JP2004214589A - 薄膜キャパシタおよびその製造方法 - Google Patents

薄膜キャパシタおよびその製造方法 Download PDF

Info

Publication number
JP2004214589A
JP2004214589A JP2003094732A JP2003094732A JP2004214589A JP 2004214589 A JP2004214589 A JP 2004214589A JP 2003094732 A JP2003094732 A JP 2003094732A JP 2003094732 A JP2003094732 A JP 2003094732A JP 2004214589 A JP2004214589 A JP 2004214589A
Authority
JP
Japan
Prior art keywords
capacitor
thin film
film capacitor
barrier layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003094732A
Other languages
English (en)
Other versions
JP3966208B2 (ja
Inventor
Kazuaki Kurihara
和明 栗原
Kenji Shioga
健司 塩賀
John David Baniecki
デイビット ベネキ ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003094732A priority Critical patent/JP3966208B2/ja
Priority to US10/706,288 priority patent/US7161793B2/en
Publication of JP2004214589A publication Critical patent/JP2004214589A/ja
Priority to US11/486,001 priority patent/US7405921B2/en
Application granted granted Critical
Publication of JP3966208B2 publication Critical patent/JP3966208B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

【課題】保護絶縁層として、バンプからの機械的応力を吸収するポリイミド等の樹脂材を使用したことに起因する誘電体材料の還元を回避し、優れた高周波追随特性が得られるとともに特性劣化の少ない薄膜キャパシタを提供すること。
【解決手段】金属酸化物からなる誘電体層13を有するキャパシタ30と、樹脂材からなる保護絶縁層16と、を有する薄膜キャパシタ20において、前記キャパシタ30と前記保護絶縁層16との間に、非導電性無機質材料からなるバリア層15を設ける。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、キャパシタに関し、より詳細には、半導体基板上に薄膜製造プロセスにてキャパシタを形成した薄膜キャパシタに関する。
【0002】
【従来の技術】
近年のLSIの処理高速化により、高周波ノイズの拡散防止策としてデカップリング処理が行なわれ、そこで使用されるデカップリングキャパシタの高周波追随性能の向上が望まれている。
【0003】
このデカップリングキャパシタの高周波追随性能を向上させるためには、該デカップリングキャパシタが、高容量且つ分離された回路内で低インダクタンス接続が可能であること等の特性を有することが必要であり、この要望に答えたものとして、半導体基板上に、薄膜製造プロセスにてキャパシタを形成した薄膜キャパシタが知られている。
【0004】
この薄膜キャパシタは、小型高容量で且つ微細加工性に優れるため、回路基板との接続を、端子間ピッチが狭いバンプ接続の形態とすることが可能であり、それによって相互インダクタンスを減らし、LSIとの低インダクタンス接続に対して有効に作用する。
【0005】
しかしながら、この薄膜キャパシタは、誘電体の材料として金属酸化物を使用することで小型且つ高容量化を達成しているため、その製造工程時に、該金属酸化物が還元されて特性劣化を起こすという問題がある。
【0006】
この誘電体材料の劣化に関する問題を解決するために、例えば、特許文献1として示した特開2000−49311号公報において、以下の提案がなされている。
【0007】
図11及び図12は、上記公報で紹介されている従来の薄膜キャパシタの製造方法を、工程別に詳しく図示したものである。
【0008】
先ず図11(A)及び(B)に示すように、半導体基板1上に白金Ptからなる下部電極2を形成する。そして、図11(C)及び(D)に示すように、その上に絶縁性金属酸化物からなる容量絶縁膜3と白金Ptからなる上部電極4を順次堆積する。
【0009】
次に、図11(E)に示すようなエッチング工程を経て、図12(F)に示すように、前記上部電極4の上に、上部電極4を全面的に覆うように保護絶縁膜6を堆積する。
【0010】
そして、図12(G)に示すような、レジストマスク9を形成するレジストマスク形成工程、及び図示しないドライエッチング工程を経て、最終的に、図12(H)に示すようなコンタクトホール9を形成する。
【0011】
上記の容量素子では、レジストマスク10の除去工程で発生する水素により容量絶縁膜が還元してしまうという問題を、保護絶縁膜6のコンタクトホール9の開口部面積を5μm以下にすること等の手段によって防止している。
【0012】
【特許文献1】
特開2000−49311号公報(主に、段落[0033]−[0036]、図3)
【0013】
【発明が解決しようとする課題】
上述した従来の薄膜キャパシタでは、容量絶縁膜3を構成する絶縁性金属酸化物の還元を、保護絶縁膜6で遮断することにより防止している。
【0014】
しかしながら、本発明に係る薄膜キャパシタは、端子部に(低インダクタンス化を実現するための)バンプ或いはそれに類似した高密度実装が可能な接続形態を使用する。
【0015】
このような接続形態では、薄膜キャパシタを実装する回路基板と該薄膜キャパシタとの熱膨張係数の違い等により発生する機械的ストレスが、リード等の緩衝部材を介さずに、薄膜キャパシタの端子部に直接加わることになる。
【0016】
非常に薄い薄膜層からなる内部のキャパシタは、上記の機械的ストレスによる層間剥離等の問題が生じ易く、それを回避するために、保護絶縁膜として、バンプ等からの機械的応力を吸収するポリイミド等の樹脂材を使用することが必須となる。
【0017】
このために、以下のような問題が新たに発生する。
【0018】
第1に、保護絶縁膜の形成工程における誘電体の還元である。例えば、ポリイミド樹脂ワニスは約400℃で硬化しポリイミド樹脂となるが、保護絶縁膜としてのポリイミドワニスが硬化する際に、酸無水物とジアミンが脱水縮重合反応してHOを放出して硬化するため、そのHOが水素イオンに分解され、誘電体材料へ到達して誘電体材料を還元する。
【0019】
これは、上記HOが、キャパシタの電極を構成する白金Ptの触媒作用により水素イオンの状態で該電極に浸入し、その後、拡散現象等により水素イオンが該電極と誘電体との界面に到達し、誘電体部の酸素欠損を生じさせるためである。
【0020】
第2に、従来例で示したような製造工程時における問題ではないが、フィールドでの実使用時における問題である。
【0021】
これは、樹脂材が有する吸湿性により生じるものであり、薄膜キャパシタの周囲が高温になった場合、ポリイミド樹脂が吸収した空気中の水分が、高温下で内部のキャパシタへ移動し、誘電体材料を還元する。
【0022】
本発明の目的は、保護絶縁層として、バンプからの機械的応力を吸収するポリイミド等の樹脂材を使用したことに起因する、このような誘電体材料の還元に関する問題点を解決し、優れた高周波追随特性が得られるとともに特性劣化の少ない薄膜キャパシタを提供することにある。
【0023】
更に、本発明では、半導体基板と下部電極との間の密着性を高めるとともに、製造時に必要なスパッタリング装置の数を増やすことなく、製造コストを抑えることを目的とする。
【0024】
【課題を解決するための手段】
上記課題の目的を達成させるため、請求項1に係る発明の薄膜キャパシタは、金属酸化物からなる誘電体層を有するキャパシタと、樹脂材からなる保護絶縁層とを有する薄膜キャパシタにおいて、前記キャパシタと前記保護絶縁層との間に、非導電性無機質材料からなるバリア層を設けたことを特徴としている。
【0025】
また、請求項2に係る発明の薄膜キャパシタは、支持基板上に形成され、金属酸化物からなる誘電体層を有するキャパシタと、非導電性無機質材料からなり、少なくとも前記キャパシタの上面及び側面を覆うバリア層と、樹脂材からなり前記バリア層上に形成された保護絶縁層とを備えたことを特徴としている。
【0026】
上記請求項1又は請求項2の構成によれば、保護絶縁層と内部のキャパシタとは、バリア層によって物理的に分離される。すなわち、保護絶縁層を構成する樹脂材から放出された水分が、キャパシタの誘電体層を構成する金属酸化膜に到達することが阻止される。
【0027】
その結果、保護絶縁層として、バンプからの機械的応力を吸収するポリイミド等の樹脂材を使用したままで、該樹脂材から放出される水分が金属酸化物からなる誘電体層材料を還元することを防止することが可能となる。
【0028】
また、請求項3に係る発明は、請求項2に係る発明の薄膜キャパシタにおいて、 バリア層が、誘電体層と同一組成であることを特徴としている。
【0029】
上記請求項3の構成によれば、バリア層を構成する材料の組成と、誘電体層を構成する材料の組成とを同じものにすることで、良好な膜密着性が確保出来る。そして、誘電体層とバリア層間の接合面に関して、機械的なストレスに対して(剥がれ等の問題が発生し難い)高い信頼性を有する薄膜キャパシタを得ることが可能となる。
【0030】
また、請求項4に係る発明は、請求項1又は3のいずれかに係る発明の薄膜キャパシタにおいて、前記バリア層が、非晶質であることを特徴としている。
【0031】
上記請求項4の構成によれば、バリア層としての高い耐還元性を得ることが可能となる。
【0032】
誘電体層の材料としては、高誘電率を得るために結晶化した金属酸化物を使用するが、結晶を構成する各結晶粒(グレイン)間に隙間が発生し、該結晶中を水素イオンが移動し易くなる。そのため、水素イオンの移動を阻止するバリア層としては、水素イオンが移動し難い非結晶材料を使用することが有効であり、そのような材料構成にすることにより、水素イオンに対する高い遮断効果を得ることが可能となる。
【0033】
また、請求項5に係る発明は、請求項1から4のいずれかに係る発明の薄膜キャパシタにおいて、外部との電気的接続を行なう端子を、少なくとも、パッケージの一面の端部以外に設けたことを特徴としている。
【0034】
上記請求項5の構成によれば、薄膜キャパシタ内部のキャパシタが大きな形状を有する場合であっても、パッケージ中央の任意の場所に端子を設けることにより、端子間隔を小さくするができる。
【0035】
すなわち、高容量であり、且つ低インダクタンス接続が可能な薄膜キャパシタを提供することが可能となる。
【0036】
また、請求項6に係る発明は、請求項1から5のいずれかに係る発明の薄膜キャパシタにおいて、1つの薄膜キャパシタ内に、異なる容量の複数のキャパシタを設けたことを特徴としている。
【0037】
上記請求項6の構成によれば、例えば、異なる容量を有する複数のキャパシタが必要になった場合に、複数の薄膜キャパシタを実装せずに1つのパッケージを実装すれば済むため、薄膜キャパシタ20が実装される回路基板内の実装面積の効率化が図れる。
【0038】
併せて、部品コストの低減化、及び部品実装工程における実装工数の削減も可能となる。
【0039】
また、請求項7に係る発明の薄膜キャパシタの製造方法は、金属酸化物からなる誘電体層を有するキャパシタと、樹脂材からなる保護絶縁層とを有する薄膜キャパシタの製造方法において、前記キャパシタ形成工程と、前記キャパシタと前記保護絶縁層との間に配置されるとともに、非導電性無機質材料からなるバリア層の形成工程と、前記バリア層上に配置される保護絶縁膜形成工程とを備えたことを特徴としている。
【0040】
また、請求項8に係る発明の薄膜キャパシタの製造方法は、支持基板上に形成され、金属酸化物からなる誘電体層を有するキャパシタ形成工程と、非導電性無機質材料からなり、少なくとも少なくとも前記キャパシタの上面及び側面を覆うバリア層形成工程と、樹脂材からなり前記バリア層上に配置される保護絶縁層形成工程とを備えたことを特徴としている。
【0041】
上記請求項7又は請求項8の構成によれば、保護絶縁層と内部のキャパシタとは、バリア層によって物理的に分離される。すなわち、保護絶縁層を構成する樹脂材から放出された水分が、キャパシタの誘電体層を構成する金属酸化物に到達することが阻止される。
【0042】
その結果、保護絶縁層として、バンプからの機械的応力を吸収するポリイミド等の樹脂材を使用したままで、該樹脂材から放出される水分による金属酸化物からなる誘電体層材料の還元を防止できる薄膜キャパシタを製造することが可能となる。
【0043】
また、本発明の一態様によれば、前記バリア層と密着層とが、同じ材料組成であることより、薄膜キャパシタを製造する際に使用するスパッタリング装置の数が少なくで済むというメリットがある。
【0044】
更に、前記密着層として、アルミナまたはBSTを主成分とする材料を、非結晶状態で形成することにより、SiOまたはSiからなる支持基板と、PtまたはAuからなる下部電極との間で、良好な密着性が得られるというメリットがある。
【0045】
尚、本バリア層は、水素や水のバリアとなるため、樹脂材以外の保護絶縁層を有する構造や、保護絶縁層がない構造においても有効であることは言うまでもない。
【0046】
【発明の実施の形態】
(第1の実施形態)以下、本発明の第1の実施形態に係る薄膜キャパシタについて、図1〜図3を参照しながら、薄膜キャパシタの製造方法を示した図2及び図3の各工程(A)〜(J)の順に説明する。
【0047】
(i)キャパシタの形成工程
図2(A)〜(D)に示すように、支持基板としてのシリコン基板11上に、白金からなる下部電極層12、複合酸化物からなる誘電体層13、白金Ptからなる上部電極層14を順次形成し、キャパシタ30を形成する。
【0048】
ここで、誘電体層13の材料としては、小型で且つ大容量を実現するために、高い比誘電率をもつ(BST等の)金属酸化物が使用されている。
【0049】
また、キャパシタ30の電極(下部電極層12及び上部電極層14)材料としては、高温環境下における耐酸化性に優れ、且つ誘電体層13形成時における良好な結晶配向制御が可能な、白金PtやイリジウムIr等の貴金属が使用される。
【0050】
これらの一連の製造工程は、具体的に以下のように行なう。
【0051】
図2(B)に示した下部電極層12の形成工程としては、先ず、シリコン基板11としてシリコンウェハを使用し、該シリコンウェハ上に、スパッタリング法を使用して、酸化チタンTiO(20nm)及び白金Pt(100nm)を順次成膜させる。酸化チタンTiO(20nm)は、シリコンSiと白金Ptとの接着層としての役割を果たす。
【0052】
この時、酸化チタンTiOのスパッタ条件は、基板温度500℃、RFパワー200W、誘導コイルパワー30W、ガス圧力0.1Pa、及びAr/O比7/1である。
【0053】
また、白金Ptのスパッタ条件は、基板温度400℃、DCパワー100W、誘導コイルパワー30W、ガス圧力0.1Paである。
【0054】
図2(C)に示した誘電体層13の形成工程では、誘電体層13として、バリウムBa、ストロンチウムSr、チタンTiから構成される酸化物(Ba、Sr1−X)TiO(以下、「BST」という。)を使用し、該BST膜をゾル・ゲル法により形成する。BST材はバルクで1500という比較的大きな比誘電率を有し、小型で大容量のキャパシタを実現するのに有効な材料である。
【0055】
具体的には、先ず、アルコキシドからなる出発溶液をスピンコート法(2000rpm/30秒)によりBST膜を成膜する。尚、本スピンコートでは、1回のスピンコートにつき約100nmの膜厚が得られる。
【0056】
その後、400℃の温度で10分間の仮焼成(プリベーク)、及び700℃の温度で10分間の本焼成(本ベーク)を行なうことによりBSTを結晶化させ、膜厚100nm、比誘電率300、及び損失2%以下のBST薄膜を形成する。
【0057】
図2(D)に示した上部電極層14の形成工程では、BSTからなる誘電体層13上に、前述と同じスパッタ法を使用して、上部電極層14としての白金Pt層を100nm成膜する。
【0058】
尚、キャパシタ30の側面は、図1に示すように、下の層の端部が、上の層の端部よりも外側に張り出した、階段状に形成される。
【0059】
このように、階段状にして張り出し部を設けることにより、製造過程で白金材の断片(パーティクル)が発生した場合、その張り出し部で断片を受け止め、断片が誘電体層の側面に付着し、電極間のショートを引き起こすことを防止する。
【0060】
(ii)下部電極引き出し工程
図2(E)に示すように、下部電極層12からの電極引き出し用穴21を形成する。
【0061】
具体的には、フォトリソグラフィ法によりレジストマスクを形成した後、アルゴンArイオンミリング法により、上部電極層14を構成するPt膜、及び、誘電体層13を構成するBST膜を、順次ドライエッチングすることにより行なう。
【0062】
(iii)バリア層形成工程
図2(F)に示すように、前記キャパシタ30(の上面及び側面)を覆うように、バリア層15を形成する。
【0063】
具体的には、バリア層15の材料として使用する窒化シリコンSiを、スパッタ法により約150μm成膜する。窒化シリコンSiの他には、酸化アルミニウムAl、酸化シリコンSiO等も、バリア層15の材料として使用可能である。
【0064】
このときのスパッタ条件は、基板温度200℃、RFパワー500W、ガス圧力0.1Pa、及びAr/N比5/1である。
【0065】
このように、バリア層15としては、非導電性無機質材料に属する酸化アルミニウムAl、酸化シリコンSiO、及び窒化シリコンSi等が使用可能であるが、フィールド中で激しい温度変化に曝された際の機械的なストレスによる層間剥離等の問題が発生しないように、誘電体層13と熱膨張係数が等しい材料であることが望ましい。
【0066】
バリア層15を構成する材料の熱膨張係数と、誘電体層13を構成する材料の熱膨張係数とを同じものにすることで、熱膨張の差により発生する層間の歪みによる剥がれ等を防止し、高い信頼性を有する薄膜キャパシタを得ることが可能となる。
【0067】
また、前記バリア層15の材料は、キャパシタを構成する誘電体層13との密着性を良好にするために、キャパシタを構成する誘電体層13の材料と同一組成であることが望ましい。
【0068】
バリア層15を構成する材料の組成を、誘電体層13を構成する材料の組成とを同じものにすることで、良好な膜密着性が確保出来る。そして、誘電体層13とバリア層15間の接合面に関して、機械的なストレスに対して高い信頼性を有する薄膜キャパシタ20を得ることが可能となる。
【0069】
更に、バリア層15の材料は、非晶質の材料であることが望ましい。
【0070】
一般に、誘電体層13は、高誘電率を得るために結晶化した金属酸化物を使用するが、結晶中には、結晶を構成する各結晶粒(グレイン)間に隙間が発生し、該結晶中を水素イオンが移動し易くなる。そのため、水素イオンの移動を阻止するバリア層15としては、水素イオンが移動し難い非結晶材料を使用することが有効である。そのような材料構成にすることにより、水素イオンに対する高い遮断効果を得ることが可能となる。
【0071】
(iv)保護絶縁層形成工程
図2(G)に示すように、バリア層15の上から、例えばポリイミド樹脂からなる保護絶縁層16を形成する。
【0072】
先ず、感光性ポリイミドワニスを、3000rpmで30秒間、スピンコートを行ない、4μm成膜する。そして、60℃の温度で10分間、加熱(プリベーク)し、その後、露光、現像工程を経て、400℃の温度で2時間、加熱(本ベーク)を行ない、2μm厚のポリイミドPI膜を形成する。
【0073】
(v)コンタクトホール形成工程
図2(H)に示すように、コンタクトホール19を形成して、下部電極層12及び上部電極層14を露出させる。
【0074】
具体的にはフォトリソグラフィ法により図示しないレジストマスクを形成した後、アルゴンArイオンミリング法により、窒化シリコンSi膜をドライエッチングすることにより、キャパシタの上部および下部電極を露出させる。
【0075】
(vi)電極パッド・バンプ形成工程
図2(I)に示すように、アンダーバンプメタル(UBM)として、キャパシタ30の各電極とバンプとを接続する電極パッド17を、スパッタ及びめっきにより形成する。そして、最後に、図2(J)に示すように、該電極パッド17上に、回路基板と電気的な接続を行なう端子としてのバンプ18を形成する。
【0076】
尚、バンプ18の材料としては、一般に半田が使用されるが、半田材料が電極パッド17中に拡散して、電極層を構成する白金Ptと反応し、該白金の抵抗値を変えてしまう等の問題が起こり得る。そのため、電極パッド17の材料としては、上記半田侵食の回避、及び半田濡れ性の向上等を考慮して、クロムCr、チタンTi、銅Cu、ニッケルNi等を使用することが望ましい。
【0077】
以上の製造工程により、図1に示す薄膜キャパシタ20が形成される。
【0078】
図1の薄膜キャパシタ20において、吸湿性を有し所定の条件下で水分を放出するポリイミド樹脂(保護絶縁層16)と、キャパシタ30とは、物理的に分離される。すなわち、ポリイミド樹脂から放出される水分がイオン化されていない状態で、触媒作用を有する電極部に到達する前に遮断するため、ポリイミド樹脂から放出された水分が、触媒作用を有する白金Pt(上部電極層14)表面に到達することが阻止される。
【0079】
従って、上部電極層14と誘電体層13との界面で、誘電体層13を構成する金属酸化物が還元されるという問題は回避される。
【0080】
このように、保護絶縁層16として、バンプからの機械的応力を吸収するポリイミド等の樹脂材を使用したままで、該樹脂材から放出される水分が金属酸化物からなる誘電体層材料を還元することを防止することができる。その結果、優れた高周波追随特性が得られるとともに特性劣化の少ない薄膜キャパシタ20を提供することが可能となる。
【0081】
(キャパシタ特性の比較実験)以下に、バリア層15を使用しない場合と、バリア層15を使用した場合における、薄膜キャパシタのキャパシタ特性を比較した実験結果を示す。
【0082】
図4は本実験の測定回路、図5は本実験の測定結果を示したグラフである。
【0083】
尚、本実験では、バリア層15として窒化シリコンSi、下部電極層12及び上部電極層14の材料としては白金Pt、誘電体材料としてはBSTを使用した。
【0084】
先ず、シリコン基板11上にキャパシタ30を形成し、キャパシタ30の下部電極層12を引き出すための引き出し部21を作成し、その状態を初期状態とした。そして、その(保護絶縁層16としてのポリイミド樹脂を形成する前の)初期状態のキャパシタ特性を測定するとともに、バリア層15を形成した場合とバリア層15を形成しない場合における(保護絶縁層16としてのポリイミド樹脂を形成した後の)キャパシタの各特性を測定した。
【0085】
測定には、図4のような回路構成を使用し、キャパシタ30の各電極に、50mVppの交流電圧を印加することにより行なう。このとき、所定の直流電圧も同時に印加している。
【0086】
図5(A)及び図5(B)は、本実験における実験結果を示したグラフである。図5(A)は印加電圧(V)に対する容量(μF/cm)特性、図5(B)は印加電圧(V)に対する誘電損失(%)特性を示す。
【0087】
これらの各グラフにおいて、点線のグラフ(a)は、保護絶縁層16としてのポリイミド樹脂が形成される前の初期特性である。
【0088】
実線のグラフ(b)は、バリア層15を使用していない薄膜キャパシタについて、保護絶縁層16としてのポリイミド樹脂が形成された後の特性である。
【0089】
実線のグラフ(c)は、バリア層15を使用した薄膜キャパシタについて、保護絶縁層16としてのポリイミド樹脂が形成された後の特性である。
【0090】
図5(B)のように、バリア層15を使用していない薄膜キャパシタの方は、保護絶縁層16としてのポリイミド樹脂が形成された後に、誘電損失(tanδ)の上昇が観察される。その結果として、図5(A)の(b)のように、バリア層15を使用していない薄膜キャパシタの方は、保護絶縁層16としてのポリイミド樹脂が形成された後に、容量の劣化が観察される。
【0091】
それに対して、バリア層15を使用している薄膜キャパシタの方は、ポリイミド樹脂が形成された後であっても、(ポリイミド樹脂が形成される前の)初期状態と比較した誘電損失の上昇、及び容量劣化は観察されない。
【0092】
このように、キャパシタ30をバリア層15で覆い、上部電極層14への水素の進入を防ぐことにより、誘電体材料の特性劣化を抑制することができる。
【0093】
(第2の実施形態)以下、本発明の第2の実施形態に係る薄膜キャパシタの製造方法について説明する。
【0094】
本実施形態を示した図としては、第1の実施形態と同じもの(図2及び図3)を使用する。
【0095】
本実施形態は、第1の実施形態に対して、図2(C)に示した誘電体層13の形成工程を、(ゾルゲル法では無く、)スパッタリング法を使用して行なったものである。そして、更に、図2(F)に示したバリア層15形成工程において、バリア層15として、誘電体層13と同一組成のBST材であって、非結晶状態のものを使用した。
【0096】
先ず、第1の実施形態と同様に、図2(A)〜(D)に示すように、シリコン基板11としてシリコンウェハを使用し、該シリコンウェハ上に、スパッタリング法を使用して、酸化チタンTiO(20nm)及び白金Pt(100nm)を順次成膜させる。尚、ここで、下部電極材料としてイリジウムIrを使用してもよい。
【0097】
尚、誘電体層13形成工程におけるBSTのスパッタは、具体的に以下の条件で行なう。
【0098】
基板温度600℃、Ar/O比8/1、ガス圧力0.4Pa、RFパワー800Wで成膜を行ない、BST膜厚100nm、誘電率400、誘電損失1%以下の誘電体膜を形成する。
【0099】
BST誘電体層13の上には、前述と同じスパッタ法(基板温度400℃)で、上部電極層14としての白金Pt膜(100nm)を形成する。
【0100】
次に、図2(E)に示す下部電極引き出し工程では、下部電極層12を引き出すために、アルゴンArイオンミリング法により、上部電極層14としての白金Pt膜及び誘電体層15としてのBST膜に対して、順次ドライエッチングを実施する。
【0101】
図2(F)に示すバリア層形成工程では、バリア層15として、アモルファスBST薄膜をスパッタ法により150nm成膜する。条件は、基板温度200℃、Ar/O比8/1、ガス圧力0.2Pa、RFパワー800Wで行なう。低温で成膜を行なうことにより、BSTは結晶化せず、アモルファス状態のBSTを得ることができる。
【0102】
以下、図2(G)〜(J)に示した工程では、第2の実施形態と同様に、感光性ポリイミド樹脂を使用して保護絶縁膜16を形成した後、電極パッド17及びバンプ18を形成することにより、薄膜キャパシタ20を生成する。
【0103】
本実施形態によれば、バリア層15と誘電体層13とを同一組成とし、更に、バリア層15の材料をアモルファス状態のものとしたにより、バリア層15と誘電体層13とが高密着性を有し、且つバリア層15が高い水素イオン遮断効果(すなわち、高い耐還元性の効果)を有する薄膜キャパシタ20を製造することが可能となる。
【0104】
また、誘電体層13を形成するBST材をスパッタ法で行なっていることにより、キャパシタ30の形成が全て真空中で行なわれることになるため、薄膜キャパシタ20を簡易な工程で製造することが可能となる。
【0105】
(第3の実施形態)以下、本発明の第3の実施形態に係る薄膜キャパシタについて、図6(A)、図6(B)を参照しながら説明する。
【0106】
図6(A)は、薄膜キャパシタの外観図であり、図6(B)は、図6(A)のX−X’線断面図である。
【0107】
本実施形態は、第1の実施形態における薄膜キャパシタの応用例であり、図6(A)のように、薄膜キャパシタの一方の面上に、薄膜キャパシタの端子として、複数のバンプが縦横に並んだ状態に配置されている。そして、それら複数のバンプ18は、隣り合うバンプが、キャパシタ30の異なる電極に接続される構成になっている。
【0108】
すなわち、各バンプは、1つおきに同じ電極と電気的に接続されており、その接続先のキャパシタ30は、図6(B)のように、内部で共通になっている。
【0109】
各バンプの外部との接続に関しては、バンプ18aが(図示しない)回路基板の電源ラインに接続され、バンプ18bが該回路基板のGNDラインに、それぞれ電気的に接続される。そして、その回路基板の電源、GNDラインは、回路基板上に実装される(図示しない)LSI等に接続される。
【0110】
このように、薄膜キャパシタ20は、本薄膜キャパシタ20が実装される回路基板との端子が、そのパッケージの端部に限定されず、その(パッケージの)中央部にも設けられている。
【0111】
このため、薄膜キャパシタ20内部のキャパシタ30が大きな形状を有する場合であっても、パッケージ中央の任意の場所に端子を設けることにより、電源−GND間の端子間隔を小さくし、LSIと薄膜キャパシタとを接続する電源及びGNDの配線の全範囲に亘って、狭配線間隔にすることができる。
【0112】
すなわち、薄膜キャパシタ20は、高容量であり、且つ低インダクタンス接続が可能であり(高周波特性が改善される)という、デカップリングキャパシタとして最適な条件を備えることになる。
【0113】
以上のように、本実施形態によれば、高容量で且つ高周波特性の優れた薄膜キャパシタを提供することが可能となる。
【0114】
(第4の実施形態)以下、本発明の第4の実施形態に係る薄膜キャパシタについて、図7を参照しながら説明する。
【0115】
図7は、薄膜キャパシタを上面から見た図であり、図中の符号31はキャパシタ30が存在するキャパシタエリアを示したものである。
【0116】
本実施形態は、第3の実施形態における薄膜キャパシタの応用例であり、図7に示すように、1つの薄膜キャパシタ20に、大きさの異なる複数のキャパシタ30a、30b、30cが並べて配置されている。
【0117】
ここでの各キャパシタの容量は、該キャパシタが占める面積に大略比例して決定する。例えば、キャパシタbは、キャパシタaの2倍の面積を占めており、キャパシタaの略2倍の容量を有している。
【0118】
このような構成にすることにより、例えば、異なる容量を有する複数のキャパシタが必要になった場合に、複数の薄膜キャパシタを実装せずに1つのパッケージを実装すれば済むため、薄膜キャパシタ20が実装される(図示しない)回路基板内の実装面積の効率化が可能になる。
【0119】
また、本実施形態による他の効果としては、デカップリングキャパシタに関する部品の低コスト化、及び部品実装時における実装工数の削減、等の効果が期待できる。
(第5の実施形態)
以下、本発明の第5の実施形態に係る薄膜キャパシタについて、図8、および図9を参照しながら説明する。
【0120】
(i)キャパシタの形成工程
最初に、図9(A)及び(B)に示すように、SiOまたはSiからなる半導体基板11を、マルチターゲットDC−RFマグネトロンスパッタリング装置にセットし、RFスパッタにより、密着層40としての非晶質アルミナを、200℃の条件下で50nm成膜する。
【0121】
続けて、図9(C)に示すように、下部電極層12としてのAuの膜を、DCスパッタ法により、200℃の条件下で100nm成膜する。
【0122】
更に、図9(D)に示すように、RFスパッタにより、誘電体層13としてのBST膜を、400℃の条件下で100nm成膜し、続いて、図9(E)に示すように、DCスパッタ法により、上部電極層14としてのAuの膜を、400℃の条件下で100nm成膜する。
【0123】
(ii)下部電極引き出し工程
図9(F)に示すように、下部電極層12からの電極引き出し用穴21を、ドライエッチングにより形成する。具体的には、レジストマスクを形成した後、アルゴンArイオンミリング法により、上部電極層14、及び誘電体層13を、順次パターニングする。
【0124】
そして、その後、350℃の高温酸素中で、ポストアニール処理を行なう。尚、ポストアニール処理とは、酸素が欠乏した対象物(ここでは、誘電体層13を構成する金属酸化物BST膜)を高温の酸素中に曝して、欠乏した誘電体層13中の酸素を補う処理である。
【0125】
(iii)バリア層形成工程
図9(G)に示すように、前記キャパシタ30の上面および側面を含む全面を覆うように、バリア層15を形成する。具体的には、バリア層15として、非晶質の酸化アルミニウムAl(アルミナ)を、(i)の密着層40形成時のスパッタリング装置と同じ装置を使用して、室温条件下で、厚さ0.1μm成膜する。
【0126】
(iv)保護絶縁層形成工程以降
以下、本実施形態においては、保護絶縁層16および電極パッド17等の形成を、第1の実施形態と同様に行なう。
【0127】
そして、最後に、上記薄膜キャパシタ20に必要な層等を形成し終えた半導体基板11を、ダイシングにより個別の薄膜キャパシタ20に分割し、図8に示すような薄膜キャパシタ20を形成する。
【0128】
本実施形態では、実際に、上記製造方法により薄膜キャパシタ20を形成し、その諸特性を測定した。その結果、容量は1μF/cm以上、ESR(等価直列抵抗)は0.01Ω以下、ESL(等価直列インダクタンス)は20pH以下、および、絶縁耐圧は20V以上の値が得られた。また、絶縁抵抗では、温度85℃、湿度85%RH、および印加電圧3Vの環境条件下で、500時間動作させる高温高湿負荷試験を行い、その結果、10MΩ以上の値が得られた。
【0129】
以下、本実施形態で使用したスパッタリング装置について簡単に説明する。
【0130】
スパッタリング装置50の内部は、図10のように、その上方と下方に、ターゲット電極51と試料台54とが対向して配置され、下方の試料台54上には、試料となるウエハ53が載せられ、上方のターゲット電極51の下面には、図のように、ターゲット52が取り付けられている。
【0131】
また、スパッタリング装置50は、不活性ガスが吸入55及び排気56され、内部は、図示しない真空ポンプにより減圧される。そして、ターゲット電極51と試料台54間に数千Vの高電圧が印加され、スパッタリング装置50の内部には、プラズマ化した陽イオン57(例えばAr+)が存在する。
【0132】
そして、上記陽イオンがターゲット52に衝突し、衝突により弾き出されたターゲット52の分子が、試料台54上のウエハ53表面に被着して、ウエハ53上に薄膜を形成する。
【0133】
このように、スパッタリング装置50は、密閉された真空槽であり、ターゲット52を交換することが容易では無いため、量産性を考慮した場合、1つのスパッタリング装置50では、1種類の材料組成からなる薄膜しか形成できない。
【0134】
したがって、多種類の材料組成の層(薄膜)を形成するためには、その種類の数だけスパッタリング装置を用意しなければならないため、設備投資がかさみ、製造コストを下げることが出来なくなる。
【0135】
このような問題に対して、本実施形態においては、密着層40とバリア層15が同じ材料組成(酸化アルミニウムAl)であるため、必要なスパッタリング装置の種類は、密着層、電極層及びBSTの各用途について、3種類で済み、スパッタリング装置に要する費用は抑えられる。その結果、製造コストが少なくて済むという効果がある。
(第6の実施形態)
以下、本発明の第6の実施形態に係る薄膜キャパシタについて説明する。
【0136】
本実施形態は、第5の実施形態と同様の図(図8および図9)を参照しながら説明する。
【0137】
尚、本実施形態は、第5の実施形態と略同じ工程であるため、以下、第5の実施形態との相違点のみを示す。(以下に示す以外の条件等は、全て、第5の実施形態と同じである。)
(i)キャパシタの形成工程
図9(A)及び(B)において、本実施形態では、密着層40として、酸化チタンTiOを、300℃の条件下で成膜する。(第5の実施形態においては、密着層40として、非晶質アルミナを、200℃の条件下で成膜している。)
また、図9(C)〜(E)においては、本実施形態では、下部電極層12として、白金Ptの膜を、300℃の条件下で成膜する。(第5の実施形態においては、下部電極層12として、Auの膜を200℃の条件下で成膜している。)
更に、本実施形態では、上部電極層14として、白金Ptの膜を、300℃の条件下で成膜する。(第5の実施形態においては、上部電極層14として、Auの膜を、400℃の条件下で成膜している。)
(ii)下部電極引き出し工程
図9(F)に示す本工程は、第5の実施形態と同じであるため、省略する。
【0138】
(iii)バリア層形成工程
図9(G)において、本実施形態では、バリア層15として、非晶質の酸化チタンTiOxを成膜する。(第5の実施形態においては、バリア層15として、非晶質の酸化アルミニウムAl(アルミナ)を成膜している。)尚、スパッタリング装置は、第5の実施形態と同様、(i)の密着層40形成時のスパッタリング装置と同じ装置を使用する。
【0139】
(iv)保護絶縁層形成工程以降
以下、本実施形態においては、保護絶縁層16および電極パッド17等の形成を、第1の実施形態と同様に行なう。
【0140】
そして、最後に、上記薄膜キャパシタ20に必要な層等を形成し終えた半導体基板11を、ダイシングにより個別の薄膜キャパシタ20に分割し、図8に示すような薄膜キャパシタ20を形成する。
【0141】
本実施形態で、実際に、上記製造方法により薄膜キャパシタ20を形成し、その諸特性を測定した結果、容量は1μF/cm以上、ESRは0.02Ω以下、ESLは20pH以下、および、絶縁耐圧は20V以上の値が得られた。また、絶縁抵抗では、温度85℃、湿度85%RH、および印加電圧3Vの環境条件下で、500時間動作させる高温高湿負荷試験を行い、その結果、10MΩ以上の値が得られた。
【0142】
このように、本実施形態においては、密着層40とバリア層15が同じ材料組成(酸化チタンTiOx)であるため、必要なスパッタリング装置の種類は、密着層、電極層及びBSTの各用途について、3種類で済むというメリットがある。
【0143】
(第7の実施形態)
以下、本発明の第7の実施形態に係る薄膜キャパシタについて説明する。
【0144】
本実施形態は、第5の実施形態と同様の図(図8および図9)を参照しながら説明する。
【0145】
尚、本実施形態においても、第5の実施形態と略同じ工程であるため、第6の実施形態同様、第5の実施形態との相違点のみを示す。(以下に示す以外の条件等は、全て、第5の実施形態と同じである。)
(i)キャパシタの形成工程
図9(A)及び(B)において、本実施形態では、密着層40として、非晶質BSTを、室温条件下で成膜する。(第5の実施形態においては、密着層40として、非晶質アルミナを、200℃の条件下で成膜している。)
また、図9(C)〜(E)においては、本実施形態では、下部電極層12として、白金Ptの膜を、300℃の条件下で成膜する。(第5の実施形態においては、下部電極層12として、Auの膜を200℃の条件下で成膜している。)
更に、本実施形態では、誘電体層13として、アモルファスBSTを、成膜する。(第5の実施形態においては、誘電体層13として、BSTを、成膜している。)
更に、本実施形態では、上部電極層14として、白金Ptの膜を、300℃の条件下で成膜する。(第5の実施形態においては、上部電極層14として、Auの膜を、400℃の条件下で成膜している。)
(ii)下部電極引き出し工程
図9(F)に示す本工程は、第5の実施形態と同じであるため、省略する。
【0146】
(iii)バリア層形成工程
図9(G)において、本実施形態では、バリア層15として、非晶質BSTを、成膜する。(第5の実施形態においては、バリア層15として、非晶質の酸化アルミニウムAl(アルミナ)を成膜している。)尚、スパッタリング装置は、第5の実施形態と同様、(i)の密着層40及び誘電体層13形成時のスパッタリング装置と同じ装置を使用する。
【0147】
(iv)保護絶縁層形成工程以降
以下、本実施形態においては、保護絶縁層16および電極パッド17等の形成を、第1の実施形態と同様に行なう。
【0148】
そして、最後に、上記薄膜キャパシタ20に必要な層等を形成し終えた半導体基板11を、ダイシングにより個別の薄膜キャパシタ20に分割し、図8に示すような薄膜キャパシタ20を形成する。
【0149】
本実施形態で、実際に、上記製造方法により薄膜キャパシタ20を形成し、その諸特性を測定した結果、容量は1μF/cm以上、ESRは0.02Ω以下、ESLは20pH以下、および、絶縁耐圧は20V以上の値が得られた。また、絶縁抵抗では、温度85℃、湿度85%RH、および印加電圧3Vの環境条件下で、500時間動作させる高温高湿負荷試験を行い、その結果、10MΩ以上の値が得られた。
【0150】
このように、本実施形態においては、密着層40、誘電体層13及びバリア層15が同じ材料組成(BST)であるため、必要なスパッタリング装置の種類は、電極層とBSTの各用途について、2種類で済むというメリットがある。
【0151】
以下本発明の諸形態を付記としてまとめて記載する。
【0152】
(付記1) 金属酸化物からなる誘電体層を有するキャパシタと、樹脂材からなる保護絶縁層とを有する薄膜キャパシタにおいて、
前記キャパシタと前記保護絶縁層との間に、非導電性無機質材料からなるバリア層を設けたことを特徴とする薄膜キャパシタ。
【0153】
(付記2) 支持基板上に形成され、金属酸化物からなる誘電体層を有するキャパシタと、
非導電性無機質材料からなり、少なくとも前記キャパシタの上面及び側面を覆うバリア層と、
樹脂材からなり前記バリア層上に形成された保護絶縁層とを備えたことを特徴とする薄膜キャパシタ。
【0154】
(付記3) 前記バリア層が、前記誘電体層と熱膨張係数が同じ材料であることを特徴とする付記1又は付記2に記載の薄膜キャパシタ。
【0155】
(付記4) 前記バリア層が、前記誘電体層と同一組成であることを特徴とする付記1又は付記2に記載の薄膜キャパシタ。
【0156】
(付記5) 前記バリア層が、酸化アルミニウム又は酸化シリコン又は窒化シリコンのいずれかであることを特徴とする付記1又は付記2に記載の薄膜キャパシタ。
【0157】
(付記6) 前記バリア層が、非晶質であることを特徴とする付記1から付記5のいずれかに記載の薄膜キャパシタ。
【0158】
(付記7) 前記誘電体層の材料として、ストロンチウム、バリウム、鉛、 亜鉛、ビスマス、タンタル、チタン、マグネシウム、及びニオブの少なくとも一つを含む複合酸化物を使用することを特徴とする付記1から付記6のいずれかに記載の薄膜キャパシタ。
【0159】
(付記8) 前記キャパシタの側面が、上の層の端部よりも下の層の端部が張り出した階段状であることを特徴とする付記1から付記7のいずれかに記載の薄膜キャパシタ。
【0160】
(付記9) 外部との電気的接続を行なう端子を、少なくとも、パッケージの一面の端部以外に設けたことを特徴とする付記1から付記8のいずれかに記載の薄膜キャパシタ。
【0161】
(付記10) 前記端子と前記キャパシタを接続する電極パッドが、前記保護絶縁層にて支持されていることを特徴とする付記9に記載の薄膜キャパシタ。
【0162】
(付記11) 1つの薄膜キャパシタ内に、異なる容量の複数のキャパシタを設けたことを特徴とする付記1から付記10のいずれかに記載の薄膜キャパシタ。
【0163】
(付記12) 金属酸化物からなる誘電体層を有するキャパシタと、樹脂材からなる保護絶縁層とを有する薄膜キャパシタの製造方法において、
前記キャパシタ形成工程と、
前記キャパシタと前記保護絶縁層との間に配置されるとともに、非導電性無機質材料からなるバリア層の形成工程と、
前記バリア層上に配置される保護絶縁膜形成工程とを備えた
ことを特徴とする薄膜キャパシタの製造方法。
【0164】
(付記13) 支持基板上に形成され、金属酸化物からなる誘電体層を有するキャパシタ形成工程と、
非導電性無機質材料からなり、少なくとも少なくとも前記キャパシタの上面及び側面を覆うバリア層形成工程と、
樹脂材からなり前記バリア層上に配置される保護絶縁層形成工程とを備えたことを特徴とする薄膜キャパシタの製造方法。
【0165】
(付記14) 前記誘電体層を形成する工程は、スパッタ法にて行なうことを特徴とする付記13に記載の薄膜キャパシタの製造方法。
【0166】
(付記15) 前記キャパシタは、支持基板上に、前記バリア層と同じ材料組成からなる密着層を介して形成されることを特徴とする請求項1〜6のいずれかに記載の薄膜キャパシタ。
【0167】
(付記16) 前記密着層およびバリア層は、アルミナまたはTiOxを主成分とする材料からなることを特徴とする付記15に記載の薄膜キャパシタ。
【0168】
(付記17) 前記密着層が多結晶TiOxを主成分とする材料からなり、且つ前記バリア層が非晶質TiOxを主成分とする材料からなることを特徴とする付記15に記載の薄膜キャパシタ。
【0169】
(付記18) 前記密着層およびバリア層が、非晶質ペロブスカイト酸化物を主成分とする材料からなることを特徴とする付記15に記載の薄膜キャパシタ。
【0170】
(付記19) 前記誘電体層が、結晶質のペロブスカイト酸化物を主成分とする材料からなることを特徴とする付記18に記載の薄膜キャパシタ。
【0171】
(付記20) 前記ペロブスカイト酸化物が、BaSrTiOを主成分とすることを特徴とする付記18に記載の薄膜キャパシタ
(付記21) 前記支持基板上に、アルミナまたはBSTを主成分とする材料からなる密着層を形成する工程を更に備えるとともに、該密着層を、非結晶状態で形成することを特徴とする付記12または付記13に記載の薄膜キャパシタの製造方法。
【0172】
(付記22) 前記支持基板上に、TiOxを主成分とする密着層を室温で形成する工程を更に備えることを特徴とする付記12または付記13に記載の薄膜キャパシタの製造方法
【0173】
【発明の効果】
以上のように、本発明の薄膜キャパシタは、金属酸化物からなる誘電体層を有するキャパシタと、樹脂材からなる保護絶縁層とを有し、前記キャパシタと前記保護絶縁層との間に、非導電性無機質材料からなるバリア層を設けた構成をしている。
【0174】
このような構成を備えることにより、保護絶縁層として、バンプからの機械的応力を吸収するポリイミド等の樹脂材を使用したままで、該樹脂材から放出される水分が金属酸化物からなる誘電体層材料を還元することを防止することができる。その結果、優れた高周波追随特性が得られるとともに特性劣化の少ない薄膜キャパシタを提供することが可能となる。
【0175】
更に、支持基板と内臓キャパシタとの密着性を高める密着層と、バリア層との材料組成を同じものにすることにより、製造に必要となるスパッタリング装置の種類が少なくて済むため、設備投資を大幅に抑えることができ、薄膜キャパシタの製造コストを大幅に下げることが可能になる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る薄膜キャパシタの断面図である。
【図2】本発明の第1の実施形態に係る薄膜キャパシタの製造方法の各工程を示す断面図である。
【図3】本発明の第1の実施形態に係る薄膜キャパシタの製造方法の各工程を示す断面図である。
【図4】本発明の薄膜キャパシタに関するキャパシタ特性の測定実験における測定回路図である。
【図5】本発明の薄膜キャパシタに関するキャパシタ特性の測定実験における測定結果のグラフである。
【図6】本発明の第3の実施形態に係る薄膜キャパシタの外観図及び断面図である。
【図7】本発明の第4の実施形態に係る薄膜キャパシタを上面から見た全体構成図である。
【図8】本発明の第5の実施形態に係る薄膜キャパシタの断面図である。
【図9】本発明の第5の実施形態に係る薄膜キャパシタの製造方法の各工程を示す断面図である。
【図10】スパッタリング装置の概略構成図である。
【図11】従来の薄膜キャパシタの製造方法の各工程を示す断面図である。
【図12】従来の薄膜キャパシタの製造方法の各工程を示す断面図である。
【符号の説明】
1:半導体基板
2:下部電極
3:容量絶縁膜
4:上部電極
6:保護絶縁層
9:コンタクトホール
10:レジストマスク
11:シリコン基板
12:下部電極層
13:誘電体層
14:上部電極層
15:バリア層
16:保護絶縁層
17:電極パッド
18:バンプ
18a:電源ラインに接続されたバンプ
18b:GNDラインに接続されたバンプ
19:コンタクトホール
20:薄膜キャパシタ
21:電極引き出し用穴
30:キャパシタ
30a:キャパシタa
30b:キャパシタb
30c:キャパシタc
31:キャパシタエリア
40:密着層
50:スパッタリング装置
51:ターゲット電極
52:ターゲット
53:ウエハ
54:試料台
55:吸入
56:排気
57:陽イオン

Claims (10)

  1. 金属酸化物からなる誘電体層を有するキャパシタと、樹脂材からなる保護絶縁層とを有する薄膜キャパシタにおいて、
    前記キャパシタと前記保護絶縁層との間に、非導電性無機質材料からなるバリア層を設けたことを特徴とする薄膜キャパシタ。
  2. 支持基板上に形成され、金属酸化物からなる誘電体層を有するキャパシタと、
    非導電性無機質材料からなり、少なくとも前記キャパシタの上面及び側面を覆うバリア層と、
    樹脂材からなり前記バリア層上に形成された保護絶縁層とを備えたことを特徴とする薄膜キャパシタ。
  3. 前記バリア層が、前記誘電体層と同一組成であることを特徴とする請求項1又は請求項2に記載の薄膜キャパシタ。
  4. 前記バリア層が、非晶質であることを特徴とする請求項1から請求項3のいずれかに記載の薄膜キャパシタ。
  5. 外部との電気的接続を行なう端子を、少なくとも、パッケージの一面の端部以外に設けたことを特徴とする請求項1から請求項4のいずれかに記載の薄膜キャパシタ。
  6. 1つの薄膜キャパシタ内に、異なる容量の複数のキャパシタを設けたことを特徴とする請求項1から請求項5のいずれかに記載の薄膜キャパシタ。
  7. 金属酸化物からなる誘電体層を有するキャパシタと、樹脂材からなる保護絶縁層とを有する薄膜キャパシタの製造方法において、
    前記キャパシタ形成工程と、
    前記キャパシタと前記保護絶縁層との間に配置されるとともに、非導電性無機質材料からなるバリア層の形成工程と、
    前記バリア層上に配置される保護絶縁膜形成工程とを備えたことを特徴とする薄膜キャパシタの製造方法。
  8. 支持基板上に形成され、金属酸化物からなる誘電体層を有するキャパシタ形成工程と、
    非導電性無機質材料からなり、少なくとも前記キャパシタの上面及び側面を覆うバリア層形成工程と、
    樹脂材からなり前記バリア層上に配置される保護絶縁層形成工程と、を備えたことを特徴とする薄膜キャパシタの製造方法。
  9. 前記キャパシタは、支持基板上に、前記バリア層と同じ材料組成からなる密着層を介して形成されることを特徴とする請求項1〜6のいずれかに記載の薄膜キャパシタ。
  10. 前記支持基板上に、アルミナまたはBSTを主成分とする材料からなる密着層を形成する工程を更に備えるとともに、該密着層を、非結晶状態で形成することを特徴とする請求項7または請求項8に記載の薄膜キャパシタの製造方法。
JP2003094732A 2002-11-14 2003-03-31 薄膜キャパシタおよびその製造方法 Expired - Fee Related JP3966208B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003094732A JP3966208B2 (ja) 2002-11-14 2003-03-31 薄膜キャパシタおよびその製造方法
US10/706,288 US7161793B2 (en) 2002-11-14 2003-11-13 Layer capacitor element and production process as well as electronic device
US11/486,001 US7405921B2 (en) 2002-11-14 2006-07-14 Layer capacitor element and production process as well as electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002330578 2002-11-14
JP2003094732A JP3966208B2 (ja) 2002-11-14 2003-03-31 薄膜キャパシタおよびその製造方法

Publications (2)

Publication Number Publication Date
JP2004214589A true JP2004214589A (ja) 2004-07-29
JP3966208B2 JP3966208B2 (ja) 2007-08-29

Family

ID=32828443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003094732A Expired - Fee Related JP3966208B2 (ja) 2002-11-14 2003-03-31 薄膜キャパシタおよびその製造方法

Country Status (1)

Country Link
JP (1) JP3966208B2 (ja)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261328A (ja) * 2005-03-16 2006-09-28 Fujitsu Ltd 容量素子、半導体装置、及び容量素子の製造方法
WO2006117912A1 (ja) * 2005-04-27 2006-11-09 Murata Manufacturing Co., Ltd 薄膜キャパシタおよびその製造方法
JP2007013090A (ja) * 2005-06-30 2007-01-18 Samsung Electro Mech Co Ltd 内蔵型薄膜キャパシター、積層構造物及びそれらの製造方法
WO2007010681A1 (ja) * 2005-07-15 2007-01-25 Murata Manufacturing Co., Ltd. 薄膜キャパシタ及び該薄膜キャパシタの製造方法
JP2007081325A (ja) * 2005-09-16 2007-03-29 Murata Mfg Co Ltd 薄膜キャパシタ
WO2007046173A1 (ja) * 2005-10-18 2007-04-26 Murata Manufacturing Co., Ltd. 薄膜キャパシタ
JP2007227874A (ja) * 2006-01-30 2007-09-06 Fujitsu Ltd 薄膜キャパシタ及びその製造方法
JP2008078299A (ja) * 2006-09-20 2008-04-03 Fujitsu Ltd キャパシタ、その製造方法、および電子基板
JP2008252011A (ja) * 2007-03-30 2008-10-16 Taiyo Yuden Co Ltd 誘電体キャパシタ
CN100456465C (zh) * 2005-11-30 2009-01-28 财团法人工业技术研究院 降低导孔应力的结构及其制造方法
JP2009117698A (ja) * 2007-11-08 2009-05-28 Fujitsu Ltd キャパシタ及びキャパシタを含む半導体装置、及びキャパシタの製造方法
US7745924B2 (en) 2007-08-30 2010-06-29 Fujitsu Limited Capacitor embedded in interposer, semiconductor device including the same, and method for manufacturing capacitor embedded in interposer
JP2011040571A (ja) * 2009-08-11 2011-02-24 Murata Mfg Co Ltd 誘電体薄膜素子
JP2011077343A (ja) * 2009-09-30 2011-04-14 Tdk Corp 薄膜コンデンサ
JP2011529263A (ja) * 2008-07-25 2011-12-01 エイティーアイ・テクノロジーズ・ユーエルシー オンダイ・キャパシタ用アンダーバンプメタル
US8203198B2 (en) 2006-03-01 2012-06-19 Fujitsu Limited Thin film capacitor device used for a decoupling capacitor and having a resistor inside
JP5094726B2 (ja) * 2006-09-21 2012-12-12 パナソニック株式会社 半導体チップの製造方法
WO2016136411A1 (ja) * 2015-02-27 2016-09-01 株式会社村田製作所 キャパシタおよび電子機器
WO2017094835A1 (ja) * 2015-12-02 2017-06-08 株式会社村田製作所 薄膜デバイスおよび薄膜デバイスの製造方法
US9722013B2 (en) 2014-08-26 2017-08-01 Taiyo Yuden Co., Ltd. Thin film electronic component
US9773614B2 (en) 2014-07-24 2017-09-26 Tdk Corporation Thin film capacitor
US9824821B2 (en) 2014-09-05 2017-11-21 Taiyo Yuden Co., Ltd. Thin film capacitor with intermediate electrodes
JP2018063980A (ja) * 2016-10-11 2018-04-19 Tdk株式会社 薄膜コンデンサ
WO2019021817A1 (ja) * 2017-07-25 2019-01-31 株式会社村田製作所 キャパシタ
WO2019026641A1 (ja) * 2017-07-31 2019-02-07 株式会社村田製作所 薄膜コンデンサ及びその製造方法
JP2019071468A (ja) * 2014-03-28 2019-05-09 ローム株式会社 ディスクリートキャパシタおよびその製造方法
US10319718B2 (en) 2014-03-28 2019-06-11 Rohm Co., Ltd. Discrete capacitor and manufacturing method thereof
US10340088B2 (en) 2017-02-21 2019-07-02 Tdk Corporation Thin-film capacitor
JP2019179794A (ja) * 2018-03-30 2019-10-17 Tdk株式会社 薄膜キャパシタ
JP2019186495A (ja) * 2018-04-17 2019-10-24 大日本印刷株式会社 受動素子
US10483345B2 (en) 2017-02-13 2019-11-19 Tdk Corporation Electronic component embedded substrate
WO2020030907A1 (en) * 2018-08-08 2020-02-13 Xaar Technology Limited Electrical component comprising a lead-free thin film ceramic member and an alumina barrier layer
US10813220B2 (en) 2017-02-13 2020-10-20 Tdk Corporation Electronic component embedded substrate
WO2021053867A1 (ja) * 2019-09-17 2021-03-25 株式会社村田製作所 半導体装置
US11114249B2 (en) 2017-02-21 2021-09-07 Tdk Corporation Thin-film capacitor
US11276531B2 (en) 2017-05-31 2022-03-15 Tdk Corporation Thin-film capacitor and method for manufacturing thin-film capacitor

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261328A (ja) * 2005-03-16 2006-09-28 Fujitsu Ltd 容量素子、半導体装置、及び容量素子の製造方法
JPWO2006117912A1 (ja) * 2005-04-27 2008-12-18 株式会社村田製作所 薄膜キャパシタおよびその製造方法
WO2006117912A1 (ja) * 2005-04-27 2006-11-09 Murata Manufacturing Co., Ltd 薄膜キャパシタおよびその製造方法
US7785977B2 (en) 2005-04-27 2010-08-31 Murata Manufacturing Co., Ltd. Thin film capacitor and manufacturing method therefor
JP4525947B2 (ja) * 2005-04-27 2010-08-18 株式会社村田製作所 薄膜キャパシタの製造方法
US7675139B2 (en) 2005-04-27 2010-03-09 Murata Manufacturing Co., Ltd. Thin film capacitor and manufacturing method therefor
JP2007013090A (ja) * 2005-06-30 2007-01-18 Samsung Electro Mech Co Ltd 内蔵型薄膜キャパシター、積層構造物及びそれらの製造方法
WO2007010681A1 (ja) * 2005-07-15 2007-01-25 Murata Manufacturing Co., Ltd. 薄膜キャパシタ及び該薄膜キャパシタの製造方法
JP2007081325A (ja) * 2005-09-16 2007-03-29 Murata Mfg Co Ltd 薄膜キャパシタ
JP4674606B2 (ja) * 2005-10-18 2011-04-20 株式会社村田製作所 薄膜キャパシタ
JPWO2007046173A1 (ja) * 2005-10-18 2009-04-23 株式会社村田製作所 薄膜キャパシタ
US7898792B2 (en) 2005-10-18 2011-03-01 Murata Manufacturing Co., Ltd Thin-film capacitor
JP2011054979A (ja) * 2005-10-18 2011-03-17 Murata Mfg Co Ltd 薄膜キャパシタ
WO2007046173A1 (ja) * 2005-10-18 2007-04-26 Murata Manufacturing Co., Ltd. 薄膜キャパシタ
CN100456465C (zh) * 2005-11-30 2009-01-28 财团法人工业技术研究院 降低导孔应力的结构及其制造方法
JP2007227874A (ja) * 2006-01-30 2007-09-06 Fujitsu Ltd 薄膜キャパシタ及びその製造方法
US8203198B2 (en) 2006-03-01 2012-06-19 Fujitsu Limited Thin film capacitor device used for a decoupling capacitor and having a resistor inside
US7940516B2 (en) 2006-09-20 2011-05-10 Fujitsu Limited Capacitor and electronic substrate including the same
JP2008078299A (ja) * 2006-09-20 2008-04-03 Fujitsu Ltd キャパシタ、その製造方法、および電子基板
US7793396B2 (en) 2006-09-20 2010-09-14 Fujitsu Limited Manufacturing method of capacitor
JP5094726B2 (ja) * 2006-09-21 2012-12-12 パナソニック株式会社 半導体チップの製造方法
JP2008252011A (ja) * 2007-03-30 2008-10-16 Taiyo Yuden Co Ltd 誘電体キャパシタ
US7745924B2 (en) 2007-08-30 2010-06-29 Fujitsu Limited Capacitor embedded in interposer, semiconductor device including the same, and method for manufacturing capacitor embedded in interposer
US7846852B2 (en) 2007-08-30 2010-12-07 Fujitsu Limited Method for manufacturing capacitor embedded in interposer
JP2009117698A (ja) * 2007-11-08 2009-05-28 Fujitsu Ltd キャパシタ及びキャパシタを含む半導体装置、及びキャパシタの製造方法
JP2011529263A (ja) * 2008-07-25 2011-12-01 エイティーアイ・テクノロジーズ・ユーエルシー オンダイ・キャパシタ用アンダーバンプメタル
JP2011040571A (ja) * 2009-08-11 2011-02-24 Murata Mfg Co Ltd 誘電体薄膜素子
JP2011077343A (ja) * 2009-09-30 2011-04-14 Tdk Corp 薄膜コンデンサ
JP2019071468A (ja) * 2014-03-28 2019-05-09 ローム株式会社 ディスクリートキャパシタおよびその製造方法
JP7141435B2 (ja) 2014-03-28 2022-09-22 ローム株式会社 ディスクリートキャパシタおよびその製造方法
JP2021007184A (ja) * 2014-03-28 2021-01-21 ローム株式会社 ディスクリートキャパシタおよびその製造方法
US10319718B2 (en) 2014-03-28 2019-06-11 Rohm Co., Ltd. Discrete capacitor and manufacturing method thereof
US9773614B2 (en) 2014-07-24 2017-09-26 Tdk Corporation Thin film capacitor
US9722013B2 (en) 2014-08-26 2017-08-01 Taiyo Yuden Co., Ltd. Thin film electronic component
US9824821B2 (en) 2014-09-05 2017-11-21 Taiyo Yuden Co., Ltd. Thin film capacitor with intermediate electrodes
WO2016136411A1 (ja) * 2015-02-27 2016-09-01 株式会社村田製作所 キャパシタおよび電子機器
JPWO2016136411A1 (ja) * 2015-02-27 2017-09-28 株式会社村田製作所 キャパシタおよび電子機器
US10366832B2 (en) 2015-02-27 2019-07-30 Murata Manufacturing Co., Ltd. Capacitor and electronic device having a plurality of surface electrodes electrically connected to each other by an intermediate electrode
JPWO2017094835A1 (ja) * 2015-12-02 2018-09-06 株式会社村田製作所 薄膜デバイスおよび薄膜デバイスの製造方法
WO2017094835A1 (ja) * 2015-12-02 2017-06-08 株式会社村田製作所 薄膜デバイスおよび薄膜デバイスの製造方法
JP2018063980A (ja) * 2016-10-11 2018-04-19 Tdk株式会社 薄膜コンデンサ
US10483345B2 (en) 2017-02-13 2019-11-19 Tdk Corporation Electronic component embedded substrate
US10813220B2 (en) 2017-02-13 2020-10-20 Tdk Corporation Electronic component embedded substrate
US11114249B2 (en) 2017-02-21 2021-09-07 Tdk Corporation Thin-film capacitor
US10340088B2 (en) 2017-02-21 2019-07-02 Tdk Corporation Thin-film capacitor
US11276531B2 (en) 2017-05-31 2022-03-15 Tdk Corporation Thin-film capacitor and method for manufacturing thin-film capacitor
WO2019021817A1 (ja) * 2017-07-25 2019-01-31 株式会社村田製作所 キャパシタ
US10991509B2 (en) 2017-07-25 2021-04-27 Murata Manufacturing Co., Ltd. Capacitor
JPWO2019021817A1 (ja) * 2017-07-25 2019-11-14 株式会社村田製作所 キャパシタ
CN110800098A (zh) * 2017-07-31 2020-02-14 株式会社村田制作所 薄膜电容器及其制造方法
US11476055B2 (en) 2017-07-31 2022-10-18 Murata Manufacturing Co., Ltd. Thin film capacitor and method of manufacturing the same
CN110800098B (zh) * 2017-07-31 2023-09-22 株式会社村田制作所 薄膜电容器及其制造方法
JPWO2019026641A1 (ja) * 2017-07-31 2020-02-06 株式会社村田製作所 薄膜コンデンサ及びその製造方法
WO2019026641A1 (ja) * 2017-07-31 2019-02-07 株式会社村田製作所 薄膜コンデンサ及びその製造方法
JP2019179794A (ja) * 2018-03-30 2019-10-17 Tdk株式会社 薄膜キャパシタ
US10950389B2 (en) 2018-03-30 2021-03-16 Tdk Corporation Thin-film capacitor
JP7087618B2 (ja) 2018-04-17 2022-06-21 大日本印刷株式会社 受動素子
JP2019186495A (ja) * 2018-04-17 2019-10-24 大日本印刷株式会社 受動素子
WO2020030907A1 (en) * 2018-08-08 2020-02-13 Xaar Technology Limited Electrical component comprising a lead-free thin film ceramic member and an alumina barrier layer
JPWO2021053867A1 (ja) * 2019-09-17 2021-03-25
WO2021053867A1 (ja) * 2019-09-17 2021-03-25 株式会社村田製作所 半導体装置
JP7205638B2 (ja) 2019-09-17 2023-01-17 株式会社村田製作所 半導体装置
US11830909B2 (en) 2019-09-17 2023-11-28 Murata Manufacturing Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
JP3966208B2 (ja) 2007-08-29

Similar Documents

Publication Publication Date Title
JP3966208B2 (ja) 薄膜キャパシタおよびその製造方法
US7405921B2 (en) Layer capacitor element and production process as well as electronic device
JP5463908B2 (ja) キャパシタ搭載インターポーザ及びその製造方法
US7439199B2 (en) Capacitive element, method of manufacture of the same, and semiconductor device
CN1988083B (zh) 薄膜电容器及其制造方法、电子器件和电路板
US8203198B2 (en) Thin film capacitor device used for a decoupling capacitor and having a resistor inside
CN102165542B (zh) 薄膜mim电容器及其制造方法
JP3995619B2 (ja) 薄膜キャパシタ素子、その製造方法及び電子装置
WO2011010638A1 (ja) 誘電体薄膜素子及びその製造方法
EP1876610A1 (en) Thin film capacitor and method for manufacturing same
JPH0878283A (ja) 薄膜キャパシタ
JP5333435B2 (ja) 貫通電極付きキャパシタおよびその製造方法、並びに半導体装置
JP2011077343A (ja) 薄膜コンデンサ
JP2009010114A (ja) 誘電体薄膜キャパシタ
JP2010225849A (ja) 薄膜キャパシタ
JPWO2009028596A1 (ja) 受動素子内蔵基板、製造方法、及び半導体装置
JP2912457B2 (ja) 薄膜コンデンサ
JP4009078B2 (ja) 薄膜電子部品
JP2004273825A (ja) 薄膜キャパシタ素子、その製造方法及び電子装置
JP2006005309A (ja) キャパシタ装置
JP2005252308A (ja) フィルム状コンデンサの製造方法
JP5119058B2 (ja) 薄膜キャパシタ
JP3645808B2 (ja) 薄膜電子部品およびその製法並びに基板
JP3600734B2 (ja) 薄膜コンデンサおよび基板
JP2003045748A (ja) チューナブル薄膜コンデンサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees