JP2004260166A - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP2004260166A
JP2004260166A JP2004040422A JP2004040422A JP2004260166A JP 2004260166 A JP2004260166 A JP 2004260166A JP 2004040422 A JP2004040422 A JP 2004040422A JP 2004040422 A JP2004040422 A JP 2004040422A JP 2004260166 A JP2004260166 A JP 2004260166A
Authority
JP
Japan
Prior art keywords
bit line
insulating layer
storage node
layer
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004040422A
Other languages
English (en)
Other versions
JP4455899B2 (ja
Inventor
Jae-Goo Lee
宰求 李
Cheol-Ju Yun
▲チョル▼柱 尹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2004260166A publication Critical patent/JP2004260166A/ja
Application granted granted Critical
Publication of JP4455899B2 publication Critical patent/JP4455899B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/485Bit line contacts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/315DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor with the capacitor higher than a bit line
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/482Bit lines

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】 ビットラインのショルダーマージンを増加させ、ビットラインローディングキャパシタンスを減少させた半導体装置及びその製造方法を提供する。
【解決手段】 エッチング領域の側面に第2絶縁層に対してエッチング選択比を有する物質からなる第1スペーサを形成した後、第1スペーサをマスクとして利用して第2絶縁層及び第1絶縁層をエッチングしてキャパシターコンタクト領域を露出するストレージノードコンタクトホールを形成する。これと同時に、第1スペーサ下部の各ビットラインの側面に第2絶縁層からなる第2スペーサを形成する。ストレージノードコンタクトホールを第2導電層で埋立ててストレージノードコンタクトパッドを形成する。
【選択図】 図29


Description

本発明は半導体装置及びその製造方法に関し、より詳細にはダイナミックランダムアクセスメモリー(以下DRAMと称する)装置及びその製造方法に関する。
半導体装置の製造技術が発達されメモリー装置に対する応用が拡大されるにつれて、高容量を有するメモリー装置が開発されてきた。特に、1つのキャパシターと1つトランジスターでメモリーセルが構成されるDRAM装置はその集積度が著しく向上されつつある。
半導体装置の集積度が増加されるにつれて、素子と素子または層と層を高導電性薄膜で連結するコンタクトホールの大きさは減少する反面、層間絶縁膜の厚さは増加している。従って、コンタクトホールのアスペクト比(即ち、ホールの直径に対するホールの長さ比)が増加してフォトリソグラフィ工程でコンタクトホールのマージンが減少されることで、既存のコンタクト形成方法では微細の大きさのコンタクトホールを形成することが難しくなった。
従って、DRAM装置ではコンタクトホールのアスペクト比を減少させるためにランディングパッドを使用し、0.1μm以下のパターンの大きさでは自己整合コンタクト(以下、SACと称する)構造を利用して整列マージンの減少による短絡発生の問題を解決している。
図1乃至図4は従来方法によるSAC構造を有するDRAM装置の製造方法を説明するための断面図である。ここで、図1及び図3はビットライン方向の断面図であり、図2及び図4はワードライン方向の断面図である。
図1及び図2に示すように、シャロートレンチ素子分離(shallow trench isolation;STI)のような一般の素子分離工程で半導体基板10上に素子分離領域12を形成してアクティブ領域を定義する。その後、前記基板10上にワードラインに提供されるゲート電極14及びソース/ドレーン領域(図示せず)を含むMOSトランジスターを形成する、前記ゲート電極14の上面には窒化膜からなるゲートキャッピング層パターン16が形成されその側面には窒化物からなるゲートスペーサ18が形成される。
前記MOSトランジスターが形成された基板10の全面に酸化物からなる第1層間絶縁膜20を形成した後、化学機械的研摩工程またはエッチバック工程によって前記第1層間絶縁膜20を平坦化する。続いて、窒化物に対する高いエッチング選択比を有するエッチング条件で前記第1層間絶縁膜20をエッチングして前記ゲート電極14に対して自己整合されながら前記ソース/ドレーン領域を露出させるコンタクトホールを形成する。
前記第1層間絶縁膜20及びコンタクトホール上にドーピングされたポリシリコン層を蒸着した後、CMP工程またはエッチバック工程を通じてポリシング層をノード分離して前記ソース/ドレーン領域と接触するSACパッド22a、22bを形成する。
続いて、前記第1層間絶縁膜20及び前記SACパッド22a、22b上に酸化物からなる第2層間絶縁膜24を約1000〜3000Åの厚さで蒸着した後、CMPまたはエッチバック工程で前記第2層間絶縁膜24を平坦化する。一般のフォトリソグラフィ工程によって前記第2層間絶縁膜24を部分的にエッチングしてドレーン領域上のSACパッド22bを露出させるビットラインコンタクトホール(図示せず)を形成した後、前記ビットラインコンタクトホール及び第2層間絶縁膜24上にチタン/チタン窒化物からなる障壁金属層(図示せず)及び約400〜800Åの厚さのダングステン層を含むビットライン用第1導電層26を形成し、その上に窒化物を約1000〜3000Åの厚さに蒸着してビットラインマスク層28を形成する。その後、フォトリソグラフィ工程で前記ビットラインマスク層28及び第1導電層26をエッチングして第1導電層26及びビットラインマスク層28からなるビットライン30を形成する。ここで、前記ビットラインマスク層28はストレージノードコンタクトホールを形成するための後続のエッチング工程時ビットライン30とストレージノードコンタクトホールとの間の絶縁間隔(ショルダーと言う)を広めるために一般に2000Å以上の厚さに厚く形成する。
続いて、前記ビットライン30及び第2層間絶縁膜24上に後続工程で形成される第3層間絶縁膜に対してエッチング選択比を有する物質、例えば、窒化膜を蒸着しこれを異方性エッチングして前記ビットライン30の側面のビットラインスペーサ32を形成する。このように、ビットライン30のパターニングの直後窒化物からなったビットラインスペーサ32を形成するためのエッチング工程を行うので、同一な窒化物からなるビットラインマスク層28の表面が一部分損失される。
続いて、前記結果物の全面にBPSG、USG、HDP酸化物またはCDV酸化物からなる第3層間絶縁膜34を蒸着した後、CMPまたはエッチバック工程で前記第3層間絶縁膜34を平坦化する。
図3及び図4を参照すると、フォトリソグラフィ工程で前記第3層間絶縁膜間34上にストレージノードコンタクトホールを限定するフォトレジストパターン(図示せず)を形成した後、窒化物からなるビットラインスペーサ32に対するエッチング選択比を有するエッチングガスで前記第3層間絶縁膜34及び第2層間絶縁膜24を乾式エッチングして前記ソース領域上のSACパッド22aを露出するストレージノードコンタクトホール36を形成する。ここで、前記ストレージノードコンタクトホール36のノットオープン(not open;未開口)が発生しないように過度エッチングを遂行する。従って、ビットラインマスク層28にリセスが発生してビットライン30とストレージノードコンタクトホール36との間のショルダー部分が脆弱になる。
続いて、前記フォトレジストパターンを除去した後、前記ストレージノードコンタクトホール36の内部にドーピングされたポリシリコンからなる第2導電層を蒸着し、CMPまたはエッチバック工程で前記第2導電層をノード分離してストレージノードコンタクトパッド38を形成する。
前述した従来の方法によると、SAC工程のマージンを確保するために窒化膜からなるビットラインマスク層28の厚さを増加させなければならないのでビットライン30の高さが高くなる。一方、パターンのデザインルールルールが0.1μm以下に減少されることによりビットライン30とビットライン30との間の間隔が減少するので、ビットライン30のアスペクト比が増加するようになる。また、ビットライン30の側面にビットラインスペーサ32が形成されている状態で第3層間絶縁膜34を蒸着すると、ビットライン30の間の間隔がさらに減少してビットライン30のアスペクト比が増加するようになる。その結果、ビットライン30とビットライン30との間のギャップを第3層間絶縁膜34が充分に満たせなくボイドが発生する。このように、第3層間絶縁膜34内にボイドが形成されると、後続の洗浄工程によって前記ボイドが拡張されてストレージノードコンタクトパッド用第2導電層を蒸着するとき前記第2導電層が拡張されたボイド内に浸透することになる。従って、ストレージノードコンタクトパッド38が互いに連結されて隣接したストレージノードコンタクトパッド38間にブリッジが発生する。
また、SAC工程のマージンを確保するためにビットラインマスク層28の厚さを増加させると、ビットラインパターニングのためのフォトレジスト膜の厚さも増加されなければならない。この場合、フォトレジスト膜の倒れによるビットライン30のリフティングが発生することになる。
また、ビットラインスペーサ32を形成するためのエッチング工程とストレージノードコンタクトホール36を形成するためのエッチング工程時ビットラインマスク層28が攻撃(attack)を受けるので、ビットライン30とストレージノードコンタクトパッド38が電気的に短絡されて単一ビット不良が発生することができる。
ビットラインはDRAM装置のメモリーセルに蓄積された電荷の有・無を検出するための配線であり、周辺回路領域のセンス増幅器に連結される。メモリーセルに蓄積された電荷の検出によってビットラインの電圧変動が検出され、このような電圧変動はメモリーセルストレージキャパシタンスが大きいほどまたは、ビットラインローディングキャパシタンスが小さいほど大きくなる。従って、ビットラインローディングキャパシタンスを小さく作ることがセンス増幅器の感度を向上させることであるため、信頼性向上及び応答速度の向上などの側面でビットラインローディングキャパシタンスは可能なかぎり低いのが望ましい。
前述した従来の方法ではSAC工程によるビットラインのショルダーマージンを確保するためにビットライン30の側壁に誘電率が高い窒化物からなるビットラインスペーサ32を形成するので、寄生キャパシタンス、即ち、ビットライン30とストレージノードコンタクトパッド38との間及びビットライン30と隣接したビットライン30との間のビットラインローディングキャパシタンスが大きくなる。キャパシターCは厚さが薄くなるほど大きくなるが、パターンのデザインルールが減少されるほど前記ビットラインスペーサ32の厚さが薄くなり、これによってビットラインローディングキャパシタンスがさらに増加するようになる。従って、ローディングキャパシタンスを考慮してセルアレイを構成するビットラインの数を減少させなければならないので、単位ビットライン当りのセル数が減少することによってチップ効率が減少される。
「特許文献1」及び「特許文献2」にはビットラインの側壁の誘電率が小さいシリコン酸化膜からなるスペーサを形成してビットラインローディングキャパシタンスを減少することができるコンタクト形成方法が開示されている。しかし、これらの方法によると、ビットラインマスク層の厚さを減少させるには限界があって層間絶縁膜のギャップ埋立てマージンが減少されるか、ビットラインのショルダーマージンが殆どなくビットラインとストレージノードコンタクトパッドとの間に電気的短絡が発生する問題がある。
米国特許第6、458、692号明細書 特開平2001−217450号公報
従って、本発明の第1目的はビットラインとビットラインとの間のギャップをボイドなしに効果的に埋立て、ビットラインのショルダーマージンを増加させ、ビットラインローディングキャパシタンスを減少させることができる半導体装置を提供することにある。
本発明の第2目的はビットラインとビットラインとの間のギャップをボイドなしに効果的に埋立て、ビットラインのショルダーマージンを増加させ、ビットラインローディングキャパシタンスを減少させることができる半導体装置の製造方法を提供することにある。
前記した第1目的を達成するために本発明は、キャパシターコンタクト領域を有する半導体基板と、前記基板上に形成された第1絶縁層と、前記キャパシターコンタクト領域の間の第1絶縁層上に形成され、第1導電性パターン及び前記第1導電性パターン上に積層されたビットラインマスクパターンを含むビットラインと、前記ビットラインマスクパターンの上端部から前記第1導電性パターンの上の所定部位まで各ビットライン側面上部に形成され、酸化物系の物質に対してエッチング選択比を有する物質からなる第1スペーサと、前記第1スペーサ下部の各ビットラインの側面に形成され、酸化物系の第2絶縁層からなる第2スペーサと、前記第1及び第2スペーサの外周面に接しながら前記第1絶縁層を切り開いて前記キャパシターコンタクト領域を露出するそれぞれのストレージノードコンタクトホールの内部に形成されたストレージノードコンタクトパッド用第2導電層と、を含むことを特徴とする半導体装置を提供する。
本発明の望ましい一実施例によると、前記第1スペーサをポリシリコンで形成して前記ストレージノードコンタクトパッドが前記第2導電層と第1スペーサからなるT型の断面構造を有する。
前記第2目的を達成するために本発明は、キャパシターコンタクト領域を有する半導体基板上に第1絶縁層を形成する段階と、前記キャパシターコンタクト領域の間の第1絶縁層上に第1導電性パターン及び前記第1導電性パターン上に積層されたビットラインマスクパターンを含むビットラインを形成する段階と、前記ビットライン及び第1絶縁層上に酸化物系の物質からなる第2絶縁層を形成する段階と、前記結果物上に前記第2絶縁層に対してエッチング選択比を有する物質からなるコンタクトパターンを形成してストレージノードコンタクトホールを開口する段階と、前記コンタクトパターンをマスクとして利用して前記ストレージノードコンタクトホール領域の第2絶縁層を前記第1導電性パターン上の所定部位まで部分エッチングする段階と、前記エッチング領域の側面に前記第2絶縁層に対してエッチング選択比を有する物質からなる第1スペーサを形成する段階と、前記第1スペーサをマスクとして利用して前記第2絶縁層及び第1絶縁層をエッチングして前記キャパシターコンタクト領域を露出するストレージノードコンタクトホールを形成すると同時に、前記第1スペーサ下部の各ビットラインの側面に前記第2絶縁層からなる第2スペーサを形成する段階と、前記ストレージノードコンタクトホールを第2導電層で埋立ててストレージノードコンタクトパッドを形成する段階と、を含むことを特徴とする半導体装置の製造方法を提供する。
本発明の望ましい一実施例によると、それぞれのビットラインは前記ビットラインマスクパターン上に積層された1つ以上のバッファ層をさらに含む。
前記コンタクトパターンは前記ビットラインと直交する方向に隣接する複数個のストレージノードコンタクトホールを併合して(merged)開口するライン形態で形成することができ、ストレージノードコンタクトホール領域を1つずつ開口するコンタクト形態で形成することができる。
また、本発明の前記した第2目的は、キャパシターコンタクト領域を有する半導体基板上に第1絶縁層を形成する段階と、前記キャパシターコンタクト領域の間の第1絶縁層上に第1導電性パターン及び前記第1導電性パターン上に積層されたビットラインマスクパターンを含むビットラインを形成する段階と、前記ビットライン及び第1絶縁層上に酸化物系の物質からなる第2絶縁層を形成する段階と、前記ビットラインの上面まで前記第2絶縁層を平坦化する段階と、各ビットラインの上面の上にストレージノードコンタクトホール領域を開口するように前記第2絶縁層に対してエッチング選択比を有する物質からなるコンタクトパターンを形成する段階と、各コンタクトパターンの側壁に前記第2絶縁層に対してエッチング選択比を有する物質からなる第1スペーサを形成する段階と、前記コンタクトパターン及びコンタクトスペーサをマスクとして利用して前記第2絶縁層及び第1絶縁層をエッチングして前記キャパシターコンタクト領域を露出するストレージノードコンタクトホールを形成すると同時に、各ビットラインの側面に前記第2絶縁層からなる第2スペーサを形成する段階と、前記ストレージノードコンタクトホールを第2導電層で埋立ててストレージノードコンタクトパッドを形成する段階と、を含むことを特徴とする半導体装置の製造方法によって達成されることができる。
本発明によると、ビットラインのパターニングの直後ビットラインスペーサを形成しないで、第2絶縁層の部分エッチング後ビットラインマスクパターンの側面に第1スペーサを形成するので、ビットラインマスクパターンの損失を減少させることができる。これによってビットラインマスクパターンの厚さを最小限に低くすることができ、ビットラインスペーサを形成していない状態で第2絶縁層を蒸着することでビットラインのアスペクト比が減少される。従って、ビットラインとビットラインとの間のギャップマージンを増加させることができる。
また、ビットラインマスクパターンの側面に第1スペーサを形成した後ストレージノードコンタクトエッチング工程を行うので、ビットラインのショルダーマージンが増加してビットラインとストレージノードコンタクトパッドとの間の電気的短絡を防止することができる。
また、ビットラインの側面に誘電率が小さい酸化物系の物質からなる第2スペーサが形成されるので、ビットラインとストレージノードコンタクトパッドとの間及びビットラインと隣接したビットラインと間の寄生キャパシタンス、即ち、ビットラインローディングキャパシタンスを減少させることができる。
以下、図面を参照して本発明の望ましい一実施形態をより詳細に説明する。
実施例1
図5乃至図31は本発明の第1実施例によるDRAM装置の製造方法を示すための平面図及び断面図である。
図5はワードライン107及びビットライン125が形成された基板の平面図であり、図6及び図7はそれぞれ図5のAA’線及びBB’線による断面図である。シャロートレンチ素子分離STIのような一般の素子分離工程を通じて半導体基板100に素子分離領域102を形成してアクティブ領域を定義する。前記アクティブ領域はバー形態やT字形態で形成される。
熱的酸化法で前記基板100のアクティブ領域の表面に薄いゲート酸化膜(図示せず)を成長させた後、その上にゲート導電層及びゲートマスク層を順次に蒸着する。望ましくは、前記ゲート導電層はドーピングされたポリシリコン及び金属シリサイド層が積層されたポリサイド構造で形成する。前記ゲートマスク層は後続工程で形成される層間絶縁膜に対してエッチング選択比を有する物質、望ましくは、窒化物系の物質で形成する。続いて、フォトリソグラフィ工程で前記ゲートマスク層及びゲート導電層をパターニングしてゲートマスクパターン106及びゲート導電性パターン104を含むワードライン107を形成する。具体的に、フォトレジストマスクを利用して前記ゲートマスク層及びゲート導電層を同時にパターニングすることも可能であり、フォトレジストマスクを利用してゲートマスク層をさきにパターニングした後フォトレジストマスクを除去し、パターニングされたマスク層を利用してゲート導電層をパターニングすることもできる。
前記ワードライン107が形成された基板100の全面に後続工程で形成される層間絶縁膜に対してエッチング選択比を有する物質、望ましくは、窒化物系の絶縁膜を蒸着し、前記絶縁膜を異方性エッチングしてそれぞれのワードライン107の側面にゲートスペーサ108を形成する。従って、前記ワードライン107はその上面及び側面が絶縁膜、即ち、ゲートマスクパターン106及びゲートスペーサ108で囲まれるので隣接したワードライン107と電気的に隔離される。
その後、一般のイオン注入工程を通じて前記ゲートスペーサ108両側のアクティブ領域の表面のMOSトランジスターのソース/ドレーン領域(図示せず)を形成する。ここで、前記ゲートスペーサ108を形成する前に、LDDイオン注入を実施してワードライン107の両側のアクティブ領域の表面に低濃度のソース/ドレーン領域を形成することによって、LDD構造のソース/ドレーンを具現することができる。前記ソース/ドレーン領域のうち1つはキャパシターストレージ電極が接続させるストレージノードコンタクト領域であり、他の1つはビットラインが接続されるビットラインコンタクト領域である。
続いて、MOSトランジスターを含む基板100の全面に酸化物系の物質からなる層間絶縁膜110を形成した後、CMP、エッチバックまたはこれらを組み合わせた工程として前記層間絶縁膜110を平坦化する。その後、窒化物からなるゲートマスクパターン106に対して高いエッチング選択比を有するエッチングガスを利用して前記層間絶縁膜110を異方性エッチングすることによって、前記ワードライン107に自己整合されながらソース/ドレーン領域を露出させるコンタクトホールを形成する。
前記コンタクトホールを埋立てるように高濃度の不純物でドーピングされたポリシリコン層を蒸着した後、前記ゲートマスクパターン106の上部表面が露出されるまでCMP工程、エッチバック工程またはCMPことエッチバックとを組み合わせた工程によって前記ポリシリコン層及び層間絶縁膜110を平坦化する。そうすると、それぞれのコンタクトホール内にノード分離されたSACパッド112a、112bが形成される。本実施例では、ソース領域と接触するSACパッド112aがストレージノードコンタクト領域になり、ドレーン領域と接触するSACパッドは112bがビットラインコンタクト領域になる。
前述したように、SACパッド112a、112bを形成した後、結果物の全面にBPSG、USG、HDP酸化物またはCVD酸化物のような酸化物系の物質を1000〜3000Å位の厚さ、望ましくは約2000Åの厚さで蒸着して第1絶縁層114を形成した後、後続フォトリソグラフィ工程のマージンを確保するためにCMP工程、エッチバック工程またはCMPとエッチバックとを組み合わせた工程のうちのいずれか1つで前記第1絶縁層114の表面を平坦化する。このとき、前記第1絶縁層114がビットラインの下部で約1000〜2000Åの厚さであるように平坦化を行う。前記第1絶縁層114はSACパッド112a、112bとその上に形成されるビットラインを互いに隔離させる層間絶縁膜で使用される。
その後、フォトリソグラフ工程によって前記第1絶縁層114をエッチングしてドレーン領域上のSACパッド112bを露出するビットラインコンタクトホール(図示せず)を形成し、結果物の全面に第1導電層、ビットラインマスク層、第1バッファ層及び第2バッファ層を順次的に蒸着する。望ましくは、前記第1導電層は第1金属及び/または前記第1金属の化合物、例えばチタン/チタン窒化物からなる第1層及び第2金属、例えばダングステンからなる第2層の複合層で形成する。前記ビットラインマスク層はストレージノードコンタクトホールを形成するための後続のエッチング工程時その下部の第1導電層を保護する役割をし、後続工程で蒸着される第2絶縁層に対してエッチング選択比を有する物質、望ましくは窒化物で形成する。
前記第1バッファ層は前記第2絶縁層を部分エッチングする後続工程時その下部のビットラインマスク層を保護する役割をし、前記第2絶縁層に対してエッチング選択比を有しながら、後続工程で蒸着されるストレージノードコンタクトパッド用第2導電層と類似する研摩速度(removal rate)を有する物質、望ましくはポリシリコンで形成する。前記第2バッファ層は後続のビットラインパターニング工程時第1導電層をエッチングする過程で第1バッファ層のリセスを防止する役割をし、前記第1バッファ層に対してエッチング選択比を有する物質、望ましくは酸化物で形成する。
続いて、フォトリソグラフィ工程で前記第2バッファ層、第1バッファ層ビットラインマスク層及び第1導電層をパターニングして多層構造のビットライン125を形成する。各ビットライン125は第1導電性パターン116、ビットラインマスクパターン118、第1バッファ層パターン120及び第2バッファ層パターン122を含む。前記ビットライン125はワードライン107と直交するように形成される。
前述した段階によると、二重層で形成された第1導電性パターン116が直接ビットラインコンタクトホールに接触されて形成される。一方、前記ビットラインコンタクトホールの内部にビットラインコンタクトパッドを形成した後、前記ビットラインコンタクトパッドに直接接触されるように第1導電性パターン116を形成することもできる。即ち、前記ビットラインコンタクトホールが形成された結果物の全面にチタン/チタン窒化物からなる障壁金属層及びダングステンからなる第3金属層を蒸着した後、エッチバックまたはCMP工程で前記第1絶縁層114の表面が露出されるまで第3金属層を除去する。そうすると、前記ビットラインコンタクトホールの内部に前記障壁金属層と第3金属層からなるビットラインコンタクトパッドが形成される。このようにビットラインコンタクトパッドが形成されると、結果物の全面に第4金属例えばダングステンからなる第1導電層を蒸着する。従って、ビットラインコンタクトパッドを形成する場合には前記第1導電層が単一層として形成される。
前記ビットライン125及び第1絶縁層114上にBPSG、USG、HDP酸化物またはCVD酸化物のような酸化物系の物質を蒸着して第2絶縁層124を形成した後、CMP工程、エッチバック工程またはCMPとエッチバックとを組み合わせた工程で前記ビットライン125の上部表面まで第2絶縁層124を平坦化する。ここで、前記第1導電性パターン116がダングステンを含んでいる場合、高温酸化膜のように高温で蒸着されるかBPSGやSOGのように蒸着した後高温のベーク工程が必要とされる酸化膜で第2絶縁層124を形成すると第1導電性パターン116の側面が露出されているのでダングステンが酸化される問題が発生する。従って、このような問題を防止するために低温で蒸着しながらボイドなしにギャップの埋立てを具現できるHDP酸化物で第2絶縁層124を形成することが望ましい。
また、ビットライン125とビットライン125との間でボイドが発生することを除去するために前記第2絶縁層124を形成する前に窒化膜を約50〜200Åの厚さで蒸着することもできる。
図8は犠牲層126及びコンタクトパターン128が形成された基板の平面図であり、図9、図10及び図11はそれぞれ図8のAA’線、BB’線及びCC’線による断面図である。前記平坦化された第2絶縁層124及びビットライン125上に前記第2絶縁層124に比べて速いエッチング速度を有する酸化物を蒸着して犠牲層126を形成する。例えば、前記第2絶縁層124がHDP酸化物で形成されると、前記犠牲層126は高濃度のBPSGで形成する。前記犠牲層126は後続するストレージノードコンタクトパッド用第2導電層の平坦化工程時ビットラインマスクパターン118の損失を減少してダングステンからなる第1導電性パターン116を保護する役割をする。
続いて、前記犠牲層126上に前記第2絶縁層124に対してエッチング選択比を有しながら後続工程で蒸着されるストレージノードコンタクトパッド用第2導電層と類似する研摩速度を有する物質、望ましくはポリシリコンを蒸着しこれをフォトリソグラフィ工程でパターニングしてストレージノードコンタクトホールが形成される領域を開口するストレージノードコンタクトパターン128を形成する。前記コンタクトパターン128は後続写真工程のマージンを増大させ後続する第2絶縁層124の部分エッチング工程時ストレージノードコンタクトパッドが形成されない領域(図8のCC`方向の領域、周辺回路領域及びコア領域)をバッファリングする役割をする。望ましくは、それぞれのコンタクトパターン128はビットライン125と直交する方向、即ち、ワードライン方向に隣接する複数個のストレージノードコンタクトホールを併合して開口するライン形態で形成する。このようにライン形態でコンタクトパターン128を形成すると、後続写真工程時不均衡を防止することができ、後続するストレージノードコンタクトエッチング工程時開口面積がひろくてエッチング阻止問題を解決することができる。また、ライン形態のコンタクトパターン128によって開口面積がセルアレイ内で同一になるため、後続する第2絶縁層124の部分エッチング工程時第2絶縁層124の厚さの変動を減少させることができる。
また、図12は第1スペーサ130が形成された基板の平面図であり、図13、図14及び図15はそれぞれ図12のAA’線、BB’線及びCC’線による断面図である。前述したようにライン形のコンタクトパターン128を形成した後、前記コンタクトパターン128をエッチングマスクとして利用したタイムエッチング方式により酸化物からなる犠牲層126及び第2絶縁層124を第1導電性パターン116上の所定部位まで部分エッチングする。望ましくは、ダングステンからなる第1導電性パターン116から上の方向に約500Å以上になる地点でエッチングを終了する。前記エッチング工程により第2バッファ層パターン122が除去される。
その後、結果物の全面に前記第2絶縁層124に対してエッチング選択比を有しながら後続工程で蒸着されるストレージノードコンタクトパッド用第2導電層と類似する研摩速度を有する物質、望ましくはポリシリコンを約200〜600Åの厚さで蒸着し、これを異方性エッチングして前記部分エッチングされた領域の側面に第1スペーサ130を形成する。具体的に、ポリシリコンからなる前記第1スペーサ130はビットライン125を構成する第1バッファ層パターン120の側面及びビットラインマスクパターン118の側面の一部分に形成される。前記第1スペーサ130をビットライン125の側面上で第1導電性パターン116上の所定部位までにのみ形成する理由は後続工程で第1スペーサ130下部のビットライン125側面に第2絶縁層124からなる第2スペーサを形成してビットラインローディングキャパシタンスを減少させるためである。一般にポリシリコンは酸化物だけではなく窒化物に対しても高いエッチング選択比を有するので、前記第1スペーサ130をポリシリコンで形成する場合後続のストレージノードコンタクトエッチング工程時ビットラインマスクパターン118の損失を防止しショルダーマージンを充分に確保することができる。
このとき、ストレージノードコンタクトパッドが形成されない領域(図8のCC’方向の領域、周辺回路領域及びコア領域)はコンタクトパターン128で被覆されているので前記第1スペーサ130が形成されない。
図16はストレージノードコンタクトホール131が形成された基板の平面図であり、図17、図18及び図19はそれぞれ図16のAA’線、BB’線及びCC’線による断面図である。ポリシリコンからなる第1スペーサ130をエッチングマスクとして利用して酸化物からなる第2絶縁層124及び第1絶縁層114を乾式エッチングすることによってキャパシターコンタクト領域、即ち、ソース領域上のSACパッド112aを露出するストレージノードコンタクトホール131を形成する。同時に、前記第1スペーサ130の下部の各ビットライン125の側面に前記第2絶縁層からなる第2スペーサ124aが形成される。即ち、各ビットライン125の側面の上部にはポリシリコンからなる第1スペーサ130が形成され、下部には酸化物からなる第2スペーサ124aが形成される。
このとき、ストレージノードコンタクトパッドが形成されていない領域(図8のCC’方向の領域、周辺回路領域及びコア領域)はコンタクトパターン128で被覆されているのでエッチングが行われない。
図20は第2導電層132が形成された基板の平面図であり、図21、図22及び図23はそれぞれ図20のAA’線、BB’線及びCC’線による断面図である。前述したようにストレージノードコンタクトホール131を形成した後、一般の洗浄工程を進行してストレージノードコンタクトホール131を通じて露出されたSACパッド112a上に成長された自然酸化膜、ポリマー及び各種異物質を除去する。
続いて、前記ストレージノードコンタクトホール131を埋立てるようにビットライン125、第2絶縁層124及びコンタクトパターン128の上部に連続的に第2導電層132、例えばポリシリコン層を蒸着した後、CMP、エッチバックまたはCMPとエッチバックとを組み合わせた平坦化工程でストレージノードコンタクトパッドが形成されていない領域に残されている犠牲層126の上部表面が露出されるまで前記第2導電層132を除去する。前記平坦化工程によってポリシリコンからなるコンタクトパターン128が除去される。
図24は第2導電層132が突出された基板の平面図であり、図25、図26及び図27はそれぞれ図24のAA’線、BB’線及びCC’線による断面図である。ストレージノードコンタクトパッドが形成されない領域で露出されている犠牲層126はその下部の第2絶縁層124に比べて速いエッチング速度を有するので、湿式エッチング工程で前記犠牲層126をエッチングするとその下部の第2絶縁層124でエッチングが終了される。従って、前記犠牲層126を湿式エッチングで除去して第2導電層132が突出されたメサ(mesa)構造を形成する。前記犠牲層126を除去する理由は次のようである。
即ち、前記コンタクトパターン128によって開口された領域とカバーされた領域間の1000Å程度の段差が発生するので、この状態でストレージノードコンタクトパッドのノード分離のためにCMP工程を行いながらビットラインマスクパターン118が損失されるてその下部の第1導電性パターン116が露出される。従って、酸化物対比ポリシリコンのリセスが速いのでストレージノードコンタクトパッドが形成されていない領域、即ち、コンタクトパターン128でカバーされている領域の犠牲層126を除去すると、このような段差を克服することができる。
図28はストレージノードコンタクトパッド134が形成された基板の平面図であり、図29、図30及び図31はそれぞれ図28のAA’線、BB’線及びCC’線による断面図である。前述したように犠牲層126を除去した後、前記ビットラインマスクパターン118の上部表面が露出されるまでCMP、エッチバックまたはCMPとエッチバックとを組み合わせた工程のうちいずれか1つで前記第2導電層132を除去する。そうすると、前記ストレージノードコンタクトホール131の内部にノード分離されたストレージノードコンタクトパッド134が形成される。このとき、ビットライン125を構成しているポリシリコンからなる第1バッファ層パターン120が除去される。
本実施例ではビットライン125の側面上部に形成される第1スペーサ130をポリシリコンで形成するので、前記ストレージノードコンタクトパッド134は第2導電層132と第1スペーサ130で構成されたT型の断面構造を有する。
続いて、一般のキャパシター形成工程で前記ストレージノードコンタクトパッド134上にストレージ電極、誘電体膜及びプレート電極で構成されたキャパシター(図示せず)を形成する。
前述したように本発明の第1実施例によると、第2絶縁層124上に犠牲層126を形成し、ライン形態のコンタクトパターン128を利用して前記第2絶縁層124を部分エッチングした後、エッチング領域の側面のポリシリコンからなる第1スペーサ130を形成する。その後、前記第1スペーサ130をエッチングマスクとして利用してストレージノードコンタクトホール131を形成し、前記ストレージノードコンタクトホール131を第2導電層132で埋立てる。
従来の方法では後続のストレージノードコンタクトエッチング工程時ビットラインマスク層のみでビットライン導電層の上面を保護するので、前記ビットラインマスク層を厚く形成した。一方、本実施例でビットラインマスクパターン118上に形成される第1及び第2バッファ層パターン120、122と犠牲層126が後続のストレージノードコンタクトエッチング工程時ビットラインの第1導電性パターン116を保護するだけではなく、ビットライン125のパターニング後ビットラインスペーサを形成しないで第2絶縁層124を蒸着するのでビットラインマスクパターン118の損失を減少させることができる。従って、ビットラインマスクパターン118の厚さを最小限に低くしてビットライン125のアスペクト比を減少させることで、ビットライン125とビットライン125との間のギャップ埋立てマージンを増加させることができる。ビットラインマスクパターン118の厚さが低くなるとビットラインパターニングのためのフォトレジスト膜の厚さで減少させることができてフォトレジスト膜の倒れ及びビットラインリフティングを防止することができる。
また、窒化物からなるビットラインマスクパターン118の上部側面に窒化物及び酸化物に対してエッチング選択比を有するポリシリコンからなる第1スペーサ130を形成した後ストレージノードコンタクトエッチング工程を行うので、ストレージノードコンタクトホール131に対するビットライン125のショルダーマージンが増加する。従って、ビットライン125とストレージノードコンタクトパッド134との間の電気的短絡を防止して単一ビット不良を改善することができる。
また、ビットライン125の側面下部に第2絶縁層、即ち、誘電率が低い酸化物からなる第2スペーサ124aが形成されるので、ビットライン125とストレージノードコンタクトパッド134との間及びビットライン125と隣接したビットライン125との間の寄生キャパシタンス、即ち、ビットラインローディングキャパシタンス25〜30%程度に減少させることができる。ビットラインローディングキャパシタンスが減少すると単位ビットライン当りのセル数が増加してセルの効率が向上され、これによってウェーハ内の有効チップの数を3%位増加させることができる。
実施例2
図32乃至図43は本発明の第2実施例によるDRAM装置の製造方法を示すための断面図である。ここで、図32、図34、図36、図38、図40及び図42はビットライン方向の断面図であり、図33、図35、図37、図39、図41及び図43はワードライン方向の断面図である。
図32及び図33ワードライン207及びSACパッド212a、212bを形成する段階を図示する。シャロートレンチ素子分離STIのような一般の素子分離工程を通じて半導体基板200に素子分離領域202を形成してアクティブ領域を定義する。続いて、熱的酸化法で前記基板200のアクティブ領域の表面に薄いゲート酸化膜(図示せず)を成長させた後、その上にゲート導電層及びゲートマスク層を順次に蒸着する。望ましくは、前記ゲート導電層はドーピングされたポリシリコン層及び金属シリサイド層が積層されたポリサイド構造で形成する。前記ゲートマスク層は後続工程で形成される層間絶縁膜に対してエッチング選択比を有する物質、望ましくは窒化膜系の物質で形成する。続いて、フォトリソグラフィ工程で前記ゲートマスク層及びゲートそ導電層をパターニングしてワードライン207を形成する。前記ワードライン207を形成する。前記ワードライン207はゲート導電性パターン204及びゲートマスクパターン206を含む。
前記ワードライン207が形成された基板200の全面に後続工程で形成される層間絶縁膜に対してエッチング選択比を有する物質、望ましくは窒化物系の絶縁膜を蒸着し、前記絶縁膜を異方性エッチングしてそれぞれのワードライン207の側面にゲートスペーサを208を形成する。その後、一般のイオン注入工程を通じて前記ゲートスペーサ208の両側のアクティブ領域の表面にMOSトランジスターのソース/ドレーン領域(図示せず)を形成する。ここで、前記ゲートスペーサ208を形成する前に、LDDイオン注入を実施してワードライン207両側のアクティブ領域の表面に低濃度のソース/ドレーン領域を形成することによって、LDD構造のソース/ドレーンを具現することができる。前記ソース/ドレーン領域にうちいずれか1つはキャパシターのストレージ電極が接続されるストレージノードコンタクト領域であり、残りの1つはビットラインが接続されるビットラインコンタクト領域である。
続いて、MOSトランジスターを含む基板200の全面に酸化物系の物質からなる層間絶縁膜210を形成した後、CMP工程、エッチバック工程またはCMPとエッチバックとを組み合わせた工程で前記層間絶縁膜を平坦化する。その後、窒化物からなるゲートマスクパターン206に対して高いエッチング選択比を有するエッチングガスを利用して前記層間絶縁膜210を異方性エッチングすることによって、前記ワードライン207に自己整合されながらソース/ドレーン領域を露出させるコンタクトホールを形成する。
前記コンタクトホールを埋立てるように高濃度の不純物でドーピングされたポリシリコン層を蒸着した後、CMP工程、エッチバック工程またはCMPとエッチバックとを組み合わせた工程で前記ポリシリコン層を平坦化してそれぞれのコンタクトホール内に分離されたSACパッド212a、212bを形成する。前記SACパッド212a、212bは図示したように層間絶縁膜210の表面と平坦化されるか、第1実施例のようにゲートマスクパターン206の表面と平坦化することができる。本実施例において、ソース領域と接触するSACパッド212aはストレージノードコンタクト領域になり、ドレーン領域接触するSACパッド212bはビットラインコンタクト領域になる。
図34及び図35は第1絶縁層214、ビットライン219、第2絶縁層220及びコンタクトマスク層221を形成する段階を図示する。前述したように、SACパッド212a、212bを形成した後、結果物の全面に酸化物系の物質を1000〜3000Å位の厚さ、望ましくは2000Åの厚さで蒸着して第1絶縁層214を形成した後、後続写真工程のマージンを確保するためにCMP工程、エッチバック工程またはCMPとエッチバックとを組み合わせた工程で前記第1絶縁層214の表面を平坦化する。このとき、前記第1絶縁層214がビットラインの下部で約1000〜2000Åの厚さで残されるように平坦化を行う。前記第1絶縁層214はSACパッド212a、212bとその上に形成されるビットラインを互いに隔離させる層間絶縁膜で使用される。
その後、フォトリソグラフィ工程により第1絶縁層214をエッチングしてドレーン領域上のSACパッド212bを露出するビットラインコンタクトホール(図示せず)を形成し、結果物の全面に第1導電層及びビットラインマスク層を順次的に蒸着する。望ましくは、前記第1導電層は第1金属及び/または前記第1金属の化合物、例えばチタン/チタン窒化物からなる第1層及び第2金属、例えばダングステンからなる第2層の複合層で形成する。前記ビットラインマスク層はストレージノードコンタクトホールを形成するための後続のエッチング工程時その下部の第1導電層を保護する役割をし、後続工程で蒸着される第2絶縁層の対してエッチング選択比を有する物質、望ましくは、窒化物からなる。
続いて、フォトリソグラフィ工程で前記ビットラインマスク層及び第1導電層をパターニングしてビットラインマスクパターン218及び第1導電性パターン216を含むビットライン219を形成する。前記ビットライン219はワードライン207と直交するように形成される。
前述した段階によると、二重層で構成された第1導電性パターン216が直接ビットラインコンタクトホールに接触されて形成されるが、前述した第1実施例と同様にビットラインコンタクトホールの内部にチタン/チタン窒化物のような障壁金属層及びダングステンのような第3金属層からなるビットラインコンタクトパッドを形成した後、前記ビットラインコンタクトパッドに直接接触されるようにダングステンのような単一層からなる第1導電性パターン216を形成することもできる。
前記ビットライン219及び第1絶縁層214上に酸化物系の物質、望ましくはHDP酸化物を蒸着して第2絶縁層220を形成した後、CMP工程、エッチバック工程またはCMPとエッチバックとを組み合わせた工程のうちいずれか1つで前記ビットライン219上の所定部位まで前記第2絶縁層220を平坦化する。ここで、ビットライン219とビットライン219との間にボイドが発生することを除去するために前記第2絶縁層220を形成する前に窒化膜を約50〜200Åの厚さで蒸着することもできる。
その後、前記第2絶縁層220上に第2絶縁層220に対してエッチング選択比を有しながら後続工程で蒸着されるストレージノードコンタクトパッド用第2導電層と類似する研摩速度を有する物質、望ましくはポリシリコンを蒸着してコンタクトマスク層221を形成する。
図36及び図37はコンタクトパターン222を形成する段階を図示する。フォトリソグラフィ工程で前記コンタクトマスク層221をパターニングしてストレージノードコンタクトホールが形成される領域を開口するストレージノードコンタクトパターン222を形成する。望ましくは、前記コンタクトパターン222はストレージノードコンタクトホール領域を1つずつ開口するコンタクト形態で形成する。
続いて、前記コンタクトパターン222をエッチングマスクとして利用したタイムエッチング方式により酸化物からなる第2絶縁層220を第1導電性パターン216上の所定部位まで部分エッチングする。望ましくは、ダングステンからなる第1導電性パターン216から上の方向に約500Å以上になる地点でエッチングを終了する。ここで、前記第2絶縁層220のエッチング領域223に幅S2がビットライン219とビットライン219との間の間隔S1より小さいか同一であるように部分エッチングを行う。即ち、各ビットライン219の上面の第2絶縁層220の幅W2は前記ビットライン219の幅W1より大きいか同一である。
図38及び図39は第1スペーサ224を形成する段階を図示する。前記第2絶縁層220が部分エッチングされた結果物の全面に第2絶縁層220に対してエッチング選択比を有しながら後続工程で蒸着されるストレージノードコンタクトパッド用第2導電層と類似する研摩速度を有する物質、望ましくはポリシリコンを約200〜600Åの厚さで蒸着しこれを異方性エッチングして前記エッチング領域223の側面に第1スペーサ224を形成する。具体的に、ポリシリコンからなる前記第1スペーサ224はビットラインマスクパターン218の上端部で第1導電性パターン216上の所定部位まで各ビットライン219の側面上部に形成される。ポリシリコンからなる第1スペーサ224は酸化物だけではなく窒化物に対しても高いエッチング選択比を有するので、後続のストレージノードコンタクトエッチング工程時ビットラインマスクパターン218の損失を防止しショルダーマージンを充分に確保することができる。
図40及び図41はストレージノードコンタクトホール226を形成する段階を図示する。前記ポリシリコンからなる第1スペーサ224をエッチングマスクとして利用して酸化物からなる第2絶縁層220及び第1絶縁層214を乾式エッチングすることによってキャパシターコンタクト領域、即ち、ソース領域上のSACパッド212aを露出するストレージノードコンタクトホール226を形成する。これと同時に、前記第1スペーサ224の下部の各ビットライン219の側面に前記第2絶縁層からなる第2スペーサ220aが形成される。即ち、各ビットライン219の側面の上部にはポリシリコンからなる第1スペーサ224が形成され、下部には酸化物からなる第2スペーサ220aが形成される。
図42及び図43はストレージノードコンタクトパッド230を形成する段階を図示する。前述したようにストレージノードコンタクトホール226を形成した後、一般の洗浄工程を行ってストレージノードコンタクトホール226を通じて露出されたSACパッド212a上に成長された自然酸化膜、ポリマー及び各種異物質を除去する。
その後、前記ストレージノードコンタクトホール226を埋立てるように結果物の全面に第2導電層228、例えばポリシリコン層を蒸着した後、CMP工程、エッチバック工程またはCMPとエッチバックとを組み合わせた平坦化工程でビットライン219上の第2絶縁層220の上部表面が露出されるまで前記第2導電層228を除去する。そうすると、前記ストレージノードコンタクトホール226の内部にノード分離されたストレージノードコンタクトパッド230が形成される。
本実施例ではビットライン129の側面上部に形成される第1スペーサ224をポリシリコンで形成するので、前記ストレージノードコンタクトパッド230は第2導電層228と第1スペーサ224で構成されたT型の断面構造を有する。
続いて、一般のキャパシター形成工程で前記ストレージノードコンタクトパッド230上にストレージ電極、誘電体膜及びプレート電極で構成されたキャパシター(図示せず)を形成する。
前述したように、本発明の第2実施例によると、ストレージノードコンタクトパターン222をコンタクト形態で形成することを除いては第1実施例と同一な効果を得ることができる。即ち、前記第2絶縁層220をビットライン219上の所定部位まで平坦化させることで、後続のストレージノードコンタクトエッチング工程時ビットライン219上面の第2絶縁層220によってビットラインマスクパターン218の損失を減少させることができる。
また、ビットラインマスクパターン218の側面上部に形成された第1スペーサ224によってストレージノードコンタクトホール226に対するビットライン219のショルダーマージンが増加してビットライン219とストレージノードコンタクトパッド230との間の電気的短絡を防止することができる。
また、ビットライン219の側面下部に誘電率が小さい酸化物からなる第2スペーサ220aが形成されるので、ビットラインローディングキャパシタンスを減少させることができる。
実施例3
図44乃至図49は本発明の第3実施例によるDRAM装置の製造法本発明のを示すための断面図である。
図44は第1絶縁層314、ビットライン219、第2絶縁層320及びコンタクトマスク層321を形成する段階を図示する。前述した第1実施例または第2実施例と同一な方法で半導体基板300上に素子分離領域302、MOSトランジスター、層間絶縁膜310及びSACパッド312aを形成する。
その後、層間絶縁膜310及びSACパッド312a上に酸化物系の物質を蒸着して第1絶縁層314を形成した後、後続写真工程のマージンを確保するためにCMP工程、エッチバック工程またはCMPとエッチバックとを組み合わせた工程で前記第1絶縁層314の表面を平坦化する。前記第1絶縁層314はSACパッド312aとその上に形成されるビットラインを互いに隔離させる層間絶縁膜として使用される。
続いて、前述した第1実施例または第2実施例と同一な方法でビットラインコンタクトホール(図示せず)及びビットライン319を形成する。具体的に前記ビットライン319はチタン/チタン窒化物の第1層とダングステンの第2層で構成された第1導電性パターン316及び前記第1導電性パターン316上に積層され窒化物からなるビットラインマスクパターン318を含む。また、前述した第1実施例と同様にビットラインコンタクトホールの内部にチタン/チタン窒化物のような障壁金属層及びダングステンのような第3金属層からなるビットラインコンタクトパッドを形成した後、前記ビットラインコンタクトパッドに直接接触されるようにダングステンのような単一層からなる第1導電性パターン316を形成することもできる。
前記ビットライン319及び第1絶縁層314上に酸化物系の物質、望ましくはHDP酸化物を蒸着して第2絶縁層320を形成した後、CMP工程、エッチバック工程またはCMPとエッチバックとを組み合わせた工程のうちいずれか1つで前記ビットライン319の上部表面が露出されるまで前記第2絶縁層320を平坦化する。
その後、前記ビットライン319及び第2絶縁層320上にポリシリコンまたはチタン窒化物のように絶縁層320に対してエッチング選択比を有する物質、望ましくはポリシリコンからなるコンタクトマスク層321を形成する。
図45はコンタクトパターン322を形成する段階を図示する。フォトリソグラフィ工程で形成される領域を開口するストレージノードコンタクトパターン322を形成する。望ましくは、前記コンタクトパターン322はビットライン219と直交する方向、即ち、ワードライン方向に隣接する複数個のストレージノードコンタクトホールを併合して開口するライン形態で形成する。前記コンタクトパターン322はビットライン219の幅W3より小さい幅W4で形成することが望ましい。前記コンタクトパターン322を形成するためのエッチング工程時窒化物に対する高いエッチング選択比によりビットラインマスクパターン318の損失が100Å以下に制御する。
図46は第1スペーサ324を形成する段階を図示する。前記コンタクトパターン322及び第2絶縁層320上に第2絶縁層320に対してエッチング選択比を有する物質、例えばポリシリコン、窒化物、ダングステンまたはチタン窒化物を数百Åの厚さに蒸着しこれを異方性エッチングして前記コンタクトパターン322の側面の第1スペーサ324を形成する。望ましくは、前記第1スペーサ324はポリシリコンで形成する。
図47はストレージノードコンタクトホール326を形成する段階を図示する。前記第1スペーサ324をエッチングマスクとして利用して酸化物からなる第2絶縁層320及び第1絶縁層314を乾式エッチングすることによってキャパシターコンタクト領域、即ち、ソース領域上のSACパッド312aを露出するストレージノードコンタクトホール326を形成する。これと同時に、各ビットライン319の側面に前記第2絶縁層からなる第2スペーサ320aが形成される。
図48は第2導電層327を蒸着する段階を図示する。前述したように、ストレージノードコンタクトホール326を形成した後、一般の洗浄工程を行ってストレージノードコンタクトホール326を通じて露出されたSACパッド312a上に成長された自然酸化膜、ポリマー及び各種異物質を除去する。
続いて、前記ストレージノードコンタクトホール326を埋立てるように結果物の全面に第2導電層327、例えばポリシリコン層を蒸着する。
図49はストレージノードコンタクトパッド328を形成する段階を図示する。薬液を利用したスピン工程、湿式エッチバック工程、CMP工程またはこれを組み合わせた工程でビットラインマスクパターン318の上部表面が露出されるまで前記第2導電層327を除去する。そうすると、前記ストレージノードコンタクトホール326の内部にノード分離されたストレージノードコンタクトパッド328が形成される。
続いて、一般のキャパシター形成工程で前記ストレージノードコンタクトパッド328上にストレージ電極、誘電体膜及びプレート電極で構成されたキャパシター(図示せず)を形成する。
前述したように、本発明の第3実施例によると、酸化物に対してエッチング選択比を有する物質からなるコンタクトパターン322及び第1スペーサ324をビットライン319を形成した後、前記コンタクトパターン322及び第1スペーサ324をエッチングマスクとして利用して酸化物からなる第2絶縁層320及び第1絶縁層314をエッチングすることによってストレージノードコンタクトホール326を形成する。従って、ストレージノードコンタクトエッチング工程時前記コンタクトパターン322及び第1スペーサ324によってビットラインマスクパターン318の損失が減少されるので、ビットラインマスクパターン318の厚さを最小限で低くしてビットライン319の高さを減少させることができる。
また、ストレージノードコンタクトホール326をSAC方式で形成しないのでビットライン319のショルダーマージンが増加してビットライン319とストレージノードコンタクトパッド328との間の電気的短絡による単一ビット不良を防止することができる。
また、ビットライン319の側面全体に誘電率が低い酸化物からなる第2スペーサ320aが形成されるので、ビットラインローディングキャパシタンスを減少することができる。
前述したように、本発明によると、ビットラインのパターニング後ビットラインスペーサを形成しないで、第2絶縁層の部分エッチング後ビットラインマスク層の側面に第1スペーサを形成するのでビットラインマスク層の損失を減少させることができる。これによって、ビットラインマスク層の厚さを最小限に低くすることができ、ビットラインスペーサを形成しない状態で第2絶縁層を蒸着するのでビットラインのアスペクト比が減少される。従って、ビットラインとビットラインとの間のギャップマージンを増加させることができる。
また、ビットラインマスク層の側面に第1スペーサを形成した後、ストレージノードコンタクトエッチング工程を行うので、ビットラインのショルダーマージンが増加してビットラインとストレージノードコンタクトパッド間の電気的短絡を防止することができる。
また、ビットライン側面に誘電率が小さい酸化物系の物質からなる第2スペーサが形成されるので、ビットラインとストレージノードコンタクトパッドの間及びビットラインと隣接するビットラインとの間の寄生キャパシタンス、即ち、ビットラインローディングキャパシタンスを減少させることができる。
以上、本発明の実施例によって詳細に説明したが、本発明はこれに限定されず本発明が属する技術分野において通常の知識を有するものであれば本発明の思想と精神を離れることなく、本発明を修正または変更できる。
従来の方法による自己整合コンタクト構造を有するDRAM装置の製造方法を示すための断面図である。 従来の方法による自己整合コンタクト構造を有するDRAM装置の製造方法を示すための断面図である。 従来の方法による自己整合コンタクト構造を有するDRAM装置の製造方法を示すための断面図である。 従来の方法による自己整合コンタクト構造を有するDRAM装置の製造方法を示すための断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第1実施例によるDRAM装置の製造方法を示す平面図及び断面図である。 本発明の第2実施例によるDRAM装置の製造方法を示す断面図である。 本発明の第2実施例によるDRAM装置の製造方法を示す断面図である。 本発明の第2実施例によるDRAM装置の製造方法を示す断面図である。 本発明の第2実施例によるDRAM装置の製造方法を示す断面図である。 本発明の第2実施例によるDRAM装置の製造方法を示す断面図である。 本発明の第2実施例によるDRAM装置の製造方法を示す断面図である。 本発明の第2実施例によるDRAM装置の製造方法を示す断面図である。 本発明の第2実施例によるDRAM装置の製造方法を示す断面図である。 本発明の第2実施例によるDRAM装置の製造方法を示す断面図である。 本発明の第2実施例によるDRAM装置の製造方法を示す断面図である。 本発明の第2実施例によるDRAM装置の製造方法を示す断面図である。 本発明の第2実施例によるDRAM装置の製造方法を示す断面図である。 本発明の第3実施例によるDRAM装置の製造方法を示すための断面図である。 本発明の第3実施例によるDRAM装置の製造方法を示すための断面図である。 本発明の第3実施例によるDRAM装置の製造方法を示すための断面図である。 本発明の第3実施例によるDRAM装置の製造方法を示すための断面図である。 本発明の第3実施例によるDRAM装置の製造方法を示すための断面図である。 本発明の第3実施例によるDRAM装置の製造方法を示すための断面図である。
符号の説明
100、200、300 半導体基板
102、202、302 素子分離領域
107、207 ワードライン
110、210、310 層間絶縁膜
112、212、312 SACパッド
114、214、314 第1絶縁層
125、219、319 ビットライン
124、220、320 第2絶縁層
126 犠牲層
128、222、322 コンタクトパターン
130、224、324 第1スペーサ
124a、220a、320a 第2スペーサ
131、226、326 ストレージノードコンタクトホール
134、230、328 ストレージノードコンタクトパッド

Claims (37)

  1. キャパシターコンタクト領域を有する半導体基板と、
    前記半導体基板上に形成された第1絶縁層と、
    前記キャパシターコンタクト領域の間の第1絶縁層上に形成され、第1導電性パターン及び前記導電性パターン上に積層されたビットラインマスクパターンを含むビットラインと、
    前記ビットラインマスクパターン上端部から前記第1導電性パターン上の所定部位まで各ビットライン側面上部に形成され、酸化物系の物質に対してエッチング選択比を有する物質からなる第1スペーサと、
    前記第1スペーサ下部の各ビットラインの側面に形成され、酸化物系の第2絶縁層からなる第2スペーサと、
    前記第1及び第2スペーサの外周面に接しながら前記第1絶縁層を切り開いて前記キャパシターコンタクト領域を露出するそれぞれのストレージノードコンタクトホールの内部に形成されたストレージノードコンタクトパッド用第2導電層と、を含むことを特徴とする半導体装置。
  2. 前記キャパシターコンタクト領域はランディングパッドを含むことを特徴とする請求項1記載の半導体装置。
  3. 前記第1導電性パターンはダングステン層を含むことを特徴とする請求項1記載の半導体装置。
  4. 前記ビットラインマスクパターンは窒化物を含むことを特徴とする請求項1記載の半導体装置。
  5. 前記第1スペーサはポリシリコンを含むことを特徴とする請求項1記載の半導体装置。
  6. 前記ストレージノードコンタクトパッドは前記第2導電層と第1スペーサで構成されてT型の断面構造を有することを特徴とする請求項5記載の半導体装置。
  7. 前記第2導電層は前記ビットラインマスクパターンの上面が露出されるまで平坦化されて形成されたことを特徴とする請求項1記載の半導体装置。
  8. 前記第2絶縁層は各ビットラインの上面及び側面に形成されたことを特徴とする請求項1記載の半導体装置。
  9. 各ビットライン上面の第2絶縁層は前記ビットラインの幅より大きいか同一な幅で形成されたことを特徴とする請求項8記載の半導体装置。
  10. 前記第2導電層はビットライン上面の第2絶縁層の表面が露出されるまで形成されたことを特徴とする請求項8記載の半導体装置。
  11. 前記第1スペーサは前記ストレージノードコンタクトパッド領域のみに形成されたことを特徴とする請求項1記載の半導体装置。
  12. キャパシターコンタクト領域を有する半導体基板上に第1絶縁層を形成する段階と、
    前記キャパシターコンタクト領域の間の第1絶縁層上に第1導電性パターン及び前記第1導電性パターン上に積層されたビットラインマスクパターンを含むビットラインを形成する段階と、
    前記ビットライン及び第1絶縁層上に酸化物系の物質からなる第2絶縁層を形成する段階と、
    前記結果物上に前記第2絶縁層に対してエッチング選択比を有する物質からなるコンタクトパターンを形成してストレージノードコンタクトホールを開口する段階と、
    前記コンタクトパターンをマスクとして利用して前記ストレージノードコンタクトホール領域の第2絶縁層を前記第1導電性パターン上の所定部位まで部分エッチングする段階と、
    前記エッチング領域の側面に前記第2絶縁層に対してエッチング選択比を有する物質からなる第1スペーサを形成する段階と、
    前記第1スペーサをマスクとして利用して前記第2絶縁層及び第1絶縁層をエッチングして前記キャパシターコンタクト領域を露出するストレージノードコンタクトホールを形成すると同時に、前記第1スペーサ下部の各ビットラインの側面に前記第2絶縁層からなる第2スペーサを形成する段階と、
    前記ストレージノードコンタクトホールを第2導電層で埋立ててストレージノードコンタクトパッドを形成する段階と、を含むことを特徴とする半導体装置の製造方法。
  13. 前記キャパシターコンタクト領域はランディングパッドで形成することを特徴とする請求項12記載の半導体装置の製造方法。
  14. 前記第1導電性パターンはダングステン層を含むことを特徴とする請求項12記載の半導体装置の製造方法。
  15. 前記ビットラインマスクパターンは窒化物からなることを特徴とする請求項12記載の半導体装置の製造方法。
  16. それぞれのビットラインは前記ビットラインマスクパターン上に積層された1つ以上のバッファ層をさらに含むことを特徴とする請求項12記載の半導体装置の製造方法。
  17. 前記1つ以上のバッファ層は前記ビットラインマスクパターンを保護するための第1バッファ層及び前記第1バッファ層を保護するように前記第1バッファ層上に積層された第2バッファ層を含むことを特徴とする請求項16記載の半導体装置の製造方法。
  18. 前記第1バッファ層はポリシリコンからなり、前記第2バッファ層は酸化物からなることを特徴とする請求項17記載の半導体装置の製造方法。
  19. 前記コンタクトパターンを形成する段階の前に、
    前記ビットラインの上面まで前記第2絶縁層を平坦化する段階と、
    前記ビットライン及び第2絶縁層上に前記第2絶縁層より速いエッチング速度を有する物質からなる犠牲層を形成する段階と、をさらに具備することを特徴とする請求項12記載の半導体装置の製造方法。
  20. 前記第2絶縁層はHDP酸化物からなり、前記犠牲層はBPSGからなることを特徴とする請求項19記載の半導体装置の製造方法。
  21. 前記ストレージノードコンタクトパッドを形成する段階は、
    前記ストレージノードコンタクトホールを含む結果物の全面に第2導電層を蒸着する段階と、
    ストレージノードコンタクトパッドが形成されていない領域の犠牲層が露出されるまで前記第2導電層を除去する段階と、
    前記露出された犠牲層を除去して前記第2絶縁層上に前記第2導電層を突出させる段階と、
    前記ビットラインマスクパターンの上面が露出されるまで前記第2導電層を除去してストレージノードコンタクトパッドを分離する段階と、を含むことを特徴とする請求項19記載の半導体装置の製造方法。
  22. 前記ストレージノードコンタクトパッドをノード分離する段階は化学機械的研摩CMP工程、エッチバック工程またはCMPとエッチバックとを組み合わせた工程で実施することを特徴とする請求項21記載の半導体装置の製造方法。
  23. 前記コンタクトパターン及び前記第1スペーサはポリシリコンからなることを特徴とする請求項12記載の半導体装置の製造方法。
  24. 前記コンタクトパッドを形成する前に、
    前記ビットライン上の所定部位まで前記第2絶縁層を平坦化させる段階をさらに具備し、
    前記第2絶縁層を部分エッチングする段階と、
    エッチング領域の幅がビットラインとビットラインとの間の間隔より小さいか同一であるように前記第2絶縁層をエッチングすることを特徴とする請求項12記載の半導体装置の製造方法。
  25. 前記ストレージノードコンタクトパッドを形成する段階は、
    前記ストレージノードコンタクトホールを埋立てるように前記コンタクトパターン上に第2導電層を蒸着する段階と、
    各ビットライン上面の上の第2絶縁層の表面が露出されるまで前記第2導電層を除去してストレージノードコンタクトパッドをノード分離する段階と、を含むことを特徴とする請求項24記載の半導体装置の製造方法。
  26. 前記コンタクトパターンは前記ビットラインと直交する方向に隣接する複数個のストレージノードコンタクトホールを併合して(merged)開口するライン形態で形成することを特徴とする請求項12記載の半導体装置の製造方法。
  27. 前記コンタクトパターンはストレージノードコンタクトホール領域を1つずつ開口するコンタクト形態で形成することを特徴とする請求項12記載の半導体装置の製造方法。
  28. 前記第2絶縁層を部分エッチングする段階で、前記第1導電性パターン上の500Å以上になる地点まで前記第2絶縁層をエッチングすることを特徴とする請求項12記載の半導体装置製造方法。
  29. キャパシターコンタクト領域を有する半導体基板上に第1絶縁層を形成する段階と、
    前記キャパシターコンタクト領域の間の第1絶縁層上に第1導電性パターン及び前記第1導電性パターン上に積層されたビットラインマスクパターンを含むビットラインを形成する段階と、
    前記ビットライン及び第1絶縁層上に酸化物系の物質からなる第2絶縁層を形成する段階と、
    前記ビットラインの上面まで前記第2絶縁層を平坦化する段階と、
    各ビットラインの上面の上にストレージノードコンタクトホール領域を開口するように前記第2絶縁層に対してエッチング選択比を有する物質からなるコンタクトパターンを形成する段階と、
    各コンタクトパターンの側壁に前記第2絶縁層に対してエッチング選択比を有する物質からなる第1スペーサを形成する段階と、
    前記コンタクトパターン及びコンタクトスペーサをマスクとして利用して前記第2絶縁層及び第1絶縁層をエッチングして前記キャパシターコンタクト領域を露出するストレージノードコンタクトホールを形成すると同時に、各ビットラインの側面に前記第2絶縁層からなる第2スペーサを形成する段階と、
    前記ストレージノードコンタクトホールを第2導電層で埋立ててストレージノードコンタクトパッドを形成する段階と、を含むことを特徴とする半導体装置の製造方法。
  30. 前記第1導電性パターンはダングステン層を含むことを特徴とする請求項29記載の半導体装置の製造方法。
  31. 前記ビットラインマスクパターンは窒化物からなることを特徴とする請求項29記載の半導体装置の製造方法。
  32. 前記コンタクトパターンはポリシリコンまたはチタン窒化物からなることを特徴とする請求項29記載の半導体装置の製造方法。
  33. 前記第1スペーサはポリシリコン、窒化物、ダングステン及びチタン窒化物のうち選択されたいずれか1つで形成することを特徴とする請求項29記載の半導体装置の製造方法。
  34. 前記コンタクトパターンは前記ビットラインの幅より小さい幅で形成することを特徴とする請求項29記載の半導体装置の製造方法。
  35. 前記コンタクトパターンは前記ビットラインと直交する方向に隣接するストレージノードコンタクトホールを併合して(merged)開口するライン形態で形成することを特徴とする請求項29記載の半導体装置の製造方法。
  36. 前記ストレージノードコンタクトパッドを形成する段階は、
    前記ストレージノードコンタクトホールを埋立てるように前記コンタクトパターン上に第2導電層を蒸着する段階と、
    前記ビットラインマスクパターンの上面が露出されるまで前記第2導電層を除去してストレージノードコンタクトパッドをノード分離する段階と、を含むことを特徴とする請求項29記載の半導体装置の製造方法。
  37. 前記ストレージノードコンタクトパッドをノード分離する段階は化学機械的研摩CMP工程、エッチバック工程またはCMPとエッチバックとを組み合わせた工程で実施することを特徴とする請求項36記載の半導体装置の製造方法。
JP2004040422A 2003-02-24 2004-02-17 半導体装置の製造方法 Expired - Lifetime JP4455899B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0011310A KR100539272B1 (ko) 2003-02-24 2003-02-24 반도체 장치 및 그 제조방법

Publications (2)

Publication Number Publication Date
JP2004260166A true JP2004260166A (ja) 2004-09-16
JP4455899B2 JP4455899B2 (ja) 2010-04-21

Family

ID=32844886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040422A Expired - Lifetime JP4455899B2 (ja) 2003-02-24 2004-02-17 半導体装置の製造方法

Country Status (6)

Country Link
US (3) US6916738B2 (ja)
JP (1) JP4455899B2 (ja)
KR (1) KR100539272B1 (ja)
CN (1) CN1312775C (ja)
DE (1) DE102004008773B4 (ja)
TW (1) TWI247356B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150257A (ja) * 2005-11-28 2007-06-14 Hynix Semiconductor Inc 半導体素子のストレージノードコンタクトプラグの形成方法
US7777265B2 (en) 2003-02-24 2010-08-17 Samsung Electronics Co., Ltd. Semiconductor device having contact barrier and method of manufacturing the same

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346730B1 (en) * 1999-04-06 2002-02-12 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device having a pixel TFT formed in a display region and a drive circuit formed in the periphery of the display region on the same substrate
DE10055290C1 (de) * 2000-11-08 2002-07-25 Infineon Technologies Ag Herstellungsverfahren für eine integrierte Schaltung
KR100505062B1 (ko) * 2003-02-22 2005-07-29 삼성전자주식회사 반도체 소자의 제조방법
KR100752644B1 (ko) * 2005-04-12 2007-08-29 삼성전자주식회사 반도체 소자의 셀영역 레이아웃 및 이를 이용한 콘택패드제조방법
KR100640639B1 (ko) * 2005-04-19 2006-10-31 삼성전자주식회사 미세콘택을 포함하는 반도체소자 및 그 제조방법
US7709367B2 (en) * 2006-06-30 2010-05-04 Hynix Semiconductor Inc. Method for fabricating storage node contact in semiconductor device
US7741717B2 (en) * 2006-07-05 2010-06-22 Hynix Semiconductor, Inc. Metal line of semiconductor device and method of fabricating the same
KR100776141B1 (ko) * 2006-08-18 2007-11-15 동부일렉트로닉스 주식회사 반도체 장치의 금속 배선 형성 방법
JP2008091536A (ja) * 2006-09-29 2008-04-17 Toshiba Corp 半導体装置及びその製造方法
KR100881728B1 (ko) * 2007-05-04 2009-02-06 주식회사 하이닉스반도체 루테늄전극을 구비한 반도체소자 및 그 제조 방법
JP4551913B2 (ja) 2007-06-01 2010-09-29 株式会社東芝 半導体装置の製造方法
KR100854860B1 (ko) * 2007-06-27 2008-08-28 주식회사 하이닉스반도체 메모리 소자의 제조방법
KR100877107B1 (ko) * 2007-06-28 2009-01-07 주식회사 하이닉스반도체 반도체 소자의 층간절연막 형성방법
JP2009054972A (ja) * 2007-08-29 2009-03-12 Elpida Memory Inc 半導体装置の製造方法
KR101368803B1 (ko) 2007-10-02 2014-02-28 삼성전자주식회사 반도체 기억 장치 및 그 형성 방법
US7632736B2 (en) * 2007-12-18 2009-12-15 Intel Corporation Self-aligned contact formation utilizing sacrificial polysilicon
US20110168575A1 (en) * 2010-01-08 2011-07-14 Roche Diaagnostics Operations, Inc. Sample characterization based on ac measurement methods
KR20120007708A (ko) * 2010-07-15 2012-01-25 주식회사 하이닉스반도체 반도체 소자 및 그 형성방법
KR101851727B1 (ko) * 2011-12-16 2018-06-12 에스케이하이닉스 주식회사 반도체 소자 및 그 제조 방법
KR102008317B1 (ko) * 2012-03-07 2019-08-07 삼성전자주식회사 반도체 소자 및 반도체 소자의 제조방법
US8551844B1 (en) 2012-05-25 2013-10-08 Micron Technology, Inc. Methods of forming semiconductor constructions
KR101983219B1 (ko) * 2012-05-31 2019-05-29 에스케이하이닉스 주식회사 에어갭을 구비한 반도체장치 및 그 제조 방법
KR102001417B1 (ko) * 2012-10-23 2019-07-19 삼성전자주식회사 반도체 장치
KR102088402B1 (ko) * 2014-04-29 2020-03-12 삼성전자 주식회사 자기 정렬된 콘택 패드를 갖는 반도체 소자 및 그 제조 방법
US9607893B1 (en) * 2016-07-06 2017-03-28 Globalfoundries Inc. Method of forming self-aligned metal lines and vias
KR102406663B1 (ko) * 2016-07-06 2022-06-08 삼성전자주식회사 집적회로 소자의 제조 방법
CN107871742B (zh) * 2016-09-23 2019-10-18 联华电子股份有限公司 动态随机存取存储器元件
KR20180070774A (ko) * 2016-12-16 2018-06-27 삼성디스플레이 주식회사 기판, 전자 장치 및 이를 구비하는 표시 장치
US9934970B1 (en) * 2017-01-11 2018-04-03 International Business Machines Corporation Self aligned pattern formation post spacer etchback in tight pitch configurations
CN109427786B (zh) * 2017-08-21 2021-08-17 联华电子股份有限公司 半导体存储装置及其制作工艺
CN107546226A (zh) * 2017-09-29 2018-01-05 睿力集成电路有限公司 存储器及其制造方法
TWI642333B (zh) 2017-10-25 2018-11-21 欣興電子股份有限公司 電路板及其製造方法
TWI642334B (zh) 2017-10-25 2018-11-21 欣興電子股份有限公司 電路板及其製造方法
CN110875314A (zh) * 2018-08-30 2020-03-10 长鑫存储技术有限公司 位线结构及其制备方法、存储器
CN110931485B (zh) * 2018-09-20 2024-06-07 长鑫存储技术有限公司 半导体存储器电容连接线结构及制备方法
CN110718532B (zh) 2018-10-09 2021-09-28 联华电子股份有限公司 半导体元件及其制作方法
US10957699B2 (en) * 2019-04-08 2021-03-23 Micron Technology, Inc. Integrated assemblies which include two different types of silicon nitride, and methods of forming integrated assemblies
CN112582261B (zh) * 2019-09-27 2022-03-08 长鑫存储技术有限公司 存储器节点接触窗的制作方法
US11424186B2 (en) * 2019-10-29 2022-08-23 Samsung Electronics Co., Ltd. Semiconductor memory device and apparatus including the same
CN114121778A (zh) * 2020-08-26 2022-03-01 长鑫存储技术有限公司 存储器及其制造方法
CN114121813A (zh) 2020-08-31 2022-03-01 长鑫存储技术有限公司 一种存储器制作方法
KR20220047431A (ko) 2020-10-08 2022-04-18 삼성전자주식회사 반도체 장치 및 이를 포함하는 데이터 저장 시스템
US11469231B2 (en) 2020-10-15 2022-10-11 Nanya Technology Corporation Semiconductor device with protruding contact and method for fabricating the same
CN115084034A (zh) * 2021-03-16 2022-09-20 华邦电子股份有限公司 半导体存储器结构及其形成方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100256800B1 (ko) * 1993-06-22 2000-05-15 김영환 콘택홀 제조방법
KR100226749B1 (ko) * 1997-04-24 1999-10-15 구본준 반도체 소자의 제조 방법
US6359302B1 (en) * 1997-10-16 2002-03-19 Micron Technology, Inc. DRAM cells and integrated circuitry, and capacitor structures
KR100273987B1 (ko) * 1997-10-31 2001-02-01 윤종용 디램 장치 및 제조 방법
US5879986A (en) * 1998-02-27 1999-03-09 Vangaurd International Semiconductor Corporation Method for fabrication of a one gigabit capacitor over bit line DRAM cell with an area equal to eight times the used minimum feature
KR100292940B1 (ko) * 1998-03-30 2001-07-12 윤종용 디램 셀 캐패시터의 제조 방법
KR100308622B1 (ko) * 1999-04-12 2001-11-01 윤종용 디램 셀 캐패시터 및 제조 방법
US6214715B1 (en) * 1999-07-08 2001-04-10 Taiwan Semiconductor Manufacturing Company Method for fabricating a self aligned contact which eliminates the key hole problem using a two step spacer deposition
JP2001217405A (ja) 2000-02-02 2001-08-10 Hitachi Ltd 半導体集積回路装置およびその製造方法
US6413832B1 (en) * 2001-01-08 2002-07-02 United Microelectronics Corp. Method for forming inner-cylindrical capacitor without top electrode mask
KR100378200B1 (ko) * 2001-05-22 2003-03-29 삼성전자주식회사 반도체 소자의 콘택 플러그 형성방법
US7056828B2 (en) * 2003-03-31 2006-06-06 Samsung Electronics Co., Ltd Sidewall spacer structure for self-aligned contact and method for forming the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7777265B2 (en) 2003-02-24 2010-08-17 Samsung Electronics Co., Ltd. Semiconductor device having contact barrier and method of manufacturing the same
JP2007150257A (ja) * 2005-11-28 2007-06-14 Hynix Semiconductor Inc 半導体素子のストレージノードコンタクトプラグの形成方法

Also Published As

Publication number Publication date
TWI247356B (en) 2006-01-11
CN1525570A (zh) 2004-09-01
JP4455899B2 (ja) 2010-04-21
KR100539272B1 (ko) 2005-12-27
US20070218682A1 (en) 2007-09-20
DE102004008773A1 (de) 2004-09-09
US7488644B2 (en) 2009-02-10
CN1312775C (zh) 2007-04-25
DE102004008773B4 (de) 2010-11-25
US7307305B2 (en) 2007-12-11
TW200416880A (en) 2004-09-01
US6916738B2 (en) 2005-07-12
US20040164328A1 (en) 2004-08-26
US20050218439A1 (en) 2005-10-06
KR20040076016A (ko) 2004-08-31

Similar Documents

Publication Publication Date Title
JP4455899B2 (ja) 半導体装置の製造方法
US7153727B2 (en) Semiconductor device and method of manufacturing the same
JP4456880B2 (ja) 半導体装置及びその製造方法
US6720269B2 (en) Semiconductor device having a self-aligned contact structure and methods of forming the same
JP4896781B2 (ja) Dram装置の製造方法
EP1804288B1 (en) Semiconductor memory device with recessed gate and method for making the same
JP4964407B2 (ja) 半導体装置及びその製造方法
KR100533959B1 (ko) 반도체 장치 제조 방법
KR100378200B1 (ko) 반도체 소자의 콘택 플러그 형성방법
US20020109171A1 (en) Method of forming semiconductor memory device using a double layered capping pattern
JP3845545B2 (ja) 半導体装置の製造方法
JP2004040095A (ja) Dramセルおよびその形成方法
KR101168606B1 (ko) 반도체 장치의 배선 구조물 및 이의 형성 방법
KR100699915B1 (ko) 반도체 장치 및 그 제조 방법
JP2004311706A (ja) 半導体装置及びその製造方法
US7109080B2 (en) Method of forming capacitor over bitline contact
JP2004088105A (ja) スタッド形態のキャッピング層を具備した半導体装置のビットライン及びその形成方法
US20080029899A1 (en) Method of fabricating a semiconductor device and semiconductor device fabricated thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4455899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250