反応容器11内に供給する。
【0131】
次に、TiCl4ガスインジェクター64から反応容器11内にArガスを供給しつつ、AlCl3ガスインジェクター65から供給するガスをAlCl3ガスに切り替える。それとともに、NH3ガスインジェクター69から供給するガスをArガスに切り替える。AlCl3ガスインジェクター65から、反応容器11内にAlCl3ガスを約5秒間、約1SLM供給する。また、TiCl4ガスインジェクター64およびNH3ガスインジェクター69から、反応容器11内にArガスを約5秒間、それぞれ約1SLMずつ供給する。
【0132】
通常、500℃前後では、AlCl3の分解反応は殆ど起こらないが、各ウェーハ23の表面に成膜されたTi窒化物膜の表面にはNH3が吸着しているので、Ti窒化物膜の表面に到達したAlCl3ガスは吸着しているNH3との間で加水分解反応を起こす。これにより、各ウェーハ23の表面上に、図示しないAlの窒化物の膜が成膜される。
【0133】
次に、反応容器11内に、再びNH3ガスインジェクター69からNH3ガスを約10秒間、約1SLM導入するとともに、TiCl4ガスインジェクター64およびAlCl3ガスインジェクター65からはArガスをそれぞれ約10秒間、約1SLMずつ供給する。これにより、各ウェーハ23の表面上に堆積されたAlが略完全に窒化されるとともに、このAlの窒化物の膜中に残留していたAl原料中の塩素が塩化アンモニウムとなって離脱する。さらには、導入されたNH3ガスがAl窒化物膜の表面に吸着する。
【0134】
以上説明したNH3ガスの供給およびAlCl3ガスの供給を交互に2回ずつ繰り返す。これにより、各ウェーハ23の表面上に約30秒で、Ti0.7Al0.3Nの組成を有する化合物膜を約2.5nmの略均一な膜厚で成膜することができる。
【0135】
すなわち、前述したように、NH3ガスの供給およびTiCl4ガスの供給を交互に5回ずつ繰り返す一連のシーケンスを行った後、NH3ガスの供給およびAlCl3ガスの供給を交互に2回ずつ繰り返す一連のシーケンスを行うことにより、合計約105秒で各ウェーハ23の表面上に約2.5nmの膜厚を有するTi0.7Al0.3N膜を略均一に成膜することができる。これら2種類のシーケンスからなる合計約105秒のシーケンスを1サイクルとし、これを30回繰り返すことにより、各ウェーハ23の表面上にTi−Al−N膜を約75nm堆積させる。これにより、本実施形態の成膜プロセスを終了とする。
【0136】
本発明者らによれば、以上説明した成膜プロセスにより、各ウェーハ23に予め形成されていたコンタクトホールを、ボイド等が殆ど生じない状態で略完全に埋め込むことができることが確認された。また、これらのコンタクトホールを用いて形成された図示しないコンタクトプラグの表面は、約540℃の酸化性雰囲気下における熱処理でも殆ど酸化されず、コンタクト抵抗が十分に低いことが確認された。
【0137】
以上説明したように、この第3実施形態においては、前述した第1実施形態と同様の効果を得ることができる。また、前述したように、各ウェーハ23を間に挟んで、反応容器11の各ガスインジェクター64,65,69が設けられている側と対向する側に複数個の排気孔11を設ける。これにより、原料ガス、活性化ガス、およびパージガスを、それらの流れを略一定の向きに制御して流すことができる。この結果、各ガスの利用効率および排気効率をより高めることができるとともに、パージ時間をより短縮することが可能である。このような効果は、各ガスインジェクター64,65,69から各排気孔11にかけてボート24に取り付けられた遮蔽板72の遮蔽効果および整流効果、ならびに互いに離間されてボート24に支持された各ウェーハ23自体の整流効果と相乗効果を及ぼし合うことにより、一層高められる。各ガスインジェクター64,65,69に設けられた複数個の吹き出し孔27から各ウェーハ23に向けて供給された原料ガス、活性化ガス、およびパージガスは、各ウェーハ23および遮蔽板72に案内されて各排気孔11に向けて各ウェーハ23を包むように流れる。したがって、この第3実施形態によれば、良質な化合物膜を極めて効率よく、かつ極めて容易に成膜できる。
【0138】
なお、本発明に係る成膜方法、成膜装置、および半導体装置の製造方法は、前述した第1〜第3の各実施形態には制約されない。本発明の趣旨を逸脱しない範囲で、それらの構成、あるいは工程などの一部を種々様々な設定に変更したり、あるいは各種設定を適宜、適当に組み合わせて用いたりして実施することができる。
【0139】
例えば、第1実施形態の成膜装置1を、その装置構成を変更することなく、原料としてテトライソプロポキシドチタン(TTIP)を用いることにより、TiO2膜やTa−Ti−O膜を成膜することも可能である。同様に、原料としてAlCl3を用いることで、Al23膜を成膜することも可能である。
【0140】
また、第1〜第3の各実施形態においては、各ウェーハ23を、それらの表面(基板面)を互いに離間させた状態で、上下(縦)方向に積層するように反応容器11内に配置したが、各ウェーハ23の配置状態はこれに限るものではない。例えば、各ウェーハ23を、それらの表面(基板面)を互いに離間させた状態で、左右(横)方向に並べるように反応容器11内に配置しても構わない。また、各ウェーハ23は、全て互いに平行となる姿勢で配置される必要は無い。それとともに、各ウェーハ23は、隣接する各ウェーハ23の間隔を全て均等な大きさに設定されて配置される必要は無い。各ウェーハ23の配置方向、姿勢、間隔などは、反応容器11内に導入されるガスの種類、重さ、性質、流れの方向、および各ガスが供給される順番などに応じて、各ウェーハ23の表面上に化合物膜が略均一に適正な状態で成膜されるように適宜、適正な状態に設定して構わない。この場合、ボート24を、各ウェーハ23の配置方向、姿勢、間隔などを適宜、適正な状態に設定できる構成とするとよい。
【0141】
また、原料ガスインジェクター、活性化ガスインジェクター、およびパージガスインジェクターから供給される各ガスの供給圧力や吹き出し量などは、一律に等しい大きさに設定する必要は無い。各ガスのガスの種類、重さ、性質、流れの方向、および各ガスが供給される順番などに応じて、各ウェーハ23の表面上に化合物膜が略均一に適正な状態で成膜されるように、各ガスインジェクターごとに適宜、適正な状態に設定して構わない。また、各ガスインジェクターに設けられた複数個の吹き出し孔27からのガス供給圧力や吹き出し量などは、各孔27の位置、すなわち各ウェーハ23の配置位置に応じて適宜、適正な大きさに設定して構わない。例えば、各ウェーハ23を、第1〜第3実施形態のように上下方向に積層するように配置した場合、各吹き出し孔27からのガス供給圧力や吹き出し量などを、最上層のウェーハ23から最下層のウェーハ23にかけて、各ガスが略均等に供給されるように、各孔27の高さごとに適正な大きさに設定するとよい。これにより、各ウェーハ23の表面上に、化合物膜をより均一に、より適正な状態で成膜できる。
【0142】
また、第3実施形態においては、遮蔽板(整流板)72を各ウェーハ23の両側方に設けたが、これに限るものではない。例えば、遮蔽板72を、各ガスインジェクターから各排気孔71にかけて、各ウェーハ23を支持しているボート24の上方に設けても構わない。これにより、各ウェーハ23に向けて供給される各ガスの遮蔽効果、整流効果をより向上させて、各ガスの利用効率、ひいては成膜効率を大幅に向上できる。あるいは、各ウェーハ23を支持しているボート24の上下両端部を、遮蔽効果および整流効果を発揮できる形状に形成するとよい。これにより、第1および第2実施形態のように、ボート24に遮蔽板72を、設けない場合でも、各ガスの利用効率および成膜効率を向上できる。また、そのような形状からなるボート24を遮蔽板72と併用すれば、各ガスの利用効率および成膜効率を極めて向上できるのはもちろんである。
【0143】
また、各ガスインジェクターから各ガスを供給している間は、反応容器11内の不要なガスを排気系25により反応容器11の外へ積極的に排気する設定とするとよい。これにより、複数種類のガスを用いる場合でも、不要な気相間反応を大幅に低減させて、より良質な化合物膜を成膜できる。
【0144】
さらに、本発明に係る成膜方法、成膜装置、および半導体装置の製造方法を用いて製造可能な半導体装置は、DRAM等、現在、一般に普及している半導体装置には限られない。本発明に係る半導体装置の製造方法は、例えばFeRAMなど、将来において発展が期待される各種の微細な半導体装置を製造する際にも十分適用可能なのはもちろんである。
【0145】
【発明の効果】
本発明に係る成膜方法および成膜装置によれば、処理室内のパージを短時間で容易に行うことができるので成膜作業の長時間化を容易に抑制できるとともに、ガスの使用効率を容易に向上でき、かつ、複数種類のガス同士の相互反応を容易に抑制できる。したがって、本発明に係る成膜方法によれば、ALD法を用いてバッチ式処理により成膜作業を行う際に、良質な化合物膜を効率よく、かつ容易に成膜できる。
【0146】
また、本発明に係る半導体装置の製造方法によれば、本発明に係る成膜方法により成膜された化合物膜を用いることにより、半導体装置の内部に組み込まれる各種の微細な半導体素子などを高い品質で効率よく、かつ容易に形成して、半導体装置の品質および歩留まりを容易に向上させることができる。したがって、本発明に係る半導体装置の製造方法によれば、良質な化合物膜を有する良質な半導体装置を効率よく、かつ容易に製造できる。
【図面の簡単な説明】
【図1】第1実施形態に係る成膜装置を簡略化して示す図。
【図2】第1実施形態に係る成膜方法のシーケンスを示す図。
【図3】基板上にTa25膜が成膜される仕組みを模式的に示す工程断面図。
【図4】Ta25膜を成膜する際に発生するパーティクルの成膜サイクルに対する依存性をグラフにして示す図。
【図5】第2実施形態に係る成膜装置を簡略化して示す図。
【図6】第2実施形態に係る成膜方法のシーケンスを示す図。
【図7】第2実施形態に係る成膜方法により穴の内部および周囲に成膜されたSTO膜を簡略化して示す断面図。
【図8】第3実施形態に係る成膜装置を簡略化して示す図。
【図9】第3実施形態に係る成膜方法のシーケンスを示す図。
【図10】従来の技術に係る成膜装置を簡略化して示す斜視図。
【図11】従来の技術に係る成膜方法のシーケンスを示す図。
【図12】従来の技術に係る他の成膜装置を簡略化して示す斜視図。
【符号の説明】
1,31,51…成膜装置
2,32,52…原料ガス供給系
5,56…活性化ガス供給系
10…PETガスインジェクター(原料ガス供給治具)
11…反応容器(処理室)
17…H2Oガスインジェクター(活性化ガス供給治具)
19…O2ガスインジェクター(パージガス供給治具)
20…パージガス供給系
23…ウェーハ(被処理基板)
24…ボート(基板支持具)
27…吹き出し孔
28…Ta22膜(化合物膜)
41…Srガスインジェクター(原料ガス供給治具)
46…TTIPガスインジェクター(原料ガス供給治具)
47…SrTiO3膜(化合物膜)
64…TiCl4ガスインジェクター(原料ガス供給治具)
65…AlCl3ガスインジェクター(原料ガス供給治具)
69…NH3ガスインジェクター(活性化ガス供給治具)
71…排気孔
72…遮蔽板(整流板、整流部材)

Claims (6)

  1. 複数枚の被処理基板の表面上に化合物膜を原子層レベルで一括して成膜する成膜方法であって、
    前記成膜処理が行われる反応容器内に前記各被処理基板を互いに離間させて厚さ方向に沿って平行に配置する第1の工程と、
    隣接する前記各被処理基板間に向けて、前記反応容器内に所定のガスを供給する複数本のガス供給治具のうち、成膜反応を活性化させる活性化ガスを供給する活性化ガス供給治具から前記活性化ガスを供給するとともに、他のガス供給治具からパージガスを供給する第2の工程と、
    前記活性化ガス供給治具から供給するガスを前記活性化ガスから前記パージガスに切り替えるとともに、他のガス供給治具から前記パージガスを供給する第3の工程と、
    隣接する前記各被処理基板間に向けて、成膜すべき化合物膜の主な原料となる原料ガスを供給する原料ガス供給治具から前記原料ガスを供給するとともに、他のガス供給治具から前記パージガスを供給する第4の工程と、
    前記原料ガス供給治具から供給するガスを前記原料ガスから前記パージガスに切り替えるとともに、他のガス供給治具から前記パージガスを供給する第5の工程と、
    を含み、かつ、前記第2の工程から前記第5の工程を複数回繰り返すことを特徴とする成膜方法。
  2. 複数枚の被処理基板の表面上に化合物膜を一括して形成する成膜方法であって、
    前記各被処理基板の周りを流れるガスの流れを整えることができるように前記各被処理基板を互いに所定の間隔ずつ離間させて厚さ方向に沿って並べて配置し、
    成膜反応を活性化させるための活性化ガスおよび成膜すべき化合物膜の主な原料となる原料ガスのうち少なくとも前記原料ガスの前記各被処理基板に対する供給圧力を前記各被処理基板が配置されている雰囲気の圧力の10倍以上に設定するとともに、前記各被処理基板に向けてそれらの基板面と略平行な方向から、パージガスを連続的に供給しつつ前記活性化ガスと前記原料ガスとを交互に切り替えて供給することを特徴とする成膜方法。
  3. 複数枚の被処理基板の表面上に化合物膜を一括して成膜する成膜処理が行われる処理室内に、前記各被処理基板の周りを流れるガスの流れを整えることができるように前記各被処理基板をそれらの表面を互いに所定の間隔ずつ離間させて厚さ方向に沿って並べて配置し、
    前記各被処理基板が配置された前記処理室内にパージガスを供給して前記処理室内をパージした後、
    パージされた前記処理室内に配置されている前記各被処理基板に向けてそれらの基板面と略平行な方向から、前記パージガスを供給し続けるとともに成膜反応を活性化させる活性化ガスを前記各被処理基板の表面上に供給し、
    前記各被処理基板に向けて前記パージガスを供給しつつ、前記活性化ガスの供給を断つとともに、前記化合物膜の主な原料となる原料ガスの前記各被処理基板に対する供給圧力を前記処理室内の圧力の10倍以上に設定して、前記各被処理基板に向けてそれらの基板面と略平行な方向から前記原料ガスを前記各被処理基板の表面上に供給することにより、前記各被処理基板の表面上に前記化合物膜を成膜することを特徴とする成膜方法。
  4. 成膜処理に供される処理室と、
    この処理室内において、成膜処理が施される複数枚の被処理基板の周りを流れるガスの流れを整えることができるように、前記各被処理基板を互いに所定の間隔ずつ離間させつつ厚さ方向に沿って並べて支持可能な基板支持具と、
    前記各被処理基板の表面上に一括して成膜される化合物膜の主な原料となる原料ガス、および前記処理室内をパージするためのパージガスを、前記各被処理基板に向けてそれらの基板面と略平行な方向から供給する原料ガス供給治具と、
    前記原料ガスを前記原料ガス供給治具に供給する原料ガス供給系と、
    前記化合物膜が成膜される際の成膜反応を活性化させる活性化ガス、および前記パージガスを、前記各被処理基板に向けてそれらの基板面と略平行な方向から供給する活性化ガス供給治具と、
    前記活性化ガスを前記活性化ガス供給治具に供給する活性化ガス供給系と、
    前記パージガスを、前記原料ガスおよび前記活性化ガスと選択的に切り替えて前記原料ガス供給治具および前記活性化ガス供給治具に供給するパージガス供給系と、
    を具備してなり、
    前記原料ガスの前記各被処理基板に対する供給圧力は前記処理室内の圧力の10倍以上に設定されることを特徴とする成膜装置。
  5. 前記原料ガス供給治具および前記原料ガス供給系は、前記原料ガスの種類ごとに独立して設けられているとともに、前記原料ガス供給系は、前記原料ガスをその種類ごとに独立に前記原料ガス供給治具に供給可能に設定されていることを特徴とする請求項4に記載の成膜装置。
  6. 請求項1〜3のうちのいずれかの成膜方法により成膜された化合物膜を用いて半導体素子を形成することを特徴とする半導体装置の製造方法。
JP2002179743A 2002-06-20 2002-06-20 成膜方法、成膜装置、および半導体装置の製造方法 Expired - Fee Related JP3670628B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002179743A JP3670628B2 (ja) 2002-06-20 2002-06-20 成膜方法、成膜装置、および半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002179743A JP3670628B2 (ja) 2002-06-20 2002-06-20 成膜方法、成膜装置、および半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2004023043A JP2004023043A (ja) 2004-01-22
JP3670628B2 true JP3670628B2 (ja) 2005-07-13

Family

ID=31177074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002179743A Expired - Fee Related JP3670628B2 (ja) 2002-06-20 2002-06-20 成膜方法、成膜装置、および半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP3670628B2 (ja)

Families Citing this family (322)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039821A (ja) 2002-07-02 2004-02-05 Elpida Memory Inc 半導体装置の製造方法
JP3913723B2 (ja) * 2003-08-15 2007-05-09 株式会社日立国際電気 基板処理装置及び半導体デバイスの製造方法
JP4283140B2 (ja) * 2004-03-11 2009-06-24 三井造船株式会社 薄膜形成方法
DE102004015174A1 (de) * 2004-03-27 2005-10-13 Aixtron Ag Verfahren zum Abscheiden von insbesondere Metalloxiden mittels nicht kontinuierlicher Precursorinjektion
US20050287806A1 (en) 2004-06-24 2005-12-29 Hiroyuki Matsuura Vertical CVD apparatus and CVD method using the same
JP4959122B2 (ja) * 2004-09-27 2012-06-20 株式会社アルバック バナジウム含有膜の形成方法
CN100517599C (zh) * 2004-10-07 2009-07-22 株式会社日立国际电气 衬底处理装置以及半导体器件的制造方法
JP2006222265A (ja) * 2005-02-10 2006-08-24 Hitachi Kokusai Electric Inc 基板処理装置
WO2006098565A1 (en) * 2005-03-16 2006-09-21 Ips Ltd. Method of depositing thin film using ald process
JP4632843B2 (ja) 2005-04-12 2011-02-16 Okiセミコンダクタ株式会社 強誘電体メモリ装置及びその製造方法
US7514119B2 (en) * 2005-04-29 2009-04-07 Linde, Inc. Method and apparatus for using solution based precursors for atomic layer deposition
JP2006324363A (ja) 2005-05-17 2006-11-30 Elpida Memory Inc キャパシタおよびその製造方法
JP5040119B2 (ja) * 2006-02-22 2012-10-03 東京エレクトロン株式会社 耐環境部材、半導体製造装置及び耐環境部材の製造方法
JP5028755B2 (ja) * 2005-06-23 2012-09-19 東京エレクトロン株式会社 半導体処理装置の表面処理方法
US7416994B2 (en) * 2005-06-28 2008-08-26 Micron Technology, Inc. Atomic layer deposition systems and methods including metal beta-diketiminate compounds
JP2007067119A (ja) 2005-08-30 2007-03-15 Elpida Memory Inc 半導体製造装置
US7425761B2 (en) 2005-10-28 2008-09-16 Samsung Electronics Co., Ltd. Method of manufacturing a dielectric film in a capacitor
JP2008053683A (ja) * 2006-07-27 2008-03-06 Matsushita Electric Ind Co Ltd 絶縁膜形成方法、半導体装置、および基板処理装置
JP4228008B2 (ja) 2006-08-23 2009-02-25 エルピーダメモリ株式会社 半導体装置の製造方法
JP5311765B2 (ja) * 2006-09-15 2013-10-09 住友化学株式会社 半導体エピタキシャル結晶基板およびその製造方法
US8043432B2 (en) * 2007-02-12 2011-10-25 Tokyo Electron Limited Atomic layer deposition systems and methods
JPWO2009104621A1 (ja) * 2008-02-19 2011-06-23 東京エレクトロン株式会社 Sr−Ti−O系膜の成膜方法および記憶媒体
JP2009212303A (ja) * 2008-03-04 2009-09-17 Hitachi Kokusai Electric Inc 基板処理方法
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US7833906B2 (en) 2008-12-11 2010-11-16 Asm International N.V. Titanium silicon nitride deposition
WO2010103893A1 (ja) 2009-03-13 2010-09-16 株式会社Adeka 金属含有薄膜の製造方法における残存水分子除去プロセス及びパージソルベント
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US9312155B2 (en) 2011-06-06 2016-04-12 Asm Japan K.K. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US10364496B2 (en) 2011-06-27 2019-07-30 Asm Ip Holding B.V. Dual section module having shared and unshared mass flow controllers
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
JP5761724B2 (ja) * 2012-01-24 2015-08-12 文彦 廣瀬 薄膜形成方法および装置
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
JP5956972B2 (ja) * 2012-12-21 2016-07-27 東京エレクトロン株式会社 成膜方法
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
US9589770B2 (en) 2013-03-08 2017-03-07 Asm Ip Holding B.V. Method and systems for in-situ formation of intermediate reactive species
US9484191B2 (en) 2013-03-08 2016-11-01 Asm Ip Holding B.V. Pulsed remote plasma method and system
EP3022329A4 (en) * 2013-07-16 2017-03-22 3M Innovative Properties Company Sheet coating method
US9240412B2 (en) 2013-09-27 2016-01-19 Asm Ip Holding B.V. Semiconductor structure and device and methods of forming same using selective epitaxial process
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US9447498B2 (en) * 2014-03-18 2016-09-20 Asm Ip Holding B.V. Method for performing uniform processing in gas system-sharing multiple reaction chambers
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US9663857B2 (en) * 2014-04-07 2017-05-30 Asm Ip Holding B.V. Method for stabilizing reaction chamber pressure
JP6243290B2 (ja) * 2014-05-01 2017-12-06 東京エレクトロン株式会社 成膜方法及び成膜装置
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
KR102263121B1 (ko) 2014-12-22 2021-06-09 에이에스엠 아이피 홀딩 비.브이. 반도체 소자 및 그 제조 방법
US10529542B2 (en) 2015-03-11 2020-01-07 Asm Ip Holdings B.V. Cross-flow reactor and method
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
JP2016171244A (ja) * 2015-03-13 2016-09-23 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
JP6096955B2 (ja) * 2016-02-25 2017-03-15 東京エレクトロン株式会社 成膜方法
US10501866B2 (en) 2016-03-09 2019-12-10 Asm Ip Holding B.V. Gas distribution apparatus for improved film uniformity in an epitaxial system
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US9892913B2 (en) 2016-03-24 2018-02-13 Asm Ip Holding B.V. Radial and thickness control via biased multi-port injection settings
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
KR102592471B1 (ko) 2016-05-17 2023-10-20 에이에스엠 아이피 홀딩 비.브이. 금속 배선 형성 방법 및 이를 이용한 반도체 장치의 제조 방법
CN109075070A (zh) * 2016-06-07 2018-12-21 株式会社国际电气 基板处理装置、炉口部以及半导体装置的制造方法及程序
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
KR102354490B1 (ko) 2016-07-27 2022-01-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (ko) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. 기판 가공 장치 및 그 동작 방법
KR102613349B1 (ko) 2016-08-25 2023-12-14 에이에스엠 아이피 홀딩 비.브이. 배기 장치 및 이를 이용한 기판 가공 장치와 박막 제조 방법
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
JP6851173B2 (ja) * 2016-10-21 2021-03-31 東京エレクトロン株式会社 成膜装置および成膜方法
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10643904B2 (en) 2016-11-01 2020-05-05 Asm Ip Holdings B.V. Methods for forming a semiconductor device and related semiconductor device structures
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
KR102546317B1 (ko) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기체 공급 유닛 및 이를 포함하는 기판 처리 장치
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
KR20180068582A (ko) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
KR20180070971A (ko) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
KR102457289B1 (ko) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법 및 반도체 장치의 제조 방법
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10504742B2 (en) 2017-05-31 2019-12-10 Asm Ip Holding B.V. Method of atomic layer etching using hydrogen plasma
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
KR20190009245A (ko) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10605530B2 (en) 2017-07-26 2020-03-31 Asm Ip Holding B.V. Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
KR102491945B1 (ko) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US10607895B2 (en) 2017-09-18 2020-03-31 Asm Ip Holdings B.V. Method for forming a semiconductor device structure comprising a gate fill metal
KR102630301B1 (ko) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. 침투성 재료의 순차 침투 합성 방법 처리 및 이를 이용하여 형성된 구조물 및 장치
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
KR102443047B1 (ko) 2017-11-16 2022-09-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 방법 및 그에 의해 제조된 장치
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
JP7214724B2 (ja) 2017-11-27 2023-01-30 エーエスエム アイピー ホールディング ビー.ブイ. バッチ炉で利用されるウェハカセットを収納するための収納装置
US10290508B1 (en) 2017-12-05 2019-05-14 Asm Ip Holding B.V. Method for forming vertical spacers for spacer-defined patterning
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
TW202325889A (zh) 2018-01-19 2023-07-01 荷蘭商Asm 智慧財產控股公司 沈積方法
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
US10535516B2 (en) 2018-02-01 2020-01-14 Asm Ip Holdings B.V. Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
CN111699278B (zh) 2018-02-14 2023-05-16 Asm Ip私人控股有限公司 通过循环沉积工艺在衬底上沉积含钌膜的方法
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
KR102636427B1 (ko) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 장치
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (ko) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US10510536B2 (en) 2018-03-29 2019-12-17 Asm Ip Holding B.V. Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
KR102501472B1 (ko) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법
TW202344708A (zh) 2018-05-08 2023-11-16 荷蘭商Asm Ip私人控股有限公司 藉由循環沉積製程於基板上沉積氧化物膜之方法及相關裝置結構
TW202349473A (zh) 2018-05-11 2023-12-16 荷蘭商Asm Ip私人控股有限公司 用於基板上形成摻雜金屬碳化物薄膜之方法及相關半導體元件結構
KR102596988B1 (ko) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 그에 의해 제조된 장치
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (ko) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 시스템
KR20210027265A (ko) 2018-06-27 2021-03-10 에이에스엠 아이피 홀딩 비.브이. 금속 함유 재료를 형성하기 위한 주기적 증착 방법 및 금속 함유 재료를 포함하는 막 및 구조체
CN112292478A (zh) 2018-06-27 2021-01-29 Asm Ip私人控股有限公司 用于形成含金属的材料的循环沉积方法及包含含金属的材料的膜和结构
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
