HUE024101T2 - Extracelluláris Streptomyces koganeinsis hialuronidáz - Google Patents

Extracelluláris Streptomyces koganeinsis hialuronidáz Download PDF

Info

Publication number
HUE024101T2
HUE024101T2 HUE10718616A HUE10718616A HUE024101T2 HU E024101 T2 HUE024101 T2 HU E024101T2 HU E10718616 A HUE10718616 A HU E10718616A HU E10718616 A HUE10718616 A HU E10718616A HU E024101 T2 HUE024101 T2 HU E024101T2
Authority
HU
Hungary
Prior art keywords
hyaluronidase
protein
activity
streptomyces
fraction
Prior art date
Application number
HUE10718616A
Other languages
English (en)
Inventor
Luciano Messina
Susanna Vaccaro
Salvatore Caruso
Giovanni Gennari
Original Assignee
Fidia Farm Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fidia Farm Spa filed Critical Fidia Farm Spa
Publication of HUE024101T2 publication Critical patent/HUE024101T2/hu

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2474Hyaluronoglucosaminidase (3.2.1.35), i.e. hyaluronidase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/47Hydrolases (3) acting on glycosyl compounds (3.2), e.g. cellulases, lactases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/35Allergens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/315Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/36Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Actinomyces; from Streptomyces (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01035Hyaluronoglucosaminidase (3.2.1.35), i.e. hyaluronidase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/924Hydrolases (3) acting on glycosyl compounds (3.2)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Mycology (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Description

(12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07K 141435 <2m01> A61K 38100 <200601> 29.10.2014 Bulletin 2014/44 C12N 9I26<200601> C07K 14I315<200601> (21) Application number: 10718616.5 (86) International application number: PCT/EP2010/056596 (22) Date of filing: 12.05.2010 (87) International publication number: WO 2010/130810 (18.11.2010 Gazette 2010/46)
(54) EXTRACELLULAR YALURONIDASE FROM STREPTOMYCES KOGANEIENSIS
EXTRAZELLULÁRE HYALURONIDASE AUS STREPTOMYCES KOGANEIENSIS YALURONIDASE EXTRACELLULAIRE DE STREPTOMYCES KOGANEIENSIS (84) Designated Contracting States: · CARUSO, Salvatore AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 1-35031 Abano Terme PD (IT) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO · GENNARI, Giovanni PL PT RO SE SI SK SM TR 1-35031 Abano Terme PD (IT) (30) Priority: 14.05.2009 IT MI20090831 (74) Representative: Asensio, Raffaella Consuelo et al
Perani &amp; Partners S.p.A. (43) Date of publication of application: Piazza San Babila, 5 28.03.2012 Bulletin 2012/13 20122 Milano (IT) (73) Proprietor: FIDIA FARMACEUTICI S.p.A. (56) References cited: 35031 Abano Terme (PD) (IT) EP-A1- 0 005 751 (72) Inventors: Remarks: • MESSINA, Luciano Thefilecontainstechnicalinformationsubmittedafter 1-35031 Abano Terme PD (IT) the application was filed and not included in this * VACCARO, Susanna specification 1-35031 Abano Terme PD (IT)
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description
State of the technique [0001] Hyaluronidase is a hydrolytic enzyme that cleaves hyaluronic acid to D-glucuronic acid and N-acetylglu-cosamine; in varying manner, it is also able to degrade other acid mucopolysaccharides of the connective tissue. For example, high concentrations of hyaluronidase are found, in the buccal apparatus of leeches, in the venoms of snakes, bees, scorpions and in the culture supernatants of pathogenic bacteria such as pneumococci, β-hemolytic streptococci and Staphylococcus aureus. In the human body hyaluronidase is found in the cornea, ciliary body, spleen, skin and testicles. High amounts of hyaluronidase are also found in spermatozoa, thus allowing them to cross the hyaluronic acid barrier that protects the egg cells.
[0002] Hyaluronidase is used in medicine in the treatment of edema, local inflammatory states, hemorrhoids and chilblains and to facilitate the subcutaneous administration of some active ingredients. Some hyaluronidases were also reported to be able to determine a significant reduction in the size of myocardial infarction [1], In the veterinary field it is used in antibiotic solutions for the treatment of animal diseases, such as bovine mastitis. Furthermore, hyaluronidase can be used as an analytical reagent in some biological assays, for example in the quali-quantitative determination of hyaluronic acid.
[0003] The industrial-scale production and purification of bacterial or animal hyaluronidases are difficult due to the fact that the enzyme becomes unstable in aqueous solution and loses activity upon purification.
[0004] US 4,258,134 and the corresponding European patent EP 0 005 751 [2] disclose a hyaluronidase obtained by dialysis and DEAE-and CM-cellulose ion exchange chromatography of the culture supernatant of Streptomyces koga-neiensis ATCC 31399.
[0005] It has now been found that such protein fraction, obtained after the two chromatography steps, is indeed made of numerous protein components (about 68 in bidimensional electrophoresis), butonlyoneofthem has high hyaluronidase activity and marked stability.
Detailed description of the invention [0006] The invention relates to hyaluronidase from Streptomyceskoganeiensis ATCC 31399 comprising the N-terminal amino acid sequence shown in SEQ ID No. 1, and having molecular weight of 21.6 kDa, isoelectric point (pi) ranging between 4.4-4.8 and enzyme activity equal to or higher than40,000 I.U./mg.
[0007] The hyaluronidase according to the invention can be obtained by a process including the following steps: a) subjecting the supernatant obtained from fermentation of Streptomyces koganeiensis ATCC 31394 to weak cation-exchange chromatography and isolating the protein fraction with hyaluronidase activity; b) subjecting the protein fraction with hyaluronidase activity obtained in step a) to diafiltration and strong anion-exchange chromatography and isolating the protein fraction with hyaluronidase activity; c) subjecting the protein fraction with hyaluronidases activity obtained in step b) to strong cation-exchange chromatography and isolating the protein fraction with hyaluronidase activity; d) subjecting the protein fraction with hyaluronidase activity obtained in step c) to strong anion-exchange chromatography and isolating the protein fraction with hyaluronidase activity.
[0008] Fermentation of the microorganism can be carried out by known methods, particularly the method disclosed in US 4,258,134. The supernatant obtained upon fermentation is then collected, centrifuged and filtered. Furthermore, before being subjected to the chromatography steps according to the invention, the supernatant can be subjected to further treatments aimed at removing residual particulate from the culture, by methods and techniques known to the skilled person. Usually, the centrifuged and filtered supernatant is subjected to concentration and dialysis. Typically, concentration is carried out by ultrafiltration on appropriate polyethersulfone filters with cut-ofF ranging between 5 and 15 kDa, preferably of 10 kDa; usually the supernatant is concentrated 8 to 12 fold, preferably 10 fold. Once the presence of hyaluronidase activity is verified by a proper assay, for example the modified assay of Dorfman [3], the concentrated supernatant is dialysed with a buffer solution that is chosen depending on the weak cation-exchange resin used in step a), in such a way that hyaluronidase is at such pH conditions as to be able to bind to the resin; this resin comprises carboxyalkyl exchange groups, preferably carboxymethyl groups, such as the "CM-Sepharose® Fast Flow" resin. After properly equilibrating the resin with the same bufFer solution in which dialysis was carried out, the sample is loaded and elution is then performed with the same solution to remove unbound proteins, after which the pH is increased to elute bound proteins. When the "CM-Sepharose® Fast Flow" resin is used, dialysis, resin equilibration and unbound proteins elution are carried out with 50 mM sodium acetate solution at pH 4.0, while bound proteins elution is carried out with 50 mM sodium acetate solution at pH 4.5. The bound proteins that exhibit high hyaluronidase activity are pooled in a single fraction and subjected to strong anion-exchange chromatography [step b)]. Before proceeding, the pooled fractions are clarified by diafiltration, which is carried out by means and methods known to the skilled person, using a buffer solution that allows hyaluronidase to bind to the strong anion-exchange resin used in step b). Such resin comprises trialkylam-monium groups, typically trimethylammonium groups, such as the HiTrap® Q XL resin (5 ml column). After equilibrating the resin with the same solution used for diafiltration, the fraction obtained in step a) is loaded and elution is then performed with the same solution to remove unbound proteins; then the eluent ionic strength is progressively increased to elute bound proteins. According to a preferred embodiment, the HiTrap® Q XL resin is used and diafiltration, column equilibration and unbound proteins elution are carried out with 50 mM Tris-HCI buffer solution at pH 8, while bound proteins elution is carried out by adding NaCI at increasing concentrations to the eluent. By first eluting with 50 mM Tris-HCI, 35 mM NaCI solution at pH 8 and then 50 mM Tris-HCI, 200 mM NaCI solution at pH 8 two fractions are thus obtained, only the second of which, eluted with the solution containing 200 mM NaCI, exhibits hyaluronidase activity. Such fraction is diluted 8 -12 fold, preferably 10 fold, with a buffer solution that allows hyaluronidase to bind to the strong cation-exchange resin used for step c). The resin comprises sulfonic groups, preferably sulfonyl alkyl groups, even more preferably sulfonyl propyl groups; according to a particularly preferred embodiment of the invention, the "HiTrap® SP FF" resin is used. Practically, after equilibrating the resin with the same buffer solution in which the hyaluronidase fraction obtained in step b) was diluted and loading the sample, washing with the same buffer solution (about 20 bed volumes) is carried out, after which bound proteins elution is then performed, by progressively increasing the eluent pH. Typically, for the HiTrap® SP FF resin, dilution, column equilibration and washing are carried out with 20 mM sodium phosphate buffer solution at pH 4, while elution is carried out with 50 mM sodium phosphate buffer at pH 4.8; the fractions with high hyaluronidase activity are pooled in a single fraction, which is subjected to strong anion-exchange chromatography [step d)j. Usually, before chromatography, such fraction is diluted 8 -12 fold, preferably 10 fold, in a proper equilibration buffer, which allows hyaluronidase to bind to the chosen resin. The resin for step d) is a strong anion-exchange resin comprising quaternary ammonium groups; preferably, a Resource Q® column is used. After loading the sample, washing with the same equilibration buffer is performed and bound proteins elution is then performed by progressively decreasing the pH by 0.5 units, to pH 4. When a Resource Q® column is used, hyaluronidase fraction dilution, column equilibration and washing after sample loading are carried out with 20 mM sodium acetate at pH 5.5; by progressively decreasing the pH as defined above, a first fraction of proteins at pH 5 and two fractions of proteins at pH 4 are obtained; the second fraction eluted at pH 4 has absorbance at 280 nm and enzyme activity higher than the other two fractions, as Figure 2 shows. By subjecting such fraction to 12% SDS-PAGE chromatography and silver staining (Figure 6), a single protein band with apparent molecular weight of about 25 kDa is observed. Particularly, 99% of hyaluronidase purified by the above described process has apparent molecular weight of about 25 kDa. Such protein only comprises about 5% of the hyaluronidase present in the supernatant obtained upon fermentation; hence, the process allows obtaining about 20-fold enrichment with about 30% yield.
[0009] With respect to other hyaluronidases known to date, that of the invention is highly stable in aqueous solution, is not sensitive towards the action of proteolytic enzymes and has HPLC purity higher than 98% (Figs. 5a-5h), which is required for therapeutic use; hence, it may be used, alone or in combination with other active ingredients, in the preparation of pharmaceutical or veterinary compositions for the treatment of diseases in which it is necessary or advantageous to degrade the hyaluronic acid present in the organ or tissue affected by the disease.
[0010] Thanks to high stability in aqueous solution, the hyaluronidase of the invention can also be formulated in the form of aqueous based compositions, such as solutions, hydrophilic creams, hydrogels, in addition to the form of lipophilic products such as ointments or oily creams.
[0011] With regard to human use, the hyaluronidase of the invention can be used for preparation of pharmaceutical compositions for the treatment of edema, particularly traumatic edema, or inflammatory states, such as the hemorrhoidal syndrome; furthermore, it can be used for the preparation of compositions for the treatment of chilblains. The hyaluronidase of the invention can also be used in combination with other drugs whose bioavailability increase is necessary or advantageous.
[0012] For example, forthe treatment of traumatic edema, combinations of the hyaluronidase according to the invention with anticoagulant and/orfibrinolytic agents are particularly advantageous. Such combinations may also optionally contain one or more steroidal or nonsteroidal anti-inflammatory agents. Furthermore, sulfated hyaluronic acid, which is also known to have antithrombotic and anticoagulant properties, in addition to anti-inflammatory properties, may advantageously be combined with these compositions. An example of sulfated hyaluronic acid that can be used to that end is disclosed, for example, in EP 0702699.
[0013] Combinations of the hyaluronidase according to the invention with other active ingredients are also advantageous in the case of injectable preparations containing particularly high molecular weight active ingredients, for example monoclonal antibodies, cytokines or enzymes, which are usually administered intravenously; hyaluronidase allows administering them subcutaneously, according to the so-called EASI (Enzymatically-Augmented Subcutaneous Infusion) procedure, which is mainly employed for fluid replacement in terminal patients, in such a way to limit or avoid nursing care. The hyaluronidase according to the invention can also be employed for the preparation of pharmaceutical com positions for the treatment of resistant solid tumors; in fact, by degrading hyaluronic acid, it lowers the interstitial fluid pressure in the tumor mass, retarding or inhibiting its growth. For the same reason, it also increases the effectiveness of antitumoral active ingredients optionally combined therewith. Hence, a further aspect of the invention relates to pharmaceutical compositions containing hyaluronidase in combination with one or more antitumoral active ingredients, such as vinca alkaloids (vinblastine, vincristine, vinorelbine) and taxanes (paclitaxel).
[0014] A further therapeutic use of the hyaluronidase according to the invention relates to the treatment of IgE-mediated allergic forms via enzyme potentiated desensitization (EPD = Enzyme Potentiated Desensitization), which consists of administering extremely low doses of allergens to desensitize subjects susceptible thereto. By associating hyaluronidase with an allergen it is possibile to increase the treatment effectiveness, since the allergen more readily reaches the site of action. Hence, a further object of the invention consists of pharmaceutical compositions containing hyaluronidase in association with one or more allergens that induce IgE-mediated allergic reactions. Hyaluronidase also finds use as a diffusion factor of drugs for odontological use in the treatment of oral cavity diseases, for example local anaesthetics and antibiotics; hence, according to a further aspect, the invention relates to pharmaceutical compositions containing the hyaluronidase according to the invention in association with one or more local anaesthetics or antibiotics.
[0015] In ophthalmology, hyaluronidase allows to markedly expedite the treatment of spontaneous vitreous haemorrhages and can be used, alone or in combination with other active ingredients, in the preparation of pharmaceutical forms for ophthalmic use, such as solutions, suspensions, gels, creams and ointments, for the treatment of said haemorrhages.
[0016] With regard to veterinary use instead, a disease that can effectively be treated with the hyaluronidase of the invention is bovine mastitis; in that case, hyaluronidase can be administered in combination with antibiotics, such as penicillin G, l-IV generation cephalosporins and potentiated aminopenicillins.
[0017] Pharmaceutical compositions can be prepared by techniques and excipients known to the skilled person, for example according to what is described in Remington, "The Science and the Practice of Pharmacy", 21st ed. (Lippincott, Williams &amp; Wilkins); such compositions include, particularly, injectable preparations and topical preparations for dermal, transdermal and ophthalmic application. Particularly, topical preparations for epidermal application can be selected from creams, gels, ointments and spray solutions, while topical preparations for ophthalmic application can be selected from creams, gels, ointments solutions and suspensions. As previously noted, thanks to its stability in aqueous solution, the hyaluronidase according to the invention can be formulated in aqueous based products; the choice between an aqueous and oily based formulation can be made by a skilled technician based on common knowledge in the field of pharmaceutical technology, depending on the other components present in the composition.
[0018] Finally, the hyaluronidase according to the invention can be used as a reagent in biochemical assays for the quali-quantitative determination of hyaluronic acid.
Description of the figures [0019] FIG. 1: 2D electrophoresis of the CM-cellulose fraction positive for hyaluronidase activity deriving from culture supernatant of Streptomyces koganeiensis ATCC 31394. FIG. 2: chromatogram of Streptomyces koganeiensis hyaluronidase obtained upon Resource Q® column chromatography (step d). FIG. 3: 12% SDS-PAGE protein pattern of the fractions obtained at the end of each purification step according to the invention compared to the supernatant protein pattern. FIG. 4: analysis of hyaluronidase purity by HPLC on Bio-Sil SEC gel filtration column [step d)]. FIGs. 5a-4h: SDS-PAGE analysis and absorption spectra of the N-terminal sequencing of hyaluronidase obtained in step d). FIG. 6: non-denaturing SDS-PAGE analysis for determination of hyaluronidase activity; comparison between hyaluronidase obtained in step d) and hyaluronidase obtained according to US 4,258,134. FIG. 7: mass spectrometry determination of the molecular weight of hyaluronidase obtained in step d). FIG. 8: determination of the isoelectric point of hyaluronidase obtained in step d). FIG. 9: comparison between the enzyme activities of some commercially available hyaluronidases and the hyaluronidase according to the invention.
EXPERIMENTAL PART
[0020] The invention will now be disclosed in greater detail in the following experimental part, which illustrates the best mode of carrying out the invention, which is not to be intended in a limiting sense. MATERIALS AND METHODS Culture of the microorganism [0021] S. /cogane/ens/s was obtained from American Type Culture Collection (ATCC 31394) and cultured as described in [2], Briefly, the microorganism was grown in 1 litre of culture medium [(20 g/l yeast extract (Organotechnie) and 5 g/l soy peptone (Solabia), pH 6.9)] at 30 °C, shaking at 150 rpm and for about 16 h. Upon growth, the culture was used to inoculate a 50 litre fermentor (Biostat U, B.BRAUN) containing 30 litres of appropriate medium [(10 g/l yeast extract (Organotechnie), 5 g/l soy peptone (Solabia), 3 g/l malt extract (Costantino), 3 g/l dextrin type I (Sigma), 0.2 g/l antifoam (Sigma)]. Before inoculation, the pH was brought to 7.0 with NaOH; during fermentation the pH was monitored, but not controlled, and the temperature was kept at 30 °C throughout fermentation, while shaking was kept at 300 rpm, with aeration of 1.6 VVM (volume of air per volume of culture medium per minute). The fermentation lasted 48 h, a time that corresponded to the highest production of hyaluronidase enzyme activity (1x105-1.3x1051U ./I) in the culture supernatant.
[0022] At the end of the fermentation the culture was centrifuged at 5000 rpm for 30 min at 4 °C (SORVALL Evolution RC) and filtered with 0.2 μηι polyethersulfone tangential flow filters, in such a way to eliminate the Streptomyces koga-neiensis biomass (which occurred in the form of 1-4 mm diameter roundish hyphal aggregates) and obtain a clarified supernatant containing hyaluronidase.
Determination of hyaluronidase activity [0023] Hyaluronidase activity was measured by the modified method of Dorfman [3], Briefly, the product obtained from DEAE- and CM-cellulose chromatographies was diluted in 0.03 M phosphate buffer, 0.82% NaCI, pH 6.3 and 1 ml of the solution thus obtained was mixed with 1 ml of substrate buffer (0.03 M phosphate buffer, 0.82% NaCI, pH 6.3) containing 0.5 mg hyaluronic acid. Enzymatic digestion was carried out at 37 °Cfor30 min and at the end of the incubation process turbidity was generated by adding 4 ml of horse serum based acid solution (SIGMA). The optical density at 640 nm was measured exactly 30 min after adding the horse serum based acid solution. A standard of mammalian testicle hyaluronidase (EDQM, FIP Hyaluronidase, H1115000) containing 328 I.U./mg was used to construct a standard curve and the sample activity (in units) was calculated using this curve.
Chromatographies [0024] The chromatography resins and columns were purchased from GE Helthcare Life Sciences and kept according to the specifications provided by the supplier. The equilibration and elution stages were carried out with a Fast Performance Liquid Chromatography system (FPLC; AKTA explorer 100, GE Healthcare) at a flow of 40-50 ml/min for the first chromatography and 5 ml/min for the following chromatographies. At the end of each chromatography step the hyaluronidase activity was verified with the modified assay of Dorfman described in the previous step.
[0025] For purity analyses by gel filtration the LC-10AD HPLC instrument (SHIMADZU) with a Bio-Sil SEC column (BIO-RAD) was used, eluting with 0.05 M NaH2P04,0.05 M Na2HP04,0.15 M NaCI, pH 6.6, at 1 ml/min. The absorption wavelength used was 214 nm (SPD-10A, SHIMADZU). The protein purity was determined using the LC solution 1.21 SP1 software. SDS-PAGE electrophoresis [0026] Polyacrylamide gel electrophoresis analyses in the presence of sodium dodecyl sulfate (SDS-PAGE) were carried out using the method of Laemmli [4] on 12% polyacrylamide gel, using a Mini-PROTEAN 3 (BIO-RAD) according to the supplier’s instructions. The molecular weight of the purified protein was estimated by comparison with low molecular weight standard proteins (BIO-RAD).
Bidimensional electrophoresis and isoelectric focusing [0027] The protein fraction to be analyzed was mixed in proper loading buffer and loaded on pH 3-10 IPG strips (ReadyStrips 7 cm, BIG-RAD); the strip was incubated at 25 °C until sample absorption and loaded on the PROTEAN IEF Cell (BIO-RAD) for isoelectric focusing (IEF).
[0028] At the end of the isoelectric focusing run (first dimension) the strip was equilibrated in proper loading and running buffer, then it was loaded in the second dimension on 12% SDS-PAGE, using Mini-PROTEAN 3 cells (BIO-RAD).
Densitometric analyses [0029] Polyacrylamide gels properly stained with Silver Stain Plus (BIO-RAD) or Coomassie (BIO-RAD), were acquired with a laboratory imager ImageQuant 300 TL (GE Healthcare), while (quantitative and qualitative) analyses were carried out employing the ImageQuant TL image analysis software (GE Healthcare). Image analyses on 2D SDS-PAGE polyacrylamide gels were instead carried out employing the ImageMaster 2D Platinum 6.0 software (GE Healthcare).
Mass spectrometry [0030] Mass spectrometry analyses for molecular weight determination were carried out using the Ultraflex HIT OF/T OF mass spectrometer (BRUKER) and Bruker Protein Mix 1 markers, while protein identification was carried out using the peptide accurate mass values determined by MALDI-MS Voyager DE-PRO system (Applied Biosystems).
Sequencing of the N-terminal end [0031] N-Terminal amino acid sequencing was carried out according to the Edman degradation method using a pulsed liquid-phase automated protein sequencer (ABI-Perkin Elmer Mod. 477A). The BLAST software [5] was used to carry out homology searches on the GenBank data bank and that of the genome project of web-available Streptomyces species.
Comparison between the enzyme activities of different types of hvaluronidases [0032] The enzymatic potential of the hyaluronidase according to the invention was evaluated by comparison with the enzyme activities of some of the most used commercially available hyaluronidase (FIP hyaluronidase standard, bovine testicle hyalurenidase type l-S (SIGMA), bovine testicle hyaluronidase type Vl-S (SIGMA), sheep testicle hyaluronidase of type V (SIGMA), Streptomyces hyalurolyticus hyaluronidase (SIGMA)), using the above described enzyme assay and the activity value was plotted in Figure 9 as I. U./mg (protein concentration was determined by BOA Protein Assay Reagent Kit, PIERCE). EXAMPLE 1 (REFERENCE EXAMPLE) - OBTAINMENT, PURIFICATION AND CHARACTERIZATION OF STREPTOMYCES KOGANEIENSIS HYALURONIDASE ACCORDING TO US 4,258,134 [0033] S. koganeiensis 31394 ATCC was cultured as described in Materials and Methods; the supernatant obtained from centrifugation, properly filtered with tangential flow filters, was subjected to weak anion-exchange chromatography on DEAE-cellulose. Briefly, 1.2 kg of DEAE-cellulose was equilibrated with 25 mM sodium phosphate buffer at pH 7.0 and packed, then the supernatant, clarified in the same buffer, was loaded on the column and eluted with 25 mM sodium phosphate buffer at pH 7.0 containing 250 mM NaCI; after chromatography, the fraction having hyaluronidase activity was collected and concentrated by ultrafiltration, dialysed with 10 volumes of acetate buffer (pH 5.0) and run through weak cation-exchange chromatography using a CM-cellulose column. Elution was performed by 0.005-0.1 M acetate buffer elution gradient. The positive fraction for hyaluronidase activity was collected upon chromatography, concentrated by ultrafiltration and dialysed with 10 volumes of distilled water (MilliQ, Millipore). The product thus obtained was filtered on 0.2 μίτι polyethersulfone filters and subjected to assay for determination of hyaluronidase activity, SDS-PAGE, bidi-mensional electrophoresis and densitometric analysis.
[0034] With regard to bidimensional electrophoresis, whose result is reported in Figure 1, a 600 μΙ aliquot of the fraction with hyaluronidase activity obtained from chromatography was concentrated to a volume of about 20 μΙ (about 864 U of hyaluronidase) using BIOMAX 5k columns (Millipore). The concentrated aliquot was mixed with 125 μΙ of loading buffer (8 M urea, 2% CHAPS, 50 mM dithiothreitol (DTT), 0.2% (w/v) Bio-Lyte 2/10 ampholyte and bromophenol blue) and loaded on pH 3-10 IPG strips (ReadyStrips 7 cm, BIO-RAD), incubating the sample on the strip at 25 °C for 11 h. After 11 h of sample absorption, the strip was loaded on the PROTEAN IEF Cell (BIO-RAD) for isoelectric focusing (IEF).
[0035] At the end of the isoelectric focusing run (first dimension) the strip was first equilibrated for 15 min with a first buffer [(6 M urea, 2% SDS, 0.375 M Tris-HCI (pH 8.8), 20% glycerol, and 2% (w/v) DTT], then with a second buffer [6 M urea, 2% SDS, 0.375 M Tris-HCI (pH 8.8), 20% glycerol]. After equilibration, the strip was loaded in the second dimension on 12% SDS-PAGE, using Mini-PROTEAN 3 cells (BIO-RAD). After the electrophoresis run, the gel was stained with Coomassie PhastGel Blue R and analyzed, after scanning, by imaging software as described in materials and methods (Figure 1).
EXAMPLE 2- OBTAINMENT, PURIFICATION AND CHARACTERIZATION OF THE STREPTOMYCES KOGANEIEN-SIS HYALURONIDASE ACCORDING TO THE INVENTION 2a> Obtainment and purification
Sample preparation [0036] The clarified supernatant (about 30 litres), obtained from fermentation of Streptomyces koganeiensis ATCC 31394, as described in Materials and Methods, was concentrated 10 fold by ultrafiltration through 10-kDa cut-off poly-ethersulfone filters and its hyaluronidase activity was measured. The concentrated supernatant was then dialysed (10 volumes) with 50 mM sodium acetate solution at pH 4.0 and subjected to step a).
Step a) Weak cation-exchange chromatography [0037] The concentrated and dialysed supernatant was loaded on 200 ml of CM-Sepharose® Fast Flow resin (GE Healthcare), packed in a XK-50 column (GE Healthcare) and equilibrated with 10 bed volumes (bed volumes, BV) of 50 mM sodium acetate buffer at pH 4.0.
[0038] After loading, the column was washed with 3 BV of the same buffer, then bound proteins were eluted with 3 BV of 50 mM sodium acetate buffer solution at pH 4.5. Eluted proteins were collected in a single fraction having volume of about 200 ml and subjected to hyaluronidase activity assay.
Step b) Diafiltration and strong anion-exchange chromatography [0039] The enzymatically active fraction obtained in step a) was subjected to diafiltration for 10 times with 50 mM Tris-HCI, pH 8, equilibration buffer, after which it was loaded on a HiTrap® Q XL column (5 ml), previously equilibrated with 20 BV of the same buffer. After loading the sample, washing with 20 BV of buffer was carried out, then bound proteins were first eluted with 12 BV of 50 mM Tris-HCI buffer, 35 mM NaCI at pH 8 to remove impurities comprised of inactive proteins, after which the enzymatically active fraction was eluted with 14 BV of 50 mM Tris-HCI buffer, 200 mM NaCI at pH 8 and collected in a final volume of about 50 ml. Equilibration, washing and elution were carried out at 5 ml/min flow.
Step c) Strong cation-exchange chromatography [0040] The fraction deriving from step b) was diluted 10 fold with 20 mM sodium acetate buffer at pH 4 and loaded on HiTrap® SP FF column, previously equilibrated with 20 BV of the same solution. After a first washing with 20 BV of the same solution, bound proteins were eluted with 10 BV of 50 mM sodium phosphate buffer at pH 4. Eluted proteins were collected in a fraction having a volume of about 45 ml and subjected to hyaluronidase enzyme activity assay. Equilibration, washing and elution were carried out at 5 ml/min flow.
Step d) Strong anion-exchange chromatography [0041] The enzymatically active fraction obtained in step c) was diluted 10 fold in 20 mM sodium acetate buffer at pH 5.5 and loaded on a Resource Q® column, previously equilibrated with 20 BV of the same buffer. After loading the sample, washing with 20 BV of the same buffer was carried out, then pH was lowered to 5 and elution with 10 BV of solution was carried out in such a way to remove the impurities comprised of inactive proteins. The pH was then further lowered to 4 and elution with 15 BV of buffer was carried out. The second peak eluted at this pH value, having higher absorbance, was collected in a final volume of about 10-15 ml and subjected to ultrafiltration and dialysis with 10 volumes of MilliQ water (Millipore). Equilibration, washing and elution were carried out at 5 ml/min flow.
[0042] All of the eluted protein fractions, either enzymatically active or inactive or little active, were then analyzed by 12% SDS-PAGE as described in Materials and Methods and then stained with silver stain according to the instructions provided by the supplier; in all of the fractions with the highest hyaluronidase activity a more marked protein band at about 25 kDa was present (Figure 3). 2b) Analysis and characterization HPLC analysis by gel filtration [0043] The fraction obtained in step d) was subjected to gel filtration column HPLC as described in Materials and Methods. The result of the analysis is reported in Figure 4.
Mass spectrometry [0044] The fraction obtained in step d) was subjected to 12% SDS-PAGE electrophoresis. At the end of the run the gel was stained with Coomassie Brilliant Blue G-250 (BIO-RAD) and the protein excised from the gel was digested with trypsin (BIO-RAD). A peptide mass pattern was obtained using the MALDI-MS Voyager DE-PRO system (Applied Biosystems). The obtained peptide masses were used for the data bank searches for the protein identification. N-Terminal sequencing [0045] The fraction obtained in step d) was subjected to SDS-PAGE electrophoresis on 12% gel, as described above, then blotting to polyvinylidene difluoride membrane (BIO-RAD) and stained according to the instructions provided by the supplier. The band was excised with a scalpel, trying to obtain a piece of the smallest possible size (3 mm x 10 mm) and was loaded in the sequencer reaction chamber.
Determination of hyaluronidase activity by non-denaturing SDS-PAGE
[0046] The protein samples to be analyzed for hyaluronidase enzyme activity [hyaluronidase and unbound proteins obtained in stepd) and hyaluronidase obtained according to US 4,258,134 chromatography] were separated in duplicate on native 8% polyacrylamide gel impregnated with 0.17 mg/ml of hyaluronic acid. After the electrophoresis run, the gel was washed three times with 0.1 M sodium formate, 0.05 M NaCI, pH 4.0, and incubated overnight in the same solution at 37 °C. The gel was washed three times in 3% acetic acid and stained for 2 h at room temperature in 0.5% (w/v) Alcian blue (SIGMA) and 3% acetic acid solution. The gel was then destained in 7% sodium acetate solution for at least 1 h.
[0047] Proteins that exhibited hyaluronidase activity were detected as pale bands on the gel blue background [6], Native-PAGE prepared in the same way, but stained with Coomassie Brilliant Blue G-250 (BIO-RAD) was used as a control (Figure 6).
Passive elution of the protein from native polyacrylamide gel [0048] The protein band with hyaluronidase activity was excised from the native polyacrylamide gel stained with Coomassie Brilliant Blue G-250 and placed within a 1.5 ml sterile tube. 0.5 ml of elution buffer (50 mM Tris-HCI, 150 mM NaCI, and 0.1 mM EDTA; pH 7.5) was added to the excised piece of gel, in such a way that it was completely immersed. The piece of gel was homogenized with a sterile pestle and incubated in an orbital shaker at 30 °C overnight. After incubation, the homogenized gel was centrifuged at 5,000-10,000 x g (5402 centrifuge, eppendorf) for 10 min and the supernatant was very carefully taken out and transferred to a new 1.5 ml tube. After being concentrated 10 fold with BIOMAX 5k column (Millipore), the supernatant was verified for the presence of the eluted protein by SDS-PAGE, and afterwards it was subjected to hyaluronidase activity assay and, as a confirmation, N-terminal sequencing (Figure 5).
Determination of the protein molecular weight by mass spectrometry [0049] 1 μΙ hyaluronidase (about 0.5 μg) was mixed with 1 μΙ of a solution comprised of 20 μg/μl sinapinic acid (SA) in 50% acetonitrile with 0.1% trifluoroacetic acid (TFA). The obtained mixture was transferred onto MALDI plate and subjected to analysis as noted in Materials and Methods. The result of the analysis is reported in Figure 7.
Isoelectric focusing [0050] A 20 μΙ aliquot (20 μg) of hyaluronidase obtained in step d), was mixed with 125 μΙ of loading buffer [8 M urea, 2% CHAPS, 50 mM dithiothreitol (DTT), 0.2% (w/v) Bio-Lyte 2/10 ampholyte and bromophenol blue] and loaded on pH 3-10 IPG strip (ReadyStrips 7 cm, BIO-RAD), incubating the sample on the strip at 25 °C for 11 h. After 11 h of sample absorption, the strip was loaded for isoelectric focusing (IEF) on the PROTEAN IEF Cell (BIO-RAD). At the end of the isoelectric focusing run, the strip was dried with filter paper (Whatman), moistened with MilliQ water, and stained for 45 min using IEF Gel Staining solution (BIO-RAD). The strip was destained for 1 h or longer with destaining solution (Destain solution, Coomassie R-250, BIO-RAD). The sample isoelectric point was determined by comparison with the reference standards isoelectric points (IEF Marker pH 3-10, SERVA). The result of the analysis is reported in Figure 8.
Comparison between the enzyme activities of different types of hyaluronidases [0051] The result of this assay demonstrates that the hyaluronidase according to the invention has an activity about three times higher than the most active among those used for the comparison (Figure 9).
Sequencing [0052] Sequencing of the N-terminal end, which was carried out as described in materials and methods, allowed to establish that it contains the following amino acid sequence:
Ala-Gly-Glu-Asn-Gly-Ala-Thr-Thr-Thr-Phe-Asp-Gly-Pro-Val-Ala (SEQ ID No. 1)
EXAMPLE 3 - PHARMACEUTICAL PREPARATIONS
Preparation 1 - Hydrophilic qel [0053]
[0054] Methyl- and propyl-paraben were dissolved in purified water at 80 °C. After the solution cooled down to room temperature, hyaluronidase was added, shaking until completely dissolved, after which PEG 400 was added, continuing to shake until dissolved. To this solution Carbomer® 974P was added, continuing to shake until homogeneous dispersion and complete hydration thereof, then TEA was added to obtain the aqueous phase gelation. Finally, always under shaking, glycerol and propylene glycol were added.
Preparation 2 - Hydrophilic cream (o/w emulsion) [0055]
[0056] For the preparation of the oily phase, liquid paraffin, stearic acid and Tefose® 1500 were melted under shaking at 50 °C. Separately, the aqueous phase was prepared by initial solution of methyl-paraben at 80 °C, subsequent cooling to room temperature and incorporation of glycerol and hyaluronidase under shaking until completely dissolved.
[0057] The aqueous phase was added to the oily phase, proceeding with emulsification, after which the obtained o/w emulsion was cooled under shaking to room temperature.
Preparation 3 - Ointment [0058]
[0059] The ointment base was prepared by melting light liquid paraffin and white vaseline under shaking at 70 °C. After cooling to room temperature, hyaluronidase was incorporated, mixing until obtaining a homogeneous suspension.
Preparation 4 - Lipogel [0060]
[0061] Light liquid paraffin, white vaseline and the cetylstearyl alcohol were melted under shaking at 90 °C, after which, under shaking, hydrogenated castor oil (lipogelation agent) was added until homogeneous solution. After slowly cooling to room temperature, hyaluronidase was incorporated, mixing until obtaining a homogeneous suspension.
Preparation 5 - Injectable solutions for intramuscular or subcutaneous use [0062]
[0063] Lactose and hyaluronidase were dissolved, under shaking, in buffered saline at pH 6.4 - 7.2, prepared at room temperature and the solution thus obtained was filtered on 0.22-micron filters.
References [0064] [1] Maclean, D., Fishbein, MC., Maroko, PR. &amp; AND Braunwald AND. 1976. Science, 194: 99-200.
[2] Yoshida, K., Fujii, T., Kikuchi, H. 1981. US Patent: 4258134 and European patent EP 0 005 751 [3] Dorfman, A. 1955. Methods in Enzymology, 1: 166-173.
[4] Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature (London) 227:680-685.
[5] Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402.
[6] Guntenhoener, M.W., Pogrel, M.A.,and Stern, R.1992. Matrix 12, 388-396.
[7] Lachmann S, Rommeleare J, Nüesch JP. 2003. Novel PKCeta is required to activate replicative functions of the major nonstructural protein NS1 of minute virus of mice. J Virol 2003;77(14):8048-60.
SEQUENCE LISTING
[0065]
<110> Fidia Farmaceutici SpA <120> IALURONIDASI EXTRACELLULARE DA STREPTOMYCES KOGANEIENSIS <130> P03279IT <160> 1 <170> Patentln version 3.3
<210> 1 <211 > 15 <212> PRT <213> Streptomyces koganeiensis ATCC 31394 <400> 1
Ala Gly Glu Asn Gly Ala Thr Thr Thr Phe Asp Gly Pro Val Ala 15 10 15
Claims 1. Hyaluronidase from Streptomyces koganeiensis ATCC 31394 comprising the N-terminal amino acid sequence shown in SEQ ID No. 1 and having a molecular weight of 21,6 kDa, an isoelectric point (pi) ranging from 4.4 to 4.8 and an enzymatic activity equal to or higher than 40,000 I.U./mg. 2. A process for the preparation of the hyaluronidase according to claim 1 comprising the following steps: a) submitting the supernatant obtained from the fermentation of Streptomyces koganeiensis ATCC 31394 to weak cation-exchange chromatography and isolating the protein fraction with hyaluronidase activity; b) submitting the protein fraction with hyaluronidase activity from step a) to diafiltration and strong anion-ex-change chromatography and isolating the protein fraction with hyaluronidase activity; c) submitting the protein fraction with hyaluronidase activity from step b) to strong cation-exchange chromatography and isolating the protein fraction with hyaluronidase activity; d) submitting the protein fraction with hyaluronidase activity from step c) to strong anion-exchange chromatography and isolating the protein fraction with hyaluronidase activity. 3. The hyaluronidase according to claim 1 for use as a medicament. 4. The hyaluronidase according to claim 3 for use in the treatment of diseases in which degradation of hyaluronic acid in the affected tissues or organs is advantageous or desirable. 5. The hyaluronidase for the use according to claim 4 wherein the disease is selected from edema, inflammation, chilblain, solid tumors, IgE-mediated allergies, oral diseases and spontaneous vitreous haemorrhages. 6. The hyaluronidase for the use according to claim 4 wherein the disease is bovine mastitis. 7. Pharmaceutical or veterinary compositions containing the hyaluronidase of claim 1 in admixture with suitable excipients and/or carriers. 8. The compositions according to claim 7 in the form of injectable preparations or of topical preparations for epidermal, transdermal or ophthalmic application. 9. The compositions according to claim 7 or 8 further containing one or more active principles selected from: steroidal and non-steroidal antinflammatories, antitumor agents, allergens, local anesthetics, antibiotics, monoclonal antibodies, cytokines, enzymes and sulphated hyaluronic acid. 10. The compositions according to claim 9) in which the active principle is sulphated hyaluronic acid and the topical composition for epidermal application is in the form of cream, gel, ointment or spray. 11. Use of the hyaluronidase according to claim 1 as a reagent in biochemical assays for the quali/quantitative determination of hyaluronic acid.
Patentanspriiche 1. Hyaluronidase von Streptomyces koganeiensis ATCC 31394, umfassend die N-terminale Aminosauresequenz, die in SEQ ID NR. 1 gezeigt ist, und mit einem Molekulargewicht von 21,6 kDa, einem isoelektrischen Punkt (pi) im Bereich von 4,4 bis 4,8 und einer enzymatischen Aktivitát, die mindestens 40.000 lE/mg entspricht. 2. Verfahren zur Herstellung der Hyaluronidase nach Anspruch 1, umfassend die folgenden Schritte: a) Unterziehen des aus der Fermentation von Streptomyces koganeiensis ATCC 31394 erhaltenen Llberstands einer schwachen Kationenaustauschchromatographie und Isolieren der Proteinfraktion mit Hyaluronidaseakti-vitát; b) Unterziehen der Proteinfraktion mit Hyaluronidaseaktivitát aus Schritt a) einer Diafiltration und einer starken Anionenaustauschchromatographie und Isolieren der Proteinfraktion mit Hyaluronidaseaktivitát; c) Unterziehen der Proteinfraktion mit Hyaluronidaseaktivitát aus Schritt b) einer starken Kationenaustausch-chromatographie und Isolieren der Proteinfraktion mit Hyaluronidaseaktivitát; d) Unterziehen der Proteinfraktion mit Hyaluronidaseaktivitát aus Schritt c) einer starken Anionenaustausch-chromatographie und Isolieren der Proteinfraktion mit Hyaluronidaseaktivitát. 3. Hyaluronidase nach Anspruch 1 zur Verwendung als Medikament. 4. Hyaluronidase nach Anspruch 3 zur Verwendung bei der Behandlung von Krankheiten, bei denen der Abbau von Hyaluronsáure in den betroffenen Geweben Oder Organen vorteilhaft Oder wiinschenswert ist. 5. Hyaluronidase zur Verwendung nach Anspruch 4, wobei die Krankheit aus Ödem, Entzündung, Frostbeulen, festen Tumorén, IgE-vermittelten Allergien, oralen Krankheiten und spontánén Glaskörperblutungen ausgewáhlt ist. 6. Hyaluronidase zur Verwendung nach Anspruch 4, wobei es sich bei der Krankheit urn Mastitis beim Rind handelt. 7. Pharmazeutische Oder tiermedizinische Zusammensetzungen, welche die Hyaluronidase nach Anspruch 1 in Bei-mischung mit geeigneten sonstigen Bestandteilen und/oder Trágern enthalten. 8. Zusammensetzungen nach Anspruch 7 in der Form von injizierbaren Zubereitungen oder topischer Zubereitungen für die epidermale, transdermale oder ophthalmische Verabreichung. 9. Zusammensetzungen nach Anspruch 7 oder 8, ferner enthaltend mindestens ein Wirkprinzip, ausgewáhlt aus: steroidalen und nicht-steroidalen entzündungshemmenden Mitteln, Antitumormitteln, Allergenen, Lokalanástheti-kas, Antikörpern, monoklonalen Antikörpern, Zytokinen, Enzymen und sulfierter Hyaluronsáure. 10. Zusammensetzungen nach Anspruch 9, bei denen es sich bei dem Wirkprinzip um sulfierte Hyaluronsáure handelt und die topische Zusammensetzung für die epidermale Verabreichung in der Form einer Creme, eines Gels, einer Salbe Oder eines Sprays vorliegt. 11. Verwendung der Hyaluronidase nach Anspruch 1 als Reagenz in biochemischen Assays zur quali-/quantitativen Bestimmung von Hyaluronsaure.
Revendications 1. Hyaluronidase de Streptomyces koganeiensis ATCC 31394 comprenant la séquence d’acides aminés N-terminale présentée dans SEQ ID NO : 1 et ayant une masse moléculaire de 21,6 kDa, un point isoélectrique (pl) dans la plage de 4,4 á 4,8 et une activité enzymatique supérieure ou égale á 40 000 U.l./mg. 2. Procédéde préparationde la hyaluronidaseselon la revendication 1, leditprocédé comprenant les étapessuivantes : a) soumission du surnageant obtenu de la fermentation de Streptomyces koganeiensis ATCC 31394 á une chromatographie d’échange de cations faible puis isolement de la fraction protéique ayant une activité hyaluronidase ; b) soumission de la fraction protéique ayant une activité hyaluronidase de l’étape a) á une diafiltration et á une chromatographie d’échange d’anions forte puis isolement de la fraction protéique ayant une activité hyaluronidase ; c) soumission de la fraction protéique ayant une activité hyaluronidase de l’étape b) á une chromatographie d’échange de cations forte puis isolement de la fraction protéique ayant une activité hyaluronidase ; d) soumission de la fraction protéique ayant une activité hyaluronidase de l’étape c) á une chromatographie d’échange d’anions forte puis isolement de la fraction protéique ayant une activité hyaluronidase. 3. Hyaluronidase la revendication 1, pour son utilisation en tant que médicament. 4. Hyaluronidase la revendication 3, pour son utilisation dans le traitementde maladies dans lesquelles la dégradation de I’acide hyaluronique dans les tissus ou les organes affectés est avantageuse ou souhaitable. 5. Hyaluronidase pour son utilisation selon la revendication 4, dans laquelle la maladie est sélectionnée parmi un oedéme, une inflammation, une engelure, des tumeurs solides, des allergies médiées par les IgE, des maladies orales et des hémorragies spontanées du vitré. 6. Hyaluronidase pour son utilisation selon la revendication 4, dans laquelle la maladie est la mastite bovine. 7. Compositions pharmaceutiques ou vétérinaires contenant la hyaluronidase selon la revendication 1 en mélange avec des excipients et/ou des véhicules adaptés. 8. Compositions selon la revendication 7, sous la forme de preparations injectables ou de preparations topiques pour une application épidermique, transdermique ou ophtalmique. 9. Compositions selon la revendication 7 ou la revendication 8, contenant en outre un ou plusieurs principes actifs sélectionnés parmi : les anti-inflammatoires stéro'i'diens et non stéroídiens, les agents antitumoraux, les allergénes, les anesthésiques locaux, les antibiotiques, les anticorps monoclonaux, les cytokines, les enzymes et l’acide hyaluronique sulfaté. 10. Compositions selon la revendication 9, dans lesquelles le principe actif est l’acide hyaluronique sulfaté et la composition topique pour application épidermique se trouve sous la forme d’une créme, d’un gél, d’un onguentou d’une pulvérisation. 11. Utilisation de la hyaluronidase la revendication 1, en tant que réactif dans des analyses biochimiques pour la détermination quali/quantitative de l’acide hyaluronique. FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5a
- AGENGAT
Fig. 5b 1 aminoacid - 1° cycle (Gly-Ala)
Fig. 5c 2° aminoacid - 2° cycle (Glu-Gly)
Fig. 5d 3° aminoacid - 3° cycle (Asn - Glu)
Fig. 5e 4° aminoacid - 4° cycle (Gly - Asn)
Fig. 5f 5° aminoacid - 5° cvcle (Ala - Gly)
Fig. 5g 6° aminoacid - 6° cycle (Thr - Ala)
Fig. 5h 1° aminoacid - 7° cycle (Thr...)
FIG. 6
FIG. 7
FIG. 8
IEF
FIG. 9
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • US 4258134 A [0004] [0008] [0019] [0046] [0064] • EP 0005751 A [0004] [0064]
Non-patent literature cited in the description • REMINGTON. The Science and the Practice of Pharmacy. Lippincott, Williams &amp; Wilkins [0017] • MACLEAN, D. ; FISHBEIN, MC. ; MAROKO, PR. ; AND BRAUNWALD. Science, 1976, vol. 194,99-200 [0064] • DORFMAN, A. Methods in Enzymology, 1955, vol. 1, 166-173 [0064] • LAEMMLI, U.K. Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature, 1970, vol. 227, 680-685 [0064] • EP 0702699 A [0012] • ALTSCHUL SF ; MADDEN TL ; SCHAFFER AA ; ZHANG J ; ZHANG Z ; MILLER W ; LIPMAN DJ.
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 1997, vol. 25, 3389-3402 [0064] • GUNTENHOENER, M.W. ; POGREL, M.A. ; STERN, R. Matrix, 1992, vol. 12, 388-396 [0064] • LACHMANN S ; ROMMELEARE J ; NÜESCH JP. Novel PKCeta is required to activate replicative functions of the major nonstructural protein NS1 of minute virus of mice. J Virol, 2003, vol. 77 (14), 8048-60 [0064]

Claims (4)

  1. :Ixlraee8é!áris Higl«»i!#2 Szafeaiafml Igénypontok
    1. EMraeéllulárls Stréptontysas koganeiensfs: ATOO 313S4 ü^onídái, mely ez 1; szárny . fééermtnálls smlnosavszafdrenefat: taÉalnMizs, #s mei®kulatemege 21 ,.8'tüa. izoelektrooios ponttá |plyi.A "4Jés énzimákivkásá ^0<KílM^vagy#i^.f^öbbv ' t=. =ípéf^p®n* ^luron^is: -^sSfl^s^afe i) Sieptomyots kapapeiemié: AJ€C 3il§4 femaatteKg» m^m nyert teHúszét m^m k0mmmélé kromafograiinsk vetjük síi, és telilsk a Nlalyroaléáa-aktlvltáaé potato* f rákosokat; i) az a) lépésben nyeri: hialaronldáz-alliáláay protei-#skciökal erős anioneseféle kmaptoz gráfiának: vetjük alá, és Izoláljuk a bsálurafééia-akllvéésu prsiela4rakpokaá a) a a) lépésben nyert blslurenléáz-akbvkáaá pretesn-takelakat erős kailoncserélé kromaio- tréflinek vetjük alá, és Izoláljuk a híeltkoniiáz-aklMlisú protetndrakoioksi; d> a c) lépésben nyert blaluröoldáz-ektytásü profeindfakolikái eres anloneserélö kromato* gráfiának vakuk alá, és Izoláf uk a maluronidáz-akisysiásy protem-írakclokai.
  2. 3, Az 1. igényként szeénti § dslpmnkfáz gyégpzerkénf fértése alkalmazásra. 4- A 3. Igénypont s#?mís liyureíifeéip» betegségek 'taaiete? történő alkalmazásra, ebei a historPnsavnak az érinted szövetekben vagy szervekben történé lebontása előnyös vagy kívánatos. §;. Hlelumnidáz:a 4. Igénypont szedné alkalmazásra, sbol a betegség: ödéma, gyulladás, far gyás. szilárd turnon tgE által közvetített allergia, orális: betegség: és spontán uvegtesé verzés.: 6 Hlaluronldáz a 4. Igénypont szedni atkateazásra, abel a betepég bovln snastltlé;, ?. Gyógyászati vágy1 állatgyógyászai készítmények, mélyék az 1 Igánypont azennts élafuronldazt. fártateazzék,, megtételé adalékanyagokkal és/vagy borbozóanyagokkal keverve. 8. A 7. igébttpnnt szerinti Ifyeklálhstö készitmény vagy epidemnáks. adagéivá lopikális: .^§2lrMny lomátoi #, A 7, vagy &amp; igénypont szerinl késziményf k*: melyek. tartalmaznak továbbá szteroirt vagy aem-saleroM ?i»$ gyy:ifadÉsgé#k,; tymorélénes szerek, stieígénehk bsíyí érzéstelenltöK;, artiibléfikumölé mgnokioniiis a?^|ee!eki; oítpkinek, enzimek ér szyífatp Malyronsay ΙΦάΦ : yiissztbfi egy vagy lobé éatéanyagbt h.
  3. 10. A I. igénypont sZérirti készítmények, ártól a hatóanyag sziklatéit itaturonaay és az opldsrméils adagolásra alkalmas topikáfo készítmény krém, gél, kanécs vagy spray farmié.
  4. 11. Az 1. igénypont szprtni plalyrooidáz alkalmazás biokémiai esszék reagenseként hialóronsáv kysiilativ/kvantltativ mooPatarozissra.
HUE10718616A 2009-05-14 2010-05-12 Extracelluláris Streptomyces koganeinsis hialuronidáz HUE024101T2 (hu)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ITMI2009A000831A IT1396003B1 (it) 2009-05-14 2009-05-14 Ialuronidasi extracellulare da streptomyces koganeiensis

Publications (1)

Publication Number Publication Date
HUE024101T2 true HUE024101T2 (hu) 2016-02-29

Family

ID=41319602

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE10718616A HUE024101T2 (hu) 2009-05-14 2010-05-12 Extracelluláris Streptomyces koganeinsis hialuronidáz

Country Status (15)

Country Link
US (2) US20120219554A2 (hu)
EP (1) EP2432874B1 (hu)
CN (1) CN102439144B (hu)
CA (1) CA2759373C (hu)
DK (1) DK2432874T3 (hu)
ES (1) ES2527618T3 (hu)
HK (1) HK1165487A1 (hu)
HR (1) HRP20141251T1 (hu)
HU (1) HUE024101T2 (hu)
IT (1) IT1396003B1 (hu)
PL (1) PL2432874T3 (hu)
RU (1) RU2553205C2 (hu)
SI (1) SI2432874T1 (hu)
SM (1) SMT201500006B (hu)
WO (1) WO2010130810A1 (hu)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1396003B1 (it) * 2009-05-14 2012-11-09 Fidia Farmaceutici Ialuronidasi extracellulare da streptomyces koganeiensis
CZ2009836A3 (cs) 2009-12-11 2011-06-22 Contipro C A.S. Derivát kyseliny hyaluronové oxidovaný v poloze 6 glukosaminové cásti polysacharidu selektivne na aldehyd, zpusob jeho prípravy a zpusob jeho modifikace
CZ2009835A3 (cs) 2009-12-11 2011-06-22 Contipro C A.S. Zpusob prípravy derivátu kyseliny hyaluronové oxidovaného v poloze 6 glukosaminové cásti polysacharidu selektivne na aldehyd a zpusob jeho modifikace
WO2013123791A1 (zh) 2012-02-21 2013-08-29 华熙福瑞达生物医药有限公司 一种芽孢杆菌、一种透明质酸酶、以及其用途
CZ2012136A3 (cs) 2012-02-28 2013-06-05 Contipro Biotech S.R.O. Deriváty na bázi kyseliny hyaluronové schopné tvorit hydrogely, zpusob jejich prípravy, hydrogely na bázi techto derivátu, zpusob jejich prípravy a pouzití
US10704021B2 (en) 2012-03-15 2020-07-07 Flodesign Sonics, Inc. Acoustic perfusion devices
CZ304512B6 (cs) 2012-08-08 2014-06-11 Contipro Biotech S.R.O. Derivát kyseliny hyaluronové, způsob jeho přípravy, způsob jeho modifikace a použití
CZ2012664A3 (cs) 2012-09-27 2013-11-13 Contipro Biotech S.R.O. Enzym hyaluronan-lyáza, zpusob jeho výroby, pouzití a zpusob prípravy nízkomolekulárního hyaluronanu
KR101454646B1 (ko) * 2012-11-05 2014-10-27 (주)한국비엠아이 히알루로니다아제의 안정화 제제 및 이를 포함하는 액상제제
CZ304654B6 (cs) 2012-11-27 2014-08-20 Contipro Biotech S.R.O. Nanomicelární kompozice na bázi C6-C18-acylovaného hyaluronanu, způsob přípravy C6-C18-acylovaného hyaluronanu, způsob přípravy nanomicelární kompozice a stabilizované nanomicelární kompozice a použití
ITMI20130992A1 (it) * 2013-06-17 2014-12-18 Fidia Farmaceutici Ialuronidasi batterica e metodo per la sua produzione
CA2935960C (en) 2014-01-08 2023-01-10 Bart Lipkens Acoustophoresis device with dual acoustophoretic chamber
CZ305153B6 (cs) 2014-03-11 2015-05-20 Contipro Biotech S.R.O. Konjugáty oligomeru kyseliny hyaluronové nebo její soli, způsob jejich přípravy a použití
CZ2014451A3 (cs) 2014-06-30 2016-01-13 Contipro Pharma A.S. Protinádorová kompozice na bázi kyseliny hyaluronové a anorganických nanočástic, způsob její přípravy a použití
CZ309295B6 (cs) 2015-03-09 2022-08-10 Contipro A.S. Samonosný, biodegradabilní film na bázi hydrofobizované kyseliny hyaluronové, způsob jeho přípravy a použití
US11377651B2 (en) 2016-10-19 2022-07-05 Flodesign Sonics, Inc. Cell therapy processes utilizing acoustophoresis
US11708572B2 (en) 2015-04-29 2023-07-25 Flodesign Sonics, Inc. Acoustic cell separation techniques and processes
CZ306479B6 (cs) 2015-06-15 2017-02-08 Contipro A.S. Způsob síťování polysacharidů s využitím fotolabilních chránicích skupin
CZ306662B6 (cs) 2015-06-26 2017-04-26 Contipro A.S. Deriváty sulfatovaných polysacharidů, způsob jejich přípravy, způsob jejich modifikace a použití
WO2017055462A1 (en) * 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Multi chamber syringe unit and method of preparing a multi chamber syringe
US11214789B2 (en) 2016-05-03 2022-01-04 Flodesign Sonics, Inc. Concentration and washing of particles with acoustics
CZ308106B6 (cs) 2016-06-27 2020-01-08 Contipro A.S. Nenasycené deriváty polysacharidů, způsob jejich přípravy a jejich použití
RU2658605C2 (ru) * 2016-07-01 2018-06-21 Наталья Владимировна Глазова Способ получения гиалуронидазы из семенников крупного рогатого скота
EP3725092A4 (en) 2017-12-14 2021-09-22 FloDesign Sonics, Inc. DRIVE AND CONTROL UNIT FOR ACOUSTIC CONVERTER
RU2692061C1 (ru) * 2018-06-21 2019-06-20 Федеральное государственное бюджетное образовательное учреждение высшего образования Санкт-Петербургская государственная академия ветеринарной медицины ФГБОУ ВО СПбГАВМ Способ лечения хронического мастита у коров с помощью медицинских пиявок
CN109880758B (zh) * 2019-03-05 2020-11-10 山东安华生物医药股份有限公司 一种植物乳杆菌诱变菌株及其诱变方法和应用
CN115671267A (zh) * 2021-07-23 2023-02-03 上海宝济药业有限公司 一种皮下抗生素药物组合物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033474B2 (ja) * 1978-05-11 1985-08-02 藤沢薬品工業株式会社 新規なヒアルロニダ−ゼbmp−8231およびその製造法
SU1723121A1 (ru) * 1990-01-19 1992-03-30 Всесоюзный Научно-Исследовательский Институт Биотехнологии Способ получени гиалуронидазы
US5270051A (en) * 1991-10-15 1993-12-14 Harris Donald H Enzyme-orthokeratology
RU2005488C1 (ru) * 1992-06-16 1994-01-15 Российская фармацевтическая компания "Фарма" Средство для лечения болезней соединительной ткани
ITPD980037A1 (it) * 1998-02-25 1999-08-25 Fidia Advanced Biopolymers Srl Acido ialuronico solfatato e i suoi derivati legati covalentemente a polimeri sintetici pe la preparazione di biomateriali e per il rivesti
ITPD20060219A1 (it) * 2006-05-31 2007-12-01 Fidia Farmaceutici Composizioni farmaceutiche contenenti acido ialuronico solfatato nel trattamento dell'osteoartrosi
US8288142B2 (en) * 2007-06-19 2012-10-16 Uvarkina Tamara P Hyaluronidase and method of use thereof
IT1396003B1 (it) * 2009-05-14 2012-11-09 Fidia Farmaceutici Ialuronidasi extracellulare da streptomyces koganeiensis

Also Published As

Publication number Publication date
US20170101634A1 (en) 2017-04-13
DK2432874T3 (en) 2015-01-19
RU2011150814A (ru) 2013-06-20
HK1165487A1 (en) 2012-10-05
WO2010130810A1 (en) 2010-11-18
SI2432874T1 (sl) 2015-03-31
EP2432874A1 (en) 2012-03-28
US20120219554A2 (en) 2012-08-30
CN102439144A (zh) 2012-05-02
IT1396003B1 (it) 2012-11-09
CA2759373C (en) 2018-06-12
SMT201500006B (it) 2015-03-05
ITMI20090831A1 (it) 2010-11-15
CN102439144B (zh) 2014-05-21
US20120070441A1 (en) 2012-03-22
RU2553205C2 (ru) 2015-06-10
EP2432874B1 (en) 2014-10-29
CA2759373A1 (en) 2010-11-18
ES2527618T3 (es) 2015-01-27
HRP20141251T1 (hr) 2015-04-24
US10208300B2 (en) 2019-02-19
PL2432874T3 (pl) 2015-03-31

Similar Documents

Publication Publication Date Title
HUE024101T2 (hu) Extracelluláris Streptomyces koganeinsis hialuronidáz
AU744184B2 (en) Peptide with radio protective effect
CN1206348A (zh) 鲨鱼软骨提取物
DE69434890T2 (de) Klonierung und rekombinante herstellung von vespidengift-hyaluronidase und darauf beruhende immunologische therapien
AU2001270540B2 (en) Cosmetic composition comprising human serum albumin obtained from transgenic non-human animals
EA035163B1 (ru) Препарат очищенной рекомбинантной гиалуронидазы, способ его производства и содержащие его композиции
US8404644B2 (en) Agents with angiogenic and wound healing activity
DE68923107T2 (de) DNA-Sequenzen, rekombinante DNA-Moleküle und Verfahren zur Herstellung von Lipocortin III, IV, V, und VI.
AU2001270540A1 (en) Cosmetic composition comprising human serum albumin obtained from transgenic non-human animals
DE60124532T2 (de) Neue polypeptide aus bienengift und verfahren zu deren verwendung
CN1323167C (zh) 1型胎盘生长因子的突变蛋白及其制备方法和应用
CA2038208A1 (en) Process for the isolation and expression of the human ciliary neuronotrophic factor by recombinant dna technology
KR20010020741A (ko) 신규의 생체 활성화 물질
CN114716515A (zh) 一种多肽类似物及其制备方法和应用
CN111909246B (zh) 高效感染支持细胞的aav突变体
JP2002516087A (ja) 幾つかの重篤な疾患の治療のための医薬組成物を調製するための修飾されたリゾチームcの使用
US4908206A (en) Extracts of embryonic organs, process for their preparation and pharmaceutical preparation containing them
EP1009811A2 (de) Neue gewebsspezifische calpaine, ihre herstellung und verwendung
JPH10507919A (ja) ヒト及び植物メチルトランスフェラーゼの製造及び用途
EP0610246B1 (de) Neues thrombininhibitorisches protein aus zecken
DE10054303B4 (de) Analoga, Agonisten, Antagonisten und Varianten der Oxidoreduktase-Enzymaktivität des Makrophagen-Migrations-Inhibitions-Faktors (MIF) als Immunmodulatoren, Therapeutika, Diagnostika und Screening-Agenzien bei inflammatorischen und Immunerkrankungen
CN115710307A (zh) 蝎毒素及其突变体在抗癫痫中的应用
JP3040781B2 (ja) 生物学的に活性な殺菌性/透過性増大蛋白質断片
JPS63188607A (ja) 化粧料
JPH023699A (ja) 細胞増殖促進性タンパク質、用途並びに単離方法