EP3580539A1 - Integrierte digitale kraftsensoren und zugehörige verfahren zur herstellung - Google Patents

Integrierte digitale kraftsensoren und zugehörige verfahren zur herstellung

Info

Publication number
EP3580539A1
EP3580539A1 EP18751209.0A EP18751209A EP3580539A1 EP 3580539 A1 EP3580539 A1 EP 3580539A1 EP 18751209 A EP18751209 A EP 18751209A EP 3580539 A1 EP3580539 A1 EP 3580539A1
Authority
EP
European Patent Office
Prior art keywords
sensor die
mems
force
sensing element
force sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18751209.0A
Other languages
English (en)
French (fr)
Other versions
EP3580539A4 (de
Inventor
Ali FOUGHI
Ryan DIESTELHORST
Dan Benjamin
Julius Minglin TSAI
Michael Dueweke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nextinput Inc
Original Assignee
Nextinput Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nextinput Inc filed Critical Nextinput Inc
Publication of EP3580539A1 publication Critical patent/EP3580539A1/de
Publication of EP3580539A4 publication Critical patent/EP3580539A4/de
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00222Integrating an electronic processing unit with a micromechanical structure
    • B81C1/00246Monolithic integration, i.e. micromechanical structure and electronic processing unit are integrated on the same substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • G01L1/2293Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges of the semi-conductor type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/08Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices, i.e. electric circuits therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N39/00Integrated devices, or assemblies of multiple devices, comprising at least one piezoelectric, electrostrictive or magnetostrictive element covered by groups H10N30/00 – H10N35/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0127Diaphragms, i.e. structures separating two media that can control the passage from one medium to another; Membranes, i.e. diaphragms with filtering function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0315Cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/01Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS
    • B81B2207/015Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS the micromechanical device and the control or processing electronics being integrated on the same substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/07Interconnects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/013Etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0109Bonding an individual cap on the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/07Integrating an electronic processing unit with a micromechanical structure
    • B81C2203/0707Monolithic integration, i.e. the electronic processing unit is formed on or in the same substrate as the micromechanical structure
    • B81C2203/0714Forming the micromechanical structure with a CMOS process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/07Integrating an electronic processing unit with a micromechanical structure
    • B81C2203/0707Monolithic integration, i.e. the electronic processing unit is formed on or in the same substrate as the micromechanical structure
    • B81C2203/0728Pre-CMOS, i.e. forming the micromechanical structure before the CMOS circuit

Definitions

  • MEMS microelectromechanical
  • the MEMS force sensing dies and/or MEMS switches can be used for converting force into a digital output code.
  • a MEMS force sensor including a plurality of sensing elements and digital circuitry positioned on a surface of the force sensor die is described herein.
  • Each sensing element can include a flexure and a sensing element (e.g., piezoresistive strain gauge).
  • a sensing element e.g., piezoresistive strain gauge
  • four sensing elements can be employed, although additional or fewer sensing elements can also be used.
  • CMOS complementary metal-oxide-semiconductor
  • the MEMS force sensors described herein can be manufactured by bonding a cap wafer to a base wafer (e.g., a force sensor die) that has both the sensing element(s) (e.g., piezoresistive strain gauge(s)) and CMOS power, processing, and communication circuitry.
  • Sensing elements can be formed by etching flexures on the top side of the base wafer.
  • the bond between the base and cap wafers can include a gap produced by protrusions sculptured either on the top of the base wafer and/or on the bottom of the cap wafer. The gap can be designed to limit the displacement of the cap wafer in order to provide force overload protection for the MEMS force sensors.
  • the protrusions and outer wall of the base wafer deflect with applied force, straining the sensing element(s) and producing an analog output signal.
  • the analog output signal can be digitized and stored in on-chip registers of the CMOS circuitry until requested by a host device.
  • a wafer level MEMS mechanical switch including a base and a cap is also described herein.
  • the mechanical switch employs at least one sensing element.
  • the at least one sensing element is electrically connected to integrated CMOS circuitry on the same substrate.
  • the CMOS circuitry can amplify, digitize, and calibrate force values, which are compared to programmable force thresholds to modulate digital outputs.
  • a MEMS switch including a plurality of sensing elements positioned on the surface of the switch die is also described herein.
  • four sensing elements can be employed, although additional or fewer sensing elements may also be used.
  • the sensing elements can have their analog outputs digitized and compared against multiple programmed force levels, outputting a digital code to indicate the current state of the switch.
  • the MEMS switch can be made compact as to only require a small number of input/output ("I/O") terminals.
  • the outputs of the device can be configured to indicate 2 N input force levels, where N is the number of output terminals, which can be programmed by the user.
  • the device's response can optionally be filtered such that only dynamic forces are measured.
  • the resulting device is a fully-configurable, multi-level, dynamic digital switch.
  • the MEMS force sensor can include a sensor die configured to receive an applied force.
  • the sensor die has a top surface and a bottom surface opposite thereto.
  • the MEMS force sensor can also include a sensing element and digital circuitry arranged on the bottom surface of the sensor die.
  • the sensing element can be configured to convert a strain on the bottom surface of the sensor die to an analog electrical signal that is proportional to the strain.
  • the digital circuitry can be configured to convert the analog electrical signal to a digital electrical output signal.
  • the sensing element can be a piezoresistive, piezoelectric, or capacitive transducer.
  • the MEMS force sensor can further include a plurality of electrical terminals arranged on the bottom surface of the sensor die.
  • the digital electrical output signal produced by the digital circuitry can be routed to the electrical terminals.
  • the electrical terminals can be solder bumps or copper pillars.
  • the MEMS force sensor can further include a cap attached to the sensor die.
  • the cap can be bonded to the sensor die at a surface defined by an outer wall of the sensor die.
  • a sealed cavity can be formed between the cap and the sensor die.
  • the sensor die can include a flexure formed therein.
  • the flexure can convert the applied force into the strain on the bottom surface of the sensor die.
  • the flexure can be formed in the sensor die by etching.
  • the sensing element is arranged on the flexure.
  • a gap can be arranged between the sensor die and the cap.
  • the gap can be configured to narrow with application of the applied force such that the flexure is unable to deform beyond its breaking point.
  • the digital circuitry can be further configured to provide a digital output code based on a plurality of predetermined force thresholds.
  • the method can include forming at least one sensing element on a surface of a force sensor die, and forming complementary metal-oxide-semiconductor ("CMOS") circuitry on the surface of the force sensor die.
  • CMOS complementary metal-oxide-semiconductor
  • the at least one sensing element can be configured with a characteristic that is compatible with a downstream CMOS process.
  • the at least one sensing element can be formed before forming the CMOS circuitry.
  • the characteristic can be a thermal anneal profile of the at least one sensing element.
  • the method can further include etching an opposite surface of the force sensor die to form an overload gap, etching the opposite surface of the force sensor die to form a trench, and bonding of a cap wafer to the opposite surface of the force sensor die to seal a cavity between the cap wafer and the force sensor die.
  • the cavity can be defined by the trench.
  • the method can further include forming of a plurality of electrical terminals on the opposite surface of the force sensor die.
  • the force sensor die can be made of p-type or n-type silicon.
  • the at least one sensing element can be formed using an implant or deposition process.
  • the CMOS circuitry can be configured to amplify and digitize an analog electrical output signal produced by the at least one sensing element.
  • the trench can be configured to increase strain on the at least one sensing element when a force is applied to the MEMS force sensor.
  • a depth of the overload gap can be configured to provide overload protection for the MEMS force sensor.
  • the electrical terminals can be solder bumps or copper pillars.
  • the MEMS switch can include a sensor die configured to receive an applied force.
  • the sensor die has a top surface and a bottom surface opposite thereto.
  • the MEMS switch can also include a sensing element and digital circuitry arranged on the bottom surface of the sensor die.
  • the sensing element can be configured to convert a strain on the bottom surface of the sensor die to an analog electrical signal that is proportional to the strain.
  • the digital circuitry can be configured to convert the analog electrical signal to a digital signal, and provide a digital output code based on a plurality of predetermined force thresholds.
  • the digital circuitry can be further configured to compare the digital signal to the predetermined force thresholds.
  • the predetermined force thresholds are relative to a baseline.
  • the digital circuitry can be further configured to update the baseline at a predetermined frequency.
  • the baseline can be updated by comparing the digital signal to an auto-calibration threshold.
  • Figure 1 is an isometric view of the top of an example MEMS force sensor according to implementations described herein.
  • Figure 2 is a top view of the MEMS force sensor of Figure 1.
  • Figure 3 is a cross-sectional view of the MEMS force sensor of Figure 1.
  • Figure 4 is an isometric view of the bottom of the MEMS force sensor of Figure 1.
  • Figure 5 is a cross-sectional view of an example base wafer of an integrated p-type MEMS-CMOS force sensor using a piezoresistive sensing element (not to scale) according to implementations described herein.
  • Figure 6 is a cross-sectional view of an example base wafer of an integrated n-type MEMS-CMOS force sensor using a piezoresistive sensing element (not to scale) according to implementations described herein.
  • Figure 7 is a cross-sectional view of an example base wafer of an integrated p-type MEMS-CMOS force sensor using a polysilicon sensing element (not to scale) according to
  • Figure 8 is a cross-sectional view of an example base wafer of an integrated p-type MEMS-CMOS force sensor using a piezoelectric sensing element (not to scale) according to implementations described herein.
  • Figure 9 is an isometric view of the top of an example MEMS switch according to implementations described herein.
  • Figure 10 is an isometric view of the bottom of the MEMS switch of Figure 9.
  • Figure 11 is an example truth table describing the outputs of a two-bit digital output.
  • Figure 12 depicts a flow chart describing an example baselining process.
  • Ranges can be expressed herein as from “about” one particular value, and/or to "about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent "about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
  • the force sensor 10 for measuring a force applied to at least a portion thereof is described herein.
  • the force sensor 10 includes a base 11 (also sometimes referred to as a "sensor die” or “force sensor die”) and a cap 12.
  • the base 11 and the cap 12 can be bonded at one or more points along the surface formed by an outer wall 13 of the base 11.
  • the base 11 and the cap 12 can be bonded at a peripheral region of the MEMS force sensor 10. It should be understood that the peripheral region of the MEMS force sensor 10 is spaced apart from the center thereof, i.e., the peripheral region is arranged near the outer edge of the MEMS force sensor 10.
  • Example MEMS force sensors where a cap and sensor die are bonded in peripheral region of the MEMS force sensor are described in U.S. Patent No. 9,487,388, issued November 8, 2016 and entitled “Ruggedized MEMS Force Die;” U.S. Patent No. 9,493,342, issued November 15, 2016 and entitled “Wafer Level MEMS Force Dies;” U.S. Patent Application Publication No. 2016/0332866 to Brosh et al., filed January 13, 2015 and entitled “Miniaturized and ruggedized wafer level mems force sensors;” and U.S. Patent Application Publication No.
  • the bonded area(s) can therefore be arranged in proximity to the outer edge of the MEMS force sensor 10 as opposed to in proximity to the central region thereof. This allows the bonded area(s) to take up a large percentage of the surface area between the cap 12 and the base 11, which results in a MEMS force sensor with improved strength and robustness.
  • the cap 12 can optionally be made of glass (e.g., borosilicate glass) or silicon.
  • the base 11 can optionally be made of silicon.
  • the base 11 (and its components such as, for example, the boss, the outer wall, the flexure(s), etc.) is a single continuous piece of material, i.e., the base 11 is monolithic. It should be understood that this disclosure contemplates that the cap 12 and/or the base 11 can be made from materials other than those provided as examples.
  • This disclosure contemplates that the cap 12 and the base 11 can be bonded using techniques known in the art including, but not limited to, silicon fusion bonding, anodic bonding, glass frit, thermo-compression, and eutectic bonding.
  • the internal surfaces between the base 11 and the cap 12 form a sealed cavity 14.
  • the sealed cavity 14 can be formed by etching a trench (e.g., as described below with regard to Figs. 5-8) from the base 11 and then sealing a volume between the bonded base 11 and cap 12. For example, the volume is sealed between the base 11 and the cap 12 when adhered together, which results in formation of the sealed cavity 14.
  • the trench can be etched by removing material from the base 11 (e.g., the deep etching process described herein). Additionally, the trench defines the outer wall 13 and at least one flexure 16. In Figs. 1-3, the trench is continuous and has a substantially square shape.
  • the trench can have other shapes, sizes, and/or patterns than the trench shown in Figs. 1-3, which is only provided as an example.
  • the trench can form a plurality of outer walls and/or a plurality of flexures.
  • Example MEMS force sensors having a cavity (e.g., trench) that defines a flexible sensing element (e.g., flexure) are described in U.S. Patent No. 9,487,388, issued November 8, 2016 and entitled “Ruggedized MEMS Force Die;" U.S. Patent No. 9,493,342, issued November 15, 2016 and entitled “Wafer Level MEMS Force Dies;" U.S. Patent Application Publication No.
  • the sealed cavity 14 can be sealed between the cap 12 and the base 11 when the cap 12 and the base 11 are bonded together.
  • the MEMS force sensor 10 has a sealed cavity 14 that defines a volume entirely enclosed by the cap 12 and the base 11. The sealed cavity 14 is sealed from the external environment.
  • the base 11 has a top surface 18a and a bottom surface 18b.
  • the top and bottom surfaces 18a, 18b are arranged opposite to each other.
  • the trench that defines the outer wall 13 and flexure 16 is etched from the top surface 18a of the base 11.
  • a contact surface 15 is arranged along a surface of the cap 12 (e.g., along the top surface thereof) for receiving an applied force "F.”
  • the force "F” is transmitted from the cap 12 through the outer wall 13 to at least one flexure 16.
  • the MEMS force sensor 10 can include an air gap 17 (also sometimes referred to as a "gap" or “overload gap”) between a portion of the base 11 and cap 12.
  • the air gap 17 can be within the sealed cavity 14.
  • the air gap 17 can be formed by removing material from the base 11 (e.g., the shallow etching process described herein). Alternatively, the air gap 17 can be formed by etching a portion of the cap 12. Alternatively, the air gap 17 can be formed by etching a portion of the base 11 and a portion of the cap 12. The size (e.g., thickness or depth) of the air gap 17 can be determined by the maximum deflection of the at least one flexure 16, such that the air gap 17 between the base 11 and the cap 12 will close and mechanically stop further deflection before the at least one flexure 16 is broken. The air gap 17 provides an overload stop by limiting the amount by which the at least one flexure 16 can deflect such that the flexure does not mechanically fail due to the application of excessive force.
  • Example MEMS force sensors designed to provide overload protection are described in U.S. Patent No. 9,487,388, issued November 8, 2016 and entitled “Ruggedized MEMS Force Die;” U.S. Patent No. 9,493,342, issued November 15, 2016 and entitled “Wafer Level MEMS Force Dies;” U.S. Patent Application Publication No. 2016/0332866 to Brosh et al., filed January 13, 2015 and entitled
  • the MEMS force sensor 10 includes at least one sensing element 22 disposed on the bottom surface 18b of the base 11.
  • a plurality of sensing elements 22 can be disposed on the bottom surface 18b of the base 11.
  • the sensing element 22 can change an electrical characteristic (e.g., resistance, capacitance, charge, etc.) in response to deflection of the at least one flexure 16. The change in electrical characteristic can be measured as the analog electrical signal as described herein.
  • the sensing element 22 can optionally be a piezoresistive transducer.
  • a piezoresistive transducer For example, as strain is induced in the at least one flexure 16 proportional to the force "F" applied to the contact surface 15, a localized strain is produced on the piezoresistive transducer such that the piezoresistive transducer experiences compression or tension, depending on its specific orientation. As the piezoresistive transducer compresses and tenses, its resistivity changes in opposite fashion.
  • a Wheatstone bridge circuit including a plurality (e.g., four) piezoresistive transducers (e.g., two of each orientation relative to strain) becomes unbalanced and produces a differential voltage (also sometimes referred to herein as an "analog electrical signal") across the positive signal terminal and the negative signal terminal.
  • This differential voltage is directly proportional to the applied force "F" on the cap 12 of the MEMS force sensor 10.
  • this differential voltage can be received at and processed by digital circuitry (e.g., CMOS circuitry 23), which is also disposed on the base 11.
  • the digital circuitry can be configured to, among other functions, convert the analog electrical signal to a digital electrical output signal.
  • the at least one sensing element 22 can be any sensor element configured to change at least one electrical characteristic (e.g., resistance, charge, capacitance, etc.) based on an amount or magnitude of an applied force and can output a signal proportional to the amount or magnitude of the applied force.
  • Other types of sensing elements include, but not limited to, piezoelectric or capacitive sensors.
  • analog electrical signals produced by the at least one sensing element 22 in a Wheatstone bridge configuration can optionally be processed by digital circuitry that resides on the same surface as the at least one sensing element 22.
  • the digital circuitry is CMOS circuitry 23.
  • the CMOS circuitry 23 can therefore be disposed on the bottom surface 18b of the base 11 as shown in Fig. 4.
  • both the sensing element 22 and the CMOS circuitry 23 can be provided on the same monolithic substrate (e.g., the base 11, which can optionally be made of silicon). This is as opposed to routing the analog electrical signals produced by the at least one sensing element 22 to digital circuitry external to the MEMS force sensor 10 itself. It should be understood that routing the analog electrical signal to circuitry external to the MEMS force sensor 10 may result in loss of signal integrity due to electrical noise.
  • the CMOS circuitry 23 can optionally include one or more of a differential amplifier or buffer, an analog-to-digital converter, a clock generator, non-volatile memory, and a communication bus. Additionally, the CMOS circuitry 23 can optionally include programmable memory to store trimming values that can be set during a factory calibration. The trimming values can be used to ensure that the MEMS force sensor 10 provides an accurate absolute force output within a specified margin of error. Furthermore, the programmable memory can optionally store a device identifier ("ID") for traceability.
  • ID device identifier
  • CMOS circuitry is known in the art and is therefore not described in further detail below. This disclosure contemplates that the CMOS circuitry 23 can include circuits other than those provided as examples.
  • CMOS circuitry 23 can optionally include components to improve accuracy, such as an internal voltage regulator or a temperature sensor.
  • the differential analog output of the Wheatstone bridge can be amplified, digitized, and stored in a communication buffer until it is requested by a host device.
  • the MEMS force sensor 10 can also include at least one electrical terminal 19 as shown in Figs. 3 and 4.
  • the electrical terminals 19 can be power and/or communication interfaces used to connect (e.g., electrically, communicatively) to a host device.
  • the electrical terminals 19 can be solder bumps or metal (e.g., copper) pillars to allow for wafer-level packaging and flip-chip assembly.
  • the electrical terminals 19 can be any component capable of electrically connecting the MEMS force sensor 10 to a host device. Additionally, it should be understood that the number and/or arrangement of electrical terminals 19 is provided only as examples in Figs. 3 and 4.
  • the process of forming the at least one sensing element 22 and the CMOS circuitry 23 on the same surface (e.g., the bottom surface 18b) of the base 11 can be generalized as a three-stage process.
  • the first stage is the creation of the at least one sensing element 22 by way of either diffusion, deposition, or implant patterned with a lithographic exposure process.
  • the second stage is the creation of the CMOS circuitry 23 through standard CMOS process procedures.
  • the third stage is the creation of base 11 elements, which includes the outer wall 13, sealed cavity 14, at least one flexure 16, and air gap 17. It is contemplated that these stages can be performed in any order that the
  • the first stage includes the steps to form the at least one sensing element (e.g., sensing element 22 shown in Fig. 4).
  • sensing element 22 shown in Fig. 4
  • common CMOS processes begin with a p-type silicon wafer 101.
  • This disclosure contemplates that a p-type silicon wafer can be used to manufacture the MEMS force sensor described above with regard to Figs. 1-4. It should be
  • the sensing element e.g., at least one sensing element 22 shown in Fig. 4
  • the sensing element can be implemented as either an n-type diffusion, deposition, or implant 102 as shown in Fig. 5, or a p- type diffusion, deposition, or implant 202 fully contained in an n-type well 204 as shown in Fig. 6.
  • the terminals of the sensing element include highly-doped n-type implants 103 that connect to the n-type diffusion, deposition, or implant 102.
  • the terminals of the sensing element include highly-doped p-type implants 203 that connect to the p-type diffusion, deposition, or implant 202, while the n-type well 204 receives a voltage bias through a highly-doped n- type implant 105.
  • the sensing element can be implemented as either an n-type or p-type poly-silicon implant 302 as shown in Fig. 7, which is available in the common CMOS process as gate or capacitor layers through n-type or p-type implant.
  • the terminals of the sensing element include low resistance silicided poly-silicon 303 that connect to the implant 302.
  • the sensing element can be implemented with piezoelectric layer 402 in combination with top electrode 401 and bottom electrode 403 as shown in Fig. 8.
  • the electrical connections between the sensing element and digital circuitry e.g., CMOS circuitry 23 as shown in Fig. 4
  • the inter-connection layers 112 and vias 113 can optionally be made of metal, for example.
  • the second stage includes the lithographic, implant, anneal, deposition, and etching processes to form the digital circuitry (e.g., CMOS circuitry 23 as shown in Fig. 4). These processes are widely utilized in industry and described in the pertinent art. As such, these processes are not described in detail herein.
  • the second stage can include creation of an MOS device 110 including n- type source and drain implants 108.
  • the second stage can also include creation of a PMOS device 111 including p-type source and drain implants 109.
  • the p-type source and drain implants 109 are provided in an n-type well, which receives a voltage bias through a highly-doped n-type implant 105.
  • each of the NMOS device 110 and PMOS device 111 can include a metal-oxide gate stack 107.
  • the second stage can include creation of a plurality of NMOS and PMOS devices.
  • the NMOS and PMOS devices can form various components of the digital circuitry (e.g., CMOS circuitry 23 shown in Fig. 4).
  • the digital circuity can optionally include other components, which are not depicted in Figs. 5-8, including, but not limited to, bipolar transistors; metal-insulator-metal (“MIM”) and metal-oxide-semiconductor (“MOS”) capacitors; diffused, implanted, and polysilicon resistors; and/or diodes.
  • MIM metal-insulator-metal
  • MOS metal-oxide-semiconductor
  • the sensing element and digital circuitry can be disposed on the same monolithic substrate (e.g., the base 11 shown in Fig. 4).
  • This disclosure therefore contemplates that each of the processing steps (i.e., first stage processing steps) utilized in the creation of the sensing element (e.g., at least one sensing element 22 shown in Fig. 4) is compatible with the downstream processing steps (i.e., second stage processing steps) utilized in the creation of the digital circuitry (e.g., CMOS circuitry 23 shown in Fig. 4) in implementations where the sensing element(s) are created before the digital circuitry.
  • the n-type diffusion, deposition, or implant 102 e.g., as shown in Fig. 5
  • the p-type diffusion, deposition, or implant 202 e.g., as shown in Fig. 6
  • the anneal processes utilized in the creation of the digital circuitry e.g., CMOS circuitry 23 shown in Fig. 4
  • Similar design considerations can be made for each of the features described above and related to the sensing element.
  • Alternative processes can include formation of the terminals for the sensing element (e.g., implants 103 shown in Fig. 5 or implants 105, 203 shown in Fig. 6) that are performed at any point during or after formation of the digital circuitry (e.g., CMOS circuitry 23 shown in Fig. 4), which would impose different requirements on the anneal steps.
  • the third stage includes the MEMS micro-machining steps that are performed on the p- type silicon wafer 101.
  • the p-type silicon wafer 101 of Figs. 5-8 can correspond to the base 11 of the MEMS force sensor 10 shown in Figs. 1-4.
  • This disclosure contemplates that the third stage steps can be performed before or after performance of the first and second stages, depending on the capabilities of the manufacturing processes.
  • the base 11 can be etched to form the air gap 17, the outer wall 13, and the at least one flexure 16.
  • a shallow etch can form the air gap 17.
  • a deep etch can form the outer wall 13 and the at least one flexure 16. The deep etch is shown by reference number 106 in Figs. 5-8.
  • the sensing element is formed on a surface of the at least one flexure.
  • the base e.g., base 11 shown in Figs. 1-4
  • the cap e.g., cap 12 shown in Figs. 1-4
  • a sealed cavity e.g., sealed cavity 14 shown in Figs. 1-3
  • Electrical terminals e.g., electrical terminals 19 as shown in Figs. 3-4) can be added after all wafer processing is complete.
  • the MEMS switch device 50 can include a base 51 having a top surface 58a and a bottom surface 58b.
  • the MEMS switch device 50 can also include a cap 52 bonded to the base 51, which forms a sealed cavity 54 therebetween.
  • at least one sensing element 62 and digital circuitry 63 e.g., CMOS circuitry
  • Electrical terminals 59 are also arranged on the bottom surface 58b of the base 51.
  • the electrical terminals 59 can be used to electrically and/or communicatively connect the MEMS switch device to a host device.
  • the electrical terminals 59 can facilitate wafer-level packaging and flip-chip assembly.
  • a contact surface 55 on which force is applied is shown in Fig. 9.
  • force is applied, it is transferred from the cap 52 to the base 51, where strain is induced in the bottom surface 58b thereof.
  • An electrical characteristic of the sensing element 62 changes in response to the localized strain. This change is captured by an analog electrical signal produced by the sensing element 62.
  • the analog electrical signal is transferred to the digital circuitry 63 for further processing.
  • the MEMS switch device 50 is similar to the MEMS force sensor described above with regard to Figs. 1-8. Accordingly, various features of the MEMS switch device 50 are not described in further detail below.
  • the MEMS switch device 50 can optionally include a plurality of sensing elements 62 configured as a Wheatstone bridge.
  • the analog electrical signals produced by the sensing elements 62 in a Wheatstone bridge configuration can optionally be processed by
  • CMOS complementary metal-oxide-semiconductor
  • the CMOS circuitry can include a differential amplifier or buffer, an analog-to-digital converter, a clock generator, non-volatile memory, and/or one or more digital outputs.
  • the one or more digital outputs can be configured to change state when one or more force thresholds are reached. In this way, the MEMS switch device 50 can be used as a single-level or multi-level binary switch.
  • Fig. 11 is a truth table describing the outputs (Di, D 2 ) of a two-bit digital output (e.g., a digital output code).
  • the three force thresholds are fi, f 2 , and f 3 .
  • the digital outputs can be configured to indicate 2 N input force levels, where N is the number of output terminals.
  • the digital outputs/input force levels can be programmed by the user.
  • the CMOS circuitry can optionally include programmable memory to store trimming values that can be set during a factory calibration. The trimming values can be used to ensure that the MEMS switch device 50 provides accurate force level detection within a specified margin of error.
  • the programmable memory can optionally store a device ID for traceability.
  • the CMOS circuitry can include circuits other than those provided as examples. For example, this disclosure contemplates CMOS circuitry optionally including components to improve accuracy, such as an internal voltage regulator or a temperature sensor.
  • the MEMS switch device 50 can be configured to compare a dynamic force to the programmed force thresholds, filtering any low frequency response caused by various conditions including mechanical preload and temperature variation. This can be achieved by performing a low-frequency baseline operation that compares the current force input to an auto-calibration threshold.
  • Fig. 12 is a flow chart illustrating example operations for the baselining process. At 1202, the MEMS switch device enters an active state, for example, in response to an applied force. At 1204, the baseline is set.
  • the current force input is set as the new baseline until the next operation. In other words, operations return to 1204.
  • the baseline remains unchanged as shown at 1208.
  • the auto-calibration threshold and frequency of the operation can be programmable in a manner similar to the switching force thresholds, for example, to an auto-calibration threshold of 0.5 N and a baselining frequency of 10 Hz. It should be understood that the values for the auto- calibration threshold and baselining frequency are provided only as examples and can have other values.
EP18751209.0A 2017-02-09 2018-02-09 Integrierte digitale kraftsensoren und zugehörige verfahren zur herstellung Pending EP3580539A4 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762456699P 2017-02-09 2017-02-09
US201762469094P 2017-03-09 2017-03-09
PCT/US2018/017564 WO2018148503A1 (en) 2017-02-09 2018-02-09 Integrated digital force sensors and related methods of manufacture

Publications (2)

Publication Number Publication Date
EP3580539A1 true EP3580539A1 (de) 2019-12-18
EP3580539A4 EP3580539A4 (de) 2020-11-25

Family

ID=63107596

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18751209.0A Pending EP3580539A4 (de) 2017-02-09 2018-02-09 Integrierte digitale kraftsensoren und zugehörige verfahren zur herstellung

Country Status (4)

Country Link
US (2) US11255737B2 (de)
EP (1) EP3580539A4 (de)
CN (2) CN110494724B (de)
WO (1) WO2018148503A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10198097B2 (en) 2011-04-26 2019-02-05 Sentons Inc. Detecting touch input force
US11327599B2 (en) 2011-04-26 2022-05-10 Sentons Inc. Identifying a contact type
US9639213B2 (en) 2011-04-26 2017-05-02 Sentons Inc. Using multiple signals to detect touch input
US9449476B2 (en) 2011-11-18 2016-09-20 Sentons Inc. Localized haptic feedback
EP2780783B1 (de) 2011-11-18 2022-12-28 Sentons Inc. Erkennung eines berührungseingabedrucks
US11262253B2 (en) 2017-08-14 2022-03-01 Sentons Inc. Touch input detection using a piezoresistive sensor
US10908741B2 (en) 2016-11-10 2021-02-02 Sentons Inc. Touch input detection along device sidewall
US11255737B2 (en) * 2017-02-09 2022-02-22 Nextinput, Inc. Integrated digital force sensors and related methods of manufacture
US11243125B2 (en) 2017-02-09 2022-02-08 Nextinput, Inc. Integrated piezoresistive and piezoelectric fusion force sensor
US10585522B2 (en) 2017-02-27 2020-03-10 Sentons Inc. Detection of non-touch inputs using a signature
EP3655740A4 (de) 2017-07-19 2021-07-14 Nextinput, Inc. Spannungstransferstapelung in einem mems-kraftsensor
US11423686B2 (en) 2017-07-25 2022-08-23 Qorvo Us, Inc. Integrated fingerprint and force sensor
US11243126B2 (en) 2017-07-27 2022-02-08 Nextinput, Inc. Wafer bonded piezoresistive and piezoelectric force sensor and related methods of manufacture
US11580829B2 (en) 2017-08-14 2023-02-14 Sentons Inc. Dynamic feedback for haptics
US11914777B2 (en) 2017-09-07 2024-02-27 Nextinput, Inc. Integrated systems with force or strain sensing and haptic feedback
US11579028B2 (en) 2017-10-17 2023-02-14 Nextinput, Inc. Temperature coefficient of offset compensation for force sensor and strain gauge
WO2019099821A1 (en) 2017-11-16 2019-05-23 Nextinput, Inc. Force attenuator for force sensor
US11662258B2 (en) * 2019-05-29 2023-05-30 Wiliot, LTD. Force sensor integrated on substrate
US11874183B2 (en) 2019-05-30 2024-01-16 Nextinput, Inc. Systems and methods for continuous mode force testing
DE102020202277A1 (de) 2020-02-21 2021-08-26 Robert Bosch Gesellschaft mit beschränkter Haftung Mikromechanisches Bauteil für einen Stresssensor und Herstellungsverfahren für ein mikromechanisches Bauteil für einen Stresssensor

Family Cites Families (433)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817421B2 (ja) 1979-02-02 1983-04-07 日産自動車株式会社 半導体圧力センサ
FI69211C (fi) 1984-02-21 1985-12-10 Vaisala Oy Kapacitiv styckgivare
US4658651A (en) 1985-05-13 1987-04-21 Transamerica Delaval Inc. Wheatstone bridge-type transducers with reduced thermal shift
US4849730A (en) 1986-02-14 1989-07-18 Ricoh Company, Ltd. Force detecting device
US4842685A (en) 1986-04-22 1989-06-27 Motorola, Inc. Method for forming a cast membrane protected pressure sensor
US4814856A (en) 1986-05-07 1989-03-21 Kulite Semiconductor Products, Inc. Integral transducer structures employing high conductivity surface features
US4914624A (en) 1988-05-06 1990-04-03 Dunthorn David I Virtual button for touch screen
US5320705A (en) 1988-06-08 1994-06-14 Nippondenso Co., Ltd. Method of manufacturing a semiconductor pressure sensor
US5095401A (en) 1989-01-13 1992-03-10 Kopin Corporation SOI diaphragm sensor
US4918262A (en) 1989-03-14 1990-04-17 Ibm Corporation Touch sensing display screen signal processing apparatus and method
US4933660A (en) 1989-10-27 1990-06-12 Elographics, Inc. Touch sensor with touch pressure capability
US4983786A (en) 1990-01-17 1991-01-08 The University Of British Columbia XY velocity controller
GB9008946D0 (en) 1990-04-20 1990-06-20 Crosfield Electronics Ltd Image processing apparatus
JPH05506717A (ja) 1990-05-07 1993-09-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 押圧力を検出するためのセンサを製作する方法と装置
US5166612A (en) * 1990-11-13 1992-11-24 Tektronix, Inc. Micromechanical sensor employing a squid to detect movement
US5159159A (en) 1990-12-07 1992-10-27 Asher David J Touch sensor and controller
DE59108490D1 (de) 1991-01-31 1997-02-27 Pfister Messtechnik Übertragungselement für Kraft- oder Momentmessvorrichtungen
US5969591A (en) 1991-03-28 1999-10-19 The Foxboro Company Single-sided differential pressure sensor
US5237879A (en) 1991-10-11 1993-08-24 At&T Bell Laboratories Apparatus for dynamically varying the resolution of a tactile sensor array
DE4137624A1 (de) 1991-11-15 1993-05-19 Bosch Gmbh Robert Silizium-chip zur verwendung in einem kraftsensor
US5333505A (en) 1992-01-13 1994-08-02 Mitsubishi Denki Kabushiki Kaisha Semiconductor pressure sensor for use at high temperature and pressure and method of manufacturing same
US6222525B1 (en) 1992-03-05 2001-04-24 Brad A. Armstrong Image controllers with sheet connected sensors
US5673066A (en) 1992-04-21 1997-09-30 Alps Electric Co., Ltd. Coordinate input device
US6028271A (en) 1992-06-08 2000-02-22 Synaptics, Inc. Object position detector with edge motion feature and gesture recognition
US5889236A (en) 1992-06-08 1999-03-30 Synaptics Incorporated Pressure sensitive scrollbar feature
US5543591A (en) 1992-06-08 1996-08-06 Synaptics, Incorporated Object position detector with edge motion feature and gesture recognition
US5880411A (en) 1992-06-08 1999-03-09 Synaptics, Incorporated Object position detector with edge motion feature and gesture recognition
KR940001227A (ko) 1992-06-15 1994-01-11 에프. 제이. 스미트 터치 스크린 디바이스
US5351550A (en) 1992-10-16 1994-10-04 Honeywell Inc. Pressure sensor adapted for use with a component carrier
US5565657A (en) 1993-11-01 1996-10-15 Xerox Corporation Multidimensional user interface input device
US5510812A (en) 1994-04-22 1996-04-23 Hasbro, Inc. Piezoresistive input device
US7138984B1 (en) 2001-06-05 2006-11-21 Idc, Llc Directly laminated touch sensitive screen
DE4416442A1 (de) 1994-05-11 1995-11-16 Hottinger Messtechnik Baldwin Verfahren und Vorrichtung zum Abgleich eines Meßkörpers eines Meßwertaufnehmers
WO1996008701A1 (en) 1994-09-12 1996-03-21 International Business Machines Corporation Electromechanical transducer
US5483994A (en) 1995-02-01 1996-01-16 Honeywell, Inc. Pressure transducer with media isolation and negative pressure measuring capability
JP3317084B2 (ja) 1995-03-31 2002-08-19 株式会社豊田中央研究所 力検知素子およびその製造方法
US7766383B2 (en) 1998-11-17 2010-08-03 Automotive Technologies International, Inc. Vehicular component adjustment system and method
US7973773B2 (en) 1995-06-29 2011-07-05 Pryor Timothy R Multipoint, virtual control, and force based touch screen applications
US5661245A (en) 1995-07-14 1997-08-26 Sensym, Incorporated Force sensor assembly with integrated rigid, movable interface for transferring force to a responsive medium
US6012336A (en) * 1995-09-06 2000-01-11 Sandia Corporation Capacitance pressure sensor
IL116536A0 (en) 1995-12-24 1996-03-31 Harunian Dan Direct integration of sensing mechanisms with single crystal based micro-electric-mechanics systems
US6351205B1 (en) 1996-07-05 2002-02-26 Brad A. Armstrong Variable-conductance sensor
US7629969B2 (en) 1996-08-12 2009-12-08 Tyco Electronics Corporation Acoustic condition sensor employing a plurality of mutually non-orthogonal waves
EP0929410B1 (de) 1996-10-03 2001-10-31 I.E.E. International Electronics & Engineering S.à.r.l. Verfahren und Vorrichtung zur Bestimmung von verschiedenen Parametern einer auf einen Sitz sitzenden Person
US5760313A (en) 1997-03-05 1998-06-02 Honeywell Inc. Force sensor with multiple piece actuation system
FR2762389B1 (fr) * 1997-04-17 1999-05-21 Commissariat Energie Atomique Microsysteme a membrane souple pour capteur de pression et procede de realisation
US6243075B1 (en) 1997-08-29 2001-06-05 Xerox Corporation Graspable device manipulation for controlling a computer display
US5994161A (en) 1997-09-03 1999-11-30 Motorola, Inc. Temperature coefficient of offset adjusted semiconductor device and method thereof
US9292111B2 (en) 1998-01-26 2016-03-22 Apple Inc. Gesturing with a multipoint sensing device
US6159166A (en) 1998-03-20 2000-12-12 Hypertension Diagnostics, Inc. Sensor and method for sensing arterial pulse pressure
CN1154038C (zh) 1998-04-24 2004-06-16 日本写真印刷株式会社 触摸面板装置
US6429846B2 (en) 1998-06-23 2002-08-06 Immersion Corporation Haptic feedback for touchpads and other touch controls
US5921896A (en) 1998-09-04 1999-07-13 Boland; Kevin O. Exercise device
EP1055121A1 (de) 1998-12-11 2000-11-29 Symyx Technologies, Inc. Vorrichtung mit einer sensorarray anordnung und geeignetes verfharen zur schnellen materialcharacterisierung
US6331161B1 (en) 1999-09-10 2001-12-18 Hypertension Diagnostics, Inc Method and apparatus for fabricating a pressure-wave sensor with a leveling support element
US6360598B1 (en) 1999-09-14 2002-03-26 K.K. Holding Ag Biomechanical measuring arrangement
US7138983B2 (en) 2000-01-31 2006-11-21 Canon Kabushiki Kaisha Method and apparatus for detecting and interpreting path of designated position
EP1266346B1 (de) 2000-03-23 2009-04-29 Cross Match Technologies, Inc. Piezoelektrisches biometrisches identifikationsgerät und dessen anwendung
US6313731B1 (en) 2000-04-20 2001-11-06 Telefonaktiebolaget L.M. Ericsson Pressure sensitive direction switches
WO2001082779A2 (en) 2000-04-28 2001-11-08 Armed L.L.C. Apparatus and method for mechanical imaging of breast
US6555235B1 (en) 2000-07-06 2003-04-29 3M Innovative Properties Co. Touch screen system
US6879318B1 (en) 2000-10-06 2005-04-12 Industrial Technology Research Institute Touch screen mounting assembly for LCD panel and method for fabrication
US7348964B1 (en) 2001-05-22 2008-03-25 Palm, Inc. Single-piece top surface display layer and integrated front cover for an electronic device
JP2002236542A (ja) 2001-02-09 2002-08-23 Sanyo Electric Co Ltd 信号検出装置
JP3798637B2 (ja) 2001-02-21 2006-07-19 インターナショナル・ビジネス・マシーンズ・コーポレーション タッチパネル式記入媒体装置、その制御方法、及びプログラム
US6569108B2 (en) 2001-03-28 2003-05-27 Profile, Llc Real time mechanical imaging of the prostate
US6822640B2 (en) 2001-04-10 2004-11-23 Hewlett-Packard Development Company, L.P. Illuminated touch pad
US20020149571A1 (en) 2001-04-13 2002-10-17 Roberts Jerry B. Method and apparatus for force-based touch input
US6801191B2 (en) 2001-04-27 2004-10-05 Matsushita Electric Industrial Co., Ltd. Input device and inputting method with input device
FI117488B (fi) 2001-05-16 2006-10-31 Myorigo Sarl Informaation selaus näytöllä
US6608618B2 (en) 2001-06-20 2003-08-19 Leapfrog Enterprises, Inc. Interactive apparatus using print media
US6753850B2 (en) 2001-07-24 2004-06-22 Cts Corporation Low profile cursor control device
KR100822185B1 (ko) 2001-10-10 2008-04-16 삼성에스디아이 주식회사 터치 패널
JP3798287B2 (ja) 2001-10-10 2006-07-19 Smk株式会社 タッチパネル入力装置
KR101289110B1 (ko) 2001-11-01 2013-08-07 임머숀 코퍼레이션 촉각을 제공하기 위한 방법 및 장치
US6995752B2 (en) 2001-11-08 2006-02-07 Koninklijke Philips Electronics N.V. Multi-point touch pad
FI115861B (fi) 2001-11-12 2005-07-29 Myorigo Oy Menetelmä ja laite palautteen generoimiseksi
US6915702B2 (en) 2001-11-22 2005-07-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Piezoresistive transducers
JP4109456B2 (ja) 2002-01-18 2008-07-02 独立行政法人産業技術総合研究所 低剛性力検出装置
US6888537B2 (en) 2002-02-13 2005-05-03 Siemens Technology-To-Business Center, Llc Configurable industrial input devices that use electrically conductive elastomer
GB2386707B (en) 2002-03-16 2005-11-23 Hewlett Packard Co Display and touch screen
TWI234115B (en) 2002-04-03 2005-06-11 Htc Corp Method and device of setting threshold pressure for touch panel
FI115258B (fi) 2002-04-23 2005-03-31 Myorigo Oy Menetelmä ja elektroninen laite graafisessa käyttöliittymässä navigoimiseksi
US6809280B2 (en) 2002-05-02 2004-10-26 3M Innovative Properties Company Pressure activated switch and touch panel
CA2391745C (en) 2002-06-25 2012-08-14 Albert Mark David Touch screen display using ultra-thin glass laminate
JP4115198B2 (ja) 2002-08-02 2008-07-09 株式会社日立製作所 タッチパネルを備えた表示装置
US6946742B2 (en) 2002-12-19 2005-09-20 Analog Devices, Inc. Packaged microchip with isolator having selected modulus of elasticity
WO2004040430A1 (ja) 2002-10-30 2004-05-13 Sony Corporation 入力装置およびその製造方法、入力装置を備えた携帯型電子機器
JP4028785B2 (ja) 2002-11-05 2007-12-26 株式会社タニタ 荷重検出ユニットおよびこれを利用した電子秤
US20070155589A1 (en) 2002-12-04 2007-07-05 Philip Feldman Method and Apparatus for Operatively Controlling a Virtual Reality Scenario with an Isometric Exercise System
US6931938B2 (en) 2002-12-16 2005-08-23 Jeffrey G. Knirck Measuring pressure exerted by a rigid surface
US7685538B2 (en) 2003-01-31 2010-03-23 Wacom Co., Ltd. Method of triggering functions in a computer application using a digitizer having a stylus and a digitizer system
WO2004077387A1 (en) 2003-02-27 2004-09-10 Bang & Olufsen A/S Metal structure with translucent region
AU2003901532A0 (en) 2003-04-04 2003-05-01 Evolution Broadcast Pty Limited Broadcast control
US7082835B2 (en) 2003-06-18 2006-08-01 Honeywell International Inc. Pressure sensor apparatus and method
JP2007500884A (ja) 2003-07-21 2007-01-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 携帯用装置、及びかかる携帯用装置のためのタッチディスプレイ
US7460109B2 (en) 2003-10-20 2008-12-02 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Navigation and fingerprint sensor
US7218313B2 (en) 2003-10-31 2007-05-15 Zeetoo, Inc. Human interface system
US6868731B1 (en) * 2003-11-20 2005-03-22 Honeywell International, Inc. Digital output MEMS pressure sensor and method
US8164573B2 (en) 2003-11-26 2012-04-24 Immersion Corporation Systems and methods for adaptive interpretation of input from a touch-sensitive input device
JP4164676B2 (ja) 2003-12-25 2008-10-15 株式会社デンソー 力学量センサ素子構造及びその製造方法
US7772657B2 (en) 2004-12-28 2010-08-10 Vladimir Vaganov Three-dimensional force input control device and fabrication
US7554167B2 (en) 2003-12-29 2009-06-30 Vladimir Vaganov Three-dimensional analog input control device
US7880247B2 (en) 2003-12-29 2011-02-01 Vladimir Vaganov Semiconductor input control device
US8350345B2 (en) 2003-12-29 2013-01-08 Vladimir Vaganov Three-dimensional input control device
US7367232B2 (en) 2004-01-24 2008-05-06 Vladimir Vaganov System and method for a three-axis MEMS accelerometer
US7343233B2 (en) 2004-03-26 2008-03-11 Byung Woo Min Method and system for preventing erroneous starting of a vehicle having a manual transmission
US7548758B2 (en) 2004-04-02 2009-06-16 Nortel Networks Limited System and method for peer-to-peer communication in cellular systems
FI116165B (fi) 2004-05-07 2005-09-30 Myorigo Oy Menetelmä ja järjestely käyttäjän syötteen uudelleen tulkitsemiseksi mobiililaitteessa
CN101268436A (zh) 2004-08-02 2008-09-17 皇家飞利浦电子股份有限公司 用于设置浮点值的触摸屏滑块
US20080094367A1 (en) 2004-08-02 2008-04-24 Koninklijke Philips Electronics, N.V. Pressure-Controlled Navigating in a Touch Screen
US8760408B2 (en) 2004-08-02 2014-06-24 Koninklijke Philips N.V. Touch screen with pressure-dependent visual feedback
US7728821B2 (en) 2004-08-06 2010-06-01 Touchtable, Inc. Touch detecting interactive display
US7449758B2 (en) 2004-08-17 2008-11-11 California Institute Of Technology Polymeric piezoresistive sensors
JP4351599B2 (ja) 2004-09-03 2009-10-28 パナソニック株式会社 入力装置
US7159467B2 (en) 2004-10-18 2007-01-09 Silverbrook Research Pty Ltd Pressure sensor with conductive ceramic membrane
US7324095B2 (en) 2004-11-01 2008-01-29 Hewlett-Packard Development Company, L.P. Pressure-sensitive input device for data processing systems
JP2006134184A (ja) 2004-11-08 2006-05-25 Honda Access Corp 遠隔制御スイッチ
US8109149B2 (en) 2004-11-17 2012-02-07 Lawrence Livermore National Security, Llc Contact stress sensor
US7273979B2 (en) 2004-12-15 2007-09-25 Edward Lee Christensen Wearable sensor matrix system for machine control
US7619616B2 (en) 2004-12-21 2009-11-17 Microsoft Corporation Pressure sensitive controls
JP5550211B2 (ja) 2005-03-04 2014-07-16 アップル インコーポレイテッド 多機能ハンドヘルド装置
EP1707931B1 (de) 2005-03-31 2013-03-27 STMicroelectronics Srl Analoge Dateneingabevorrichtung versehen mit einem mikroelektromechanischem Drucksensor
US20060244733A1 (en) 2005-04-28 2006-11-02 Geaghan Bernard O Touch sensitive device and method using pre-touch information
US7318349B2 (en) 2005-06-04 2008-01-15 Vladimir Vaganov Three-axis integrated MEMS accelerometer
JP2006345209A (ja) 2005-06-08 2006-12-21 Sony Corp 入力装置、情報処理装置、情報処理方法、及びプログラム
US7337085B2 (en) 2005-06-10 2008-02-26 Qsi Corporation Sensor baseline compensation in a force-based touch device
US20060284856A1 (en) 2005-06-10 2006-12-21 Soss David A Sensor signal conditioning in a force-based touch device
US7903090B2 (en) 2005-06-10 2011-03-08 Qsi Corporation Force-based input device
JP4203051B2 (ja) 2005-06-28 2008-12-24 本田技研工業株式会社 力覚センサ
US20070035525A1 (en) 2005-08-11 2007-02-15 Via Technologies, Inc. Integrated touch screen control system for automobiles
WO2007019600A1 (en) 2005-08-19 2007-02-22 Silverbrook Research Pty Ltd An electronic stylus with a force re-directing coupling
US7571647B2 (en) 2005-08-30 2009-08-11 Oki Semiconductor Co., Ltd. Package structure for an acceleration sensor
WO2007027610A2 (en) 2005-08-30 2007-03-08 Bruce Reiner Multi-functional navigational device and method
US7303935B2 (en) 2005-09-08 2007-12-04 Teledyne Licensing, Llc High temperature microelectromechanical (MEM) devices and fabrication method
US20070070046A1 (en) 2005-09-21 2007-03-29 Leonid Sheynblat Sensor-based touchscreen assembly, handheld portable electronic device having assembly, and method of determining touch location on a display panel
WO2007037926A2 (en) 2005-09-23 2007-04-05 Sharp Laboratories Of America, Inc. Mems pixel sensor
KR101226440B1 (ko) 2005-09-26 2013-01-28 삼성디스플레이 주식회사 표시패널, 이를 구비한 표시장치 및 표시장치의 터치 위치검출방법
US7649522B2 (en) 2005-10-11 2010-01-19 Fish & Richardson P.C. Human interface input acceleration system
US7280097B2 (en) 2005-10-11 2007-10-09 Zeetoo, Inc. Human interface input acceleration system
US20070085837A1 (en) 2005-10-17 2007-04-19 Eastman Kodak Company Touch input device with display front
KR101244300B1 (ko) 2005-10-31 2013-03-18 삼성전자주식회사 이동통신단말기에서 수서데이터를 인식하여 전송하기 위한장치 및 방법
US9001045B2 (en) 2005-11-08 2015-04-07 Nokia Corporation Cost efficient element for combined piezo sensor and actuator in robust and small touch screen realization and method for operation thereof
EP1788473A1 (de) 2005-11-18 2007-05-23 Siemens Aktiengesellschaft Eingabevorrichtung
US20070115265A1 (en) 2005-11-21 2007-05-24 Nokia Corporation Mobile device and method
CN1979371B (zh) 2005-12-10 2010-11-10 鸿富锦精密工业(深圳)有限公司 具有锁定功能的输入装置及其锁定方法
US20070137901A1 (en) 2005-12-16 2007-06-21 E-Lead Electronic Co., Ltd. Micro-keyboard simulator
US20070152959A1 (en) 2005-12-29 2007-07-05 Sap Ag Pressure-sensitive button
KR20080091073A (ko) 2006-01-05 2008-10-09 블라디미르 바가노프 삼차원 힘 입력 제어 장치 및 제조
JP4799237B2 (ja) 2006-03-27 2011-10-26 三洋電機株式会社 変位検出センサ、変位検出装置及び端末装置
US20070235231A1 (en) 2006-03-29 2007-10-11 Tekscan, Inc. Control circuit for sensor array and related methods
US8497757B2 (en) 2006-04-26 2013-07-30 Kulite Semiconductor Products, Inc. Method and apparatus for preventing catastrophic contact failure in ultra high temperature piezoresistive sensors and transducers
US7426873B1 (en) 2006-05-04 2008-09-23 Sandia Corporation Micro electro-mechanical system (MEMS) pressure sensor for footwear
EP2020025A4 (de) 2006-05-22 2011-08-24 Vladimir Vaganov Halbleiter-eingabesteuervorrichtung
WO2007139695A2 (en) 2006-05-24 2007-12-06 Vladimir Vaganov Force input control device and method of fabrication
US7508040B2 (en) 2006-06-05 2009-03-24 Hewlett-Packard Development Company, L.P. Micro electrical mechanical systems pressure sensor
JP5545281B2 (ja) 2006-06-13 2014-07-09 株式会社デンソー 力学量センサ
US8237537B2 (en) 2006-06-15 2012-08-07 Kulite Semiconductor Products, Inc. Corrosion-resistant high temperature pressure transducer employing a metal diaphragm
US8269725B2 (en) 2006-06-28 2012-09-18 Microsoft Corporation Input simulation system for touch based devices
FR2903207B1 (fr) 2006-06-28 2008-11-07 Jazzmutant Soc Par Actions Sim Capteur tactile multipoint a matrice active
US20080007532A1 (en) 2006-07-05 2008-01-10 E-Lead Electronic Co., Ltd. Touch-sensitive pad capable of detecting depressing pressure
US7969418B2 (en) 2006-11-30 2011-06-28 Cherif Atia Algreatly 3-D computer input device and method
US20080030482A1 (en) 2006-07-31 2008-02-07 Elwell James K Force-based input device having an elevated contacting surface
US20080024454A1 (en) 2006-07-31 2008-01-31 Paul Everest Three-dimensional touch pad input device
JP2008033739A (ja) 2006-07-31 2008-02-14 Sony Corp 力覚フィードバックおよび圧力測定に基づくタッチスクリーンインターラクション方法および装置
JP5243704B2 (ja) 2006-08-24 2013-07-24 本田技研工業株式会社 力覚センサ
JP2010503113A (ja) 2006-09-09 2010-01-28 エフ−オリジン・インコーポレイテッド 統合感圧レンズ組立品
US7594440B2 (en) 2006-10-05 2009-09-29 Endevco Corporation Highly sensitive piezoresistive element
US20080088600A1 (en) 2006-10-11 2008-04-17 Apple Inc. Method and apparatus for implementing multiple push buttons in a user input device
US20080106523A1 (en) 2006-11-07 2008-05-08 Conrad Richard H Ergonomic lift-clicking method and apparatus for actuating home switches on computer input devices
US7503221B2 (en) 2006-11-08 2009-03-17 Honeywell International Inc. Dual span absolute pressure sense die
WO2008059838A1 (fr) 2006-11-14 2008-05-22 Kabushiki Kaisha Bridgestone Pneu avec capteur et procédé pour mesurer le niveau de distorsion du pneu
JP2008158909A (ja) 2006-12-25 2008-07-10 Pro Tech Design Corp 触覚フィードバックコントローラ
US8250921B2 (en) 2007-07-06 2012-08-28 Invensense, Inc. Integrated motion processing unit (MPU) with MEMS inertial sensing and embedded digital electronics
US10437459B2 (en) 2007-01-07 2019-10-08 Apple Inc. Multitouch data fusion
JP4345820B2 (ja) 2007-01-22 2009-10-14 セイコーエプソン株式会社 表示装置及び表示装置の製造方法並びに電子ペーパー
KR100891099B1 (ko) 2007-01-25 2009-03-31 삼성전자주식회사 사용성을 향상시키는 터치 스크린 및 터치 스크린에서 사용성 향상을 위한 방법
DE102008000128B4 (de) 2007-01-30 2013-01-03 Denso Corporation Halbleitersensorvorrichtung und deren Herstellungsverfahren
US8368653B2 (en) 2007-01-31 2013-02-05 Perceptive Pixel, Inc. Methods of interfacing with multi-point input devices and multi-point input systems employing interfacing techniques
JP4909104B2 (ja) 2007-01-31 2012-04-04 本田技研工業株式会社 力覚センサ
EP2120136A4 (de) 2007-03-01 2013-01-23 Sharp Kk Anzeigeschirmsubstrat, anzeigeschirm, anzeigeanordnung und verfahren zur herstellung eines anzeigeschirmsubstrats
KR101359921B1 (ko) 2007-03-02 2014-02-07 삼성디스플레이 주식회사 표시 장치
WO2008110227A1 (de) 2007-03-14 2008-09-18 Axsionics Ag Druckmessvorrichtung und entsprechendes verfahren
US20080238884A1 (en) 2007-03-29 2008-10-02 Divyasimha Harish Edge sensors forming a touchscreen
US20080259046A1 (en) 2007-04-05 2008-10-23 Joseph Carsanaro Pressure sensitive touch pad with virtual programmable buttons for launching utility applications
US7973778B2 (en) 2007-04-16 2011-07-05 Microsoft Corporation Visual simulation of touch pressure
US8120586B2 (en) 2007-05-15 2012-02-21 Htc Corporation Electronic devices with touch-sensitive navigational mechanisms, and associated methods
JP2008305174A (ja) 2007-06-07 2008-12-18 Sony Corp 情報処理装置、情報処理方法、プログラム
JP4368392B2 (ja) 2007-06-13 2009-11-18 東海ゴム工業株式会社 変形センサシステム
KR101382557B1 (ko) 2007-06-28 2014-04-08 삼성디스플레이 주식회사 표시 장치
FR2918747A1 (fr) 2007-07-12 2009-01-16 St Microelectronics Sa Microcapteur de pression
KR101395780B1 (ko) 2007-07-27 2014-05-16 삼성전자주식회사 촉각 감지를 위한 압력 센서 어레이 장치 및 방법
US20090046110A1 (en) 2007-08-16 2009-02-19 Motorola, Inc. Method and apparatus for manipulating a displayed image
KR101386958B1 (ko) 2007-08-21 2014-04-18 삼성디스플레이 주식회사 터치위치 판별방법 및 이를 수행하기 위한 터치패널
EP2185904A2 (de) 2007-08-27 2010-05-19 Koninklijke Philips Electronics N.V. Drucksensor, sensorsonde mit einem drucksensor, medizinische vorrichtung mit einer sensorsonde und verfahren zur herstellung einer sensorsonde
US8026906B2 (en) 2007-09-07 2011-09-27 F-Origin, Inc. Integrated force sensitive lens and software
EP2282180A1 (de) 2007-09-20 2011-02-09 Yamatake Corporation Durchflusssensor und Verfahren für seine Herstellung
US8098235B2 (en) 2007-09-28 2012-01-17 Immersion Corporation Multi-touch device having dynamic haptic effects
TWI352923B (en) 2007-09-29 2011-11-21 Htc Corp Method for determing pressed location of touch scr
US20090102805A1 (en) 2007-10-18 2009-04-23 Microsoft Corporation Three-dimensional object simulation using audio, visual, and tactile feedback
DE102007052008A1 (de) 2007-10-26 2009-04-30 Andreas Steinhauser Single- oder multitouchfähiger Touchscreen oder Touchpad bestehend aus einem Array von Drucksensoren sowie Herstellung solcher Sensoren
US8508920B2 (en) 2007-11-23 2013-08-13 Creator Technology B.V. Electronic apparatus with improved functionality
US20090140985A1 (en) 2007-11-30 2009-06-04 Eric Liu Computing device that determines and uses applied pressure from user interaction with an input interface
JP4600468B2 (ja) 2007-12-10 2010-12-15 セイコーエプソン株式会社 半導体圧力センサ及びその製造方法、半導体装置並びに電子機器
US8803797B2 (en) 2008-01-18 2014-08-12 Microsoft Corporation Input through sensing of user-applied forces
US8004501B2 (en) 2008-01-21 2011-08-23 Sony Computer Entertainment America Llc Hand-held device with touchscreen and digital tactile pixels
US20090184936A1 (en) 2008-01-22 2009-07-23 Mathematical Inventing - Slicon Valley 3D touchpad
US20100127140A1 (en) 2008-01-23 2010-05-27 Gary Smith Suspension for a pressure sensitive touch display or panel
CN102124424A (zh) 2008-01-31 2011-07-13 安普赛德股份有限公司 数据输入装置、数据输入方法和数据输入程序及记录有该程序的记录介质
US8022933B2 (en) 2008-02-21 2011-09-20 Sony Corporation One button remote control with haptic feedback
US8766925B2 (en) 2008-02-28 2014-07-01 New York University Method and apparatus for providing input to a processor, and a sensor pad
US20090237374A1 (en) 2008-03-20 2009-09-24 Motorola, Inc. Transparent pressure sensor and method for using
US9018030B2 (en) 2008-03-20 2015-04-28 Symbol Technologies, Inc. Transparent force sensor and method of fabrication
JP4687737B2 (ja) 2008-03-25 2011-05-25 株式会社デンソー 荷重センサ
JP2011515768A (ja) 2008-03-27 2011-05-19 クライプテラ アー/エス 安全キーパッドシステム
US20090243998A1 (en) 2008-03-28 2009-10-01 Nokia Corporation Apparatus, method and computer program product for providing an input gesture indicator
US8169332B2 (en) 2008-03-30 2012-05-01 Pressure Profile Systems Corporation Tactile device with force sensitive touch input surface
KR101032632B1 (ko) 2008-04-01 2011-05-06 한국표준과학연구원 작용힘에 따른 사용자 인터페이스의 제공방법 및 기록매체
US20110012848A1 (en) 2008-04-03 2011-01-20 Dong Li Methods and apparatus for operating a multi-object touch handheld device with touch sensitive display
US20090256807A1 (en) 2008-04-14 2009-10-15 Nokia Corporation User interface
US8384677B2 (en) 2008-04-25 2013-02-26 Research In Motion Limited Electronic device including touch-sensitive input surface and method of determining user-selected input
US8476809B2 (en) 2008-04-29 2013-07-02 Sand 9, Inc. Microelectromechanical systems (MEMS) resonators and related apparatus and methods
US7765880B2 (en) 2008-05-19 2010-08-03 Hong Kong Polytechnic University Flexible piezoresistive interfacial shear and normal force sensor and sensor array
TW200951597A (en) 2008-06-10 2009-12-16 Ind Tech Res Inst Functional device array with self-aligned electrode structures and fabrication methods thereof
TW200951793A (en) 2008-06-13 2009-12-16 Asustek Comp Inc Touch panel device and control method thereof
US8130207B2 (en) 2008-06-18 2012-03-06 Nokia Corporation Apparatus, method and computer program product for manipulating a device using dual side input devices
JP5106268B2 (ja) 2008-06-24 2012-12-26 富士通コンポーネント株式会社 タッチパネル
JP4885911B2 (ja) 2008-06-27 2012-02-29 京セラ株式会社 携帯端末
JP5604035B2 (ja) 2008-07-18 2014-10-08 本田技研工業株式会社 力覚センサユニット
KR101522974B1 (ko) 2008-07-22 2015-05-27 삼성전자주식회사 컨텐츠 관리 방법 및 그 전자기기
US20100220065A1 (en) 2009-02-27 2010-09-02 Research In Motion Limited Touch-sensitive display including a force-sensor and portable electronic device including same
JP5100556B2 (ja) 2008-07-30 2012-12-19 キヤノン株式会社 情報処理方法及び装置
US8492238B2 (en) 2008-08-14 2013-07-23 Board Of Regents, The University Of Texas System Method and apparatus for fabricating piezoresistive polysilicon by low-temperature metal induced crystallization
TWI381294B (zh) 2008-08-15 2013-01-01 Au Optronics Corp 觸碰感應裝置及其感應訊號處理方法
TWI366784B (en) 2008-08-21 2012-06-21 Au Optronics Corp Matrix sensing apparatus
US9477342B2 (en) 2008-08-26 2016-10-25 Google Technology Holdings LLC Multi-touch force sensing touch-screen devices and methods
US20100053087A1 (en) 2008-08-26 2010-03-04 Motorola, Inc. Touch sensors with tactile feedback
US8780054B2 (en) 2008-09-26 2014-07-15 Lg Electronics Inc. Mobile terminal and control method thereof
CN101685212B (zh) 2008-09-26 2012-08-29 群康科技(深圳)有限公司 液晶显示面板
KR20100036850A (ko) 2008-09-30 2010-04-08 삼성전기주식회사 접촉 감지 센서를 이용한 터치 패널 장치
TWI372994B (en) 2008-10-21 2012-09-21 Altek Corp Pressure detection module, and touch panel with pressure detection module
DE102008043084A1 (de) 2008-10-22 2010-04-29 Robert Bosch Gmbh Verfahren zum Erzeugen von monokristallinen Piezowiderständen und Drucksensorelemente mit solchen Piezowiderständen
JP4766101B2 (ja) 2008-11-10 2011-09-07 ソニー株式会社 触行動認識装置及び触行動認識方法、情報処理装置、並びにコンピューター・プログラム
TWI383312B (zh) 2008-11-13 2013-01-21 Orise Technology Co Ltd 接觸點檢測方法以及使用其之觸控面板
CN101738768B (zh) 2008-11-18 2012-12-19 深圳富泰宏精密工业有限公司 触摸屏及其制造方法
US20100123686A1 (en) 2008-11-19 2010-05-20 Sony Ericsson Mobile Communications Ab Piezoresistive force sensor integrated in a display
EP2368170B1 (de) 2008-11-26 2017-11-01 BlackBerry Limited Berührungsempfindliches anzeigeverfahren und vorrichtung
JP2010147268A (ja) 2008-12-19 2010-07-01 Yamaha Corp Memsセンサおよびmemsセンサの製造方法
TWI376624B (en) 2008-12-23 2012-11-11 Integrated Digital Tech Inc Force-sensing modules for light sensitive screens
US8427441B2 (en) 2008-12-23 2013-04-23 Research In Motion Limited Portable electronic device and method of control
TWI478016B (zh) 2008-12-24 2015-03-21 Prime View Int Co Ltd 觸控式顯示裝置及其製造方法
US9864513B2 (en) 2008-12-26 2018-01-09 Hewlett-Packard Development Company, L.P. Rendering a virtual input device upon detection of a finger movement across a touch-sensitive display
US8289288B2 (en) 2009-01-15 2012-10-16 Microsoft Corporation Virtual object adjustment via physical object detection
WO2011084229A2 (en) 2009-12-17 2011-07-14 Arizona Board Of Regents, For And On Behalf Of Arizona State University Embedded mems sensors and related methods
KR101637879B1 (ko) 2009-02-06 2016-07-08 엘지전자 주식회사 휴대 단말기 및 그 동작방법
US7775119B1 (en) 2009-03-03 2010-08-17 S3C, Inc. Media-compatible electrically isolated pressure sensor for high temperature applications
US8220330B2 (en) 2009-03-24 2012-07-17 Freescale Semiconductor, Inc. Vertically integrated MEMS sensor device with multi-stimulus sensing
CN104035720B (zh) 2009-04-22 2017-04-12 三菱电机株式会社 位置输入装置
US8884895B2 (en) 2009-04-24 2014-11-11 Kyocera Corporation Input apparatus
US8508498B2 (en) 2009-04-27 2013-08-13 Empire Technology Development Llc Direction and force sensing input device
US8427503B2 (en) 2009-05-18 2013-04-23 Nokia Corporation Method, apparatus and computer program product for creating graphical objects with desired physical features for usage in animation
CN101893977B (zh) 2009-05-19 2012-07-25 北京京东方光电科技有限公司 触摸屏、彩膜基板及其制造方法
EP2435896A1 (de) 2009-05-29 2012-04-04 Haptyc Technology S.R.L. Verfahren zum bestimmen von mehrfachberührungseingaben auf einem resistiven berührungsschirm und mehrfach-berührungssteuerung
US9383881B2 (en) 2009-06-03 2016-07-05 Synaptics Incorporated Input device and method with pressure-sensitive layer
US8031518B2 (en) 2009-06-08 2011-10-04 Micron Technology, Inc. Methods, structures, and devices for reducing operational energy in phase change memory
WO2010146580A1 (en) 2009-06-14 2010-12-23 Micropointing Ltd. Finger-operated input device
US20100321319A1 (en) 2009-06-17 2010-12-23 Hefti Thierry Method for displaying and updating a view of a graphical scene in response to commands via a touch-sensitive device
KR101071672B1 (ko) 2009-06-23 2011-10-11 한국표준과학연구원 접촉힘 세기 또는 압력 세기를 감지하는 촉각센서가 구비된 조도 조절 가능한 전계 발광 소자, 이를 포함하는 평판표시장치, 이를 포함하는 휴대기기 키패드
US8310457B2 (en) 2009-06-30 2012-11-13 Research In Motion Limited Portable electronic device including tactile touch-sensitive input device and method of protecting same
US20100328229A1 (en) 2009-06-30 2010-12-30 Research In Motion Limited Method and apparatus for providing tactile feedback
TWI421741B (zh) 2009-07-01 2014-01-01 Au Optronics Corp 觸控面板及其感測方法
US8638315B2 (en) 2009-07-13 2014-01-28 Cherif Atia Algreatly Virtual touch screen system
US8120588B2 (en) 2009-07-15 2012-02-21 Sony Ericsson Mobile Communications Ab Sensor assembly and display including a sensor assembly
US8289290B2 (en) 2009-07-20 2012-10-16 Sony Ericsson Mobile Communications Ab Touch sensing apparatus for a mobile device, mobile device and method for touch operation sensing
US8378798B2 (en) 2009-07-24 2013-02-19 Research In Motion Limited Method and apparatus for a touch-sensitive display
JP2011028635A (ja) 2009-07-28 2011-02-10 Sony Corp 表示制御装置、表示制御方法およびコンピュータプログラム
US20110039602A1 (en) 2009-08-13 2011-02-17 Mcnamara Justin Methods And Systems For Interacting With Content On A Mobile Device
US8072437B2 (en) 2009-08-26 2011-12-06 Global Oled Technology Llc Flexible multitouch electroluminescent display
JP2011048686A (ja) 2009-08-27 2011-03-10 Kyocera Corp 入力装置
CN102498460A (zh) 2009-08-27 2012-06-13 京瓷株式会社 触感提供装置和触感提供装置的控制方法
JP2011048669A (ja) 2009-08-27 2011-03-10 Kyocera Corp 入力装置
JP4672075B2 (ja) 2009-08-27 2011-04-20 京セラ株式会社 入力装置
JP2011048671A (ja) 2009-08-27 2011-03-10 Kyocera Corp 入力装置および入力装置の制御方法
US8363020B2 (en) 2009-08-27 2013-01-29 Symbol Technologies, Inc. Methods and apparatus for pressure-based manipulation of content on a touch screen
JP2011048606A (ja) 2009-08-27 2011-03-10 Kyocera Corp 入力装置
JP5482023B2 (ja) 2009-08-27 2014-04-23 ソニー株式会社 情報処理装置、情報処理方法、及びプログラム
JP2011048685A (ja) 2009-08-27 2011-03-10 Kyocera Corp 入力装置
JP2011048696A (ja) 2009-08-27 2011-03-10 Kyocera Corp 入力装置
JP5304544B2 (ja) 2009-08-28 2013-10-02 ソニー株式会社 情報処理装置、情報処理方法、及びプログラム
JP5593655B2 (ja) 2009-08-31 2014-09-24 ソニー株式会社 情報処理装置、情報処理方法およびプログラム
JP2011053974A (ja) 2009-09-02 2011-03-17 Sony Corp 操作制御装置、操作制御方法およびコンピュータプログラム
JP5182260B2 (ja) 2009-09-02 2013-04-17 ソニー株式会社 操作制御装置、操作制御方法およびコンピュータプログラム
US8730199B2 (en) 2009-09-04 2014-05-20 Atmel Corporation Capacitive control panel
KR20110028834A (ko) 2009-09-14 2011-03-22 삼성전자주식회사 터치스크린을 구비한 휴대 단말기의 터치 압력을 이용한 사용자 인터페이스 제공 방법 및 장치
US8436806B2 (en) 2009-10-02 2013-05-07 Research In Motion Limited Method of synchronizing data acquisition and a portable electronic device configured to perform the same
US10068728B2 (en) 2009-10-15 2018-09-04 Synaptics Incorporated Touchpad with capacitive force sensing
US9709509B1 (en) * 2009-11-13 2017-07-18 MCube Inc. System configured for integrated communication, MEMS, Processor, and applications using a foundry compatible semiconductor process
JP5486271B2 (ja) 2009-11-17 2014-05-07 ラピスセミコンダクタ株式会社 加速度センサ、及び加速度センサの製造方法
CN102510998A (zh) 2009-11-25 2012-06-20 阿尔卑斯电气株式会社 测力传感器
US8387464B2 (en) 2009-11-30 2013-03-05 Freescale Semiconductor, Inc. Laterally integrated MEMS sensor device with multi-stimulus sensing
CN101929898A (zh) 2009-12-01 2010-12-29 苏州扩达微电子有限公司 一种压力传感器件
US8605053B2 (en) 2009-12-02 2013-12-10 Analog Devices, Inc. Method and device for detecting user input
US8633916B2 (en) 2009-12-10 2014-01-21 Apple, Inc. Touch pad with force sensors and actuator feedback
US8570297B2 (en) 2009-12-14 2013-10-29 Synaptics Incorporated System and method for measuring individual force in multi-object sensing
CN102575964B (zh) 2009-12-25 2014-06-18 阿尔卑斯电气株式会社 测力传感器及其制造方法
JP5750875B2 (ja) 2010-12-01 2015-07-22 ソニー株式会社 情報処理装置、情報処理方法及びプログラム
DE102010005792B3 (de) 2010-01-25 2011-06-16 Innovations-Transfer Uphoff Gmbh &.Co.Kg Druckkraftmesseinrichtung
US8669963B2 (en) 2010-02-03 2014-03-11 Interlink Electronics, Inc. Sensor system
DE102010002463A1 (de) 2010-03-01 2011-09-01 Robert Bosch Gmbh Mikromechanisches Drucksensorelement und Verfahren zu dessen Herstellung
DE102010012441B4 (de) 2010-03-23 2015-06-25 Bundesrepublik Deutschland, vertreten durch das Bundesministerium für Wirtschaft und Technologie, dieses vertreten durch den Präsidenten der Physikalisch-Technischen Bundesanstalt Millinewton-Mikrokraftmesser und Verfahren zum Herstellen eines Millinewton-Mikrokraftmessers
JP4979788B2 (ja) 2010-03-30 2012-07-18 株式会社菊池製作所 流量センサーおよび流量検出装置
TWI544458B (zh) 2010-04-02 2016-08-01 元太科技工業股份有限公司 顯示面板
CN201653605U (zh) 2010-04-09 2010-11-24 无锡芯感智半导体有限公司 一种基于硅硅键合的压力传感器
US20110267294A1 (en) 2010-04-29 2011-11-03 Nokia Corporation Apparatus and method for providing tactile feedback for user
US20110267181A1 (en) 2010-04-29 2011-11-03 Nokia Corporation Apparatus and method for providing tactile feedback for user
KR101084782B1 (ko) 2010-05-06 2011-11-21 삼성전기주식회사 터치스크린 장치
US8466889B2 (en) 2010-05-14 2013-06-18 Research In Motion Limited Method of providing tactile feedback and electronic device
US8854323B2 (en) 2010-05-20 2014-10-07 Panasonic Intellectual Property Corporation Of America Operating apparatus, operating method, program, recording medium, and integrated circuit
US8669946B2 (en) 2010-05-28 2014-03-11 Blackberry Limited Electronic device including touch-sensitive display and method of controlling same
US8435821B2 (en) 2010-06-18 2013-05-07 General Electric Company Sensor and method for fabricating the same
US10595748B2 (en) 2010-07-09 2020-03-24 The University Of Utah Research Foundation Systems, devices, and methods for providing foot loading feedback to patients and physicians during a period of partial weight bearing
US20120025337A1 (en) 2010-07-28 2012-02-02 Avago Technologies Wireless Ip (Singapore) Pte. Ltd Mems transducer device having stress mitigation structure and method of fabricating the same
DE102010033514A1 (de) 2010-08-05 2012-02-09 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Bedienelement zur Betätigung durch einen Benutzer und Bedienelementmodul
KR101187980B1 (ko) 2010-08-13 2012-10-05 삼성전기주식회사 햅틱 피드백 디바이스 및 이를 포함하는 전자 장치
JP5625612B2 (ja) 2010-08-19 2014-11-19 株式会社リコー 操作表示装置および操作表示方法
JP5573487B2 (ja) 2010-08-20 2014-08-20 ソニー株式会社 情報処理装置、プログラム及び操作制御方法
US8884910B2 (en) 2010-08-30 2014-11-11 Microsoft Corporation Resistive matrix with optimized input scanning
TWI564757B (zh) 2010-08-31 2017-01-01 萬國商業機器公司 具有觸控螢幕的電腦裝置與其操作方法及電腦可讀媒體
KR101739054B1 (ko) 2010-09-08 2017-05-24 삼성전자주식회사 디바이스상의 움직임 제어 방법 및 장치
TWI414478B (zh) 2010-09-09 2013-11-11 Domintech Co Ltd 可同時量測加速度及壓力之微機電感測器
US8283781B2 (en) 2010-09-10 2012-10-09 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device having pad structure with stress buffer layer
IT1402181B1 (it) 2010-09-13 2013-08-28 Fond Istituto Italiano Di Tecnologia Dispositivo microelettromeccanico elettro-attivo e relativo procedimento di rivelazione
TW201214237A (en) 2010-09-16 2012-04-01 Asustek Comp Inc Touch display device and control method thereof
EP2628069B1 (de) 2010-10-12 2020-12-02 New York University Vorrichtung zur messung der verwendung von fliesen, sensor mit einem plattensatz, objektidentifikation für mehrfachberührungsflächen und verfahren dafür
US20120092279A1 (en) 2010-10-18 2012-04-19 Qualcomm Mems Technologies, Inc. Touch sensor with force-actuated switched capacitor
US20120105367A1 (en) 2010-11-01 2012-05-03 Impress Inc. Methods of using tactile force sensing for intuitive user interface
US9262002B2 (en) 2010-11-03 2016-02-16 Qualcomm Incorporated Force sensing touch screen
CN102062662B (zh) * 2010-11-05 2012-10-10 北京大学 一种单片集成SiC MEMS压力传感器及其制备方法
US10120446B2 (en) 2010-11-19 2018-11-06 Apple Inc. Haptic input device
US9223445B2 (en) 2010-12-02 2015-12-29 Atmel Corporation Position-sensing and force detection panel
US8375799B2 (en) 2010-12-10 2013-02-19 Honeywell International Inc. Increased sensor die adhesion
TW201227454A (en) 2010-12-31 2012-07-01 Hong-Da Liu An active array having the touchable sensing matrix unit and a display having the active array
US20120162122A1 (en) 2010-12-27 2012-06-28 3M Innovative Properties Company Force sensitive device with force sensitive resistors
US20120169609A1 (en) 2010-12-29 2012-07-05 Nokia Corporation Methods and apparatuses for facilitating content navigation
US20120169617A1 (en) 2011-01-04 2012-07-05 Nokia Corporation Controlling of user input device
US8297127B2 (en) 2011-01-07 2012-10-30 Honeywell International Inc. Pressure sensor with low cost packaging
JP2012145497A (ja) 2011-01-13 2012-08-02 Fanuc Ltd 静電容量式力センサ
KR20120086055A (ko) 2011-01-25 2012-08-02 삼성전기주식회사 터치 압력을 검출할 수 있는 터치 스크린 장치 및 이를 갖는 전자 장치
US8674961B2 (en) 2011-01-31 2014-03-18 National Semiconductor Corporation Haptic interface for touch screen in mobile device or other device
CA2806486C (en) 2011-02-07 2017-03-21 The Governors Of The University Of Alberta Piezoresistive load sensor
US9389721B2 (en) 2011-02-09 2016-07-12 Apple Inc. Snap domes as sensor protection
US9035871B2 (en) 2011-02-11 2015-05-19 Blackberry Limited Input detecting apparatus, and associated method, for electronic device
US8402835B2 (en) 2011-02-16 2013-03-26 Silicon Microstructures, Inc. Compensation of stress effects on pressure sensor components
JP5419923B2 (ja) 2011-05-09 2014-02-19 三菱電機株式会社 センサー素子
JP5776334B2 (ja) 2011-05-31 2015-09-09 セイコーエプソン株式会社 応力検出素子、センサーモジュール、電子機器、及び把持装置
US20120319987A1 (en) 2011-06-15 2012-12-20 Synaptics Incorporated System and method for calibrating an input device
US8884892B2 (en) 2011-08-12 2014-11-11 Blackberry Limited Portable electronic device and method of controlling same
US8610684B2 (en) 2011-10-14 2013-12-17 Blackberry Limited System and method for controlling an electronic device having a touch-sensitive non-display area
TW201329815A (zh) 2011-10-14 2013-07-16 Nextinput Inc 力敏感介面裝置及使用其之方法
WO2013067548A1 (en) 2011-11-06 2013-05-10 Khandani Mehdi Kalantari System and method for strain and acoustic emission monitoring
US9097600B2 (en) 2011-11-06 2015-08-04 Mehdi Kalantari Khandani System and method for strain and acoustic emission monitoring
US8436827B1 (en) 2011-11-29 2013-05-07 Google Inc. Disambiguating touch-input based on variation in characteristic such as speed or pressure along a touch-trail
FR2983955B1 (fr) 2011-12-09 2014-10-03 Openfield Capteur de pression pour fluide
US9728652B2 (en) 2012-01-25 2017-08-08 Infineon Technologies Ag Sensor device and method
JP5177311B1 (ja) 2012-02-15 2013-04-03 オムロン株式会社 静電容量型センサ及びその製造方法
EP2637007B1 (de) * 2012-03-08 2020-01-22 ams international AG Kapazitativer MEMS-Drucksensor
JP5701807B2 (ja) * 2012-03-29 2015-04-15 株式会社東芝 圧力センサ及びマイクロフォン
ITMI20120912A1 (it) 2012-05-25 2013-11-26 St Microelectronics Srl Package in materiale edilizio per dispositivo di monitoraggio di parametri, all'interno di una struttura solida, e relativo dispositivo.
US9493342B2 (en) 2012-06-21 2016-11-15 Nextinput, Inc. Wafer level MEMS force dies
US8833172B2 (en) 2012-06-27 2014-09-16 Continental Automotive Systems, Inc Pressure sensing device with stepped cavity to minimize thermal noise
US9032818B2 (en) 2012-07-05 2015-05-19 Nextinput, Inc. Microelectromechanical load sensor and methods of manufacturing the same
KR101971945B1 (ko) 2012-07-06 2019-04-25 삼성전자주식회사 촉각 측정 장치 및 방법
US9886116B2 (en) 2012-07-26 2018-02-06 Apple Inc. Gesture and touch input detection through force sensing
KR101934310B1 (ko) 2012-08-24 2019-01-03 삼성디스플레이 주식회사 터치 힘을 인식하는 터치 표시장치
CN102853950B (zh) 2012-09-10 2015-03-11 厦门海合达电子信息有限公司 采用倒装焊接的压阻式压力传感器芯片及其制备方法
DE102013014881B4 (de) * 2012-09-12 2023-05-04 Fairchild Semiconductor Corporation Verbesserte Silizium-Durchkontaktierung mit einer Füllung aus mehreren Materialien
CN102998037B (zh) 2012-09-15 2014-11-12 华东光电集成器件研究所 介质隔离压阻式压力传感器及其制备方法
US8984951B2 (en) 2012-09-18 2015-03-24 Kulite Semiconductor Products, Inc. Self-heated pressure sensor assemblies
US8904876B2 (en) 2012-09-29 2014-12-09 Stryker Corporation Flexible piezocapacitive and piezoresistive force and pressure sensors
JP2014085206A (ja) 2012-10-23 2014-05-12 Denso Corp 圧力センサ装置およびその製造方法
US20140283604A1 (en) * 2012-10-26 2014-09-25 The Regents Of The University Of Michigan Three-dimensional microelectromechanical systems structure
TWI506278B (zh) 2012-12-06 2015-11-01 Murata Manufacturing Co High Voltage Resistive MEMS Sensors
ITMI20122241A1 (it) 2012-12-27 2014-06-28 St Microelectronics Srl Dispositivo elettronico integrato per il monitoraggio di sforzo meccanico all'interno di una struttura solida
US9138170B2 (en) 2013-02-13 2015-09-22 Board Of Regents, The University Of Texas System Sensor assembly, method, and device for monitoring shear force and pressure on a structure
US9846091B2 (en) 2013-03-12 2017-12-19 Interlink Electronics, Inc. Systems and methods for press force detectors
US9574954B2 (en) 2013-03-12 2017-02-21 Interlink Electronics, Inc. Systems and methods for press force detectors
US9625333B2 (en) 2013-03-15 2017-04-18 President And Fellows Of Harvard College Tactile sensor
ITMI20130482A1 (it) 2013-03-29 2014-09-30 St Microelectronics Srl Dispositivo elettronico integrato per il monitoraggio di pressione all'interno di una struttura solida
WO2014196320A1 (ja) 2013-06-04 2014-12-11 株式会社村田製作所 加速度センサ
US9143057B1 (en) 2013-06-07 2015-09-22 Qualtre, Inc. Method and apparatus for controlling Q losses through force distributions
JP6092044B2 (ja) 2013-08-19 2017-03-08 ミネベアミツミ株式会社 荷重センサユニット
DE102013110376A1 (de) 2013-09-19 2015-03-19 Endress + Hauser Gmbh + Co. Kg Messgerät mit einem Halbleitersensor und einem metallischen Stützkörper
US9332369B2 (en) * 2013-10-22 2016-05-03 Infineon Technologies Ag System and method for automatic calibration of a transducer
ITTO20130931A1 (it) 2013-11-15 2015-05-16 St Microelectronics Srl Sensore di forza microelettromeccanico di tipo capacitivo e relativo metodo di rilevamento di forza
JP6066490B2 (ja) 2013-12-06 2017-01-25 ミネベア株式会社 荷重センサ
US9366588B2 (en) 2013-12-16 2016-06-14 Lifescan, Inc. Devices, systems and methods to determine area sensor
AU2015100011B4 (en) 2014-01-13 2015-07-16 Apple Inc. Temperature compensating transparent force sensor
EP3094950B1 (de) 2014-01-13 2022-12-21 Nextinput, Inc. Miniaturisierte und widerstandsfähige mems-kraftsensoren auf waferebene
US9970831B2 (en) 2014-02-10 2018-05-15 Texas Instruments Incorporated Piezoelectric thin-film sensor
DE102014105861B4 (de) 2014-04-25 2015-11-05 Infineon Technologies Ag Sensorvorrichtung und Verfahren zum Herstellen einer Sensorvorrichtung
US20150362389A1 (en) 2014-06-17 2015-12-17 EZ as a Drink Productions, Inc. Pressure sensing apparatus
EP3127044A4 (de) 2014-10-06 2018-04-25 Shenzhen Goodix Technology Co., Ltd. Selbstkapazitiver fingerabdrucksensor mit aktiven verstärkten pixeln
US9835515B2 (en) 2014-10-10 2017-12-05 Stmicroeletronics S.R.L. Pressure sensor with testing device and related methods
CN104535229B (zh) 2014-12-04 2017-06-06 广东省自动化研究所 基于压阻压电柔性传感器复合的压力检测装置及方法
US9945884B2 (en) 2015-01-30 2018-04-17 Infineon Technologies Ag System and method for a wind speed meter
US9726587B2 (en) 2015-01-30 2017-08-08 Stmicroelectronics S.R.L. Tensile stress measurement device with attachment plates and related methods
US9967679B2 (en) 2015-02-03 2018-05-08 Infineon Technologies Ag System and method for an integrated transducer and temperature sensor
JPWO2016129184A1 (ja) 2015-02-13 2017-04-27 株式会社 メドレックス マイクロニードルの穿刺装置及びマイクロニードルパッチの貼付装置
US9874459B2 (en) 2015-02-24 2018-01-23 The Regents Of The University Of Michigan Actuation and sensing platform for sensor calibration and vibration isolation
JP2017003355A (ja) 2015-06-08 2017-01-05 アイシン精機株式会社 荷重検出装置
EP3307671B1 (de) 2015-06-10 2022-06-15 Nextinput, Inc. Widerstandsfähiger mems-kraftsensor auf waferebene mit einem toleranzgraben
TWI599764B (zh) 2015-10-19 2017-09-21 國立清華大學 多階感測元件
US10126193B2 (en) 2016-01-19 2018-11-13 Rosemount Aerospace Inc. Compact or miniature high temperature differential pressure sensor capsule
ITUB20160759A1 (it) 2016-02-15 2017-08-15 St Microelectronics Srl Sensore di pressione incapsulato in materiale elastomerico, e sistema includente il sensore di pressione
ITUB20160788A1 (it) 2016-02-16 2017-08-16 St Microelectronics Srl Unita' di rilevamento di pressione per sistemi di monitoraggio dello stato di integrita' strutturale
TWI580938B (zh) 2016-02-16 2017-05-01 智動全球股份有限公司 微機電力量感測器以及力量感測裝置
US10571348B2 (en) 2016-08-30 2020-02-25 Honeywell International Inc. Overforce control through sense die design
US11255737B2 (en) * 2017-02-09 2022-02-22 Nextinput, Inc. Integrated digital force sensors and related methods of manufacture
US11243125B2 (en) 2017-02-09 2022-02-08 Nextinput, Inc. Integrated piezoresistive and piezoelectric fusion force sensor
IT201700019426A1 (it) 2017-02-21 2018-08-21 St Microelectronics Srl Sensore di forza/pressione microelettromeccanico scalabile piezoresistivo di tipo bulk
TWI627391B (zh) 2017-03-03 2018-06-21 智動全球股份有限公司 力量感測器
US10496209B2 (en) 2017-03-31 2019-12-03 Apple Inc. Pressure-based force and touch sensing
EP3655740A4 (de) * 2017-07-19 2021-07-14 Nextinput, Inc. Spannungstransferstapelung in einem mems-kraftsensor
US11423686B2 (en) 2017-07-25 2022-08-23 Qorvo Us, Inc. Integrated fingerprint and force sensor
US11243126B2 (en) 2017-07-27 2022-02-08 Nextinput, Inc. Wafer bonded piezoresistive and piezoelectric force sensor and related methods of manufacture
US11579028B2 (en) 2017-10-17 2023-02-14 Nextinput, Inc. Temperature coefficient of offset compensation for force sensor and strain gauge
US11385108B2 (en) 2017-11-02 2022-07-12 Nextinput, Inc. Sealed force sensor with etch stop layer
WO2019099821A1 (en) 2017-11-16 2019-05-23 Nextinput, Inc. Force attenuator for force sensor
CN110411614B (zh) 2018-04-27 2021-04-20 苏州明皜传感科技有限公司 力量传感器以及其制造方法
US10962427B2 (en) 2019-01-10 2021-03-30 Nextinput, Inc. Slotted MEMS force sensor
KR102180901B1 (ko) 2019-03-05 2020-11-19 김병곤 용이한 압력 분포 확인 구조를 갖는 압저항형 압력센서
CN113874706A (zh) 2019-04-26 2021-12-31 国立研究开发法人物质材料研究机构 使用聚(2,6-二苯基-对苯醚)的纳米机械传感器用感应膜、具有该感应膜的纳米机械传感器、对纳米机械传感器涂布该感应膜的方法以及该纳米机械传感器的感应膜的再生方法
US11953380B2 (en) 2019-05-21 2024-04-09 Nextinput, Inc. Combined near and mid infrared sensor in a chip scale package

Also Published As

Publication number Publication date
US11946817B2 (en) 2024-04-02
CN110494724A (zh) 2019-11-22
US11255737B2 (en) 2022-02-22
US20190383676A1 (en) 2019-12-19
EP3580539A4 (de) 2020-11-25
CN110494724B (zh) 2023-08-01
US20220268648A1 (en) 2022-08-25
CN116907693A (zh) 2023-10-20
WO2018148503A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
US11946817B2 (en) Integrated digital force sensors and related methods of manufacture
US11808644B2 (en) Integrated piezoresistive and piezoelectric fusion force sensor
US11111135B2 (en) Methods and devices for microelectromechanical pressure sensors
US11946816B2 (en) Wafer bonded piezoresistive and piezoelectric force sensor and related methods of manufacture
US10486962B2 (en) Force sensor and manufacture method thereof
US11698310B2 (en) Slotted MEMS force sensor
US10466119B2 (en) Ruggedized wafer level MEMS force sensor with a tolerance trench
US11385108B2 (en) Sealed force sensor with etch stop layer
US11898918B2 (en) Temperature coefficient of offset compensation for force sensor and strain gauge
JP6820102B2 (ja) トルク検出器及びトルク検出器の製造方法
TW201947198A (zh) 力量感測器以及其製造方法
EP3507583B1 (de) Hochgradig überdruckfähiger siliciumchip-drucksensor
CN112236659A (zh) 可变形膜及其补偿结构

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190816

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20201022

RIC1 Information provided on ipc code assigned before grant

Ipc: G01L 1/22 20060101ALI20201016BHEP

Ipc: G01L 9/08 20060101ALI20201016BHEP

Ipc: G01L 1/14 20060101AFI20201016BHEP

Ipc: H01L 41/113 20060101ALI20201016BHEP

Ipc: H01L 41/08 20060101ALI20201016BHEP

Ipc: G01L 1/16 20060101ALI20201016BHEP

Ipc: G01L 1/18 20060101ALI20201016BHEP

Ipc: H01L 27/20 20060101ALI20201016BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221219

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515