KR20200002519A (ko) 2018-06-29 2020-01-08 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법 및 반도체 장치의 제조 방법
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US10483099B1 (en) 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
KR20200030162A (ko) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (zh) 2018-10-01 2020-04-07 Asm Ip控股有限公司 衬底保持设备、包含所述设备的系统及其使用方法
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (ko) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
KR102605121B1 (ko) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
KR102546322B1 (ko) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (ko) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 기판 처리 장치
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (ko) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치를 세정하는 방법
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
TW202037745A (zh) 2018-12-14 2020-10-16 荷蘭商Asm Ip私人控股有限公司 形成裝置結構之方法、其所形成之結構及施行其之系統
TWI819180B (zh) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 藉由循環沈積製程於基板上形成含過渡金屬膜之方法
KR20200091543A (ko) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
CN111524788B (zh) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 氧化硅的拓扑选择性膜形成的方法
KR102638425B1 (ko) 2019-02-20 2024-02-21 에이에스엠 아이피 홀딩 비.브이. 기판 표면 내에 형성된 오목부를 충진하기 위한 방법 및 장치
TW202104632A (zh) 2019-02-20 2021-02-01 荷蘭商Asm Ip私人控股有限公司 用來填充形成於基材表面內之凹部的循環沉積方法及設備
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
KR102626263B1 (ko) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치
TW202100794A (zh) 2019-02-22 2021-01-01 荷蘭商Asm Ip私人控股有限公司 基材處理設備及處理基材之方法
KR20200108242A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체
KR20200108248A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. SiOCN 층을 포함한 구조체 및 이의 형성 방법
KR20200108243A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. SiOC 층을 포함한 구조체 및 이의 형성 방법
JP2020167398A (ja) 2019-03-28 2020-10-08 エーエスエム・アイピー・ホールディング・ベー・フェー ドアオープナーおよびドアオープナーが提供される基材処理装置
KR20200116855A (ko) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. 반도체 소자를 제조하는 방법
KR20200123380A (ko) 2019-04-19 2020-10-29 에이에스엠 아이피 홀딩 비.브이. 층 형성 방법 및 장치
KR20200125453A (ko) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. 기상 반응기 시스템 및 이를 사용하는 방법
KR20200130118A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 비정질 탄소 중합체 막을 개질하는 방법
KR20200130121A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 딥 튜브가 있는 화학물질 공급원 용기
KR20200130652A (ko) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조
JP2020188255A (ja) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. ウェハボートハンドリング装置、縦型バッチ炉および方法
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141002A (ko) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. 배기 가스 분석을 포함한 기상 반응기 시스템을 사용하는 방법
KR20200143254A (ko) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (ko) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법
JP2021015791A (ja) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. 同軸導波管を用いたプラズマ装置、基板処理方法
CN112216646A (zh) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 基板支撑组件及包括其的基板处理装置
KR20220019047A (ko) * 2019-07-16 2022-02-15 가부시키가이샤 코쿠사이 엘렉트릭 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치 및 프로그램
KR20210010307A (ko) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210010820A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 실리콘 게르마늄 구조를 형성하는 방법
KR20210010816A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 라디칼 보조 점화 플라즈마 시스템 및 방법
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
CN112242296A (zh) 2019-07-19 2021-01-19 Asm Ip私人控股有限公司 形成拓扑受控的无定形碳聚合物膜的方法
TW202113936A (zh) 2019-07-29 2021-04-01 荷蘭商Asm Ip私人控股有限公司 用於利用n型摻雜物及/或替代摻雜物選擇性沉積以達成高摻雜物併入之方法
CN112309900A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
CN112309899A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
KR20210018759A (ko) 2019-08-05 2021-02-18 에이에스엠 아이피 홀딩 비.브이. 화학물질 공급원 용기를 위한 액체 레벨 센서
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
JP2021031769A (ja) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. 成膜原料混合ガス生成装置及び成膜装置
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
KR20210024423A (ko) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 홀을 구비한 구조체를 형성하기 위한 방법
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
KR20210024420A (ko) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210029090A (ko) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. 희생 캡핑 층을 이용한 선택적 증착 방법
KR20210029663A (ko) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (zh) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法
TW202129060A (zh) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 基板處理裝置、及基板處理方法
TW202115273A (zh) 2019-10-10 2021-04-16 荷蘭商Asm Ip私人控股有限公司 形成光阻底層之方法及包括光阻底層之結構
KR20210045930A (ko) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. 실리콘 산화물의 토폴로지-선택적 막의 형성 방법
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (ko) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. 막을 선택적으로 에칭하기 위한 장치 및 방법
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (ko) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템
JP6768134B2 (ja) * 2019-11-08 2020-10-14 株式会社Kokusai Electric 基板処理装置および半導体装置の製造方法並びにプログラム
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (ko) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템
CN112951697A (zh) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 基板处理设备
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112885693A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
CN112885692A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
JP2021090042A (ja) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. 基板処理装置、基板処理方法
KR20210070898A (ko) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
CN112992667A (zh) 2019-12-17 2021-06-18 Asm Ip私人控股有限公司 形成氮化钒层的方法和包括氮化钒层的结构
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
KR20210095050A (ko) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법 및 박막 표면 개질 방법
TW202130846A (zh) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 形成包括釩或銦層的結構之方法
KR20210100010A (ko) 2020-02-04 2021-08-13 에이에스엠 아이피 홀딩 비.브이. 대형 물품의 투과율 측정을 위한 방법 및 장치
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
TW202146715A (zh) 2020-02-17 2021-12-16 荷蘭商Asm Ip私人控股有限公司 用於生長磷摻雜矽層之方法及其系統
KR20210116240A (ko) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. 조절성 접합부를 갖는 기판 핸들링 장치
KR20210116249A (ko) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. 록아웃 태그아웃 어셈블리 및 시스템 그리고 이의 사용 방법
CN113394086A (zh) 2020-03-12 2021-09-14 Asm Ip私人控股有限公司 用于制造具有目标拓扑轮廓的层结构的方法
KR20210124042A (ko) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법
TW202146689A (zh) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 阻障層形成方法及半導體裝置的製造方法
TW202145344A (zh) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 用於選擇性蝕刻氧化矽膜之設備及方法
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
TW202146831A (zh) 2020-04-24 2021-12-16 荷蘭商Asm Ip私人控股有限公司 垂直批式熔爐總成、及用於冷卻垂直批式熔爐之方法
KR20210132600A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템
KR20210132576A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐 나이트라이드 함유 층을 형성하는 방법 및 이를 포함하는 구조
KR20210134226A (ko) 2020-04-29 2021-11-09 에이에스엠 아이피 홀딩 비.브이. 고체 소스 전구체 용기
KR20210134869A (ko) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Foup 핸들러를 이용한 foup의 빠른 교환
KR20210141379A (ko) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. 반응기 시스템용 레이저 정렬 고정구
KR20210143653A (ko) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210145078A (ko) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법
TW202201602A (zh) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
TW202218133A (zh) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 形成含矽層之方法
TW202217953A (zh) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
KR20220010438A (ko) 2020-07-17 2022-01-25 에이에스엠 아이피 홀딩 비.브이. 포토리소그래피에 사용하기 위한 구조체 및 방법
TW202204662A (zh) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 用於沉積鉬層之方法及系統
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TW202229613A (zh) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 於階梯式結構上沉積材料的方法
TW202217037A (zh) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 沉積釩金屬的方法、結構、裝置及沉積總成
TW202223136A (zh) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 用於在基板上形成層之方法、及半導體處理系統
TW202235675A (zh) 2020-11-30 2022-09-16 荷蘭商Asm Ip私人控股有限公司 注入器、及基板處理設備
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202231903A (zh) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Also Published As

Publication number Publication date
JP2004023043A (ja) 2004-01-22

Similar Documents

Publication Publication Date Title
JP3670628B2 (ja) 成膜方法、成膜装置、および半導体装置の製造方法
JP5097554B2 (ja) 半導体装置の製造方法、基板処理方法および基板処理装置
TWI415190B (zh) 半導體裝置之製造方法及基板處理裝置
JP5739574B2 (ja) 誘電体膜をパッシベーションする方法
US8435905B2 (en) Manufacturing method of semiconductor device, and substrate processing apparatus
US7541284B2 (en) Method of depositing Ru films having high density
US6808978B2 (en) Method for fabricating metal electrode with atomic layer deposition (ALD) in semiconductor device
JP5087657B2 (ja) 半導体装置の製造方法及び基板処理装置
WO2010110263A1 (ja) 金属窒化膜の成膜方法および記憶媒体
JP2000054134A (ja) 原子層蒸着法を用いた薄膜製造方法
JP2005314713A (ja) ルテニウム膜またはルテニウム酸化物膜の製造方法
KR101775203B1 (ko) 성막 방법
US20040195653A1 (en) Capacitor structure and film forming method and apparatus
JP4559223B2 (ja) 半導体装置の製造方法及び基板処理装置
KR100621765B1 (ko) 반도체 소자에서의 박막 형성방법 및 그에 따른 박막형성장치
KR101757515B1 (ko) 루테늄막의 형성 방법 및 기억 매체
JP4770145B2 (ja) 成膜方法及び成膜装置
US20040045503A1 (en) Method for treating a surface of a reaction chamber
JP2009299101A (ja) 半導体装置の製造方法および基板処理装置
JP4212013B2 (ja) 誘電体膜の作製方法
JP2007059735A (ja) 半導体装置の製造方法および基板処理装置
KR20230096216A (ko) 유기금속 전구체를 이용한 금속 박막 증착 방법
JP2001077110A (ja) 金属酸化物誘電体膜の気相成長方法
JP5385439B2 (ja) 半導体装置の製造方法及び基板処理装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050218

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050414

R150 Certificate of patent or registration of utility model

Ref document number: 3670628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees