ES2897649T3 - Diferenciación de células madre embrionarias humanas en células endocrinas pancreáticas - Google Patents

Diferenciación de células madre embrionarias humanas en células endocrinas pancreáticas Download PDF

Info

Publication number
ES2897649T3
ES2897649T3 ES18190030T ES18190030T ES2897649T3 ES 2897649 T3 ES2897649 T3 ES 2897649T3 ES 18190030 T ES18190030 T ES 18190030T ES 18190030 T ES18190030 T ES 18190030T ES 2897649 T3 ES2897649 T3 ES 2897649T3
Authority
ES
Spain
Prior art keywords
cells
activin
expression
pancreatic
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES18190030T
Other languages
English (en)
Inventor
Alireza Rezania
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Janssen Biotech Inc
Original Assignee
Janssen Biotech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Janssen Biotech Inc filed Critical Janssen Biotech Inc
Application granted granted Critical
Publication of ES2897649T3 publication Critical patent/ES2897649T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/62Insulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/04Plant cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/16Activin; Inhibin; Mullerian inhibiting substance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/998Proteins not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells

Abstract

Un método para potenciar la expresión de somatostatina en células que expresan hormonas (células en etapa 6), que comprende cultivar células del endodermo pancreático (células en etapa 5) en un medio que comprende Activina A o Activina C.

Description

DESCRIPCIÓN
Diferenciación de células madre embrionarias humanas en células endocrinas pancreáticas
CAMPO DE LA INVENCIÓN
La presente invención está en el campo de la diferenciación celular. Se divulga además el uso de ligandos de efrina y esfingosina-1-fosfato como reguladores de la diferenciación de células madre pluripotentes a células endocrinas.
ANTECEDENTES
Los avances en la terapia de reemplazo celular para la diabetes mellitus Tipo I y una escasez de islotes de Langerhans transplantables han centrado el interés en desarrollar fuentes de células productoras de insulina, o células p, apropiadas para el injerto. Un enfoque es la generación de células p funcionales a partir de células madre pluripotentes, como por ejemplo, células madre embrionarias.
En el desarrollo embrionario de vertebrados, una célula pluripotente da lugar a un grupo de células que comprende tres capas germinales (ectodermo, mesodermo y endodermo) en un proceso conocido como gastrulación. Tejidos como el tiroides, el timo, el páncreas, el intestino y el hígado se desarrollarán a partir del endodermo, a través de una etapa intermedia. La etapa intermedia en este proceso es la formación del endodermo definitivo. Las células de endodermo definitivo expresan una serie de marcadores, como, HNF3beta, GATA4, MIXL1, CXCR4 y SOX17.
Al final de la gastrulación, el endodermo se divide en dominios anteriores-posteriores que pueden reconocerse mediante la expresión de un panel de factores que marcan de manera única las regiones anterior, media y posterior del endodermo. Por ejemplo, Hhex y Sox2 identifican la región anterior, mientras que Cdx1, 2 y 4 identifican la mitad posterior del endodermo.
La migración del tejido del endodermo acerca el endodermo a diferentes tejidos mesodérmicos que ayudan a la regionalización del tubo intestinal. Esto se logra mediante una plétora de factores secretados, como FGF, Wnts, TGF-B, ácido retinoico (RA) y ligandos de BMP y sus antagonistas. Por ejemplo, FGF4 y BMP promueven la expresión de Cdx2 en el presunto endodermo del intestino posterior y reprimen la expresión de los genes anteriores Hhex y SOX2 (2000 Development, 127:1563-1567). La señalización de WNT también se ha demostrado que trabaja en paralelo a la señalización de FGF para promover el desarrollo del intestino posterior e inhibir el destino del intestino anterior (2007 Development, 134:2207-2217). Por último, el ácido retinoico secretado por el mesénquima regula el límite del intestino anterior-intestino posterior (2002 Curr Biol, 12:1215-1220).
El nivel de expresión de los factores de transcripción específicos puede usarse para designar la identidad de un tejido. Durante la transformación del endodermo definitivo en un tubo intestinal primitivo, el tubo intestinal se regionaliza en dominios amplios que pueden observarse a nivel molecular mediante patrones de expresión génica restringidos. Por ejemplo, el dominio de páncreas regionalizado en el tubo intestinal muestra una expresión muy alta de PDX-1 y una expresión muy baja de CDX2 y SOX2. De manera similar, la presencia de altos niveles de Foxe1 es indicativa de tejido del esófago; el NKX2.1 se expresa altamente en el tejido pulmonar; SOX2/Odd1 (OSR1) están altamente expresados en el tejido del estómago; expresión de PROX1/Hhex/AFP es alta en el tejido hepático; el SOX17 se expresa altamente en los tejidos de estructura biliares; PDX1, NKX6.1/PTF1a, y NKX2.2 se expresan altamente en el tejido pancreático; y la expresión de CDX2 es alta en tejido intestinal. El resumen anterior es una adaptación de Dev Dyn 2009, 238:29-42 y Annu Rev Cell Dev Biol 2009, 25:221-251.
La formación del páncreas surge de la diferenciación del endodermo definitivo en el endodermo pancreático (2009 Annu Rev Cell Dev Biol, 25:221-251; 2009 Dev Dyn, 238:29-42). Los dominios pancreáticos dorsal y ventral surgen del epitelio del intestino anterior. El intestino anterior también da lugar al esófago, la tráquea, los pulmones, tiroides, estómago, hígado, páncreas y sistema de conductos biliares.
Las células del endodermo pancreático expresan el gen homeobox pancreático-duodenal PDX1. En ausencia de PDX1, el páncreas no se desarrolla más allá de la formación de yemas ventrales y dorsales. Por tanto, la expresión de PDX1 marca un paso crítico en la organogénesis pancreática. El páncreas maduro contiene, entre otros tipos de células, tejido exocrino y tejido endocrino. Los tejidos exocrino y endocrino surgen de la diferenciación del endodermo pancreático.
D'Amour et al. describe la producción de cultivos enriquecidos de endodermo definitivo derivado de células madre embrionarias humanas (ES) en presencia de una alta concentración de activina y suero bajo (Nature Biotechnol 2005, 23:1534-1541; Patente de Estados Unidos N° 7.704.738 ). El trasplante de estas células debajo de la cápsula renal de los ratones dio como resultado la diferenciación en células más maduras con características de tejido endodérmico (Patente de Estados Unidos N° 7.704.738). Las células del endodermo definitivo derivadas de células madre embrionarias humanas pueden diferenciarse adicionalmente en células PDX1 positivas después de la adición de FGF-10 y ácido retinoico (Publicación de Patente de Estados Unidos N° 2005/0266554A1). El trasplante posterior de estas células precursoras pancreáticas en la almohadilla adiposa de ratones inmunodeficientes dio como resultado la formación de células endocrinas pancreáticas funcionales después de una fase de maduración de 3-4 meses (Patente de Estados Unidos N° 7.993.920 y Patente de Estados Unidos N° 7.534.608).
Fisk et al. informa de un sistema para producir células de islotes pancreáticos a partir de células madre embrionarias humanas (Patente de Estados Unidos N° 7.033.831). En este caso, la vía de diferenciación se dividió en tres etapas. Las células madre embrionarias humanas se diferenciaron primero al endodermo usando una combinación de butirato de sodio y activina A (Patente de Estados Unidos N° 7.326.572). Las células se cultivaron luego con antagonistas de BMP, como Noggin, en combinación con EGF o betacelulina para generar células PDX1 positivas. La diferenciación terminal fue inducida por nicotinamida.
También se han usado inhibidores de moléculas pequeñas para la inducción de células precursoras endocrinas pancreáticas. Por ejemplo, se han usado inhibidores de moléculas pequeñas del receptor de TGF-B y receptores de BMP (Development 2011, 138:861 -871; Diabetes 2011,60:239-247) para mejorar significativamente el número de células endocrinas pancreáticas. Además, también se han usado activadores de moléculas pequeñas para generar células de endodermo definitivo o células precursoras pancreáticas (Curr Opin Cell Biol 2009, 21:727-732; Nature Chem Biol 2009, 5:258-265).
Aunque se han logrado grandes avances en la mejora de los protocolos para generar células pancreáticas a partir de células madre pluripotentes humanas, aún existe una necesidad de generar un protocolo que dé como resultado células endocrinas funcionales y, en particular, células beta. Aquí, demostramos que una clase de ligandos de Efrina y esfingosina-1-fosfato o agonistas del receptor de esfingosina mejoran la producción de células endocrinas y aceleran el agrupamiento de hormonas endocrinas y células precursoras endocrinas.
SUMARIO
La presente invención se refiere a las realizaciones caracterizadas en las reivindicaciones. Por tanto, se refiere a un método para potenciar la expresión de somatostatina en células que expresan hormonas (células en etapa 6), que comprende cultivar células del endodermo pancreático (células en etapa 5) en un medio que comprende Activina A o Activina C.
En la presente se divulga además un método para potenciar la expresión de insulina y NKX6.1 cultivando una población de células del endodermo pancreático en un medio que comprende Efrina A4 o Efrina A3. En algunas realizaciones, la población de células del endodermo pancreático no expresa sustancialmente CDX2 o SOX2. En algunas realizaciones, la población de células del endodermo pancreático se obtiene mediante una diferenciación escalonada de células pluripotentes. En algunas realizaciones, las células pluripotentes son células pluripotentes embrionarias humanas.
En una realización, la invención se refiere a un método para potenciar la expresión de somatostatina a la vez que se suprime la expresión de insulina, glucagón y grelina cultivando células del endodermo pancreático en medio que comprende Activina A o Activina C. En algunas realizaciones, la población de células del endodermo pancreático tratada con Activina A o Activina C expresa más somatostatina que una población de células del endodermo pancreático no tratada con Activina A o Activina C. En algunas realizaciones, se suprime la expresión de insulina en la población de células del endodermo pancreático tratadas con Activina A o Activina C en comparación con la expresión de insulina en una población de células del endodermo pancreático no tratadas con Activina A o Activina C. En algunas realizaciones, se suprime la expresión de glucagón en la población de células del endodermo pancreático tratadas con Activina A o Activina C en comparación con la expresión de glucagón en una población de células del endodermo pancreático no tratadas con Activina A o Activina C. En algunas realizaciones, se suprime la expresión de grelina en la población de células del endodermo pancreático tratadas con Activina A o Activina C en comparación con la expresión de grelina en una población de células del endodermo pancreático no tratadas con Activina A o Activina C. En algunas realizaciones, las células del endodermo pancreático no expresan sustancialmente CDX2 o SOX2. En algunas realizaciones, las células del endodermo pancreático tratadas con Activina A o Activina C se obtienen mediante una diferenciación escalonada de células pluripotentes. En algunas realizaciones, las células pluripotentes de las que se derivan de células del endodermo pancreático son células pluripotentes embrionarias humanas.
En la presente se divulga además un método para potenciar la expresión de NKX6.1 mediante el tratamiento de células del endodermo pancreático en un medio que comprende semaforina 3a o Epigen. Como se divulga en la presente, la población de células del endodermo pancreático tratadas con medio que comprende semaforina 3a o Epigen puede expresar una cantidad potenciada de NKX6.1 en comparación con las células del endodermo pancreático no tratadas con medio que comprende semaforina 3a o Epigen. Como se divulga en la presente, el nivel de expresión de hormonas como insulina, glucagón y gherlina puede no verse afectado en las células del endodermo pancreático tratadas con medio que comprende semaforina 3a o Epigen en comparación con las células del endodermo pancreático no tratadas con medio que comprende semaforina 3a o Epigen. En algunas realizaciones, las células del endodermo pancreático no expresan sustancialmente CDX2 o SOX2. Como se divulga en la presente, las células del endodermo pancreático tratadas con medio que comprende semaforina 3a o Epigen pueden obtenerse mediante una diferenciación escalonada de células pluripotentes. En algunas realizaciones, las células pluripotentes de las que se derivan las células del endodermo pancreático son células pluripotentes embrionarias humanas.
En algunas realizaciones, la presente invención se refiere a un método escalonado para diferenciar células pluripotentes que comprende cultivar células del endodermo pancreático en un medio que comprende Activina A o Activina C. Como se divulga en la presente, las células del endodermo pancreático pueden cultivarse en un medio que comprende Efrina A4 o Efrina A3. En algunas realizaciones, las células del endodermo pancreático se cultivan en un medio que comprende Activina A o Activina C. Como se divulga en la presente, las células del endodermo pancreático pueden cultivarse en un medio que comprende semaforina 3a o Epigen. En algunas realizaciones, las células madre pluripotentes de las que derivan las células del endodermo pancreático son células madre pluripotentes embrionarias humanas.
En la presente se divulga además un método para inducir la expresión de agrupaciones endocrinas tratando las células endocrinas pancreáticas con agonista del receptor de esfingosina-1. Como se divulga en la presente, el agonista del receptor de esfingosina-1 usado para tratar células endocrinas pancreáticas puede ser esfingosina-1 -fosfato (S1P).
También se divulgan en la presente células preparadas mediante los métodos de la invención y métodos de uso de las células de la invención.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
La Figura 1A a la Figura 1G muestran datos de análisis de PCR en tiempo real de la expresión de los siguientes genes en células de la línea de células madre embrionarias humanas H1 diferenciadas como se describe en el Ejemplo 1: insulina (FIG. 1A), somatostatina (FIG. 1B), ghrelina (FIG. 1C), glucagón (FIG. 1D), PDX-1 (FIG. 1E), NKX6.1 (Figura 1F) y NGN3 (FIG. 1G).
La Figura 2A a la Figura 2C muestran imágenes de células inmunoteñidas para insulina. FIG. 2A, control; FIG. 2B, células tratadas con 50 ng/ml de Efrina-A3; y FIG. 2C, células tratadas con 100 ng/ml de Efrina-A3, como se describe en el Ejemplo 2.
La Figura 3A a la Figura 3C muestran imágenes de células inmunoteñidas para insulina. FIG. 3A, control; FIG. 3B, células tratadas con 50 ng/ml de Efrina-A4; y FIG. 3C, células tratadas con 100 ng/ml de Efrina-A4, como se describe en el Ejemplo 2.
La Figura 4A a la Figura 4D representan imágenes de contraste de fase de cultivos S6 de células tratadas con esfingosina-1-fosfato (S1P) e imágenes obtenidas el día 1 (FIG. 4A), día 7 (FIG. 4B), y dos aumentos diferentes en el día 10 (FIG. 4C y FIG. 4D) Las imágenes muestran que en el día 7, había una evidencia clara de agrupamiento de células endocrinas y en el día 10 los grupos estaban separados entre sí por una capa delgada de epitelio del endodermo pancreático.
La Figura 5A a la Figura 5D representan imágenes de células tratadas con S1P e inmunoteñidas para Hb9 (FIG. 5A) y NKX6.1 (FIG. 5B), o inmunoteñidas para insulina (FIG. 5C) y Hb9 (FIG 5D).
Las FIG. 6A y FIG. 6B representan imágenes de contraste de fase, a diferentes aumentos, de células tratadas con S1P 10 pM y recogidas tres días después del comienzo de la etapa 6. La Figura 6C y la Figura 6D representar imágenes de células inmunoteñidas para NKX2.2. FIG. 6C, células de control; FIG. 6D, células tratadas con S1P.
DESCRIPCIÓN DETALLADA
Por claridad de la divulgación, y no a modo de limitación, la descripción detallada de la invención se divide en las siguientes subsecciones que describen o ilustran ciertas características, realizaciones o aplicaciones de la presente invención.
Definiciones
Las células madre son células indiferenciadas definidas por su capacidad, a nivel de célula individual, para autorenovarse y diferenciarse. Las células madre pueden producir células de progenie, que incluyen progenitores autorrenovadores, progenitores no renovadores y células terminalmente diferenciadas. Las células madre también se caracterizan por su capacidad para diferenciarse in vitro en células funcionales de varios linajes celulares de múltiples capas germinales (endodermo, mesodermo y ectodermo). Las células madre también dan lugar a tejidos de múltiples capas germinales después del trasplante y contribuyen sustancialmente a la mayoría, si no todos, de los tejidos después de la inyección en los blastocistos.
Las células madre se clasifican por su potencial de desarrollo como: (1) totipotente, lo que significa que es capaz de dar lugar a todos los tipos de células embrionarias y extraembrionarias; (2) pluripotente, lo que significa que es capaz de dar lugar a todos los tipos de células embrionarias; (3) multipotente, lo que significa que es capaz de dar lugar a un subconjunto de linajes celulares pero todos dentro de un tejido, órgano o sistema fisiológico particular (por ejemplo, las células madre hematopoyéticas (HSC) pueden producir progenie que incluye HSC (autorrenovables), progenitoras oligopotentes restringidas a células sanguíneas, y todos los tipos y elementos celulares (por ejemplo, plaquetas) que son componentes normales de la sangre); (4) oligopotente, lo que significa que es capaz de dar lugar a un subconjunto más restringido de linajes celulares que las células madre multipotentes; y (5) unipotente, lo que significa que es capaz de dar lugar a un único linaje celular (por ejemplo, células madre espermatogénicas).
La diferenciación es el proceso mediante el cual una célula no especializada ("no comprometida") o menos especializada adquiere las características de una célula especializada como, por ejemplo, una célula nerviosa o una célula muscular. Una célula diferenciada o una célula inducida por diferenciación es aquella que ha adquirido una posición más especializada ("comprometida") dentro del linaje de una célula. El término "comprometido", cuando se aplica al proceso de diferenciación, se refiere a una célula que ha procedido en la vía de diferenciación a un punto en el que, en circunstancias normales, continuará diferenciándose en un tipo de célula específica o subconjunto de tipos de células, y no puede, en circunstancias normales, diferenciarse en un tipo de célula diferente o revertir a un tipo de célula menos diferenciada. "Desdiferenciación" se refiere al proceso mediante el cual una célula revierte a una posición menos especializada (o comprometida) dentro del linaje de una célula. Como se usa en la presente, el linaje de una célula define la herencia de la célula, es decir, de qué células proviene y a qué células puede dar lugar. El linaje de una célula coloca a la célula dentro de un esquema hereditario de desarrollo y diferenciación. Un marcador específico del linaje se refiere a una característica específicamente asociada con el fenotipo de las células de un linaje de interés y puede usarse para evaluar la diferenciación de una célula no comprometida con el linaje de interés.
"Marcadores", como se usa en la presente, son moléculas de ácido nucleico o polipéptido que se expresan diferencialmente en una célula de interés. En este contexto, la expresión diferencial significa un nivel aumentado para un marcador positivo y un nivel disminuido para un marcador negativo en comparación con una célula no diferenciada. El nivel detectable del ácido nucleico o polipéptido marcador es suficientemente más alto o más bajo en las células de interés en comparación con otras células, de tal manera que la célula de interés puede identificarse y distinguirse de otras células usando cualquiera de una variedad de métodos conocidos en la técnica .
Como se usa en la presente, una célula es "positiva para" un marcador específico o "positiva" cuando el marcador específico se detecta en la célula. De manera similar, la célula es "negativa para" un marcador específico, o "negativa" cuando el marcador específico no se detecta en la célula.
Como se usa en la presente, "densidad celular" y "densidad de siembra" se usan indistintamente en la presente y se refieren al número de células sembradas por área unitaria de un sustrato sólido o semisólido plano o curvado.
Como se usa en la presente, "etapa 1" y "S1" se usan indistintamente para identificar células que expresan marcadores característicos del endodermo definitivo (DE).
"Endodermo definitivo", como se usa en la presente, se refiere a células que tienen las características de células que surgen del epiblasto durante la gastrulación y que forman el tracto gastrointestinal y sus derivados. Las células de endodermo definitivo expresan por lo menos uno de los siguientes marcadores: HNF3 beta, GATA4, SOX17, CXCR4, Cerberus, OTX2, goosecoide, C-Kit, CD99 y MIXL1.
"Tubo intestinal", como se usa en la presente, se refiere a células derivadas del endodermo definitivo que expresan por lo menos uno de los siguientes marcadores: HNF3-beta, HNF1-beta, o HNF4-alfa. Las células del tubo intestinal pueden dar lugar a todos los órganos endodérmicos, como los pulmones, el hígado, el páncreas, el estómago y el intestino.
En la presente se usan indistintamente "etapa 2" y "S2" que identifican células que expresan marcadores característicos del tubo intestinal primitivo.
El "endodermo del intestino anterior" se refiere a las células del endodermo que dan lugar al esófago, los pulmones, el estómago, el hígado, el páncreas, la vesícula biliar, y una parte del duodeno.
"Intestino posterior" se refiere a las células del endodermo que pueden dar lugar al estómago posterior, páncreas, hígado y una parte del duodeno.
El "endodermo del intestino medio" se refiere a las células del endodermo que pueden dar lugar a los intestinos, partes del duodeno, el apéndice y el colon ascendente.
El "endodermo del intestino posterior" se refiere a las células del endodermo que pueden dar lugar al tercio distal del colon transverso, el colon descendente, el colon sigmoide y el recto.
Tanto "etapa 3" como "S3" se usan indistintamente para identificar células que expresan marcadores característicos del endodermo del intestino anterior. "Células que expresan marcadores característicos del linaje del intestino anterior", como se usa en la presente, se refiere a células que expresan por lo menos uno de los siguientes marcadores : PDX-1, FOXA2, CDX2, SOX2 y HNF4 alfa.
En la presente se usan indistintamente "etapa 4" y "S4" para identificar células que expresan marcadores característicos del precursor del intestino anterior pancreático. "Células que expresan marcadores característicos del linaje precursor del intestino anterior pancreático", como se usa en al presente, se refiere a células que expresan por lo menos uno de los siguientes marcadores: PDX-1, NKX6.1, HNF6, FOXA2, PTF1a, Prox1 y HNF4 alfa.
Como se usa en la presente, "etapa 5" y "S5" se usan indistintamente para identificar células que expresan marcadores característicos del endodermo pancreático y células precursoras del endocrino pancreático. "Células que expresan marcadores característicos del linaje del endodermo pancreático", como se usa en la presente, se refiere a células que expresan por lo menos uno de los siguientes marcadores: PDX1, NKX6.1, HNF1 beta, PTF1 alfa, HNF6, HNF4 alfa, SOX9, HB9 o PROX1. Las células que expresan marcadores característicos del linaje del endodermo pancreático no expresan sustancialmente CDX2 o SOX2.
"Célula endocrina pancreática", o "célula que expresa la hormona pancreática", o "células que expresan marcadores característicos del linaje endocrino pancreático", o "Células de Etapa 6", o "células S6" se usan indistintamente en la presente, y se refieren a una célula capaz de expresar por lo menos una de las siguientes hormonas: insulina, glucagón, somatostatina, grelina y polipéptido pancreático.
"Célula positiva a la insulina pancreática" se refiere a una población endocrina de células que expresan insulina, HB9, NKX2.2 y NKX6.1.
"Célula precursora endocrina pancreática" o "Célula progenitora endocrina pancreática" se refiere a células del endodermo pancreático capaces de convertirse en una célula que expresa la hormona pancreática. Dicha célula puede expresar por lo menos uno de los siguientes marcadores: NGN3, NKX2.2, NeuroD, iSL-1 , Pax4, Pax6 o ARX.
En la presente se usan indistintamente "d1", "d 1" y "día1"; "d2", "d 2" y "día 2"; "d3", "d 3" y "día 3", y así sucesivamente. Estas combinaciones de letras y números se refieren a un día específico de incubación en las diferentes etapas durante el protocolo de diferenciación escalonado de la aplicación instantánea.
"Glucosa" y "D-glucosa" se usan indistintamente en la presente y se refieren a dextrosa, un azúcar encontrado comúnmente en la naturaleza.
En la presente se usan indistintamente "NeuroD" y "NeuroD1" que identifican una proteína expresada en células progenitoras endocrinas pancreáticas y el gen que la codifica.
En la presente se usan indistintamente "LDN" y "LDN-193189" para indicar un inhibidor del receptor de BMP disponible de Stemgent, CA, Estados Unidos.
Aislamiento, Expansión y Cultivo de Células Madre Pluripotentes
Las células madre pluripotentes pueden expresar uno o más de los antígenos embrionarios específicos de la etapa (SSEA) 3 y 4, y marcadores detectables usando anticuerpos designados Tra-1-60 y Tra-1-81 (Thomson et al., 1998, Science 282:1145-1147). La diferenciación de células madre pluripotentes in vitro da como resultado la pérdida de la expresión de SSEA-4, Tra-1-60 y Tra-1-81. Las células madre pluripotentes no diferenciadas típicamente tienen actividad de fosfatasa alcalina, que puede detectarse fijando las células con paraformaldehído al 4% y luego desarrollando con Vector Red como sustrato, según lo descrito por el fabricante (Vector Laboratories, CA, USA). Las células madre pluripotentes no diferenciadas también expresan típicamente OCT4 y TERT, como se detecta mediante RT-PCR.
Otro fenotipo deseable de células madre pluripotentes propagadas es un potencial para diferenciarse en células de las tres capas germinales: tejidos de endodermo, mesodermo y ectodermo. La pluripotencia de las células madre puede confirmarse, por ejemplo, inyectando células en ratones SCID, fijando los teratomas que se forman usando paraformaldehído al 4%, y luego examinándolas histológicamente para evidencias de tipos de células de las tres capas germinales. Alternativamente, la pluripotencia puede determinarse mediante la creación de cuerpos embrioides y evaluando los cuerpos embrioides para la presencia de marcadores asociados con las tres capas germinales.
Las líneas de células madre pluripotentes propagadas pueden cariotiparse usando una técnica de bandeo G estándar y compararse con los cariotipos publicados de las especies de primates correspondientes. Es deseable obtener células que tengan un "cariotipo normal", lo que significa que las células son euploides, en donde todos los cromosomas humanos están presentes y no se alteran notablemente. Las células pluripotentes pueden expandirse fácilmente en cultivo usando varias capas alimentadoras o usando vasos recubiertos con proteínas de la matriz. Alternativamente, las superficies definidas químicamente en combinación con medios definidos tales como los medios mTesr®1 (StemCell Technologies, Vancouver, Canadá) pueden usarse para la expansión rutinaria de las células. Las células pluripotentes pueden eliminarse fácilmente de las placas de cultivo usando quelantes enzimáticos, mecánicos o el uso de varios quelantes de calcio como EDTA (ácido etilendiaminotetraacético). Alternativamente, las células pluripotentes pueden expandirse en suspensión en ausencia de proteínas de la matriz o una capa alimentadora.
Fuentes de Células Madre Pluripotentes
Los tipos de células madre pluripotentes que pueden usarse en la presente incluyen líneas establecidas de células pluripotentes derivadas de tejido formado después de la gestación, incluyendo tejido no humano (como, por ejemplo, un blastocito) o tejido fetal tomado en cualquier momento durante la gestación, típicamente, pero no necesariamente, antes de aproximadamente las 10 a 12 semanas de la gestación. Ejemplos no limitativos divulgados en la presente por referencia solamente son líneas establecidas de células madre embrionarias humanas (hESC) o células germinales embrionarias humanas, como por ejemplo, las líneas de células madre embrionarias humanas H1, H7 y H9 (WiCell Research Institute, Madison, WI, USA). Adecuadas para el uso son las células tomadas de una población de células madre pluripotentes ya cultivadas en ausencia de células alimentadoras. También son adecuadas las células pluripotentes inducibles (IPS) o células pluripotentes reprogramadas que pueden derivarse de células somáticas adultas usando expresión forzada de una serie de factores de transcripción relacionados pluripotentes, como OCT4, NANOG, Sox2, KLF4, y ZFP42 (Annu Rev Genomics Hum Genet 2011, 12:165-185). Las células madre embrionarias humanas divulgadas en la presente solo por referencia también pueden prepararse como se describe por Thomson et al. (Patente de Estados Unidos N° 5.843.780; Science, 1998, 282: 1145-1147 ; Curr Top Dev Biol 1998, 38:133-165 ; Proc Natl Acad Sci USA 1995, 92:7844-7848).
Formación de Células que Expresan Marcadores Característicos del Linaje del Endodermo Pancreático a partir de Células Madre Pluripotentes
Las características de las células madre pluripotentes son bien conocidas por los expertos en la técnica, y se sigue identificando características adicionales de las células madre pluripotentes. Los marcadores de células madre pluripotentes incluyen, por ejemplo, la expresión de uno o más de los siguientes: ABCG2, cripto, FOXD3, CONNEXIN43, CONNEXIN45, OCT4, SOX2, NANOG, hTERT, UTF1, ZFP42, SSEA-3, SSEA-4, Tra 1-60, Tra 1-81.
Las células madre pluripotentes divulgadas por referencia solo incluyen, por ejemplo, la línea de células madre embrionarias humanas H9 (código NIH: WA09), la línea de células madre embrionarias humanas H1 (código NIH: WA01), la línea de células madre embrionarias humanas H7 (código NIH : WA07), y la línea de células madre embrionarias humanas SA002 (Cellartis, Suecia). Adecuadas para su uso en la presente invención son las células que expresan por lo menos uno de los siguientes marcadores característicos de las células pluripotentes: ABCG2, cripto, CD9, FOXD3, CONNEXIN43, CONNEXIN45, OCT4, SOX2, NANOG, hTERT, UTF1, ZFP42, SSEA-3, SSEA-4, Tra 1-60, y Tra 1-81.
Los marcadores característicos del linaje del endodermo definitivo se seleccionan del grupo que consiste de SOX17, GATA4, HNF3 beta, GSC, CER1, Nodal, FGF8, Brachyury, proteína homeobox similar a Mixa, FGF4, CD48, eomesodermina (EOMES), DKK4, FGF17, GATA6, cXc R4, C-Kit, CD99 y OTX2. Adecuada para su uso en la presente invención es una célula que expresa por lo menos uno de los marcadores característicos del linaje del endodermo definitivo. En un aspecto de la presente invención, una célula que expresa marcadores característicos del linaje del endodermo definitivo es una célula precursora de líneas primitivas. En un aspecto alternativo, una célula que expresa marcadores característicos del linaje del endodermo definitivo es una célula de mesendodermo. En un aspecto alternativo, una célula que expresa marcadores característicos del linaje del endodermo definitivo es una célula de endodermo definitiva.
Los marcadores característicos del linaje del endodermo pancreático se seleccionan del grupo que consiste de PDX1, NKX6.1, HNF1 beta, PTF1 alfa, HNF6, HNF4 alfa, SOX9, HB9 y PROX1. Adecuada para su uso en la presente invención es una célula que expresa por lo menos uno de los marcadores característicos del linaje del endodermo pancreático. En un aspecto de la presente invención, una célula que expresa marcadores característicos del linaje del endodermo pancreático es una célula del endodermo pancreático en la que la expresión de PDX-1 y NKX6.1 es sustancialmente más alta que la expresión de CDX2 y SOX2.
Los marcadores característicos del linaje endocrino pancreático se seleccionan del grupo que consiste de NGN3, NEUROD, ISL1, PDX1, NKX6.1, PAX4, ARX, NKX2.2 y PAX6. En una realización, una célula endocrina pancreática es capaz de expresar por lo menos una de las siguientes hormonas: insulina, glucagón, somatostatina y polipéptido pancreático. Adecuada para su uso en la presente invención es una célula que expresa por lo menos uno de los marcadores característicos del linaje endocrino pancreático. En un aspecto de la presente invención, una célula que expresa marcadores característicos del linaje endocrino pancreático es una célula endocrina pancreática. La célula endocrina pancreática puede ser una célula que expresa hormonas pancreáticas. Alternativamente, la célula endocrina pancreática puede ser una célula secretora de hormonas pancreáticas.
Las células endocrinas pancreáticas de la invención son células que expresan marcadores característicos del linaje celular □. Una célula que expresa marcadores característicos del linaje celular □ expresa PDX1 y por lo menos uno de los siguientes factores de transcripción: NKX2.2, NKX6.1, NEUROD, ISL1, HNF3 beta, MAFA, PAX4 y PAX6. En un aspecto de la presente invención, una célula que expresa marcadores característicos del linaje celular □ es una célula □.
En la presente se divulga además un método para potenciar la expresión de insulina y NKX6.1 cultivando una población de células en etapa 5 en un medio que comprende Efrina A4 o Efrina A3. Como se divulga en la presente, la expresión de insulina y NKX6.1 puede potenciarse en la población de células hasta por lo menos 2 veces más que la expresión de insulina y NKX6.1 en una población de células no tratadas. En algunas realizaciones, la población de células en etapa 5 no expresa sustancialmente CDX2 o SOX2. En algunas realizaciones, las células de la población en etapa 5 se obtienen mediante una diferenciación escalonada de células pluripotentes. En algunas realizaciones, las células pluripotentes son células pluripotentes embrionarias humanas.
En una realización, la invención se refiere a un método para potenciar la expresión de somatostatina a la vez que se suprime la expresión de insulina, glucagón y grelina mediante el cultivo de células en etapa 5 en un medio que comprende Activina A o Activina C. En algunas realizaciones, la población de células tratada expresa por lo menos dos veces más somatostatina que los cultivos no tratados. En algunas realizaciones, la expresión de insulina se suprime hasta aproximadamente la mitad de la expresión de insulina en cultivos no tratados. En algunas realizaciones, la expresión de glucagón se suprime hasta aproximadamente 1/10 de la expresión de glucagón en cultivos no tratados. En algunas realizaciones, la expresión de grelina se suprime hasta aproximadamente 1/3 de la expresión de grelina en cultivos no tratados. En algunas realizaciones, las células en etapa 5 no expresan sustancialmente CDX2 o SOX2. En algunas realizaciones, las células en etapa 5 se obtienen mediante una diferenciación escalonada de células pluripotentes. En algunas realizaciones, las células pluripotentes son células pluripotentes embrionarias humanas.
También se divulga en la presente un método para potenciar la expresión de NKX6.1 mediante el tratamiento de células en etapa 5 en un medio que comprende semaforina 3a o Epigen. Como se divulga en la presente, la población de células tratadas puede expresar por lo menos dos veces más NKX6.1 que los cultivos no tratados. Como se divulga en la presente, el nivel de expresión de hormonas puede no verse afectado en cultivos tratados en comparación con cultivos no tratados. En algunas realizaciones, las células en etapa 5 no expresan sustancialmente CDX2 o SOX2. En algunas realizaciones, las células en etapa 5 se obtienen mediante una diferenciación escalonada de células pluripotentes. En algunas realizaciones, las células pluripotentes son células pluripotentes embrionarias humanas.
En algunas realizaciones, la presente invención se refiere a un método escalonado para diferenciar células pluripotentes que comprende cultivar células en etapa 5 en medio que comprende Activina A o Activina C. Como se divulga en la presente, las células en etapa 5 pueden cultivarse en medio que comprende Efrina A4 o Efrina A3. En algunas realizaciones, las células en etapa 5 se cultivan en un medio que comprende Activina A o Activina C. Como se divulga en la presente, las células en etapa 5 pueden cultivarse en un medio que comprende semaforina 3a o Epigen. En algunas realizaciones, las células madre pluripotentes son células madre pluripotentes embrionarias humanas.
También se divulga en la presente un método para inducir la expresión de insulina que comprende cultivar células del endodermo pancreático con un ligando de efrina. Como se divulga en la presente, el ligando de efrina puede seleccionarse de efrina A3 y efrina A4. Como se divulga en la presente, el cultivo de las células del endodermo pancreático con un ligando de efrina puede potenciar la expresión de insulina y NKX6.1. Como se divulga en la presente, el cultivo de las células del endodermo pancreático con un ligando de efrina puede potenciar la expresión de insulina y NKX6.1 en las células del endodermo pancreático hasta por lo menos 2 veces más que la expresión de insulina y NKX6.1 en las células del endodermo pancreático no tratadas. En algunas realizaciones, las células del endodermo pancreático no expresan sustancialmente CDX2 o SOX2. En algunas realizaciones, las células del endodermo pancreático se obtienen mediante una diferenciación escalonada de células madre pluripotentes. En algunas realizaciones, las células madre pluripotentes usadas en los métodos de la invención son células madre pluripotentes embrionarias humanas.
En la presente se divulgan además células que expresan insulina y NKX6.1 preparadas mediante los métodos divulgados en la presente.
En la presente se divulga además un método para inducir la formación de agrupaciones endocrinas que comprende cultivar células del endodermo pancreático con un agonista del receptor de esfingosina-1. En algunas realizaciones, las células del endodermo pancreático se obtienen mediante una diferenciación escalonada de células madre pluripotentes. En algunas realizaciones, las células madre pluripotentes son células madre pluripotentes embrionarias humanas.
La presente invención se ilustra adicionalmente, pero no está limitada, mediante los siguientes ejemplos. EJEMPLOS
Ejemplo 1
Identificación de EfrinaA4 como un Inductor Fuerte de la Expresión de Insulina
Este ejemplo se llevó a cabo para comprender el papel de varias proteínas en la generación de cultivos el endodermo pancreático/endocrino a partir de la diferenciación de células ES humanas.
Las células de la línea de células madre embrionarias humanas H1 (hESC H1, pase 40) se sembraron como células individuales a 1 X 105 células/cm2 en placas recubiertas de MATRIGEL™ (dilución 1:30; BD Biosciences, NJ) en medio mTeSR® 1 (StemCell Technologies, Vancouver, Canadá) suplementado con 10 pM de Y27632 (Rock inhibitor, N° de Catálogo Y0503, SigmaAldrich, St. Louis, MO). Cuarenta y ocho horas después de la siembra, los cultivos se lavaron en PBS incompleto (solución salina tamponada con fosfato sin Mg o Ca). Los cultivos se diferenciaron en linajes del endodermo pancreático/endocrino de la siguiente manera:
a) Etapa 1 (Endodermo definitivo (DE) - 3 días): las células se cultivaron durante un día en medio de la etapa 1: medio MCDB-131 (N° de Catálogo 10372-019, Invitrogen, Carlsbad, CA) suplementado con BSA libre ácidos grasos al 0,1% (N° de catálogo 68700, Proliant, Ankeny, IA), 0,0012 g/ml de bicarbonato sódico (N° de Catálogo S3187, Sigma Aldrich, St. Louis, Mo ), IX GlutaMax™ (n ° de Catálogo Invitrogen 35050-079), D-Glucosa 4.5 mM (SigmaAldrich, N° de Catálogo G8769), 100 ng/ml de GDF8 (R&D Systems, Minneapolis, MN) y 1 pM de compuesto MCX (un inhibidor de GSK3B, 14-Prop-2-en-1-il-3,5,7,14,17,23,27-heptaazatetraciclo [19.3.1.1 ~2,6~.1 ~8,12~]heptacosa-1 (25),2(27),3,5,8(26),9,11,21,23-nonaen-16-ona, Publicación de Solicitud de Patente de Estados Unidos N° 2010-0015711). Las células se cultivaron luego durante días adicionales en medio MCDB-131 suplementado con BSA libre de ácidos grasos al 0,1%, 0,0012 g/ml de bicarbonato sódico, IX GlutaMax™, D-Glucosa 4,5 mM, 100 ng/ml de GDF8 y 0,1 pM de compuesto MCX . Las células se cultivaron luego durante un día adicional en medio MCDB-131 suplementado con BSA libre de ácidos grasos al 0,1%, 0,0012 g/ml de bicarbonato sódico, IX GlutaMax™, D-Glucosa 4,5 mM y 100 ng/ml de GDF8, luego
b) Etapa 2 (tubo intestinal primitivo - 2 días): las células se trataron durante dos días con medio MCDB-131 suplementado con BSA libre de ácidos grasos al 0,1%; 0,0012 g/ml de bicarbonato sódico; IX GlutaMax™; D-glucosa 4,5 mM; Ácido ascórbico 0,25 mM (Sigma, St. Louis, MO) y 25 ng/ml de FGF7 (R&D Systems, Minneapolis, MN), luego
c) Etapa 3 (intestino anterior - 2 días): las células se trataron con medio MCDB-131 suplementado con una dilución 1:200 de ITS-X (Invitrogen); Glucosa 4,5 mM; IX GlutaMax™; 0,0017 g/ml de bicarbonato sódico; BSA libre de ácidos grasos al 2%; SANT-1 0,25 pM (Sigma, St. Louis, Mo ); 10 ng/ml de Activina-A (R&D Systems); Ácido retinoico 1 pM (RA, Sigma); 25 ng/ml de FGF7; Ácido ascórbico 0,25 mM; TPB 200 nM (un activador de PKC, N° de catálogo 565740, Em D Chemicals, Gibstown, NJ); forskolina 10 pM (FSK, Sigma), y LDN 100 nM (un inhibidor del receptor de BMP, N° de catálogo 04-0019; Stemgent; San Diego, Ca ) para el día 1. El día 2, las células se trataron con medio MCDB-131 suplementado con una dilución 1:200 de ITS-X; Glucosa 4,5 mM; IX GlutaMax™; 0,0017 g/ml de bicarbonato sódico; BSA libre de ácidos grasos al 2%; 0,25 pM de SANT-1; 10 ng/ml de activina A; RA1 pM; 25 ng/ml de FGF7; Ácido ascórbico 0,25 mM, TPB 200 nM, forskolina 10 pM y LDN 10 nM, luego
d) Etapa 4 (precursor del intestino anterior pancreático - 2 días); las células se trataron con medio MCDB-131 complementado con una dilución 1:200 de ITS-X; Glucosa 4,5 mM; IX GlutaMax™; 0,0015 g/ml de bicarbonato sódico; BSA libre de ácidos grasos al 2%; SANT-10,25 pM; RA 50 nM; LDN-19318950 nM; forskolina 10pM; ácido ascórbico 0,25 mM; y TPB 100 nM durante dos días, luego
e) Etapa 5 (endodermo pancreático/endocrino - 3 días): las células en la etapa 4 se trataron con medio MCDB-131 suplementado con una dilución 1:200 de ITS-X; Glucosa 20 mM; IX GlutaMax™; 0,0015 g/ml de bicarbonato sódico; BSA libre de ácidos grasos al 2%; SANT-1 0,25 pM; RA 50 nM; forskolina 10 pM; ácido ascórbico 0,25 mM durante tres días, con la adición de inhibidor de ALk5 100 nM SD-208 (divulgado en Molecular Pharmacology 2007, 72:152-161) solo durante los días 2-3.
En el día 1 de la etapa 5, los factores enumerados en la Tabla I siguiente se añadieron a los medios y tras la finalización de la S5 (día 3 de la etapa 5) se recogió el ARNm para análisis por PCR de los genes del endodermo pancreático/endocrinos relevantes. Como control, los cultivos se trataron solo con los medios S5 enumerados anteriormente. El ARN total se extrajo con el RNeasy Mini Kit (Qiagen, Valencia, CA) y se transcribió de manera inversa usando un kit de transcripción inversa de ADNc de alta capacidad (Applied Biosystems, Foster City, CA) de acuerdo con las instrucciones del fabricante. El ADNc se amplificó usando Mezcla Maestra Universal Taqman y Ensayos de Expresión génica Taqman que se precargaron en Matrices Taqman personalizadas (Applied Biosystems). Los datos se analizaron usando Software de Detección de Secuencia (Applied Biosystems) y se normalizaron a células madre embrionarias humanas (hES) no diferenciadas usando el método AACt. Todos los cebadores se adquirieron de Applied Biosystems.
- ^
Figure imgf000010_0001
La Figura 1A a la Figura 1G representan datos de análisis de PCR en tiempo real de la expresión de los siguientes genes en células de la línea de células madre embrionarias humanas H1 diferenciadas a la etapa 5 como se describe en el Ejemplo 1 y en presencia de factores enumerados en la Tabla I: Insulina (FIG 1A), somatostatina (FIG. 1B), ghrelina (FIG. 1C), glucagón (FIG. 1D), PDX-1 (figura 1E), NKX6.1 (figura 1F) y NGN3 (FIG. 1G).
Como se muestra en Figura 1, la Efrina-A4 mejoró la expresión de ARNm de NKX6.1 y de insulina en comparación con los cultivos de control (FIG. 1F) a la vez que muestra un impacto mínimo en la expresión de PDX-1 (FIG. 1E) y NGN3 (FIG. 1G). Factores como la Activina-A y Activina-C potenciaron significativamente la expresión de la somatostatina (FIG. 1B) a la vez que suprimen la expresión de insulina (FIG 1A), glucagón (FIG. 1D) y ghrelina (FIG. 1C) Además, factores como la semaforina 3a y el Epigen mejoraron la expresión de NKX6.1 sin afectar a la expresión de hormonas en comparación con cultivos no tratados. En la Figura 1, el nivel medio de expresión de los diferentes marcadores en cultivos de control se muestra por una línea de puntos en los gráficos.
Ejemplo 2
Verificación del Efecto de las Efrinas en la Expresión de Insulina en S5
Este ejemplo describe la validación de éxitos identificados en el Ejemplo 1. En particular, el efecto de la adición de Efrina-A3 o Efrina-A4 en S5 en el protocolo enumerado a continuación.
Las células de la línea de células madre embrionarias humanas H1 (hESC H1, pase 40) se sembraron como células individuales a 1 X 105 células/cm2 en placas recubiertas de MATRIGEL™ (dilución 1:30; BD Biosciences, NJ) en medio mTeSR® 1 suplementado con 10 pM de Y27632. Cuarenta y ocho horas después de la siembra, los cultivos se lavaron en PBS incompleto (solución salina tamponada con fosfato sin Mg o Ca). Los cultivos se diferenciaron en linajes del endodermo pancreático/endocrinos de la siguiente manera:
a) Etapa 1 (endodermo definitivo (DE) - 3 días): las células se cultivaron durante un día en los medios de la etapa 1 (ver el Ejemplo 1, anterior). Las células se cultivaron luego durante un día adicional en medio MCDB-131 suplementado con BSA libre de ácidos grasos al 0,1%, 0.0012 g/ml de bicarbonato sódico, 1X GlutaMax™, D-Glucosa 4,5 mM, 100 ng/ml de GDF8 y MCX 0,1 pM compuesto. Las células se cultivaron luego durante un día adicional en medio MCDB-131 suplementado con BSA libre de ácidos grasos al 0,1%, 0.0012 g/ml de bicarbonato de sodio, IX GlutaMax™, D-Glucosa 4,5 mM y 100 ng/ml de GDF8, luego b) Etapa 2 (tubo intestinal primitivo-2 días): las células se trataron durante dos días con medio MCDB-131 suplementado con BSA libre de ácidos grasos al 0,1%; 0,0012 g/ml de bicarbonato sódico; IX GlutaMax™; D-glucosa 4,5 mM; ácido ascórbico 0,25 mM (Sigma, MO) y 25 ng/ml de FGF7 (R&D Systems, MN), luego c) Etapa 3 (intestino anterior - 2 días): las células se trataron con medio MCDB-131 suplementado con una dilución 1:200 de ITS-X (Invitrogen, Ca); Glucosa 4,5 mM; IX GlutaMax™; 0,0017 g/ml de bicarbonato sódico; BSA libre de ácidos grasos al 2%; SANT-1 0,25 pM (Sigma, MO); 10 ng/ml de Activina-A (R & D Systems, MN); RA1 pM (Sigma, MO); 25 ng/ml de FGF7; ácido ascórbico 0,25 mM; TPB 200 nM (activador de PKC; N° de catálogo 565740; EMD Chemicals, Gibstown, NJ); forskolina 10 pM y LDN 100 nM (inhibidor del receptor BMP; N° de catálogo 04-0019; Stemgent) para el día 1. El día 2, las células se trataron con medio MCDB-131 suplementado con una dilución 1:200 de ITS-X; Glucosa 4,5 mM; IX GlutaMax™; 0,0017 g/ml de bicarbonato sódico; BSA libre de ácidos grasos al 2%; SANT-1 0,25 pM; 10 ng/ml de activina A; RA 1 pM; 25 ng/ml de FGF7; ácido ascórbico 0,25 mM, TPB 200 nM, forskolina 10 pM y LDN 10 nM, luego d) Etapa 4 (precursor del intestino anterior pancreático - 2 días): las células se trataron con medio MCDB-131 suplementado con una dilución 1:200 de ITS-X; Glucosa 4,5 mM; IX GlutaMax™; 0,0015 g/ml de bicarbonato sódico; BSA libre de ácidos grasos al 2%; SANT-1 0,25 pM; RA 50 nM; LDN-193189 50 nM; forskolina 10 pM; ácido ascórbico 0,25 mM; y TPB 100 nM durante dos días, luego
e) Etapa 5 (endodermo pancreático/endocrino - 3 días): las células de la etapa 4 se trataron con medio MCDB-131 suplementado con una dilución 1:200 de ITS-X; Glucosa 4,5 mM; IX GlutaMax™; 0,0015 g/ml de bicarbonato sódico; BSA libre de ácidos grasos al 2%; SANT-1 0,25 pM; RA 50 nM; forskolina 10 pM; ácido ascórbico 0,25 mM; Inhibidor de ALk5 100 nM (solo para los días 2-3) (SD-208, divulgado en Molecular Pharmacology 2007, 72:152-161) y /- 0-100 ng/ml de Efrian-A3 o Efrina-A4 (R & D systems, MN) durante tres días.
Al final de la Etapa 5, los cultivos de control y tratados con Efrina se fijaron y tiñeron para la expresión de proteínas de insulina (usando anticuerpo anti-insulina de cobaya de Millipore, Cambridge, MA). La Figura 2 representa imágenes de células inmunoteñidas para insulina. La FIG. 2A, células de control; la FIG. 2B, células tratadas con 50 ng/ml de Efrina A3; la FIG. 2C células tratadas con 100 ng/ml de Efrina A3. La Figura 3 representa imágenes de células inmunoteñidas para insulina. La FIG. 3A células de control; la FIG. 3B, células tratadas con 50 ng/ml de Efrina A4; la FIG. 3,Ccélulas tratadas con 100 ng/ml de Efrina A4. Estos datos muestran que, consistente con los datos del Ejemplo 1, la adición tanto de Efrina-A3 como de Efrian-A4 en la etapa 5 mejoraba significativamente la expresión de proteínas de la insulina.
Ejemplo 3
La adición de Esfingosina-1-Fosfato en S6 Acelera Significativamente la Formación de Grupos Celulares que Contienen Hormonas Endocrinas
Este ejemplo describe la progresión de la formación de grupos endocrinos en la etapa 6 y el efecto de la esfingosina-1-fosfato en la aceleración de la formación de los grupos ricos en endocrinos.
Las células de la línea de células madre embrionarias humanas H1 (hESC H1, pase 40) se sembraron como células individuales a 1 X 105 células/cm2 en platos recubiertos de MATRIGEL™ (dilución 1:30; BD Biosciences, NJ) en medio mTeSR®1 (StemCell Technologies, Vancouver, Canadá) suplementado con 10 pM de Y27632. Cuarenta y ocho horas después de la siembra, los cultivos se lavaron en PBS incompleto (solución salina tamponada con fosfato sin Mg o Ca). Los cultivos se diferenciaron en linajes del endodermo pancreático/endocrinos de la siguiente manera:
a) Etapa 1 (endodermo definitivo (DE) - 3 días): las células se cultivaron durante un día en los medios de la etapa 1 (ver el Ejemplo 1, anterior). Las células se cultivaron luego durante un día adicional en medio MCDB-131 suplementado con BSA libre de ácidos grasos al 0,1%, 0.0012 g/ml de bicarbonato sódico, IX GlutaMax™, D-Glucosa 4,5 mM, 100 ng/ml de GDF8 y MCX compuesto 0,1 pM. Las células se cultivaron luego durante un día adicional en medio MCDB-131 suplementado con BSA libre de ácidos grasos al 0,1%, 0.0012 g/ml de bicarbonato sódico, IX GlutaMax™, D-Glucosa 4,5 mM y 100 ng/ml de GDF8, luego b) Etapa 2 (tubo intestinal primitivo - 2 días): las células se trataron durante dos días con medio MCDB-131 suplementado con BSA libre de ácidos grasos al 0,1%; 0,0012 g/ml de bicarbonato sódico; IX GlutaMax™; D-glucosa 4,5 mM; ácido ascórbico 0,25 mM (Sigma, MO) y 25 ng/ml de FGF7 (R & D Systems, MN), luego c) Etapa 3 (intestino anterior - 2 días): las células se trataron con medio MCDB-131 suplementado con una dilución 1:200 de FTS-X (Invitrogen, Ca); Glucosa 4,5 mM; IX GlutaMax™; 0,0017 g/ml de bicarbonato sódico; BSA libre de ácidos grasos al 2%; SANT-1 0,25 pM (Sigma, MO); 10 ng/ml de Activina-A (R & D Systems, MN); RA 1 pM (Sigma, MO); 25 ng/ml de FGF7; ácido ascórbico 0,25 mM; TPB 200 nM (activador de PKC; N° de catálogo 565740; Em D Chemicals, Gibstown, NJ); forskolina 10 pM (FSK, Sigma, MO) y LDN 100 nM (inhibidor del receptor de BMP, N° de catálogo 04-0019; Stemgent, CA) para el día 1. En el día 2, las células se trataron con medio MCDB-131 suplementado con un dilución 1:200 de FTS-X; Glucosa 4,5 mM; IX GlutaMax™; 0,0017 g/ml de bicarbonato sódico; BSA libre de ácidos grasos al 2%; SANT-1 0,25 pM; 10 ng/ml de activina A; RA 1 pM; 25 ng/ml de FGF7; ácido ascórbico 0,25 mM, TPB 200 nM y LDN 10 nM, luego d) Etapa 4 (precursor del intestino anterior del páncreas - 2 días); las células se trataron con medio MCDB-131 suplementado con una dilución 1:200 de ITS-X; Glucosa 4,5 mM; IX GlutaMax™; 0,0015 g/ml de bicarbonato sódico; BSA libre de ácidos grasos al 2%; SANT-1 0,25 pM; RA 50 nM; LDN-19318950 nM; Forskolina 10 pM; ácido ascórbico 0,25 mM; 2 ng/ml de FGF7; 1 ng/ml de AA; y TPB 100 nM durante dos días, luego
e) Etapa 5 (endodermo pancreático/endocrino - 3 días): las células de la etapa 4 se trataron con medio MCDB-131 suplementado con una dilución 1:200 de ITS-X; Glucosa 15 mM; IX GlutaMax™; 0,0015 g/ml de bicarbonato sódico; BSA libre de ácidos grasos al 2%; SANT-1 0,25 pM; RA 50 nM; forskolina 10 pM; ácido ascórbico 0,25 mM; y 1 ng/ml de FGF7 durante tres días; con la adición de inhibidor de ALK5 SD-208 100 nM en los días 2-3 solamente, luego
f) Etapa 6 (endocrino pancreático -3-10 días): las células de la etapa 5 se trataron con medio MCDB-131 suplementado con una dilución 1:200 de ITS-X; Glucosa 15 mM; IX GlutaMax™; 0,0015 g/ml de bicarbonato sódico; BSA libre de ácidos grasos al 2%; SANT-1 0,25 pM; RA 50 nM; ácido ascórbico 0,25 mM; durante 3­ 10 días. En algunos cultivos, se añadieron 10 pM de esfingosina-1-fosfato (Sigma, MO) durante tres días. La Figura 4A a la Figura 4D representan imágenes de contraste de fase de cultivos de S6 de células tratadas con esfingosina-1-fosfato (SIP) y se obtuvieron imágenes el día 1 (FIG. 4A), día 7 (FIG. 4B), y con dos aumentos diferentes en el día 10 (FIG. 4c y FIG. 4D) Las imágenes muestran que en el día 7, había una clara evidencia de agrupamiento de células endocrinas y en el día 10 los grupos estaban separados entre sí por una capa delgada de epitelio del endodermo pancreático.
La Figura 5A a la Figura 5D representan imágenes de células inmunoteñidas para Hb9 (FIG. 5A) y NKX6.1 (FIG. 5B), o inmunoteñidas para insulina (FIG. 5C) y Hb9 (FIG 5D). LA FIG. 5A y la FIG. 5B muestran que los grupos endocrinos se enriquecieron para Hb9 mientras que el epitelio pancreático que rodeaba los grupos se enriqueció con NKX6.1. Algunas de las células en los grupos enriquecidos con Hb9 también fueron positivas para NKX6.1. Los grupos se enriquecieron con insulina y Hb9 como se muestra en las FIG. 5C y FIG. 5D. Este cambio morfológico se parece mucho al desarrollo pancreático en el que el epitelio rico en NKX6.1 PDX-1 da lugar a grupos endocrinos. En cada caso, el par de imágenes se obtuvo usando diferentes filtros del mismo campo de células.
Las FIG. 6A y FIG. 6B representan imágenes de contraste de fase, a diferentes aumentos, de células tratadas con 10 pM de esfingosina-1-fosfato (SIP) y recogidas tres días después del inicio de la etapa 6. Estas imágenes muestran que los grupos endocrinos emergieron solo 3 días después del inicio de la etapa 6. Esto es aproximadamente 7 días antes que la formación de los grupos en los cultivos de control.
La Figura 6C y la Figura 6D representan imágenes de células de control (FIG. 6C) y células tratadas con S1P (FIG. 6D) inmunoteñidas para NKX2.2. En cultivos tratados con S1P, los grupos endocrinos también se enriquecieron para células NKX2.2 (FIG. 6C), en comparación con los cultivos de control en los que las células NKX2.2 se distribuyeron uniformemente a lo largo del cultivo (FIG. 6D).

Claims (12)

REIVINDICACIONES
1. Un método para potenciar la expresión de somatostatina en células que expresan hormonas (células en etapa 6), que comprende cultivar células del endodermo pancreático (células en etapa 5) en un medio que comprende Activina A o Activina C.
2. El método de la reivindicación 1, en el que se suprime la expresión de insulina, glucagón y grelina.
3. El método de la reivindicación 1, en el que la población de células del endodermo pancreático tratadas con Activina A o Activina C expresa más somatostatina en comparación con una población de células del endodermo pancreático no tratadas con Activina A o Activina C.
4. El método de la reivindicación 3, en el que se suprime la expresión de insulina en la población de células del endodermo pancreático tratadas con Activina A o Activina C en comparación con la expresión de insulina en una población de células del endodermo pancreático no tratadas con Activina A o Activina C.
5. El método de la reivindicación 1, en el que se suprime la expresión de glucagón en la población de células del endodermo pancreático tratadas con Activina A o Activina C en comparación con la expresión de glucagón en una población de células del endodermo pancreático no tratadas con Activina A o Activina C.
6. El método de la reivindicación 1, en el que se suprime la expresión de grelina en la población de células del endodermo pancreático tratadas con Activina A o Activina C en comparación con la expresión de grelina en una población de células del endodermo pancreático no tratadas con Activina A o Activina C.
7. El método de cualquiera de las reivindicaciones 1 a 6, en el que las células del endodermo pancreático no expresan sustancialmente CDX2 o SOX2, preferiblemente en el que las células del endodermo pancreático expresan aproximadamente menos del 10% de CDX2 o SOX2.
8. El método de cualquiera de las reivindicaciones 1 a 7, en el que las células del endodermo pancreático tratadas se obtienen mediante una diferenciación escalonada de células pluripotentes.
9. El método de la reivindicación 8, en el que las células pluripotentes son células pluripotentes humanas.
10. El método de la reivindicación 9, en el que las células madre pluripotentes humanas son células madre pluripotentes embrionarias humanas.
11. El método de cualquiera de las reivindicaciones 1 a 10, en el que el método comprende cultivar células del endodermo pancreático en un medio que comprende Activina A.
12. El método de cualquiera de las reivindicaciones 1 a 10, en el que el método comprende cultivar células del endodermo pancreático en un medio que comprende Activina C.
ES18190030T 2012-06-08 2013-06-06 Diferenciación de células madre embrionarias humanas en células endocrinas pancreáticas Active ES2897649T3 (es)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261657160P 2012-06-08 2012-06-08

Publications (1)

Publication Number Publication Date
ES2897649T3 true ES2897649T3 (es) 2022-03-02

Family

ID=49712621

Family Applications (2)

Application Number Title Priority Date Filing Date
ES13799837.3T Active ES2690118T3 (es) 2012-06-08 2013-06-06 Diferenciación de células madre embrionarias humanas en células endocrinas pancreáticas
ES18190030T Active ES2897649T3 (es) 2012-06-08 2013-06-06 Diferenciación de células madre embrionarias humanas en células endocrinas pancreáticas

Family Applications Before (1)

Application Number Title Priority Date Filing Date
ES13799837.3T Active ES2690118T3 (es) 2012-06-08 2013-06-06 Diferenciación de células madre embrionarias humanas en células endocrinas pancreáticas

Country Status (20)

Country Link
US (5) US10066210B2 (es)
EP (5) EP2859091B1 (es)
JP (3) JP6469003B2 (es)
KR (4) KR102114209B1 (es)
CN (4) CN108034633B (es)
AR (1) AR091388A1 (es)
AU (4) AU2013271581B2 (es)
BR (1) BR112014030682A2 (es)
CA (2) CA3173122A1 (es)
DK (1) DK3450542T3 (es)
ES (2) ES2690118T3 (es)
HK (1) HK1209160A1 (es)
IN (1) IN2014DN10021A (es)
MX (1) MX358590B (es)
PH (4) PH12014502661A1 (es)
PL (1) PL2859091T3 (es)
RU (4) RU2018108850A (es)
SG (2) SG11201408124PA (es)
WO (1) WO2013184888A1 (es)
ZA (3) ZA201802252B (es)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9080145B2 (en) 2007-07-01 2015-07-14 Lifescan Corporation Single pluripotent stem cell culture
RU2473685C2 (ru) 2007-07-31 2013-01-27 Лайфскен, Инк. Дифференцировка человеческих эмбриональных стволовых клеток
WO2009070592A2 (en) 2007-11-27 2009-06-04 Lifescan, Inc. Differentiation of human embryonic stem cells
BR122017025207B1 (pt) 2008-02-21 2021-03-16 Centocor Ortho Biotech Inc superfície que faz parte de um recipiente ou matriz destinada para uso em uma cultura de células ou análises, desprovida de uma camada de células alimentadoras e desprovida de uma camada adsorvente
CA2729121C (en) 2008-06-30 2019-04-09 Centocor Ortho Biotech Inc. Differentiation of pluripotent stem cells
RU2522001C2 (ru) 2008-10-31 2014-07-10 Сентокор Орто Байотек Инк. Дифференцирование человеческих эмбриональных стволовых клеток в линию панкреатических эндокринных клеток
CN107267442A (zh) 2008-11-20 2017-10-20 詹森生物科技公司 微载体上的多能干细胞培养
KR101687344B1 (ko) 2008-11-20 2016-12-16 얀센 바이오테크 인코포레이티드 평면 기재상의 세포 부착 및 배양을 위한 방법 및 조성물
KR20170118969A (ko) 2009-07-20 2017-10-25 얀센 바이오테크 인코포레이티드 인간 배아 줄기 세포의 분화
BR112012017761A2 (pt) 2009-12-23 2015-09-15 Centocor Ortho Biotech Inc diferenciação das células-tronco embrionárias humanas
CN102791851B (zh) 2010-03-01 2017-07-14 詹森生物科技公司 纯化衍生自多能干细胞的细胞的方法
JP6050225B2 (ja) 2010-05-12 2016-12-21 ヤンセン バイオテツク,インコーポレーテツド ヒト胚性幹細胞の分化
ES2660897T3 (es) * 2010-08-31 2018-03-26 Janssen Biotech, Inc. Diferenciación de células madre embrionarias humanas
SG11201403473QA (en) 2011-12-22 2014-10-30 Janssen Biotech Inc Differentiation of human embryonic stem cells into single hormonal insulin positive cells
US9434920B2 (en) 2012-03-07 2016-09-06 Janssen Biotech, Inc. Defined media for expansion and maintenance of pluripotent stem cells
KR102114209B1 (ko) * 2012-06-08 2020-05-25 얀센 바이오테크 인코포레이티드 인간 배아 줄기 세포의 췌장 내분비 세포로의 분화
US10344264B2 (en) * 2012-12-31 2019-07-09 Janssen Biotech, Inc. Culturing of human embryonic stem cells at the air-liquid interface for differentiation into pancreatic endocrine cells
CN111394298A (zh) 2012-12-31 2020-07-10 詹森生物科技公司 使用hb9调节子使人胚胎干细胞分化为胰腺内分泌细胞的方法
CA2896750A1 (en) 2012-12-31 2014-07-03 Janssen Biotech, Inc. Suspension and clustering of human pluripotent cells for differentiation into pancreatic endocrine cells
US10370644B2 (en) 2012-12-31 2019-08-06 Janssen Biotech, Inc. Method for making human pluripotent suspension cultures and cells derived therefrom
US8859286B2 (en) 2013-03-14 2014-10-14 Viacyte, Inc. In vitro differentiation of pluripotent stem cells to pancreatic endoderm cells (PEC) and endocrine cells
US20170029778A1 (en) 2013-06-11 2017-02-02 President And Fellows Of Harvard College Sc-beta cells and compositions and methods for generating the same
SG11201609473XA (en) 2014-05-16 2016-12-29 Janssen Biotech Inc Use of small molecules to enhance mafa expression in pancreatic endocrine cells
WO2015178431A1 (ja) * 2014-05-21 2015-11-26 国立大学法人京都大学 膵芽細胞の製造方法および膵芽細胞を含む膵疾患治療剤
WO2016100909A1 (en) 2014-12-18 2016-06-23 President And Fellows Of Harvard College METHODS FOR GENERATING STEM CELL-DERIVED β CELLS AND USES THEREOF
US10443042B2 (en) 2014-12-18 2019-10-15 President And Fellows Of Harvard College Serum-free in vitro directed differentiation protocol for generating stem cell-derived beta cells and uses thereof
WO2016100930A1 (en) 2014-12-18 2016-06-23 President And Fellows Of Harvard College Methods for generating stem cell-derived b cells and methods of use thereof
WO2017133931A1 (en) * 2016-02-04 2017-08-10 Nestec S.A. In vitro production of pancreatic beta cells
MA45479A (fr) 2016-04-14 2019-02-20 Janssen Biotech Inc Différenciation de cellules souches pluripotentes en cellules de l'endoderme de l'intestin moyen
MA45502A (fr) * 2016-06-21 2019-04-24 Janssen Biotech Inc Génération de cellules bêta fonctionnelles dérivées de cellules souches pluripotentes humaines ayant une respiration mitochondriale glucose-dépendante et une réponse en sécrétion d'insuline en deux phases
CN111094547B (zh) * 2017-06-14 2024-02-09 德国亥姆霍兹慕尼黑中心健康与环境研究中心(有限公司) 用于纯化源自人胚胎干细胞的内胚层和胰腺内胚层细胞的方法
US10391156B2 (en) 2017-07-12 2019-08-27 Viacyte, Inc. University donor cells and related methods
BR112020009275A2 (pt) 2017-11-15 2020-10-27 Semma Therapeutics, Inc. composições de fabricação de célula de ilhota e métodos de uso
CN112533618A (zh) * 2018-05-16 2021-03-19 华盛顿大学 用于生成内胚层谱系细胞和β细胞的方法和组合物及其用途
AU2019320072A1 (en) 2018-08-10 2021-02-25 Vertex Pharmaceuticals Incorporated Stem cell derived islet differentiation
CN111848744B (zh) * 2018-09-03 2021-07-23 宁波希诺赛生物科技有限公司 表皮干细胞向胰腺细胞分化的改进方法
US20200080107A1 (en) 2018-09-07 2020-03-12 Crispr Therapeutics Ag Universal donor cells
US11013723B1 (en) 2018-10-16 2021-05-25 Celgene Corporation Solid forms of a thiazolidinone compound, compositions and methods of use thereof
US11186556B1 (en) 2018-10-16 2021-11-30 Celgene Corporation Salts of a thiazolidinone compound, solid forms, compositions and methods of use thereof
US11014897B1 (en) 2018-10-16 2021-05-25 Celgene Corporation Solid forms comprising a thiazolidinone compound, compositions and methods of use thereof
US11014940B1 (en) 2018-10-16 2021-05-25 Celgene Corporation Thiazolidinone and oxazolidinone compounds and formulations
WO2020243668A1 (en) 2019-05-31 2020-12-03 W. L. Gore & Associates, Inc. Cell encapsulation devices with controlled oxygen diffusion distances
AU2020282355B2 (en) 2019-05-31 2023-11-02 Viacyte, Inc. A biocompatible membrane composite
AU2020283056B2 (en) 2019-05-31 2023-06-08 Viacyte, Inc. A biocompatible membrane composite
CN114206407A (zh) 2019-05-31 2022-03-18 W.L.戈尔及同仁股份有限公司 生物相容性膜复合材料
CA3150235A1 (en) 2019-09-05 2021-03-11 Alireza Rezania UNIVERSAL DONOR CELLS
JP2022547053A (ja) 2019-09-05 2022-11-10 クリスパー セラピューティクス アクチェンゲゼルシャフト ユニバーサルドナー細胞
EP4049722A4 (en) * 2019-10-21 2023-11-08 Orizuru Therapeutics, Inc. PROLIFERATION INHIBITOR
WO2022144856A1 (en) 2020-12-31 2022-07-07 Crispr Therapeutics Ag Universal donor cells
CN114634904B (zh) * 2022-05-17 2022-09-13 天津外泌体科技有限公司 高纯度胰腺祖细胞的产生方法

Family Cites Families (272)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3209652A (en) 1961-03-30 1965-10-05 Burgsmueller Karl Thread whirling method
AT326803B (de) 1968-08-26 1975-12-29 Binder Fa G Maschenware sowie verfahren zur herstellung derselben
US3935067A (en) 1974-11-22 1976-01-27 Wyo-Ben Products, Inc. Inorganic support for culture media
CA1201400A (en) 1982-04-16 1986-03-04 Joel L. Williams Chemically specific surfaces for influencing cell activity during culture
US4499802A (en) 1982-09-29 1985-02-19 Container Graphics Corporation Rotary cutting die with scrap ejection
US4537773A (en) 1983-12-05 1985-08-27 E. I. Du Pont De Nemours And Company α-Aminoboronic acid derivatives
US4557264A (en) 1984-04-09 1985-12-10 Ethicon Inc. Surgical filament from polypropylene blended with polyethylene
US5215893A (en) 1985-10-03 1993-06-01 Genentech, Inc. Nucleic acid encoding the ba chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid
US5089396A (en) 1985-10-03 1992-02-18 Genentech, Inc. Nucleic acid encoding β chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid
US4737578A (en) 1986-02-10 1988-04-12 The Salk Institute For Biological Studies Human inhibin
US5863531A (en) 1986-04-18 1999-01-26 Advanced Tissue Sciences, Inc. In vitro preparation of tubular tissue structures by stromal cell culture on a three-dimensional framework
US5567612A (en) 1986-11-20 1996-10-22 Massachusetts Institute Of Technology Genitourinary cell-matrix structure for implantation into a human and a method of making
CA1340581C (en) 1986-11-20 1999-06-08 Joseph P. Vacanti Chimeric neomorphogenesis of organs by controlled cellular implantation using artificial matrices
US5759830A (en) 1986-11-20 1998-06-02 Massachusetts Institute Of Technology Three-dimensional fibrous scaffold containing attached cells for producing vascularized tissue in vivo
NZ229354A (en) 1988-07-01 1990-09-26 Becton Dickinson Co Treating polymer surfaces with a gas plasma and then applying a layer of endothelial cells to the surface
EP0363125A3 (en) 1988-10-03 1990-08-16 Hana Biologics Inc. Proliferated pancreatic endocrine cell product and process
SU1767433A1 (ru) 1989-11-27 1992-10-07 Пермский государственный медицинский институт Способ определени инсулинорезистентности имунного генеза у больных сахарным диабетом I типа
US5837539A (en) 1990-11-16 1998-11-17 Osiris Therapeutics, Inc. Monoclonal antibodies for human mesenchymal stem cells
JP3370324B2 (ja) 1991-04-25 2003-01-27 中外製薬株式会社 ヒトインターロイキン−6受容体に対する再構成ヒト抗体
US5449383A (en) 1992-03-18 1995-09-12 Chatelier; Ronald C. Cell growth substrates
GB9206861D0 (en) 1992-03-28 1992-05-13 Univ Manchester Wound healing and treatment of fibrotic disorders
CA2114282A1 (en) 1993-01-28 1994-07-29 Lothar Schilder Multi-layered implant
JP3525221B2 (ja) 1993-02-17 2004-05-10 味の素株式会社 免疫抑制剤
AU687386B2 (en) 1993-04-08 1998-02-26 Human Cell Cultures, Inc. Cell culturing method and medium
US5523226A (en) 1993-05-14 1996-06-04 Biotechnology Research And Development Corp. Transgenic swine compositions and methods
GB9310557D0 (en) 1993-05-21 1993-07-07 Smithkline Beecham Plc Novel process and apparatus
TW257671B (es) 1993-11-19 1995-09-21 Ciba Geigy
US6703017B1 (en) 1994-04-28 2004-03-09 Ixion Biotechnology, Inc. Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures
US5834308A (en) 1994-04-28 1998-11-10 University Of Florida Research Foundation, Inc. In vitro growth of functional islets of Langerhans
US6001647A (en) 1994-04-28 1999-12-14 Ixion Biotechnology, Inc. In vitro growth of functional islets of Langerhans and in vivo uses thereof
US6083903A (en) 1994-10-28 2000-07-04 Leukosite, Inc. Boronic ester and acid compounds, synthesis and uses
CN1075387C (zh) 1994-12-29 2001-11-28 中外制药株式会社 含有il-6拮抗剂的抗肿瘤剂的作用增强剂
US5843780A (en) 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US5718922A (en) 1995-05-31 1998-02-17 Schepens Eye Research Institute, Inc. Intravitreal microsphere drug delivery and method of preparation
US5908782A (en) 1995-06-05 1999-06-01 Osiris Therapeutics, Inc. Chemically defined medium for human mesenchymal stem cells
US5681561A (en) 1995-06-07 1997-10-28 Life Medical Sciences, Inc. Compositions and methods for improving autologous fat grafting
JP2001508302A (ja) 1997-01-10 2001-06-26 ライフ テクノロジーズ,インコーポレイテッド 胚性幹細胞血清置換
UA65572C2 (en) 1997-04-24 2004-04-15 Ortho Mcneil Pharm Inc Substituted imidazoles, intermediate compounds for the preparation thereof, a method for the preparation of substituted imidazoles and a method for the treatment of inflammatory diseases
CA2294944A1 (en) 1997-07-03 1999-01-14 Osiris Therapeutics, Inc. Human mesenchymal stem cells from peripheral blood
US6670127B2 (en) 1997-09-16 2003-12-30 Egea Biosciences, Inc. Method for assembly of a polynucleotide encoding a target polypeptide
EP1538206B1 (en) 1997-09-16 2010-03-24 Centocor, Inc. Method for the complete chemical synthesis and assembly of genes and genomes
JP3880795B2 (ja) 1997-10-23 2007-02-14 ジェロン・コーポレーション フィーダー細胞を含まない培養物中で、霊長類由来始原幹細胞を増殖させるための方法
ZA9811898B (en) 1997-12-29 2000-06-28 Ortho Mcneil Pharm Inc Anti-Inflammatory Compounds.
AU755888B2 (en) 1998-03-18 2003-01-02 Mesoblast International Sarl Mesenchymal stem cells for prevention and treatment of immune responses in transplantation
MY132496A (en) 1998-05-11 2007-10-31 Vertex Pharma Inhibitors of p38
US6413773B1 (en) 1998-06-01 2002-07-02 The Regents Of The University Of California Phosphatidylinositol 3-kinase inhibitors as stimulators of endocrine differentiation
US7410798B2 (en) 2001-01-10 2008-08-12 Geron Corporation Culture system for rapid expansion of human embryonic stem cells
US6667176B1 (en) * 2000-01-11 2003-12-23 Geron Corporation cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells
US6610540B1 (en) 1998-11-18 2003-08-26 California Institute Of Technology Low oxygen culturing of central nervous system progenitor cells
US6413556B1 (en) 1999-01-08 2002-07-02 Sky High, Llc Aqueous anti-apoptotic compositions
US6458593B1 (en) 1999-01-21 2002-10-01 Vitro Diagnostics, Inc. Immortalized cell lines and methods of making the same
US6815203B1 (en) 1999-06-23 2004-11-09 Joslin Diabetes Center, Inc. Methods of making pancreatic islet cells
US6333029B1 (en) 1999-06-30 2001-12-25 Ethicon, Inc. Porous tissue scaffoldings for the repair of regeneration of tissue
US6306424B1 (en) 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue
WO2001023528A1 (en) 1999-09-27 2001-04-05 University Of Florida Research Foundation Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures
US6685936B2 (en) 1999-10-12 2004-02-03 Osiris Therapeutics, Inc. Suppressor cells induced by culture with mesenchymal stem cells for treatment of immune responses in transplantation
US20030082155A1 (en) 1999-12-06 2003-05-01 Habener Joel F. Stem cells of the islets of langerhans and their use in treating diabetes mellitus
WO2001042789A1 (en) 1999-12-13 2001-06-14 The Scripps Research Institute MARKERS FOR IDENTIFICATION AND ISOLATION OF PANCREATIC ISLET α AND β CELL PROGENITORS
US7005252B1 (en) 2000-03-09 2006-02-28 Wisconsin Alumni Research Foundation Serum free cultivation of primate embryonic stem cells
US7439064B2 (en) 2000-03-09 2008-10-21 Wicell Research Institute, Inc. Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium
US6436704B1 (en) 2000-04-10 2002-08-20 Raven Biotechnologies, Inc. Human pancreatic epithelial progenitor cells and methods of isolation and use thereof
US6458589B1 (en) 2000-04-27 2002-10-01 Geron Corporation Hepatocyte lineage cells derived from pluripotent stem cells
KR100947577B1 (ko) 2000-06-26 2010-03-15 엔씨 메디컬 리서치 가부시키가이샤 신경계 세포로 분화할 수 있는 세포를 포함하는 세포분획
ES2372028T3 (es) 2000-10-23 2012-01-13 Glaxosmithkline Llc Nuevo compuesto de 8h-pirido[2,3-d]pirimidin-7-ona trisustituida para el tratamiento de enfermedades mediadas por la csbp/p38 quinasa.
YU46603A (sh) 2000-12-08 2006-05-25 Ortho-Mcneil Pharmaceutical Inc. Indazolil-supstituisana jedinjenja pirolina, kao inhibitori kinaze
RU2275373C2 (ru) 2000-12-08 2006-04-27 Орто-Макнейл Фармасьютикал, Инк. Макрогетероциклические соединения
US6599323B2 (en) 2000-12-21 2003-07-29 Ethicon, Inc. Reinforced tissue implants and methods of manufacture and use
US20040121460A1 (en) 2001-01-24 2004-06-24 Lumelsky Nadya L Differentiation of stem cells to pancreatic endocrine cells
JP4162491B2 (ja) 2001-01-25 2008-10-08 アメリカ合衆国 ボロン酸化合物製剤
US6656488B2 (en) 2001-04-11 2003-12-02 Ethicon Endo-Surgery, Inc. Bioabsorbable bag containing bioabsorbable materials of different bioabsorption rates for tissue engineering
DE10290025T1 (de) 2001-04-19 2003-10-09 Develogen Ag Verfahren zur Differenzierung von Stammzellen in Insulin-produzierende Zellen
ATE421991T1 (de) 2001-04-24 2009-02-15 Ajinomoto Kk Stammzellen und verfahren zu deren trennung
EP1393066A4 (en) 2001-05-15 2006-01-25 Rappaport Family Inst For Res INSULIN-PRODUCING CELLS DERIVED FROM HUMAN EMBRYONAL STEM CELLS
US6626950B2 (en) 2001-06-28 2003-09-30 Ethicon, Inc. Composite scaffold with post anchor for the repair and regeneration of tissue
KR100418195B1 (ko) 2001-07-05 2004-02-11 주식회사 우리기술 전력케이블의 다중절연진단장치 및 그 방법
GB0117583D0 (en) 2001-07-19 2001-09-12 Astrazeneca Ab Novel compounds
CA2456981C (en) 2001-08-06 2012-02-28 Bresagen, Inc. Alternative compositions and methods for the culture of stem cells
US6617152B2 (en) 2001-09-04 2003-09-09 Corning Inc Method for creating a cell growth surface on a polymeric substrate
EP1298201A1 (en) 2001-09-27 2003-04-02 Cardion AG Process for the production of cells exhibiting an islet-beta-cell-like state
CA2463914A1 (en) 2001-10-18 2003-04-24 Ixion Biotechnology, Inc. Conversion of liver stem and progenitor cells to pancreatic functional cells
JP4330995B2 (ja) 2001-11-15 2009-09-16 チルドレンズ メディカル センター コーポレーション 絨毛膜絨毛、羊水、および胎盤からの胎児性幹細胞を単離、増殖、および分化させる方法、ならびにその治療的使用方法
KR101089591B1 (ko) 2001-12-07 2011-12-05 제론 코포레이션 인간 배아 줄기세포 유래의 섬세포
WO2003053346A2 (en) 2001-12-07 2003-07-03 Macropore Biosurgery, Inc. Systems and methods for treating patients with processed lipoaspirate cells
AU2002218893A1 (en) 2001-12-21 2003-07-09 Thromb-X Nv Compositions for the in vitro derivation and culture of embryonic stem (es) cell lines with germline transmission capability
JP2005512593A (ja) 2001-12-28 2005-05-12 セルアーティス アーベー 多能性のヒト胚盤胞由来幹細胞株の樹立方法
US20030162290A1 (en) 2002-01-25 2003-08-28 Kazutomo Inoue Method for inducing differentiation of embryonic stem cells into functioning cells
US20030180268A1 (en) 2002-02-05 2003-09-25 Anthony Atala Tissue engineered construct for supplementing or replacing a damaged organ
GB0207440D0 (en) * 2002-03-28 2002-05-08 Ppl Therapeutics Scotland Ltd Tolerogenic antigen-presenting cells
EP1498478A1 (en) 2002-04-17 2005-01-19 Otsuka Pharmaceutical Co., Ltd. Method of forming pancreatic beta cells from mesenchymal cells
US20040161419A1 (en) 2002-04-19 2004-08-19 Strom Stephen C. Placental stem cells and uses thereof
US7125878B2 (en) 2002-05-08 2006-10-24 Janssen Pharmaceutica Substituted pyrroline kinase inhibitors
US20060003446A1 (en) 2002-05-17 2006-01-05 Gordon Keller Mesoderm and definitive endoderm cell populations
US20060122104A1 (en) * 2002-05-28 2006-06-08 Presnell Sharon C Methods for in vitro expansion and transdifferentiation of human pancreatic acinar cells into insulin-producing cells
CN1671694A (zh) 2002-06-05 2005-09-21 詹森药业有限公司 作为激酶抑制剂的二吲哚基-顺丁烯二酰亚胺衍生物
GB0212976D0 (en) 2002-06-06 2002-07-17 Tonejet Corp Pty Ltd Ejection method and apparatus
CN1171991C (zh) 2002-07-08 2004-10-20 徐如祥 人神经干细胞的培养方法
US6877147B2 (en) 2002-07-22 2005-04-05 Broadcom Corporation Technique to assess timing delay by use of layout quality analyzer comparison
US7838290B2 (en) 2002-07-25 2010-11-23 The Scripps Research Institute Hematopoietic stem cells and methods of treatment of neovascular eye diseases therewith
WO2004011621A2 (en) 2002-07-29 2004-02-05 Es Cell International Pte Ltd. Multi-step method for the differentiation of insulin positive, glucose
AU2003262628A1 (en) 2002-08-14 2004-03-03 University Of Florida Bone marrow cell differentiation
JP2005537803A (ja) 2002-09-06 2005-12-15 アムサイト インコーポレーティッド Cd56陽性ヒト成体膵臓内分泌前駆細胞
US9969977B2 (en) 2002-09-20 2018-05-15 Garnet Biotherapeutics Cell populations which co-express CD49c and CD90
US20040062753A1 (en) 2002-09-27 2004-04-01 Alireza Rezania Composite scaffolds seeded with mammalian cells
US20060252150A1 (en) 2002-11-08 2006-11-09 Linzhao Cheng Human embryonic stem cell cultures, and compositions and methods for growing same
US7144999B2 (en) 2002-11-23 2006-12-05 Isis Pharmaceuticals, Inc. Modulation of hypoxia-inducible factor 1 alpha expression
US20060040385A1 (en) 2002-12-05 2006-02-23 Technion Research & Development Foundation Ltd. Cultured human pancreatic islets, and uses thereof
HUE028026T2 (en) 2002-12-16 2016-11-28 Technion Res & Dev Foundation Breeding system free of native cells, free of foreign matter for human embryonic stem cells
US20050118148A1 (en) 2002-12-20 2005-06-02 Roland Stein Compositions and methods related to mammalian Maf-A
WO2004067001A1 (ja) 2003-01-29 2004-08-12 Takeda Pharmaceutical Company Limited 被覆製剤の製造法
RU2359671C2 (ru) 2003-01-29 2009-06-27 Такеда Фармасьютикал Компани Лимитед Способ получения препарата с покрытием
WO2005045001A2 (en) * 2003-02-14 2005-05-19 The Board Of Trustees Of The Leland Stanford Junior University Insulin-producing cells derived from stem cells
US20070155661A1 (en) 2003-02-14 2007-07-05 The Board Of Trustees Of The Leland Standord Junior University Methods and compositions for modulating the development of stem cells
WO2004087885A2 (en) 2003-03-27 2004-10-14 Ixion Biotechnology, Inc. Method for transdifferentiation of non-pancreatic stem cells to the pancreatic pathway
US20060194315A1 (en) 2003-03-31 2006-08-31 Condie Brian G Compositions and methods for the control, differentiaton and/or manipulation of pluripotent cells through a gamma-secretase signaling pathway
US20090203141A1 (en) 2003-05-15 2009-08-13 Shi-Lung Lin Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant RNA agents
KR20060021908A (ko) * 2003-06-23 2006-03-08 프라운호퍼-게젤샤프트 추르 푀르데룽 데어 안제반텐 포르슝 에 파우 췌장 호르몬을 생산하는 세포로 줄기세포를 분화시키는방법
ES2597837T3 (es) 2003-06-27 2017-01-23 DePuy Synthes Products, Inc. Células posparto derivadas de tejido de la placenta, y métodos de fabricación y utilización de los mismos
IL161903A0 (en) 2003-07-17 2005-11-20 Gamida Cell Ltd Ex vivo progenitor and stem cell expansion for usein the treatment of disease of endodermally- deri ved organs
ITRM20030395A1 (it) 2003-08-12 2005-02-13 Istituto Naz Per Le Malattie Infettive Lazz Terreno di coltura per il mantenimento, la proliferazione e il differenziamento di cellule di mammifero.
WO2005017117A2 (en) 2003-08-14 2005-02-24 Martin Haas Multipotent amniotic fetal stem cells (mafsc) and banking of same
US7157275B2 (en) 2003-08-15 2007-01-02 Becton, Dickinson And Company Peptides for enhanced cell attachment and growth
EP1670900A4 (en) 2003-08-27 2008-06-11 Stemcells California Inc ENHANCED PANCREATIC STEM CELL AND PRECURSOR CELL POPULATIONS AND METHOD OF IDENTIFYING, INSULATING AND ENRICHING SUCH POPULATIONS
WO2005058301A1 (en) 2003-12-17 2005-06-30 Allergan, Inc. Methods for treating retinoid responsive disorders using selective inhibitors of cyp26a and cyp26b
US20060030042A1 (en) 2003-12-19 2006-02-09 Ali Brivanlou Maintenance of embryonic stem cells by the GSK-3 inhibitor 6-bromoindirubin-3'-oxime
US7541185B2 (en) 2003-12-23 2009-06-02 Cythera, Inc. Methods for identifying factors for differentiating definitive endoderm
CN1946838A (zh) 2003-12-23 2007-04-11 赛瑟拉公司 定形内胚层
US7625753B2 (en) 2003-12-23 2009-12-01 Cythera, Inc. Expansion of definitive endoderm cells
CN103898047B (zh) 2003-12-23 2020-03-03 维亚希特公司 定形内胚层
US20050266554A1 (en) 2004-04-27 2005-12-01 D Amour Kevin A PDX1 expressing endoderm
WO2005065354A2 (en) 2003-12-31 2005-07-21 The Burnham Institute Defined media for pluripotent stem cell culture
TWI334443B (en) 2003-12-31 2010-12-11 Ind Tech Res Inst Method of single cell culture of undifferentiated human embryonic stem cells
US7794704B2 (en) 2004-01-23 2010-09-14 Advanced Cell Technology, Inc. Methods for producing enriched populations of human retinal pigment epithelium cells for treatment of retinal degeneration
WO2005071066A1 (en) 2004-01-23 2005-08-04 Board Of Regents, The University Of Texas System Methods and compositions for preparing pancreatic insulin secreting cells
WO2005080551A2 (en) 2004-02-12 2005-09-01 University Of Newcastle Upon Tyne Stem cells
US7964401B2 (en) 2004-02-19 2011-06-21 Kyoto University Screening method for somatic cell nuclear reprogramming substance affecting ECAT2 and ECAT3
AU2005221095A1 (en) 2004-03-09 2005-09-22 John J. O'neil Methods for generating insulin-producing cells
CN1950498A (zh) 2004-03-10 2007-04-18 加利福尼亚大学董事会 培养胚胎干细胞的组合物和方法
JP4688793B2 (ja) 2004-03-23 2011-05-25 敏宏 赤池 多能性幹細胞の増殖方法
WO2005097980A2 (en) 2004-03-26 2005-10-20 Geron Corporation New protocols for making hepatocytes from embryonic stem cells
JP4491014B2 (ja) 2004-04-01 2010-06-30 ウイスコンシン アラムニ リサーチ ファンデーション 幹細胞の内胚葉および膵臓系統への分化
EP1740612B1 (en) 2004-04-27 2019-08-07 Viacyte, Inc. Pdx1 expressing endoderm
EP1786896B1 (en) 2004-07-09 2018-01-10 Viacyte, Inc. Methods for identifying factors for differentiating definitive endoderm
MX2007001772A (es) 2004-08-13 2007-07-11 Univ Georgia Res Found Composiciones y metodos para auto-renovacion y diferenciacion de celulas troncales embrionicas humanas.
WO2006026473A2 (en) 2004-08-25 2006-03-09 University Of Georgia Research Foundation, Inc. METHODS AND COMPOSITIONS UTILIZING MYC AND GSK3ß TO MANIPULATE THE PLURIPOTENCY OF EMBRYONIC STEM CELLS
DE102004043256B4 (de) 2004-09-07 2013-09-19 Rheinische Friedrich-Wilhelms-Universität Bonn Skalierbarer Prozess zur Kultivierung undifferenzierter Stammzellen in Suspension
US7449334B2 (en) 2004-09-08 2008-11-11 Wisconsin Alumni Research Foundation Medium containing pipecholic acid and gamma amino butyric acid and culture of embryonic stem cells
WO2006029198A2 (en) 2004-09-08 2006-03-16 Wisconsin Alumni Research Foundation Culturing human embryonic stem cells
EP1853698A1 (en) 2005-01-28 2007-11-14 NovaThera Ltd. Methods for embryonic stem cell culture
EP1859026A2 (en) 2005-01-31 2007-11-28 ES Cell International Pte Ltd. Directed differentiation of embryonic stem cells and uses thereof
US20060182724A1 (en) 2005-02-15 2006-08-17 Riordan Neil H Method for expansion of stem cells
PL1860950T3 (pl) 2005-03-04 2017-09-29 Lifescan, Inc. Dojrzałe komórki podścieliska pochodzenia trzustkowego
US20060212476A1 (en) 2005-03-18 2006-09-21 Bogle Phillip L Method and apparatus for tracking candidate referrers
GB0505970D0 (en) 2005-03-23 2005-04-27 Univ Edinburgh Culture medium containing kinase inhibitor, and uses thereof
US7998938B2 (en) 2005-04-15 2011-08-16 Geron Corporation Cancer treatment by combined inhibition of proteasome and telomerase activities
CN100425694C (zh) 2005-04-15 2008-10-15 北京大学 诱导胚胎干细胞向胰腺细胞分化的方法
US20080227656A1 (en) 2005-04-26 2008-09-18 Flemming Besenbacher Biosurface Structure Array
WO2006126574A1 (ja) 2005-05-24 2006-11-30 Kumamoto University Es細胞の分化誘導方法
AU2006202209B2 (en) 2005-05-27 2011-04-14 Lifescan, Inc. Amniotic fluid derived cells
CN101238129A (zh) 2005-06-10 2008-08-06 Irm责任有限公司 维持胚胎干细胞多能性的化合物
WO2006134017A2 (en) * 2005-06-13 2006-12-21 Novo Nordisk A/S Modulation of cells
WO2006138433A2 (en) 2005-06-14 2006-12-28 The Regents Of The University Of California Induction of cell differentiation by class i bhlh polypeptides
WO2006137787A1 (en) 2005-06-21 2006-12-28 Ge Healthcare Bio-Sciences Ab Method for cell culture
CA2613369C (en) 2005-06-22 2020-11-10 Geron Corporation Suspension culture of human embryonic stem cells
JP5345388B2 (ja) 2005-06-30 2013-11-20 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ 環式アニリノ−ピリジノトリアジン
WO2007012144A1 (en) 2005-07-29 2007-02-01 Australian Stem Cell Centre Limited Compositions and methods for growth of pluripotent cells
US20080194021A1 (en) 2005-07-29 2008-08-14 Mays Robert W Use of a Gsk-3 Inhibitor to Maintain Potency of Culture Cells
WO2007025234A2 (en) 2005-08-26 2007-03-01 The Trustees Of Columbia University In The City Of New York Generation of pancreatic endocrine cells from primary duct cell cultures and methods of use for treatment of diabetes
WO2007026353A2 (en) 2005-08-29 2007-03-08 Technion Research & Development Foundation Ltd. Media for culturing stem cells
WO2007027157A1 (en) 2005-09-02 2007-03-08 Agency For Science, Technology And Research Method of deriving progenitor cell line
GB2444686B (en) 2005-09-12 2010-08-25 Es Cell Int Pte Ltd Differentiation of pluripotent stem cells using p38 MAPK inhibitors or prostaglandins
US20070128174A1 (en) * 2005-09-21 2007-06-07 Kleinsek Donald A Methods and compositions for organ and tissue functionality
JP2009511061A (ja) 2005-10-14 2009-03-19 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ 膵臓表現型を有する細胞への非胚性幹細胞の分化
US7732202B2 (en) 2005-10-21 2010-06-08 International Stem Cell Corporation Oxygen tension for the parthenogenic activation of human oocytes for the production of human embryonic stem cells
DK2674485T3 (da) 2005-10-27 2019-08-26 Viacyte Inc Pdx-1 udtrykkende dorsal og ventral fortarm endoderm
UA96139C2 (uk) * 2005-11-08 2011-10-10 Дженентек, Інк. Антитіло до нейропіліну-1 (nrp1)
EP2206724A1 (en) 2005-12-13 2010-07-14 Kyoto University Nuclear reprogramming factor
WO2007082963A1 (es) 2006-01-18 2007-07-26 Fundación Instituto Valenciano De Infertilidad Líneas de células madre embrionarias humanas y métodos para usar las mismas
CA2643478C (en) 2006-02-23 2019-06-18 Novocell, Inc. Compositions and methods useful for culturing differentiable cells
US7695965B2 (en) * 2006-03-02 2010-04-13 Cythera, Inc. Methods of producing pancreatic hormones
DK2650360T3 (da) * 2006-03-02 2019-10-07 Viacyte Inc Endokrine prekursorceller, pancreatiske hormon udtrykkende celler og fremgangsmåder til fremstilling
ES2725601T3 (es) 2006-04-28 2019-09-25 Lifescan Inc Diferenciación de células madre embriónicas humanas
US8741643B2 (en) 2006-04-28 2014-06-03 Lifescan, Inc. Differentiation of pluripotent stem cells to definitive endoderm lineage
US8685730B2 (en) 2006-05-02 2014-04-01 Wisconsin Alumni Research Foundation Methods and devices for differentiating pluripotent stem cells into cells of the pancreatic lineage
US20070259423A1 (en) 2006-05-02 2007-11-08 Jon Odorico Method of differentiating stem cells into cells of the endoderm and pancreatic lineage
US9598673B2 (en) 2006-05-19 2017-03-21 Creative Medical Health Treatment of disc degenerative disease
WO2007139929A2 (en) 2006-05-25 2007-12-06 The Burnham Institute For Medical Research Methods for culture and production of single cell populations of human embryonic stem cells
CA2654196A1 (en) 2006-06-02 2007-12-13 University Of Georgia Research Foundation, Inc. Pancreatic and liver endoderm cells and tissue by differentiation of definitive endoderm cells obtained from human embryonic stems
CN101541953A (zh) 2006-06-02 2009-09-23 佐治亚大学研究基金会 通过从人胚胎干细胞获得的定形内胚层细胞的分化得到胰和肝内胚层细胞及组织
US8415153B2 (en) * 2006-06-19 2013-04-09 Geron Corporation Differentiation and enrichment of islet-like cells from human pluripotent stem cells
CN100494359C (zh) 2006-06-23 2009-06-03 中日友好医院 神经干细胞三维立体培养体外扩增的方法
AU2007297575A1 (en) 2006-06-26 2008-03-27 Lifescan, Inc. Pluripotent stem cell culture
US20080003676A1 (en) 2006-06-26 2008-01-03 Millipore Corporation Growth of embryonic stem cells
GB2454386B (en) 2006-07-06 2011-07-06 Es Cell Int Pte Ltd Method for embryonic stem cell culture on a positively charged support surface
WO2008013664A2 (en) 2006-07-26 2008-01-31 Cythera, Inc. Methods of producing pancreatic hormones
WO2008015682A2 (en) 2006-08-02 2008-02-07 Technion Research & Development Foundation Ltd. Methods of expanding embryonic stem cells in a suspension culture
KR101331510B1 (ko) 2006-08-30 2013-11-20 재단법인서울대학교산학협력재단 저농도의 포도당을 함유하는 인간 배아줄기세포용 배지조성물 및 이를 이용한 인간 배아 줄기세포로부터 인슐린생산 세포 또는 세포괴로 분화시키는 방법, 그리고그로부터 유도된 인슐린 생산 세포 또는 세포괴
JP2008099662A (ja) 2006-09-22 2008-05-01 Institute Of Physical & Chemical Research 幹細胞の培養方法
WO2008039521A2 (en) 2006-09-26 2008-04-03 Nmt Medical, Inc. Method for modifying a medical implant surface for promoting tissue growth
JP5343267B2 (ja) 2006-10-17 2013-11-13 スティーフェル・ラボラトリーズ・インコーポレーテッド タラロゾール代謝物
US20100323442A1 (en) 2006-10-17 2010-12-23 Emmanuel Edward Baetge Modulation of the phosphatidylinositol-3-kinase pathway in the differentiation of human embryonic stem cells
US8835163B2 (en) 2006-10-18 2014-09-16 The Board Of Trustees Of The University Of Illinois Embryonic-like stem cells derived from adult human peripheral blood and methods of use
EP2088190A4 (en) 2006-11-09 2011-01-05 Japan Government METHOD FOR THE CULTURE AND PASSAGE OF PRIMATE EMBRYONIC STRAIN CELL, AND METHOD FOR INDUCING DIFFERENTIATION OF EMBRYONIC STEM CELL
WO2008086005A1 (en) 2007-01-09 2008-07-17 University Of South Florida Compositions including triciribine and bortezomib and derivatives thereof and methods of use thereof
EP1947193A1 (en) * 2007-01-17 2008-07-23 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Screening method for anti-diabetic compounds
WO2008094597A2 (en) 2007-01-30 2008-08-07 University Of Georgia Research Foundation, Inc. Early mesoderm cells, a stable population of mesendoderm cells that has utility for generation of endoderm and mesoderm lineages and multipotent migratory cells (mmc)
GB0703188D0 (en) 2007-02-19 2007-03-28 Roger Land Building Large scale production of stem cells
WO2008148105A1 (en) 2007-05-25 2008-12-04 Medistem Laboratories, Inc. Endometrial stem cells and methods of making and using same
DK2173863T3 (en) 2007-06-29 2019-01-21 Fujifilm Cellular Dynamics Inc Automated method and apparatus for embryonic stem cell culture
EP3957716A1 (en) 2007-07-18 2022-02-23 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
CA2694956C (en) 2007-07-31 2017-12-19 Lifescan, Inc. Pluripotent stem cell differentiation by using human feeder cells
RU2473685C2 (ru) 2007-07-31 2013-01-27 Лайфскен, Инк. Дифференцировка человеческих эмбриональных стволовых клеток
MX2010002179A (es) 2007-08-24 2010-04-27 Stichting Het Nl Kanker I Composicion para el tratamiento de enfermedades neoplasicas.
WO2009061442A1 (en) 2007-11-06 2009-05-14 Children's Medical Center Corporation Method to produce induced pluripotent stem (ips) cells form non-embryonic human cells
WO2009070592A2 (en) 2007-11-27 2009-06-04 Lifescan, Inc. Differentiation of human embryonic stem cells
SG154367A1 (en) 2008-01-31 2009-08-28 Es Cell Int Pte Ltd Method of differentiating stem cells
WO2009096049A1 (ja) 2008-02-01 2009-08-06 Kyoto University 人工多能性幹細胞由来分化細胞
EP2250252A2 (en) 2008-02-11 2010-11-17 Cambridge Enterprise Limited Improved reprogramming of mammalian cells, and the cells obtained
BR122017025207B1 (pt) 2008-02-21 2021-03-16 Centocor Ortho Biotech Inc superfície que faz parte de um recipiente ou matriz destinada para uso em uma cultura de células ou análises, desprovida de uma camada de células alimentadoras e desprovida de uma camada adsorvente
WO2009110215A1 (ja) 2008-03-03 2009-09-11 独立行政法人 科学技術振興機構 繊毛細胞の分化誘導方法
JP2011514169A (ja) 2008-03-17 2011-05-06 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ 幹細胞培養のためのマイクロキャリア
RU2359030C1 (ru) 2008-03-19 2009-06-20 Общество С Ограниченной Ответственностью "Лаборатория Клеточных Технологий" Способ получения эндотелиальных клеток из эмбриональных стволовых клеток человека (варианты)
US8338170B2 (en) 2008-04-21 2012-12-25 Viacyte, Inc. Methods for purifying endoderm and pancreatic endoderm cells derived from human embryonic stem cells
AU2008355123B2 (en) 2008-04-21 2014-12-04 Viacyte, Inc. Methods for purifying endoderm and pancreatic endoderm cells derived from human embryonic stem cells
US8728812B2 (en) 2008-04-22 2014-05-20 President And Fellows Of Harvard College Compositions and methods for promoting the generation of PDX1+ pancreatic cells
US7939322B2 (en) 2008-04-24 2011-05-10 Centocor Ortho Biotech Inc. Cells expressing pluripotency markers and expressing markers characteristic of the definitive endoderm
US8623648B2 (en) 2008-04-24 2014-01-07 Janssen Biotech, Inc. Treatment of pluripotent cells
DK2297319T3 (en) 2008-06-03 2015-10-19 Viacyte Inc GROWTH FACTORS FOR PREPARING DEFINITIVE ENDODERM
US20090298178A1 (en) 2008-06-03 2009-12-03 D Amour Kevin Allen Growth factors for production of definitive endoderm
AU2009267167A1 (en) * 2008-06-30 2010-01-07 Centocor Ortho Biotech Inc. Differentiation of pluripotent stem cells
CA2729121C (en) 2008-06-30 2019-04-09 Centocor Ortho Biotech Inc. Differentiation of pluripotent stem cells
DE102008032236A1 (de) 2008-06-30 2010-04-01 Eberhard-Karls-Universität Tübingen Isolierung und/oder Identifizierung von Stammzellen mit adipozytärem, chondrozytärem und pankreatischem Differenzierungspotential
US20100028307A1 (en) 2008-07-31 2010-02-04 O'neil John J Pluripotent stem cell differentiation
US9683215B2 (en) 2008-08-22 2017-06-20 President And Fellows Of Harvard College Methods of reprogramming cells
RU2522001C2 (ru) * 2008-10-31 2014-07-10 Сентокор Орто Байотек Инк. Дифференцирование человеческих эмбриональных стволовых клеток в линию панкреатических эндокринных клеток
US9012218B2 (en) * 2008-10-31 2015-04-21 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
EP2356213B1 (en) 2008-11-04 2019-05-29 Viacyte, Inc. Stem cell aggregate suspension compositions and methods for differentiation thereof
US8008075B2 (en) 2008-11-04 2011-08-30 Viacyte, Inc. Stem cell aggregate suspension compositions and methods of differentiation thereof
US8278106B2 (en) 2008-11-14 2012-10-02 Viacyte, Inc. Encapsulation of pancreatic cells derived from human pluripotent stem cells
CN107267442A (zh) 2008-11-20 2017-10-20 詹森生物科技公司 微载体上的多能干细胞培养
US20110229441A1 (en) 2008-12-05 2011-09-22 Association Francaise Contre Les Myopathies Method and Medium for Neural Differentiation of Pluripotent Cells
US9109245B2 (en) * 2009-04-22 2015-08-18 Viacyte, Inc. Cell compositions derived from dedifferentiated reprogrammed cells
AU2010276402B2 (en) 2009-07-20 2014-07-03 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
KR101785626B1 (ko) * 2009-07-20 2017-10-16 얀센 바이오테크 인코포레이티드 인간 배아 줄기 세포의 분화
KR20170118969A (ko) 2009-07-20 2017-10-25 얀센 바이오테크 인코포레이티드 인간 배아 줄기 세포의 분화
CA2778817A1 (en) 2009-10-29 2011-05-19 Janssen Biotech, Inc. Pluripotent stem cells
FI20096288A0 (fi) 2009-12-04 2009-12-04 Kristiina Rajala Formulations and methods for culturing stem cells
AU2010333840B2 (en) 2009-12-23 2016-01-07 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
BR112012017761A2 (pt) 2009-12-23 2015-09-15 Centocor Ortho Biotech Inc diferenciação das células-tronco embrionárias humanas
CA2785966C (en) * 2009-12-29 2020-10-27 Takeda Pharmaceutical Company Limited Method for manufacturing pancreatic-hormone-producing cells
WO2011096223A1 (ja) 2010-02-03 2011-08-11 独立行政法人国立がん研究センター 誘導肝幹細胞及びその製造方法、並びに、該細胞の応用
SG183400A1 (en) 2010-03-02 2012-09-27 Univ Singapore Culture additives to boost stem cell proliferation and differentiation response
CA2800498C (en) 2010-03-31 2021-11-16 The Scripps Research Institute Reprogramming cells
US9234170B2 (en) 2010-04-25 2016-01-12 Mount Sinai School Of Medicine Generation of anterior foregut endoderm from pluripotent cells
JP6050225B2 (ja) 2010-05-12 2016-12-21 ヤンセン バイオテツク,インコーポレーテツド ヒト胚性幹細胞の分化
WO2011160066A1 (en) * 2010-06-17 2011-12-22 Regents Of The University Of Minnesota Production of insulin producing cells
SG187699A1 (en) 2010-08-05 2013-03-28 Wisconsin Alumni Res Found Simplified basic media for human pluripotent cell culture
JP5881606B2 (ja) * 2010-08-06 2016-03-09 大日本住友製薬株式会社 脊髄損傷治療用製剤
EP2611910B1 (en) 2010-08-31 2018-01-17 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
ES2585028T3 (es) 2010-08-31 2016-10-03 Janssen Biotech, Inc. Diferenciación de células madre pluripotentes
WO2012117333A1 (en) 2011-02-28 2012-09-07 Stempeutics Research Malaysia Sdn Bhd Isolation and expansion of adult stem cells, their therapeutic composition and uses thereof
WO2013055834A2 (en) 2011-10-11 2013-04-18 The New York Stem Cell Foundation Er stress relievers in beta cell protection
WO2013055397A1 (en) 2011-10-14 2013-04-18 Children's Medical Center Corporation Inhibition and enhancement of reprogramming by chromatin modifying enzymes
SG11201403473QA (en) 2011-12-22 2014-10-30 Janssen Biotech Inc Differentiation of human embryonic stem cells into single hormonal insulin positive cells
US10519422B2 (en) 2012-02-29 2019-12-31 Riken Method of producing human retinal pigment epithelial cells
KR102114209B1 (ko) * 2012-06-08 2020-05-25 얀센 바이오테크 인코포레이티드 인간 배아 줄기 세포의 췌장 내분비 세포로의 분화
JP6470687B2 (ja) 2012-09-03 2019-02-13 ノヴォ ノルディスク アー/エス 小分子を用いた多能性幹細胞からの膵臓内胚葉の作製
CN111394298A (zh) 2012-12-31 2020-07-10 詹森生物科技公司 使用hb9调节子使人胚胎干细胞分化为胰腺内分泌细胞的方法
US8859286B2 (en) 2013-03-14 2014-10-14 Viacyte, Inc. In vitro differentiation of pluripotent stem cells to pancreatic endoderm cells (PEC) and endocrine cells
WO2014152321A1 (en) 2013-03-15 2014-09-25 The Jackson Laboratory Isolation of non-embryonic stem cells and uses thereof
CN112546230A (zh) * 2014-07-09 2021-03-26 博笛生物科技有限公司 用于治疗癌症的联合治疗组合物和联合治疗方法
EP3350313A4 (en) * 2015-09-15 2019-06-12 Agency For Science, Technology And Research (A*star) DERIVATION OF HEPATIC ORGANOIDS FROM HUMAN PLURIPOTENT STEM CELLS
JP7389980B2 (ja) * 2018-12-06 2023-12-01 国立大学法人 琉球大学 ヒト膵臓組織特異的幹/前駆細胞の人工作製方法

Also Published As

Publication number Publication date
KR20200057112A (ko) 2020-05-25
US10519424B2 (en) 2019-12-31
ZA201802251B (en) 2020-01-29
SG10201610313WA (en) 2017-02-27
CA2875786C (en) 2022-12-06
WO2013184888A1 (en) 2013-12-12
AU2018208647A1 (en) 2018-08-09
AU2018208646A1 (en) 2018-08-09
CA3173122A1 (en) 2013-12-12
RU2018108850A (ru) 2019-02-26
JP2019050811A (ja) 2019-04-04
KR20220156115A (ko) 2022-11-24
EP2859091A1 (en) 2015-04-15
AU2013271581A1 (en) 2014-12-11
PH12014502661A1 (en) 2015-02-02
CN104334719B (zh) 2018-02-13
AU2018208650A1 (en) 2018-08-09
US20190010466A1 (en) 2019-01-10
DK3450542T3 (da) 2021-11-01
MX2014014986A (es) 2015-03-05
RU2650813C2 (ru) 2018-04-17
CA2875786A1 (en) 2013-12-12
PH12018501293A1 (en) 2020-01-27
BR112014030682A2 (pt) 2017-06-27
US20180371420A1 (en) 2018-12-27
PH12018501294A1 (en) 2020-01-27
KR102114209B1 (ko) 2020-05-25
AU2013271581B2 (en) 2018-08-09
JP2015519907A (ja) 2015-07-16
EP3450542B1 (en) 2021-09-01
JP6469003B2 (ja) 2019-02-13
RU2018108851A (ru) 2019-02-26
US10208288B2 (en) 2019-02-19
EP2859091B1 (en) 2018-08-29
IN2014DN10021A (es) 2015-08-14
ZA201802252B (en) 2020-01-29
AR091388A1 (es) 2015-02-04
JP2019050810A (ja) 2019-04-04
KR102285014B1 (ko) 2021-08-03
RU2018108847A (ru) 2019-02-26
KR20210096323A (ko) 2021-08-04
CN104334719A (zh) 2015-02-04
RU2014153529A (ru) 2016-08-10
CN108034633A (zh) 2018-05-15
KR102468315B1 (ko) 2022-11-16
EP2859091A4 (en) 2016-04-06
KR20150030694A (ko) 2015-03-20
MX358590B (es) 2018-08-24
HK1209160A1 (en) 2016-03-24
US20190010465A1 (en) 2019-01-10
RU2018108847A3 (es) 2019-02-26
CN108034633B (zh) 2022-08-02
US10066210B2 (en) 2018-09-04
PL2859091T3 (pl) 2019-01-31
JP6694037B2 (ja) 2020-05-13
US20170044499A1 (en) 2017-02-16
ES2690118T3 (es) 2018-11-19
EP3450543A1 (en) 2019-03-06
ZA201802253B (en) 2020-01-29
EP3957714A1 (en) 2022-02-23
US20130330823A1 (en) 2013-12-12
CN108103006A (zh) 2018-06-01
PH12018501295A1 (en) 2020-01-27
SG11201408124PA (en) 2015-01-29
RU2018108851A3 (es) 2019-02-26
EP3450544A1 (en) 2019-03-06
EP3450542A1 (en) 2019-03-06
CN108103005A (zh) 2018-06-01
RU2018108850A3 (es) 2019-02-26

Similar Documents

Publication Publication Date Title
US10519424B2 (en) Methods of enhancing expression of somatostatin in pancreatic endocrine cells
JP6450674B2 (ja) ヒト胚性幹細胞の膵臓の内胚葉への分化
JP2015503331A (ja) 単一ホルモンのインスリン陽性細胞へのヒト胚性幹細胞の分化