EP2830779B1 - Trockeneis-reinigungseinrichtung und verfahren für eine lackieranlage - Google Patents

Trockeneis-reinigungseinrichtung und verfahren für eine lackieranlage Download PDF

Info

Publication number
EP2830779B1
EP2830779B1 EP13719014.6A EP13719014A EP2830779B1 EP 2830779 B1 EP2830779 B1 EP 2830779B1 EP 13719014 A EP13719014 A EP 13719014A EP 2830779 B1 EP2830779 B1 EP 2830779B1
Authority
EP
European Patent Office
Prior art keywords
dry
component
cleaned
ice
painting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13719014.6A
Other languages
English (en)
French (fr)
Other versions
EP2830779A1 (de
Inventor
Frank Herre
Marcus Frey
Michael Baumann
Georg M. Sommer
Thomas Buck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duerr Systems AG
Original Assignee
Duerr Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duerr Systems AG filed Critical Duerr Systems AG
Publication of EP2830779A1 publication Critical patent/EP2830779A1/de
Application granted granted Critical
Publication of EP2830779B1 publication Critical patent/EP2830779B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B14/00Arrangements for collecting, re-using or eliminating excess spraying material
    • B05B14/40Arrangements for collecting, re-using or eliminating excess spraying material for use in spray booths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0064Cleaning by methods not provided for in a single other subclass or a single group in this subclass by temperature changes
    • B08B7/0092Cleaning by methods not provided for in a single other subclass or a single group in this subclass by temperature changes by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/003Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material which dissolves or changes phase after the treatment, e.g. ice, CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C5/00Devices or accessories for generating abrasive blasts
    • B24C5/02Blast guns, e.g. for generating high velocity abrasive fluid jets for cutting materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0046Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a gaseous carrier
    • B24C7/0053Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a gaseous carrier with control of feed parameters, e.g. feed rate of abrasive material or carrier

Definitions

  • the invention relates to a cleaning device suitable for a painting installation for cleaning at least one component of the painting installation, in particular for cleaning a component of a painting robot or a handling robot, and a corresponding cleaning method.
  • a cleaning device suitable for a painting installation for cleaning at least one component of the painting installation, in particular for cleaning a component of a painting robot or a handling robot, and a corresponding cleaning method.
  • the cleaning device a system is meant, which may also include the components to be cleaned and, if necessary, moving devices therefor and possibly required program controls, motion controls and other particular automatic controls.
  • a common cleaning method is the spray cleaning process using detergent and compressed air to dry the components to be cleaned.
  • Another common cleaning method is the mechanical cleaning method with brush, which is usually used in combination with the spray cleaning process.
  • a disadvantage of this conventional cleaning method is the required large amount of time for drying, the consumption of detergent and the size of the required cleaning technology.
  • the mechanical cleaning method with brush also has the disadvantage that the brush is susceptible to wear and can be contaminated even by paint.
  • dissolved bristles may become caught on the components to be cleaned and later during the painting process e.g. fall on to be coated motor vehicle bodies or their attachments and damage them.
  • DE 10 2011 103 117 A1 or WO 2012/163491 A1 a painting installation for coating objects conveyed by a painting booth with painting robots and with nozzles arranged on the booth wall for cleaning the atomizers of the painting robots, the nozzles applying CO 2 snow or CO 2 pellets to the areas to be cleaned of the atomizers.
  • the object of the invention is to provide an alternative and / or improved for a paint shop cleaning device for cleaning components of a paint shop.
  • the invention provides a cleaning device suitable for a painting installation for cleaning at least one component of the painting installation, in particular at least one component of a painting robot or a handling robot, wherein at least one dry ice nozzle for producing a component cleaning dry jet and in typical cases for the application of dry ice on the is provided to be cleaned component.
  • dry ice in particular comprises at least one of the following: snow (preferably carbon dioxide snow), dry snow, carbon dioxide (CO 2 ) and / or a two-phase carbon dioxide mixture comprising carbon dioxide gas and carbon dioxide particles.
  • dry ice comprises alternatively or additionally any Grain sizes in solid state and / or in the form of isolated particles.
  • the dry ice or generally the carbon dioxide are preferably admixed or metered into a suitably pressurized carrier gas.
  • the invention provides for the first time a cleaning device with at least one dry ice nozzle for spraying dry ice onto a component to be cleaned, wherein both the cleaning device itself and the dry ice to be applied or sprayed are configured for use in a paint shop.
  • both the cleaning device itself and the dry ice to be applied or sprayed are configured for use in a paint shop.
  • the cleaning device itself must be configured for use in a paint shop (e.g., explosion proof, paint and solvent resistant, etc.), but also the dry ice produced.
  • conventional dry ice configurations applied for cleaning are unsuitable for use in paint shops, e.g. due to small particles of carbon dioxide or too large particles of carbon dioxide, with the result that the paint to be removed can not be removed adequately and / or the sensitive components to be cleaned are damaged.
  • a robot which guides the component to be cleaned and is preferably configured to position the component to be cleaned in front of the dry ice nozzle and / or move it relative to the dry ice nozzle during the cleaning operation (eg, rotate, transversely and / or rectilinear translational), whereby the component to be cleaned, for example can be cleaned over its entire outer circumference.
  • the distance between the dry ice nozzle and the component to be cleaned i. between the nozzle orifice and the surface of the component to be cleaned may preferably be between 1 mm and 30 mm during the irradiation.
  • the angle of the nozzle to the component surface can be suitably selected depending on the requirement.
  • the nozzle can also be aligned with the component so that the surface to be cleaned is only indirectly influenced or illuminated by the dry ice jet, since a "vorbeistrahlen" of the dry ice on the object to be cleaned can have a cleaning effect.
  • a "vorbeistrahlen" of the dry ice on the object to be cleaned can have a cleaning effect.
  • carbon dioxide carrier gas By passing carbon dioxide carrier gas, the embrittlement embrittled and then replaced.
  • the dry ice nozzle may be arranged in a stationary manner.
  • the area to be cleaned (for example, an atomizer) can be divided into several cleaning sections, which are then approached and cleaned sequentially and in freely configurable sequence. These cycles can be freely parameterized and adjusted according to the pollution. Fixed cycles are also possible.
  • the component to be cleaned can always pursue its actual task in the paint booth. Only all sections together will result in a completely clean component.
  • the cycles or times when the individual sections are cleaned can be freely programmed and set.
  • the dry ice nozzle prefferably guided by means of the robot.
  • the robot is preferably configured to position the dry ice nozzle in front of the component to be cleaned and / or moved relative to the component to be cleaned during the cleaning operation (e.g., rotated, transversely and / or linearly translationally), whereby the component to be cleaned is e.g. can be cleaned over its entire outer circumference.
  • the robots are configured to move both the dry ice nozzle and the component to be cleaned during the cleaning process.
  • the movement of the dry ice nozzle and the component to be cleaned can preferably take place in opposite directions and / or consecutively or simultaneously.
  • the dry ice nozzle may e.g. be firmly attached to a robot. However, it is also possible that the dry ice nozzle is exchangeably mounted on a robot and e.g. is automatically recorded / replaced by a robot before a cleaning process and / or automatically stored / replaced after a cleaning process.
  • a robot carries both a nebulizer or a handling tool (e.g., a handling robot gripping tool) and the dry ice nozzle.
  • the dry ice nozzle is expediently attached to the robot such that the function of the atomizer or of the handling tool is not impaired by the dry ice nozzle.
  • the dry ice nozzle may e.g. be shielded by a cover of the atomizer or the handling tool.
  • the dry ice nozzle may be made adjustable in its nozzle contour and / or in its orientation, e.g. to allow adaptation to different outer contours of the component to be cleaned in order to be able to be directed in different orientations (eg different cleaning angles) on the component to be cleaned and / or the dry ice with different beam configurations (eg different beam widening angles, different beam widths, etc.). ) to be able to dispense from the dry ice nozzle.
  • the cleaning device may comprise corresponding adjustment means, which are operatively connected to the dry ice nozzle.
  • dry ice nozzles are positioned or positionable at the same height, e.g. in order to simultaneously clean different areas of the outer periphery of the component to be cleaned.
  • dry ice nozzles it is possible for dry ice nozzles to be positioned or positionable at different heights, e.g. in order to be able to clean simultaneously differing areas of the component to be cleaned (for example a bell cup, an electrode holder portion, in particular an electrode ring or electrode fingers, and / or a robot hand axis).
  • the dry ice nozzles may be arranged or arranged to cover the preferably entire outer periphery of the component to be cleaned during the cleaning process.
  • the dry ice nozzle is directed downwards during a cleaning process, so that detached dirt particles are discharged downwards.
  • This can e.g. be achieved by means of the mentioneddeeisdüsenverstellfunktion and / or by means of the dry ice nozzle carrying robot.
  • a protective element in particular a protective plate or a housing or a collecting funnel with or without suction) in order to prevent that dirt particles or dry ice detached during cleaning impinge on a component to be painted.
  • the cleaning device is preferably constructed in such a way that internal flushing processes, for example of an atomizer, can take place parallel to the cleaning by means of dry ice and expediently independent of the atomizer alignment (eg bell-plate axis obliquely in space; Etc.).
  • the component to be cleaned can be at least one of the following: an atomizer, which is guided by a painting robot; a handle (e.g., an opener or opener tool of a handling robot, particularly for opening doors, hoods, or flaps); a hand axis of a robot; a proximal robotic arm of a robot; a distal robot arm of a robot; a cabin wall of a paint booth, in particular a window pane in the cabin wall; a floor of a painting booth, in particular a grid in the floor of the painting booth; a guide rail for a robot (e.g., for moving the robot); a conveyor for transporting components to be painted by the paint shop; an electrode support ring of an atomizer; Light grid; silhouettes; Silhouette doors; components to be painted; and / or a frame for hanging of components to be painted.
  • a paint shop that are colored by paint particles, e.g. Overspray, can be contaminated, cleaned by means of the cleaning device
  • the cleaning device may e.g. be equipped with a supply device for supplying the dry ice with the dry ice or carbon dioxide to produce dry ice. Furthermore, a ring line for connecting the supply device with a plurality of dry ice nozzles via a respective branch line which branches off from the ring line to the respective dry ice nozzle may be provided.
  • a sensor in particular a camera sensor is provided, which determines the cleaning result.
  • this also includes monitoring of the cleaning process.
  • a temperature sensor may be provided which determines the temperature of the component to be cleaned. This can be useful cleaning performance (For example, the cleaning result) are preferably monitored virtually online.
  • the atomizer could partially evaluate the cleaning result itself, eg by measuring the current and / or the voltage at standstill / idle. From this, the success of the cleaning or generally the cleaning result can be determined.
  • the dry ice may be at least partially composed of a carbon dioxide mixture comprising carbon dioxide gas and carbon dioxide particles.
  • the dry ice dispensed by the dry ice nozzle is thus preferably two- or more-phase (comprising carbon dioxide gas and carbon dioxide particles, if appropriate with transport air or another carrier gas).
  • the cleaning device in particular the dry ice nozzle, is configured such that the carbon dioxide, in particular the carbon dioxide mixture, is miscible with a pressurized carrier gas prior to leaving the dry ice nozzle, in particular can be mixed with a pressurized carrier gas.
  • the cleaning means may comprise a carrier gas supply means and / or a mixing means (e.g., a mixing chamber or the agglomeration chamber mentioned below) for mixing carbon dioxide, particularly the carbon dioxide mixture, with the pressurized carrier gas.
  • the pressurized carrier gas is preferably compressed air.
  • the carbon dioxide can be admixed to the carrier gas in the context of the invention and / or vice versa.
  • the purifier is thus conveniently configured to mix carbon dioxide, particularly the biphasic carbon dioxide mixture, with a pressurized carrier gas.
  • the cleaning device comprises a heating device for heating the pressurized carrier gas.
  • the surface to be cleaned is heated with a downstream fan with warm air in order to prevent it from falling below the dew point on the surface of the object to be cleaned. Heating may also be accomplished by other heating methods such as infrared radiation and other methods known in the art.
  • an electrical heating device such as e.g. a heating coil or a heating wire be incorporated to prevent excessive cooling of the surface.
  • the cleaning device may comprise an agglomeration chamber, to which fluid carbon dioxide can be supplied and in which a carbon dioxide mixture comprising carbon dioxide gas and carbon dioxide particles, and thus expediently two-phase, can be formed by agglomeration of carbon dioxide snow crystals.
  • the carbon dioxide in particular the carbon dioxide mixture, may be mixed in the agglomeration chamber and / or said mixing chamber with a pressurized carrier gas (e.g., compressed air), e.g. be metered via a dosing agent.
  • a pressurized carrier gas e.g., compressed air
  • the mixing chamber and the agglomeration chamber can be connected to one another, for example, via a metering opening. But it is also possible that the agglomeration chamber and the mixing chamber overlap at least partially or the agglomeration chamber and the mixing chamber are one and the same chamber.
  • the mixing and / or agglomeration chamber is preferably located near or in front of the dry ice nozzle.
  • liquid carbon dioxide supplied to the agglomeration chamber is preferably expanded in the agglomeration chamber and / or at least partially converted into carbon dioxide crystals which are compressed and / or agglomerated.
  • the cleaning device may comprise at least one adjusting device (eg, a control and / or regulating device) to adjust the amount, pressure and / or temperature of the carrier gas for the carbon dioxide and / or carbon dioxide to produce the dry ice, whereby the cleaning effect can be influenced appropriately, eg before and / or during the cleaning process.
  • the setting can be regulated in a closed loop.
  • a continuous cooler between agglomeration chamber and carbon dioxide supply can be switched, in order then to allow a temperature control of the carbon dioxide.
  • the temperature control of the cooler can be freely parameterized, also via the robot controller.
  • a device is contained in the CO 2 supply, which prevents gas bubbles possibly occurring in the supply line of the liquid CO 2 supply, for example with a buffer bottle, in order to obtain a stable cleaning result.
  • the cleaning device may also comprise at least one control unit for checking (eg monitoring, detection, etc.) of at least one parameter which allows conclusions to be drawn on at least one of the following, in particular one of the following: pressure, quantity and / or temperature of Carbon dioxide for the production of dry ice; Pressure, amount and / or temperature of the dry ice itself; Pressure, quantity and / or temperature the carrier gas; Room temperature; Cleaning distance between dry ice nozzle and component to be cleaned; Position of the component to be cleaned; Orientation of the component to be cleaned; Position of the dry ice nozzle; Orientation (eg cleaning angle) of the dry ice nozzle; and / or temperature of the component to be cleaned.
  • the control unit may include, for example, measuring and / or sensor devices.
  • At least one output variable of the cleaning device is adjustable in dependence on at least one of the above-mentioned monitored parameters by means of at least one setting device (eg a control and / or regulating device) and the output variable is selected from at least one of the following: alignment (eg Cleaning angle) of the dry ice nozzle relative to the component to be cleaned; Amount, pressure and / or temperature of the carbon dioxide to produce the dry ice; Amount, pressure and / or temperature of the dry ice itself; Amount, pressure and / or temperature of the carrier gas; Cleaning distance between dry ice nozzle and component to be cleaned; Cleaning time; Cleaning interval; Positioning and / or moving parameters of the robot carrying the dry ice nozzle; and / or positioning and / or movement parameters of the robot carrying the component to be cleaned.
  • alignment eg Cleaning angle
  • the output variable is selected from at least one of the following: alignment (eg Cleaning angle) of the dry ice nozzle relative to the component to be cleaned; Amount, pressure and / or temperature of the carbon dioxide to
  • the cleaning device is suitably carried out explosion-proof, for example by means of grounded components, explosion-proof electrical components, electrically conductive materials, etc .. These are the statutory Basic principles for explosion protection of countries such as the ATEX Directive 94/9 / EC for Europe.
  • the cleaning device may comprise a valve, which preferably closes automatically for safety reasons or at least reduces carbon dioxide emissions, if by means of a detection device (eg a sensor) a successful or potential, in particular imminent excessive carbon dioxide leakage is detected.
  • the cleaning device and in particular the dry ice nozzle is preferably configured so that it can clean the component to be cleaned essentially exposed by the dry ice, so that e.g. Cleaning containers customary in the state of the art, into which the atomizers to be cleaned have to be introduced, are not required.
  • a cleaning container into which the components to be cleaned can be guided in order to be cleaned in the cleaning container by the dry ice preferably comprises an air flow generating means which generates a downward flow of air to guide down debris or dry ice discharged, e.g. beyond a paint booth floor (e.g., a grate) out of a paint booth.
  • the adjustment of pressure and / or temperature of the carrier gas and / or of the carbon dioxide can preferably take place via a pressure regulator and / or a proportional valve, for example in order to influence the consumption quantities and / or cleaning action.
  • a pressure regulator and / or a proportional valve for example in order to influence the consumption quantities and / or cleaning action.
  • These may be arranged centrally or decentrally, wherein carbon dioxide control valves are expediently arranged in the vicinity of the dry ice nozzles. However, the control can be done centrally.
  • the carrier gas is preferably pressurized (e.g., compressed air).
  • the carrier gas serves, in particular, to accelerate the dry ice (for example in the form of the two-phase carbon dioxide mixture), preferably at supersonic speed.
  • the acceleration of the mixture of transport air or other carrier gas and carbon dioxide to supersonic can, for example, be done by a shaped according to the Laval850 nozzle.
  • Laval nozzle geometries are well known in the art.
  • the carbon dioxide fed to the agglomeration chamber is expediently fluid, in particular liquid.
  • the dry ice is preferably output as a dry ice jet from the dry ice nozzle.
  • the paint shop is preferably a paint shop for painting motor vehicle bodies and / or their attachments (e.g., bumpers, bumpers, bumpers, etc.).
  • the mentioned robots are preferably painting or handling robots.
  • the robots include any, preferably multi-axis, automatic movement machines.
  • the invention also includes a paint shop having a cleaning device as described herein.
  • the invention comprises a cleaning method to be used in a painting installation for cleaning at least one component of the painting installation, in particular at least one component of a painting robot or a handling robot, wherein dry ice is applied to the component to be cleaned for cleaning. Further method steps according to the invention will become apparent from the foregoing description of the cleaning device and the description below.
  • FIG. 1 shows a plan view of a part of a paint shop in the form of a paint booth 100, for example, for vehicle bodies or their cultivation and other parts and a cleaning device 1 according to an embodiment of the invention.
  • the cleaning device 1 comprises at least one dry ice nozzle 2 for the application of dry ice to a component B to be cleaned.
  • the dry ice is dispensed from the dry ice nozzle 2 in the form of a dry ice jet, in particular a carbon dioxide snow jet.
  • the component B to be cleaned is carried and guided by a robot RB which is configured to position the component B to be cleaned in front of the dry ice nozzle 2 and move it relative to the dry ice nozzle 2 during the cleaning operation, e.g. rotates, moves transversally or translatorily.
  • the dry ice nozzle 2 is arranged stationarily in the paint booth 100.
  • robots RB may typically be painting robots and / or handling robots, and component B may be atomizers or handling tools.
  • the cleaning device 1 comprises a supply device V for supplying the dry ice nozzle 2 with the dry ice or generally carbon dioxide for producing the dry ice.
  • the cleaning device 1 comprises a main supply line RL for connecting the supply device V with a plurality of dry ice nozzles 2 via a respective branch line SL, which branches off from the ring line RL to the respective dry ice nozzle 2.
  • the cleaning device 1 also comprises an in FIG. 1 control unit KE shown only schematically (eg, camera sensor, temperature sensor, etc.) for controlling at least one parameter that allows a conclusion on the cleaning device 1 associated hardware components, the required for the production of dry ice components (eg carbon dioxide and carrier gas), the cleaning process , especially the cleaning result, etc ..
  • KE shown only schematically (eg, camera sensor, temperature sensor, etc.) for controlling at least one parameter that allows a conclusion on the cleaning device 1 associated hardware components, the required for the production of dry ice components (eg carbon dioxide and carrier gas), the cleaning process , especially the cleaning result, etc ..
  • dry ice components eg carbon dioxide and carrier gas
  • control unit KE is in FIG. 1 separated from the dry ice nozzle 2 and the robot RB shown. In the context of the invention, however, it is possible that the control unit KE is formed in or on the robot RB, on or in the dry ice nozzle 2 and / or at another suitable position.
  • At least one output of the cleaning device 1 can be set, for example, regulated and / or controlled to the cleaning device 1 associated hardware components, the required for the production of dry ice components (eg carbon dioxide and carrier gas), the cleaning process, especially the cleaning result, etc to be able to adjust as required.
  • dry ice components eg carbon dioxide and carrier gas
  • the cleaning device 1 is designed explosion-proof.
  • the cleaning device 1 also comprises a valve SV, which closes automatically for safety reasons or a carbon dioxide emission at least reduced if by means of a detection device (eg a sensor) a successful or potential, eg imminent excessive carbon dioxide leakage is detected.
  • a detection device eg a sensor
  • the valve SV is shown at the outlet of the supply device V, but can be positioned at a variety of other suitable locations.
  • Fig. 2 shows a partially schematic side view of a portion of a cleaning device 1 according to another embodiment of the invention.
  • FIG. 2 two dry ice nozzles 2 are shown, which are each supported by a schematically indicated robot RT and movably guided.
  • the dry ice nozzles 2 emit dry ice 3 in the form of a dry ice jet.
  • the robots RT are configured to position the dry ice nozzles 2 in front of the component B to be cleaned, here shown as a rotary atomizer, and to move relative to the component to be cleaned during the cleaning process.
  • the robot RT can feed the dry ice nozzles 2 e.g. rotate at least partially around the component to be cleaned B, so that by means of only one dry ice nozzle 2, the entire outer periphery of the component to be cleaned B can be cleaned.
  • the upper dry ice nozzle 2 cleans an electrode ring of an atomizer and the lower dry ice nozzle 2 cleans a sprayer housing and / or the bell cup of the atomizer.
  • a robot RT which is configured so that it positions the dry ice nozzle 2 in front of the component B to be cleaned and during the cleaning process eg up / down to different sections of the component to be cleaned B moves (eg, from the electrode ring or electrode fingers to the atomizer housing and subsequently to the bell cup and optionally the hand axis of the robot RB).
  • a robot RT which is configured so that it positions the dry ice nozzle 2 in front of the component B to be cleaned and during the cleaning process eg up / down to different sections of the component to be cleaned B moves (eg, from the electrode ring or electrode fingers to the atomizer housing and subsequently to the bell cup and optionally the hand axis of the robot RB).
  • the dry ice nozzles 2 can be permanently or interchangeably mounted on the robots RT. In the latter variant, it is possible that the dry ice nozzles 2 are automatically deposited after a cleaning process and are taken before a cleaning process. For this purpose, the dry ice nozzles 2 carrying robot RT can be configured accordingly.
  • the dry ice nozzles 2 comprise an in FIG. 2 schematically shown protective element S, which is designed as a fender or protective housing, to prevent that detached during the cleaning dirt particles or dry ice 3 meet a component to be painted.
  • Cleaning device 1 shown is designed so that the component to be cleaned B can be cleaned substantially exposed by the dry ice 3, and thus can be dispensed with in the prior art conventional cleaning container into which the component to be cleaned must be introduced.
  • the cleaning device 1 comprises an air flow generating device LE, which generates a downward flow of air to lead cleaned dirt or dry ice out 3 down, preferably on a Lackierkabinenboden in the form of a grid from the spray booth 100 addition. It should be mentioned, however, that the cleaning device 1 may well include a cleaning container, in which the component B to be cleaned, for example by means of of the robot RB is introduced to clean it by means of at least one dry ice nozzle 2.
  • FIG. 2 also shows a schematically illustrated adjustment ER, which is exemplarily with the robots RT carrying the dry ice nozzles 2, the dry ice nozzles 2 and the robot RB carrying the component B to be cleaned in order to adjust them as required.
  • the adjusting device ER can also be used, for example, to set the amount, pressure and temperature of the carbon dioxide-miscible carrier gas and of the carbon dioxide to produce the dry ice 3. It is possible to have an adjustment device ER, which possibly consists of several subunits, as in FIG FIG. 1 provide to set several components. However, it is also possible to provide a plurality of adjusting devices, each of which is associated with only a single component, for example.
  • both a dry ice nozzle 2 to be carried and guided by a robot RT and the component B to be cleaned by a robot RB and to be moved relative to one another during the cleaning process.
  • the movements are arbitrary.
  • the component to be cleaned B relative to the dry ice nozzle 2 for example, be rotated and moved translationally.
  • the dry ice nozzle 2 for example, at least partially to the cleaning component B is rotated and simultaneously or successively the dry ice nozzle 2 along the component to be cleaned is moved (for example, from the bell cup to the electrode ring).
  • the movements of the dry ice nozzle 2 and the component B to be cleaned can take place simultaneously or successively.
  • FIG. 2 shown dry ice nozzles 2 similar to in FIG. 1 even without the robot RT can be arranged, in particular stationary.
  • the component B to be cleaned can again be positioned in front of the dry ice nozzles 2 by the robot RB carrying and guiding it and moved relative to the dry ice nozzles 2, eg rotated (arrow P1) and / or moved transversally / translationally (arrow P2) ,
  • FIG. 3 shows a schematic diagram of a dry ice nozzle 2 a cleaning device 1 according to an embodiment of the invention.
  • the dry ice nozzle 2 comprises an agglomeration chamber AK which can be supplied with fluid carbon dioxide (CO 2) and in which a two-phase carbon dioxide mixture comprising carbon dioxide gas and carbon dioxide particles can be formed by agglomeration of carbon dioxide snow crystals.
  • the agglomeration chamber AK supplied liquid carbon dioxide is expanded in the agglomeration AK and carbon dioxide crystals are formed, which are compressed and agglomerated.
  • the carbon dioxide mixture is mixed in the agglomeration chamber AK with a pressurized carrier gas TG (eg compressed air), preferably in order to accelerate it.
  • a pressurized carrier gas TG eg compressed air
  • the agglomeration chamber AK for example via a metering is connected to a mixing device in the form of a mixing chamber, and the carbon dioxide mixture is mixed in the mixing chamber with the pressurized carrier gas TG.
  • the agglomeration chamber AK assumes the function of a mixing chamber, so that the agglomeration chamber and the mixing chamber are virtually one and the same chamber.
  • FIG. 3 shows that the dry ice 3 consists at least partially of carbon dioxide, in particular a two-phase carbon dioxide mixture comprising carbon dioxide gas and carbon dioxide particles.
  • the two-phase carbon dioxide mixture is mixed with the pressurized carrier gas TG prior to application of the dry ice 3 from the dry ice nozzle 2 in the agglomeration and / or mixing chamber.
  • the dry ice discharged from the dry ice nozzle 2 is thus preferably a two-phase carbon dioxide mixture which is provided with a pressurized carrier gas TG, and in particular in the form of a carbon dioxide snow jet is discharged from the dry ice nozzle 2.
  • the dry ice nozzle 2 is adjustable in its nozzle contour (for example, the beam widening angle can be changed, as indicated by the arrow P3).
  • the dry ice nozzle 2 may comprise an adjustment function in order to be able to change its orientation, in particular the cleaning angle.
  • the cleaning device 1 may also have a in FIG. 3 schematically indicated carrier gas heater TE for heating the carrier gas TG have.
  • the cleaning device 1 can comprise a plurality of dry ice nozzles 2, which are arranged so fixed or can be arranged so that they can preferably cover the entire outer circumference of the component B to be cleaned and / or that they correspond to the outer contour of the component B to be cleaned can.
  • a robot carries both a nebulizer and a dry ice nozzle, which is attached to the robot and arranged so that the function of the nebulizer is not affected by the dry ice nozzle.
  • the dry ice nozzle may e.g. be shielded by a cover of the atomizer.
  • FIG. 4 shows the possibility of partially irradiating the object to be cleaned partially with dry ice and cleaning, using the example of an application component 40 shown schematically as a rotary atomizer Fig. 4
  • Upper part of this component 40 can be directly irradiated (not shown), while the lower portion 41 in the vicinity of the bell cup 44 is indirectly illuminated and cleaned.
  • the dry ice nozzle 42 is thus not directed directly to the here cylindrical or conical surface of the region 41, but arranged so that the dry ice jet 43 laterally or tangentially past the surface to be cleaned.
  • This "Vorbeistrahlen" has the advantage that, for example, the surface to be cleaned is not deformed or damaged by the impact of the particles.
  • the Vorbeistrahlen the cold carbon dioxide carrier gas mixture in this case causes a cooling of the contaminated surface and removal of pollution by the air flow.
  • other surfaces can also be illuminated indirectly and be cleaned, while again other component areas can be cleaned by direct application of dry ice to the respective component.
  • FIG. 5 shows a possible division of the surface of a coating device 50, which is divided into sections for sequential cleaning.
  • the coating device 50 is a part of the rotary atomizer of a painting robot (not shown, but see robot RB and component B in FIG Fig. 2 ) with adjoining areas or sections 51, 52, 53 and 54.
  • Each section can be approached separately with a painting robot and then cleaned by the painting robot rotating the coating device 50 in the programmed position 360 ° around the dry ice nozzle. After this cleaning, the painting robot can continue its "normal" paint job until the next section is about to be cleaned.
  • the control of the various cycles and dependencies are specified by the robot controller, or they can also be determined and implemented, for example, depending on the degree of contamination by visual measurement methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cleaning In General (AREA)
  • Manipulator (AREA)
  • Spray Control Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Nozzles (AREA)

Description

  • Die Erfindung betrifft eine für eine Lackieranlage geeignete Reinigungseinrichtung zur Reinigung zumindest eines Bauteils der Lackieranlage, insbesondere zur Reinigung eines Bauteils eines Lackierroboters oder eines Handhabungsroboters, und ein entsprechendes Reinigungsverfahren. Mit der Reinigungseinrichtung ist ein System gemeint, das auch die zu reinigenden Bauteile und ggf. Bewegungsvorrichtungen hierfür sowie ggf. erforderliche Programmsteuerungen, Bewegungssteuerungen und sonstige insbesondere automatische Steuerungen umfassen kann.
  • Beim Lackieren von Kraftfahrzeugkarosserien und deren Anbauteilen kommt es unvermeidbar zu einer Verschmutzung der in der Lackieranlage eingesetzten Bauteile, wie z.B. Zerstäuber, Tür- oder Haubenöffner ("Openertools"), Gitterroste, Roboterteile, Lackierkabinenwände, etc., durch ausgegebenen Lacknebel, Lacktropfen, Lackoverspray, usw.. Für die deshalb in regelmäßigen Abständen erforderliche Reinigung sind verschiedene Reinigungseinrichtungen und Reinigungsverfahren bekannt, die jedoch mit einigen Nachteilen verbunden sind.
  • Ein übliches Reinigungsverfahren ist das Sprühreinigungsverfahren mittels Spülmittel und Druckluft zum Trocknen der zu reinigenden Bauteile. Ein weiteres übliches Reinigungsverfahren ist das mechanische Reinigungsverfahren mit Bürste, das meist in Kombination mit dem Sprühreinigungsverfahren zur Anwendung kommt.
  • Nachteilig an diesen üblichen Reinigungsverfahren ist der erforderliche große Zeitaufwand für die Trocknung, der Spülmittelverbrauch und die Baugröße der erforderlichen Reinigungstechnik. Bei dem mechanischen Reinigungsverfahren mit Bürste besteht ferner der Nachteil, dass die Bürste verschleißanfällig ist und selbst durch Lack verschmutzt werden kann. Außerdem können gelöste Borsten an den zu reinigenden Bauteilen hängen bleiben und später während des Lackierprozesses z.B. auf zu beschichtende Kraftfahrzeugkarosserien oder deren Anbauteile fallen und diese beschädigen.
  • Zur Vorbehandlung von nachfolgend zu lackierenden oder zu beschichtenden Gegenständen wie beispielsweise Stoßfängern oder Felgen von Kraftfahrzeugen ist es bereits bekannt, diese Gegenstände mittels von Robotern geführter Strahldüsen mit partikelförmigem Trockeneis zu reinigen ( WO 01/17726 A1 , DE 10 2007 033 788 A1 , DE 102 51 815 A1 und DE 10 2007 027 618 A1 ). Hierbei handelt es sich aber nicht um die Reinigung von Bauteilen der jeweiligen Lackier- oder Beschichtungsanlage.
  • Ferner offenbaren DE 10 2011 103 117 A1 oder WO 2012/163491 A1 eine Lackieranlage zum Beschichten von durch eine Lackierkabine geförderten Gegenständen mit Lackierrobotern und mit an der Kabinenwand angeordneten Düsen zum Reinigen der Zerstäuber der Lackierroboter, wobei die Düsen CO2-Schnee oder CO2-Pellets auf die zu reinigenden Bereiche der Zerstäuber applizieren.
  • Aufgabe der Erfindung ist es, eine alternative und/oder verbesserte für eine Lackieranlage geeignete Reinigungseinrichtung zum Reinigen von Bauteilen einer Lackieranlage zu schaffen.
  • Diese Aufgabe kann insbesondere durch die Merkmale der unabhängigen Ansprüche gelöst werden. Vorteilhafte Weiterbildungen sind in den Unteransprüchen beschrieben.
  • Die Erfindung sieht eine für eine Lackieranlage geeignete Reinigungseinrichtung zur Reinigung zumindest eines Bauteils der Lackieranlage, insbesondere zumindest eines Bauteils eines Lackierroboters oder eines Handhabungsroboters, vor, wobei mindestens eine Trockeneisdüse zur Erzeugung eines das Bauteil reinigenden Trockeneinstrahls und in typischen Fällen zur Applikation von Trockeneis auf das zu reinigende Bauteil vorgesehen ist. Im Rahmen der Erfindung umfasst "Trockeneis" insbesondere zumindest eines von folgenden: Schnee (vorzugsweise Kohlendioxid-Schnee), Trockenschnee, Kohlendioxid (CO2) und/oder ein zweiphasiges Kohlendioxidgemisch, das Kohlendioxidgas und Kohlendioxidpartikel aufweist. Im Rahmen der Erfindung umfasst "Trockeneis" alternativ oder ergänzend beliebige Korngrößen in festem Aggregatszustand und/oder in Form vereinzelter Partikel. Außerdem kann im Rahmen der Erfindung das Trockeneis oder allgemein das Kohlendioxid vorzugsweise einem zweckmäßig druckbeaufschlagten Trägergas zugemischt bzw. zudosiert werden.
  • Die Erfindung schafft erstmals eine Reinigungseinrichtung mit mindestens einer Trockeneisdüse zum Absprühen von Trockeneis auf ein zu reinigendes Bauteil, wobei sowohl die Reinigungseinrichtung an sich als auch das zu applizierende bzw. abzusprühende Trockeneis für den Einsatz in einer Lackieranlage konfiguriert ist. Zu erwähnen ist, dass nicht nur die Reinigungseinrichtung an sich für den Einsatz in einer Lackieranlage konfiguriert sein muss (z.B. explosionsgeschützt, lack- und lösemittelbeständig, etc.), sondern auch das erzeugte Trockeneis. So sind herkömmliche, zur Reinigung applizierte Trockeneiskonfigurationen für den Einsatz in Lackieranlagen ungeeignet, z.B. aufgrund zu kleiner Kohlendioxid-Partikel oder zu großer Kohlendioxid-Partikel, mit der Folge, dass zu entfernender Lack nicht angemessen entfernt werden kann und/oder die empfindlichen zu reinigenden Bauteile beschädigt werden.
  • Das Reinigen von Gegenständen durch Besprühen mit Trockeneis ist an sich bekannt. Aus der vorstehenden Erläuterung ergibt sich aber, dass die bekannten Trockeneisreinigungsverfahren und Trockeneisreinigungseinrichtungen für den insbesondere automatisierten Einsatz in Lackieranlagen ungeeignet sind, z.B. aufgrund nicht vorhandener Lackbeständigkeit, nicht vorhandener Spül-/Lösemittelbeständigkeit, nicht vorhandener Labs-Freiheit (frei von lackbenetzungsstörenden Substanzen), nicht vorhandenem, in Lackieranlagen aber zwingend erforderlichem Explosionsschutz, nicht geeigneter Trockeneiskonfiguration, etc..
  • Bei einer bevorzugten Ausführungsform der Erfindung ist ein Roboter vorgesehen, der das zu reinigende Bauteil führt und der vorzugsweise so konfiguriert ist, dass er das zu reinigende Bauteil vor die Trockeneisdüse positioniert und/oder während des Reinigungsvorgangs relativ zu der Trockeneisdüse bewegt (z.B. dreht, transversal und/oder geradlinig translatorisch), wodurch das zu reinigende Bauteil z.B. über seinen gesamten Außenumfang gereinigt werden kann.
  • Der Abstand zwischen der Trockeneisdüse und dem zu reinigenden Bauteil, d.h. zwischen der Düsenmündung und der zu reinigenden Fläche des Bauteils kann bei der Bestrahlung vorzugsweise zwischen 1mm und 30mm liegen. Hierbei kann der Anstrahlwinkel der Düse zu der Bauteilfläche zweckmäßig je nach Anforderung gewählt werden.
  • Die Düse kann auch so zu dem Bauteil ausgerichtet sein, dass die zu reinigende Fläche lediglich indirekt von dem Trockeneisstrahl beeinflusst bzw. angestrahlt wird, da auch ein "Vorbeistrahlen" des Trockeneises an dem zu reinigenden Objekt eine reinigende Wirkung haben kann. Hierbei wird durch das Abkühlen der Verschmutzung, z.B. durch vorbeiströmendes Kohlendioxid-Trägergas, die Verschmutzung versprödet und dann abgelöst.
  • Insbesondere bei derartigen, aber auch bei anderen Ausführungsformen der Erfindung kann die Trockeneisdüse ortsfest angeordnet sein.
  • Ferner kann die zu reinigende Fläche (bspw. eines Zerstäubers) in mehrere Reinigungssektionen eingeteilt werden, die dann sequentiell und in frei parametrierbarer Reihenfolge angefahren und gereinigt werden. Diese Zyklen können frei parametrierbar und entsprechend der Verschmutzung eingestellt werden. Auch fest eingestellte Zyklen sind möglich.
  • Zwischen den einzelnen Reinigungsvorgängen und Sektionen kann das zu reinigende Bauteil immer wieder seiner eigentlichen Aufgabe in der Lackierkabine nachgehen. Lediglich alle Sektionen zusammen ergeben dann ein komplett sauberes Bauteil.
  • Die Zyklen bzw. Zeiten, wann die einzelnen Sektionen gereinigt werden, können frei programmiert und eingestellt werden.
  • Ebenfalls möglich ist es, die verschiedenen Sektionen in verschiedene Abhängigkeiten zueinander zu setzen, so dass ein Teil, bspw. der untere Teil einer Lackiereinrichtung, immer vor den anderen Sektionen gereinigt wird. Dies kann mit spezieller Software und einem Zyklenzähler mit Abhängigkeiten realisiert werden.
  • Es ist möglich, dass die Trockeneisdüse von einem Roboter getragen und mittels des Roboters beweglich führbar ist. Der Roboter ist vorzugsweise so konfiguriert, dass er die Trockeneisdüse vor das zu reinigende Bauteil positioniert und/oder während des Reinigungsvorgangs relativ zu dem zu reinigenden Bauteil bewegt (z.B. dreht, transversal und/oder geradlinig translatorisch), wodurch das zu reinigende Bauteil z.B. über seinen gesamten Außenumfang gereinigt werden kann.
  • Bei einer speziellen Ausführungsform der Erfindung sind die Roboter so konfiguriert, dass sowohl die Trockeneisdüse als auch das zu reinigende Bauteil während des Reinigungsprozesses bewegt werden. Die Bewegung der Trockeneisdüse und des zu reinigenden Bauteils kann vorzugsweise in entgegengesetzte Richtungen erfolgen und/oder hintereinander oder gleichzeitig.
  • Die Trockeneisdüse kann z.B. fest an einem Roboter montiert sein. Es ist aber auch möglich, dass die Trockeneisdüse auswechselbar an einem Roboter montiert ist und z.B. vor einem Reinigungsprozess von einem Roboter automatisch aufgenommen/ausgewechselt wird und/oder nach einem Reinigungsprozess automatisch abgelegt/ausgewechselt wird.
  • Bei einer Ausführungsform der Erfindung trägt ein Roboter sowohl einen Zerstäuber oder ein Handlingtool (z.B. ein Greifwerkzeug eines Handhabungsroboters) als auch die Trockeneisdüse. Die Trockeneisdüse ist dabei zweckmäßig so an dem Roboter angebracht, dass die Funktion des Zerstäubers oder des Handlingtools durch die Trockeneisdüse nicht beeinträchtigt wird. Zweckmäßig kann die Trockeneisdüse z.B. mittels einer Abdeckung von dem Zerstäuber oder dem Handlingtool abgeschirmt sein.
  • Die Trockeneisdüse kann in ihrer Düsenkontur und/oder in ihrer Ausrichtung verstellbar ausgeführt sein, z.B. um eine Anpassung an unterschiedliche Außenkonturen des zu reinigenden Bauteils zu ermöglichen, um in unterschiedlichen Ausrichtungen (z.B. unterschiedlichen Reinigungswinkeln) auf das zu reinigende Bauteil gerichtet werden zu können und/oder um das Trockeneis mit unterschiedlichen Strahlkonfigurationen (z.B. unterschiedlichen Strahlaufweitungswinkeln, unterschiedlichen Strahlbreiten, etc.) aus der Trockeneisdüse ausgeben zu können. Zu diesem Zweck kann die Reinigungseinrichtung entsprechende Einstellmittel umfassen, die mit der Trockeneisdüse wirkverbunden sind.
  • Bei einer bevorzugten Ausführungsform der Erfindung sind mehrere Trockeneisdüsen vorgesehen.
  • Es ist möglich, dass Trockeneisdüsen auf gleicher Höhe positioniert oder positionierbar sind, z.B. um gleichzeitig unterschiedliche Bereiche des Außenumfangs des zu reinigenden Bauteils reinigen zu können. Alternativ oder ergänzend ist es möglich, dass Trockeneisdüsen auf unterschiedlicher Höhe positioniert oder positionierbar sind, z.B. um gleichzeitig höhenmäßig differierende Bereiche des zu reinigenden Bauteils reinigen zu können (z.B. einen Glockenteller, einen Elektrodenhalterungsabschnitt, insbesondere Elektrodenring oder Elektrodenfinger, und/oder eine Handachse eines Roboters).
  • Die Trockeneisdüsen können so angeordnet sein oder angeordnet werden, dass sie den vorzugsweise gesamten Außenumfang des zu reinigenden Bauteils während des Reinigungsvorgangs abdecken.
  • Es ist möglich, dass die Trockeneisdüse während eines Reinigungsvorgangs nach unten gerichtet ist, so dass abgelöste Schmutzpartikel nach unten abgeführt werden. Das kann z.B. mittels der erwähnten Trockeneisdüsenverstellfunktion und/oder mittels des die Trockeneisdüse tragenden Roboters erzielt werden. Alternativ oder ergänzend ist es möglich, dass ein Schutzelement vorgesehen ist (insbesondere ein Schutzblech oder ein Gehäuse oder ein Auffangtrichter mit oder ohne Absaugung), um zu verhindern, dass bei der Reinigung abgelöste Schmutzpartikel oder Trockeneis auf ein zu lackierendes Bauteil auftreffen.
  • Die Reinigungseinrichtung ist vorzugsweise so aufgebaut, dass parallel zur Reinigung mittels des Trockeneises Innenspülprozesse z.B. eines Zerstäubers stattfinden können und zwar zweckmäßig unabhängig von der Zerstäuberausrichtung (z.B. Glockentellerachse-Achse schräg im Raum; Rohr, Bleche zum Auffangen, Umlenken der über den Glockenteller zerstäubten Medien, etc.).
  • Das zu reinigende Bauteil kann zumindest eines von folgenden sein: ein Zerstäuber, der von einem Lackierroboter geführt wird; ein Griff (z.B. ein Opener oder Openertool eines Handhabungsroboters, insbesondere zum Öffnen von Türen, Hauben oder Klappen); eine Handachse eines Roboters; ein proximaler Roboterarm eines Roboters; ein distaler Roboterarm eines Roboters; eine Kabinenwand einer Lackierkabine, insbesondere eine Fensterscheibe in der Kabinenwand; ein Boden einer Lackierkabine, insbesondere ein Gitterrost in dem Boden der Lackierkabine; eine Führungsschiene für einen Roboter (z.B. zum Verfahren des Roboters); ein Förderer zum Transportieren zu lackierender Bauteile durch die Lackieranlage; ein Elektrodenhalterungsring eines Zerstäubers; Lichtgitter; Silhouetten; Silhouettentüren; zu lackierende Bauteile; und/oder ein Gestell zum Aufhängen von zu lackierenden Bauteilen. Kurz gesagt können alle Bauteile einer Lackieranlage, die durch Lackpartikel, z.B. Overspray, kontaminiert werden können, mittels der Reinigungseinrichtung gereinigt werden.
  • Die Reinigungseinrichtung kann z.B. mit einer Versorgungsvorrichtung zur Versorgung der Trockeneisdüse mit dem Trockeneis oder Kohlendioxid zur Erzeugung von Trockeneis ausgestattet sein. Ferner kann eine Ringleitung zur Verbindung der Versorgungsvorrichtung mit mehreren Trockeneisdüsen über jeweils eine Stichleitung, die von der Ringleitung zu der jeweiligen Trockeneisdüse abzweigt, vorgesehen sein.
  • Es ist möglich, dass ein Sensor, insbesondere ein Kamerasensor vorgesehen ist, der das Reinigungsergebnis ermittelt. Im Rahmen der Erfindung ist damit auch ein Überwachen des Reinigungsvorgangs umfasst. Außerdem kann z.B. ein Temperatursensor vorgesehen sein, der die Temperatur des zu reinigenden Bauteils ermittelt. Dadurch kann zweckmäßig die Reinigungsleistung (z.B. das Reinigungsergebnis) vorzugsweise quasi online überwacht werden. Der Zerstäuber könnte teilweise das Reinigungsergebnis selbst auswerten, z.B. indem der Strom und/oder die Spannung im Stillstand/Leerlauf gemessen wird. Daraus kann der Erfolg der Reinigung oder allgemein das Reinigungsergebnis ermittelt werden.
  • Das Trockeneis kann zumindest teilweise aus einem Kohlendioxidgemisch bestehen, das Kohlendioxidgas und Kohlendioxidpartikel umfasst. Das von der Trockeneisdüse ausgegebene Trockeneis ist somit vorzugsweise zwei- oder mehrphasig (Kohlendioxidgas und Kohlendioxidpartikel umfassend, ggf. mit Transportluft oder einem anderen Trägergas).
  • Die Reinigungseinrichtung, insbesondere die Trockeneisdüse, ist so konfiguriert, dass das Kohlendioxid, insbesondere das Kohlendioxidgemisch, vor Austritt aus der Trockeneisdüse mit einem druckbeaufschlagten Trägergas mischbar ist, insbesondere einem druckbeaufschlagten Trägergas zumischbar ist. Zu diesem Zweck kann die Reinigungseinrichtung ein Trägergaszufuhrmittel und/oder eine Mischvorrichtung (z.B. eine Mischkammer oder die unten erwähnte Agglomerationskammer) zum Mischen von Kohlendioxid, insbesondere des Kohlendioxidgemischs, mit dem druckbeaufschlagten Trägergas umfassen. Das druckbeaufschlagte Trägergas ist vorzugsweise Druckluft. Das Kohlendioxid kann im Rahmen der Erfindung dem Trägergas zugemischt werden und/oder umgekehrt. Die Reinigungseinrichtung ist folglich zweckmäßig konfiguriert, um Kohlendioxid, insbesondere das zweiphasige Kohlendioxidgemisch, mit einem druckbeaufschlagten Trägergas zu mischen.
  • Es ist möglich, dass die Reinigungseinrichtung eine Heizeinrichtung zum Erwärmen des druckbeaufschlagten Trägergases umfasst.
  • Ferner kann es zweckmäßig sein, dass im Anschluss an die Reinigung die zu reinigende Fläche mit einem nachgeschalteten Gebläse mit Warmluft erwärmt wird, um ein Unterschreiten des Taupunktes an der Oberfläche des zu reinigenden Objektes zu verhindern. Das Erwärmen kann auch mit anderen Heizverfahren erfolgen wie beispielsweise mit Infrarotbestrahlung und anderen, aus dem Stand der Technik bekannten Verfahren.
  • Weiterhin ist es möglich, das zu reinigende Objekt durch interne Kanäle mit Warmluft zu versorgen, um dieses zu erwärmen. Ferner kann in das Objekt auch eine elektrische Heizvorrichtung wie z.B. eine Heizspirale oder ein Heizdraht eingearbeitet sein, um eine zu starke Abkühlung der Oberfläche zu verhindern.
  • Die Reinigungseinrichtung kann eine Agglomerationskammer umfassen, der fluides Kohlendioxid zuführbar ist und in der ein Kohlendioxidgemisch, das Kohlendioxidgas und Kohlendioxidpartikel umfasst und somit zweckmäßig zweiphasig ausgeführt ist, durch Agglomeration von Kohlendioxidschneekristallen bildbar ist. Das Kohlendioxid, insbesondere das Kohlendioxidgemisch, kann in der Agglomerationskammer und/oder der erwähnten Mischkammer mit einem druckbeaufschlagten Trägergas (z.B. Druckluft) vermischt werden, z.B. diesem über ein Dosiermittel zudosiert werden.
  • Die Mischkammer und die Agglomerationskammer können z.B. über eine Dosieröffnung miteinander verbunden sein. Es ist aber auch möglich, dass die Agglomerationskammer und die Mischkammer sich zumindest teilweise überschneiden oder die Agglomerationskammer und die Mischkammer ein und dieselbe Kammer sind. Die Misch- und/oder Agglomerationskammer ist vorzugsweise nahe vor der Trockeneisdüse oder darin angeordnet.
  • Das der Agglomerationskammer zugeführte zweckmäßig flüssige Kohlendioxid wird vorzugsweise in der Agglomerationskammer entspannt und/oder zumindest teilweise in Kohlendioxidkristalle überführt, die verdichtet und/oder agglomeriert werden.
  • Die Reinigungseinrichtung kann mindestens eine Einstelleinrichtung (z.B. eine Steuer- und/oder Regeleinrichtung) umfassen, um Menge, Druck und/oder Temperatur des Trägergases für das Kohlendioxid und/oder des Kohlendioxids zur Erzeugung des Trockeneises einzustellen, wodurch zweckmäßig die Reinigungswirkung beeinflusst werden kann, z.B. vor und/oder während des Reinigungsvorgangs. Die Einstellung kann in einem geschlossenen Regelkreis geregelt werden.
  • Zum Zweck der Temperierung kann bspw. ein Durchlaufkühler zwischen Agglomerationskammer und Kohlendioxidversorgung geschaltet werden, um dann eine Temperierung des Kohlendioxids zu ermöglichen. Die Temperaturregelung des Kühlers kann frei, auch über die Robotersteuerung, parametrierbar sein.
  • Weiterhin ist es möglich, dass in der CO2-Versorgung eine Vorrichtung enthalten ist, die in der Zuleitung eventuell auftretende Gasblasen der Flüssig-CO2-Versorgung verhindert, z.B. mit einer Pufferflasche, um so ein stabiles Reinigungsergebnis zu erhalten.
  • Die Reinigungseinrichtung kann außerdem mindestens eine Kontrolleinheit zur Kontrolle (z.B. Überwachung, Erfassung, etc.) mindestens eines Parameters umfassen, der einen Rückschluss auf zumindest eines von folgenden zulässt, insbesondere eines von folgenden mittelbar oder unmittelbar beschreibt: Druck, Menge und/oder Temperatur des Kohlendioxids zur Erzeugung des Trockeneises; Druck, Menge und/oder Temperatur des Trockeneises selbst; Druck, Menge und/oder Temperatur des Trägergases; Raumtemperatur; Reinigungsabstand zwischen Trockeneisdüse und zu reinigendem Bauteil; Position des zu reinigenden Bauteils; Ausrichtung des zu reinigenden Bauteils; Position der Trockeneisdüse; Ausrichtung (z.B. Reinigungswinkel) der Trockeneisdüse; und/oder Temperatur des zu reinigenden Bauteils. Die Kontrolleinheit kann z.B. Mess- und/oder Sensoreinrichtungen umfassen.
  • Ebenfalls möglich ist die Verwendung eines Gerätes zur Erhöhung des Kohlendioxiddruckes, um dann diesen frei über eine Kontrolleinheit dem Reinigungsprozess entsprechend zu parametrieren und zu variieren.
  • Es ist möglich, dass in Abhängigkeit von mindestens einem der oben erwähnten überwachten Parameter mittels mindestens einer Einstelleinrichtung (z.B. eine Steuer- und/oder Regeleinrichtung) zumindest eine Ausgangsgröße der Reinigungseinrichtung einstellbar ist und die Ausgangsgröße ausgewählt wird aus zumindest einem von folgenden: Ausrichtung (z.B. Reinigungswinkel) der Trockeneisdüse relativ zu dem zu reinigenden Bauteil; Menge, Druck und/oder Temperatur des Kohlendioxids zur Erzeugung des Trockeneises; Menge, Druck und/oder Temperatur des Trockeneises selbst; Menge, Druck und/oder Temperatur des Trägergases; Reinigungsabstand zwischen Trockeneisdüse und zu reinigendem Bauteil; Reinigungsdauer; Reinigungsintervall; Positionierungs- und/oder Bewegungsparameter des die Trockeneisdüse tragenden Roboters; und/oder Positionierungs- und/oder Bewegungsparameter des das zu reinigende Bauteil tragenden Roboters.
  • Die Reinigungseinrichtung ist zweckmäßig explosionsgeschützt ausgeführt, z.B. mittels geerdeter Komponenten, explosionsschutz-zugelassener elektrischer Komponenten, elektrisch leitfähigen Werkstoffen, etc.. Hierzu sind die gesetzlichen Grundlagen zum Ex-Schutz der Länder wie z.B. ATEX-Richtlinie 94/9/EG für Europa einzuhalten. Alternativ oder ergänzend kann die Reinigungseinrichtung ein Ventil umfassen, das aus Sicherheitsgründen vorzugsweise automatisch schließt oder einen Kohlendioxidausstoß zumindest reduziert, wenn mittels einer Erfassungseinrichtung (z.B. ein Sensor) ein erfolgter oder potentieller, insbesondere kurz bevorstehender übermäßiger Kohlendioxidaustritt festgestellt wird.
  • Die Reinigungseinrichtung und insbesondere die Trockeneisdüse ist vorzugsweise so konfiguriert, dass sie das zu reinigende Bauteil im Wesentlichen freiliegend durch das Trockeneis reinigen kann, so dass z.B. im Stand der Technik übliche Reinigungsbehälter, in die die zu reinigenden Zerstäuber eingeführt werden müssen, nicht erforderlich sind. Allerdings sind auch Ausführungsformen durch die Erfindung mit Reinigungsbehälter umfasst, in den die zu reinigenden Bauteile geführt werden können, um in dem Reinigungsbehälter durch das Trockeneis gereinigt zu werden. Bei der freiliegenden Reinigungsvariante umfasst die Reinigungseinrichtung vorzugsweise eine Luftstromerzeugungseinrichtung, die einen Luftstrom nach unten erzeugt, um abgereinigten Schmutz oder ausgegebenes Trockeneis nach unten zu führen, z.B. über einen Lackierkabinenboden (z.B. einen Gitterrost) aus einer Lackierkabine hinaus.
  • Zu erwähnen ist, dass die Einstellung von Druck und/oder Temperatur des Trägergases und/oder des Kohlendioxids vorzugsweise über einen Druckregler und/oder ein Proportionalventil erfolgen kann, z.B. um die Verbrauchsmengen und/oder Reinigungswirkung zu beeinflussen. Diese können zentral oder dezentral angeordnet sein, wobei Kohlendioxid-Regelventile zweckmäßigerweise in der Nähe der Trockeneisdüsen angeordnet sind. Die Ansteuerung kann jedoch zentral erfolgen.
  • Zu erwähnen ist außerdem, dass das Trägergas vorzugsweise druckbeaufschlagt ist (z.B. Druckluft). Das Trägergas dient insbesondere der Beschleunigung des Trockeneises (z.B. in Form des zweiphasigen Kohlendioxidgemischs) vorzugsweise auf Überschallgeschwindigkeit.
  • Die Beschleunigung des Gemisches aus Transportluft oder einem anderen Trägergas und Kohlendioxid auf Überschall kann bspw. durch eine nach dem Lavalprinzip geformten Düse geschehen. Derartige Laval-Düsengeometrien sind im Stand der Technik weitgehend bekannt.
  • Außerdem ist zu erwähnen, dass das der Agglomerationskammer zugeführte Kohlendioxid zweckmäßig fluidförmig, insbesondere flüssig, ist.
  • Ferner ist zu erwähnen, dass das Trockeneis vorzugsweise als Trockeneisstrahl aus der Trockeneisdüse ausgegeben wird.
  • Die Lackieranlage ist vorzugsweise eine Lackieranlage zum Lackieren von Kraftfahrzeugkarosserien und/oder deren Anbauteilen (z.B. Stoßstangen, Stoßleisten, Bumper, etc.).
  • Die erwähnten Roboter sind vorzugsweise Lackier- oder Handhabungsroboter. Die Roboter umfassen im Rahmen der Erfindung aber jedwede, vorzugsweise mehrachsige, Bewegungsautomaten.
  • Die Erfindung umfasst außerdem eine Lackieranlage mit einer wie hier beschriebenen Reinigungseinrichtung.
  • Außerdem umfasst die Erfindung ein in einer Lackieranlage anzuwendendes Reinigungsverfahren zur Reinigung zumindest eines Bauteils der Lackieranlage, insbesondere zumindest eines Bauteils eines Lackierroboters oder eines Handhabungsroboters, wobei zur Reinigung Trockeneis auf das zu reinigende Bauteil appliziert wird. Weitere erfindungsgemäße Verfahrensschritte ergeben sich aus der vorstehenden Beschreibung der Reinigungseinrichtung und der unten folgenden Figurenbeschreibung.
  • Obige erfindungsgemäßen Merkmale und Ausführungsformen sind beliebig miteinander kombinierbar. Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen offenbart oder ergeben sich aus der nachstehenden Beschreibung bevorzugter Ausführungsbeispiele der Erfindung in Verbindung mit den beigefügten Figuren.
  • Fig. 1
    zeigt eine Draufsicht auf einen Teil einer Lackieranlage in Form einer Lackierkabine und eine Reinigungseinrichtung gemäß einer Ausführungsform der Erfindung,
    Fig. 2
    zeigt eine Seitenansicht eines Teils einer Reinigungseinrichtung gemäß einer Ausführungsform der Erfindung,
    Fig. 3
    zeigt eine Prinzipskizze einer Trockeneisdüse einer Reinigungseinrichtung gemäß einer Ausführungsform der Erfindung,
    Fig. 4
    zeigt eine schematische Darstellung der indirekten Bestrahlung und Reinigung eines bestimmten Teils der Beschichtungseinrichtung, und
    Fig. 5
    zeigt eine mögliche Einteilung der Oberfläche eines zu reinigenden Bauteils für eine sequentielle Bestrahlung und Reinigung.
  • Die in den Figuren gezeigten Ausführungsformen stimmen teilweise überein, wobei ähnliche oder identische Teile mit den gleichen Bezugszeichen versehen sind, und zu deren Erläuterung auch auf die Beschreibung einer oder mehrerer anderer Ausführungsformen verwiesen wird, um Wiederholungen zu vermeiden.
  • Figur 1 zeigt eine Draufsicht auf einen Teil einer Lackieranlage in Form einer Lackierkabine 100 beispielsweise für Fahrzeugkarossen oder deren Anbau- und sonstige Teile und eine Reinigungseinrichtung 1 gemäß einer Ausführungsform der Erfindung. In Figur 1 sind der Übersichtlichkeit halber nur zwei Reinigungseinrichtungen 1 mit Bezugszeichen versehen, obwohl in der Figur 1 insgesamt sechs Reinigungseinrichtungen zu sehen sind. Die Reinigungseinrichtung 1 umfasst mindestens eine Trockeneisdüse 2 zur Applikation von Trockeneis auf ein zu reinigendes Bauteil B. Das Trockeneis wird von der Trockeneisdüse 2 in Form eines Trockeneisstrahls, insbesondere eines Kohlendioxidschneestrahls ausgegeben.
  • Das zu reinigende Bauteil B wird von einem Roboter RB getragen und geführt, der so konfiguriert ist, dass er das zu reinigende Bauteil B vor die Trockeneisdüse 2 positioniert und während des Reinigungsvorgangs relativ zu der Trockeneisdüse 2 bewegt, z.B. dreht, transversal oder translatorisch bewegt. Die Trockeneisdüse 2 ist ortsfest in der Lackierkabine 100 angeordnet. In dem dargestellten Beispiel kann es sich bei den Robotern RB typisch um Lackierroboter und/oder Handhabungsroboter handeln und bei dem Bauteil B um deren Zerstäuber bzw. Handhabungswerkzeug.
  • Die Reinigungseinrichtung 1 umfasst eine Versorgungsvorrichtung V zur Versorgung der Trockeneisdüse 2 mit dem Trockeneis oder allgemein Kohlendioxid zur Erzeugung des Trockeneises. Insbesondere umfasst die Reinigungseinrichtung 1 eine Hauptversorgungsleitung RL zur Verbindung der Versorgungsvorrichtung V mit mehreren Trockeneisdüsen 2 über jeweils eine Stichleitung SL, die von der Ringleitung RL zu der jeweiligen Trockeneisdüse 2 abzweigt.
  • Die Reinigungseinrichtung 1 umfasst außerdem eine in Figur 1 nur schematisch gezeigte Kontrolleinheit KE (z.B. Kamerasensor, Temperatursensor, etc.) zur Kontrolle mindestens eines Parameters, der einen Rückschluss zulässt auf die der Reinigungseinrichtung 1 zugeordneten Hardware-Komponenten, den zur Erzeugung des Trockeneises erforderlichen Komponenten (z.B. Kohlendioxid und Trägergas), den Reinigungsvorgang, insbesondere das Reinigungsergebnis, etc..
  • Die Kontrolleinheit KE ist in Figur 1 separiert von der Trockeneisdüse 2 und dem Roboter RB gezeigt. Im Rahmen der Erfindung ist es aber möglich, dass die Kontrolleinheit KE in oder an dem Roboter RB ausgebildet ist, an oder in der Trockeneisdüse 2 und/oder an anderer geeigneter Position.
  • Besonders vorteilhaft ist, dass in Abhängigkeit des mindestens einen Parameters mittels mindestens einer Einstelleinrichtung ER (siehe Figur 2) zumindest eine Ausgangsgröße der Reinigungseinrichtung 1 eingestellt, z.B. geregelt und/oder gesteuert werden kann, um die der Reinigungseinrichtung 1 zugeordneten Hardware-Komponenten, die zur Erzeugung des Trockeneises erforderlichen Komponenten (z.B. Kohlendioxid und Trägergas), den Reinigungsvorgang, insbesondere das Reinigungsergebnis, etc. bedarfsgemäß einstellen zu können.
  • Die Reinigungseinrichtung 1 ist explosionsgeschützt ausgeführt. Die Reinigungseinrichtung 1 umfasst außerdem ein Ventil SV, das aus Sicherheitsgründen automatisch schließt oder einen Kohlendioxidausstoß zumindest reduziert, wenn mittels einer Erfassungseinrichtung (z.B. ein Sensor) ein erfolgter oder potentieller, z.B. kurz bevorstehender übermäßiger Kohlendioxidaustritt festgestellt wird. Beispielhaft ist in Figur 1 das Ventil SV am Ausgang der Versorgungsvorrichtung V gezeigt, kann aber an einer Vielzahl anderer geeigneter Stellen positioniert werden.
  • Fig. 2 zeigt eine zum Teil schematische Seitenansicht eines Teils einer Reinigungseinrichtung 1 gemäß einer anderen Ausführungsform der Erfindung.
  • In Figur 2 sind zwei Trockeneisdüsen 2 gezeigt, die jeweils von einem schematisch angedeuteten Roboter RT getragen und beweglich geführt werden. Die Trockeneisdüsen 2 geben Trockeneis 3 in Form eines Trockeneisstrahls aus.
  • Die Roboter RT sind so konfiguriert, dass sie die Trockeneisdüsen 2 vor das zu reinigende Bauteil B positionieren, das hier als Rotationszerstäuber dargestellt ist, und während des Reinigungsvorgangs relativ zu dem zu reinigenden Bauteil bewegen. Der Roboter RT kann die Trockeneisdüsen 2 z.B. zumindest teilweise um das zu reinigende Bauteil B drehen, so dass mittels nur einer Trockeneisdüse 2 der gesamte Außenumfang des zu reinigenden Bauteils B gereinigt werden kann.
  • In der Figur 2 reinigt die obere Trockeneisdüse 2 einen Elektrodenring eines Zerstäubers und die untere Trockeneisdüse 2 reinigt ein Zerstäubergehäuse und/oder den Glockenteller des Zerstäubers. Es ist aber auch möglich, dass z.B. nur eine einzige Trockeneisdüse 2 vorgesehen ist, die von einem Roboter RT geführt wird, der so konfiguriert ist, dass er die Trockeneisdüse 2 vor das zu reinigende Bauteil B positioniert und während des Reinigungsvorgangs z.B. nach oben/unten zu unterschiedlichen Abschnitten des zu reinigenden Bauteils B bewegt (z.B. von dem Elektrodenring oder Elektrodenfingern zu dem Zerstäubergehäuse und darauffolgend zu dem Glockenteller und optional der Handachse des Roboters RB). Dadurch können unterschiedliche Abschnitte des zu reinigenden Bauteils B mit reduzierter Trockeneisdüsenzahl gereinigt werden.
  • Die Trockeneisdüsen 2 können fest oder auswechselbar an den Robotern RT montiert sein. Bei der letztgenannten Variante ist es möglich, dass die Trockeneisdüsen 2 automatisch nach einem Reinigungsvorgang abgelegt werden und vor einem Reinigungsvorgang ergriffen werden. Zu diesem Zweck können die die Trockeneisdüsen 2 tragenden Roboter RT entsprechend konfiguriert sein.
  • Die Trockeneisdüsen 2 umfassen ein in Figur 2 schematisch gezeigtes Schutzelement S, das als Schutzblech oder Schutzgehäuse ausgeführt ist, um zu verhindern, dass bei der Reinigung abgelöste Schmutzpartikel oder Trockeneis 3 auf ein zu lackierendes Bauteil treffen.
  • Die in Figur 2 gezeigte Reinigungseinrichtung 1 ist so ausgeführt, dass das zu reinigende Bauteil B im Wesentlichen freiliegend durch das Trockeneis 3 gereinigt werden kann und somit auf im Stand der Technik übliche Reinigungsbehälter, in die das zu reinigende Bauteil eingeführt werden muss, verzichtet werden kann. Die Reinigungseinrichtung 1 umfasst eine Luftstromerzeugungseinrichtung LE, die einen Luftstrom nach unten erzeugt, um abgereinigten Schmutz oder ausgegebenes Trockeneis 3 nach unten zu führen, vorzugsweise über einen Lackierkabinenboden in Form eines Gitterrosts aus der Lackierkabine 100 hinaus. Zu erwähnen ist aber, dass die Reinigungseinrichtung 1 durchaus auch einen Reinigungsbehälter umfassen kann, in den das zu reinigende Bauteil B z.B. mittels des Roboters RB eingeführt wird, um es mittels mindestens einer Trockeneisdüse 2 zu reinigen.
  • Figur 2 zeigt außerdem eine schematisch dargestellte Einstelleinrichtung ER, die beispielhaft mit den die Trockeneisdüsen 2 tragenden Robotern RT, den Trockeneisdüsen 2 und den das zu reinigende Bauteil B tragenden Roboter RB wirkverbunden ist, um diese bedarfsgemäß einzustellen. Die Einstelleinrichtung ER kann aber auch genutzt werden, um z.B. Menge, Druck und Temperatur des mit dem Kohlendioxid mischbaren Trägergases und des Kohlendioxids zur Erzeugung des Trockeneises 3 einzustellen. Es ist möglich, eine ggf. aus mehreren Untereinheiten bestehende Einstelleinrichtung ER wie in Figur 1 vorzusehen, um mehrere Komponenten einzustellen. Es ist aber auch möglich, mehrere Einstelleinrichtungen vorzusehen, die jeweils z.B. nur einer einzigen Komponente zugeordnet sind.
  • Obwohl der in Figur 2 gezeigte Reinigungswinkel der oberen Trockeneisdüse 2 im Wesentlichen horizontal ist und der Reinigungswinkel der unteren Trockeneisdüse 2 nach oben gerichtet ist, ist es im Rahmen der Erfindung möglich, dass die Trockeneisdüsen 2 während eines Reinigungsvorgangs nach unten gerichtet sind, so dass abgelöste Schmutzpartikel leichter oder schneller nach unten abgeführt werden können.
  • Zu erwähnen ist, dass es im Rahmen der Erfindung auch möglich ist, dass sowohl eine Trockeneisdüse 2 von einem Roboter RT als auch das zu reinigende Bauteil B von einem Roboter RB getragen und geführt werden und während des Reinigungsprozesses relativ zueinander bewegt werden. Die Bewegungen sind dabei beliebig wählbar. Beispielsweise kann das zu reinigende Bauteil B relativ zu der Trockeneisdüse 2 z.B. gedreht und translatorisch bewegt werden. Ebenso ist es möglich, dass die Trockeneisdüse 2 z.B. zumindest abschnittsweise um das zu reinigende Bauteil B gedreht wird und gleichzeitig oder nacheinander die Trockeneisdüse 2 entlang dem zu reinigenden Bauteil bewegt wird (z.B. von dem Glockenteller zu dem Elektrodenring). Die Bewegungen der Trockeneisdüse 2 und des zu reinigenden Bauteils B können gleichzeitig oder nacheinander erfolgen.
  • Zu erwähnen ist außerdem, dass die in Figur 2 gezeigten Trockeneisdüsen 2 ähnlich wie in Figur 1 auch ohne die Roboter RT angeordnet werden können, insbesondere ortsfest. In diesem Fall kann das zu reinigende Bauteil B wiederum durch den es tragenden und führenden Roboter RB vor die Trockeneisdüsen 2 positioniert werden und relativ zu den Trockeneisdüsen 2 bewegt werden, z.B. gedreht (Pfeil P1) und/oder transversal/translatorisch (Pfeil P2) bewegt.
  • Figur 3 zeigt eine Prinzipskizze einer Trockeneisdüse 2 einer Reinigungseinrichtung 1 gemäß einer Ausführungsform der Erfindung.
  • Die Trockeneisdüse 2 umfasst eine Agglomerationskammer AK der fluides Kohlendioxid (CO2) zuführbar ist und in der ein zweiphasiges Kohlendioxidgemisch, das Kohlendioxidgas und Kohlendioxidpartikel umfasst, durch Agglomeration von Kohlendioxidschneekristallen gebildet werden kann. Das der Agglomerationskammer AK zugeführte flüssige Kohlendioxid wird in der Agglomerationskammer AK entspannt und Kohlendioxidkristalle entstehen, die verdichtet und agglomeriert werden.
  • Das Kohlendioxidgemisch wird in der Agglomerationskammer AK mit einem druckbeaufschlagten Trägergas TG (z.B. Druckluft) vermischt, vorzugsweise um es zu beschleunigen. Bei einer nicht gezeigten Ausführungsform der Erfindung ist es möglich, dass die Agglomerationskammer AK z.B. über eine Dosieröffnung mit einer Mischvorrichtung in Form einer Mischkammer verbunden ist, und das Kohlendioxidgemisch in der Mischkammer mit dem druckbeaufschlagten Trägergas TG vermischt wird. In der in Figur 3 gezeigten Ausführungsform übernimmt die Agglomerationskammer AK sozusagen die Funktion einer Mischkammer, so dass Agglomerationskammer und Mischkammer quasi ein und dieselbe Kammer darstellen.
  • Aus Figur 3 ergibt sich, dass das Trockeneis 3 mindestens teilweise aus Kohlendioxid besteht, insbesondere einem zweiphasigen Kohlendioxidgemisch, das Kohlendioxidgas und Kohlendioxidpartikel umfasst. Das zweiphasige Kohlendioxidgemisch wird vor Applikation des Trockeneises 3 aus der Trockeneisdüse 2 in der Agglomerations- und/oder Mischkammer mit dem druckbeaufschlagten Trägergas TG vermischt. Das aus der Trockeneisdüse 2 ausgegebene Trockeneis ist somit vorzugsweise ein zweiphasiges Kohlendioxidgemisch, das mit einem druckbeaufschlagten Trägergas TG versehen ist, und insbesondere in Form eines Kohlendioxidschneestrahls aus der Trockeneisdüse 2 ausgegeben wird.
  • Die Trockeneisdüse 2 ist in ihrer Düsenkontur verstellbar (z.B. kann der Strahlaufweitungswinkel verändert werden, was durch den Pfeil P3 angedeutet ist). Alternativ oder ergänzend kann die Trockeneisdüse 2 eine Verstellfunktion umfassen, um ihre Ausrichtung, insbesondere den Reinigungswinkel, verändern zu können. Durch diese Merkmale ist eine Anpassung an unterschiedliche Außenkonturen des zu reinigenden Bauteils B möglich oder allgemein der Reinigungsvorgang bedarfsgemäß einstellbar.
  • Die Reinigungseinrichtung 1 kann außerdem einen in Figur 3 schematisch angedeuteten Trägergaserhitzer TE zum Erwärmen des Trägergases TG aufweisen.
  • Die Reinigungseinrichtung 1 kann im Rahmen der Erfindung mehrere Trockeneisdüsen 2 umfassen, die so feststehend angeordnet sind oder so angeordnet werden können, dass sie vorzugsweise den gesamten Außenumfang des zu reinigenden Bauteils B abdecken können und/oder dass sie der Außenkontur des zu reinigenden Bauteils B entsprechen können.
  • Bei einer nicht gezeigten Ausführungsform der Erfindung trägt ein Roboter sowohl einen Zerstäuber als auch eine Trockeneisdüse, die so an den Roboter angebracht und angeordnet ist, dass die Funktion des Zerstäubers durch die Trockeneisdüse nicht beeinträchtigt wird. Zu diesem Zweck kann die Trockeneisdüse z.B. durch eine Abdeckung von dem Zerstäuber abgeschirmt werden.
  • Figur 4 zeigt die Möglichkeit, das zu reinigende Objekt ggf. partiell indirekt mit Trockeneis zu bestrahlen und zu reinigen, am Beispiel eines schematisch als Rotationszerstäuber dargestellten Applikationsbauteils 40. Der in Fig. 4 obere Teil dieses Bauteils 40 kann direkt angestrahlt werden (nicht dargestellt), während der untere Bereich 41 in der Nähe des Glockentellers 44 indirekt angestrahlt und gereinigt wird. Bei diesem Beispiel ist die Trockeneisdüse 42 also nicht direkt auf die hier zylindrische oder konische Oberfläche des Bereichs 41 gerichtet, sondern so angeordnet, dass der Trockeneisstrahl 43 seitlich oder tangential an der zu reinigenden Oberfläche vorbeistreicht. Dieses "Vorbeistrahlen" hat den Vorteil, dass bspw. die zu reinigende Oberfläche nicht durch das Auftreffen der Partikel deformiert oder beschädigt wird. Das Vorbeistrahlen des kalten Kohlendioxid-Trägergas-Gemisches bewirkt hierbei eine Abkühlung der verunreinigten Oberfläche und Abtrag der Verschmutzung durch den Luftstrom. Natürlich können auch andere Flächen indirekt angestrahlt und gereinigt werden, während wieder andere Bauteilbereiche durch direkte Applikation von Trockeneis auf das jeweilige Bauteil gereinigt werden können.
  • Figur 5 zeigt eine mögliche Einteilung der Oberfläche einer Beschichtungseinrichtung 50, die in Sektionen für die sequentielle Reinigung eingeteilt ist. Bei dem dargestellten Beispiel ist die Beschichtungseinrichtung 50 ein Teil des Rotationszerstäubers eines Lackierroboters (nicht dargestellt, vgl. aber Roboter RB und Bauteil B in Fig. 2) mit einander benachbarten Bereichen oder Sektionen 51, 52, 53 und 54. Jede Sektion kann separat mit einem Lackierroboter angefahren werden und dann gereinigt werden, indem der Lackierroboter die Beschichtungseinrichtung 50 in der programmierten Position 360° um die Trockeneisdüse dreht. Nach dieser Reinigung kann der Lackierroboter weiter seiner "normalen" Lackiertätigkeit nachgehen, bis die nächste Sektion zu Reinigung ansteht. Die Steuerung der verschiedenen Zyklen und Abhängigkeiten werden von der Robotersteuerung vorgegeben, oder sie können auch beispielsweise in Abhängigkeit vom Verschmutzungsgrad durch visuelle Messmethoden ermittelt und umgesetzt werden.
  • Die Erfindung ist nicht auf die vorstehend beschriebenen bevorzugten Ausführungsformen beschränkt.

Claims (15)

  1. Lackieranlagen-Reinigungseinrichtung (1) zur Reinigung zumindest eines Bauteils (B) einer Lackieranlage, mit einem zu reinigenden Bauteil, das der folgenden Gruppe angehört:
    a) Zerstäuber, der von einem Lackierroboter geführt wird, oder anderes Bauteil eines Lackierroboters,
    b) Griff eines Handhabungsroboters oder anderes Bauteil eines Handhabungsroboters,
    c) Handachse eines Lackierroboters oder eines Handhabungsroboters,
    d) proximaler Roboterarm eines Lackierroboters oder eines Handhabungsroboters,
    e) distaler Roboterarm eines Lackierroboters oder eines Handhabungsroboters,
    f) Gitterrost in dem Boden der Lackierkabine,
    g) Gestell zum Aufhängen von zu lackierenden Bauteilen,
    h) ringförmig umlaufender Außenaufladungsring eines Zerstäubers oder Elektrodenfinger,
    gekennzeichnet durch mindestens eine ortsfest oder bewegbar angeordnete Trockeneisdüse (2) zur Applikation von Trockeneis (3), das mindestens teilweise aus einem Kohlendioxidgas und Kohlendioxidpartikel umfassenden Kohlendioxidgemisch besteht, auf das zu reinigende Bauteil (B), mit einer Agglomerationskammer (AK), der fluides Kohlendioxid zuführbar ist und in der das Kohlendioxidgemisch durch Agglomeration von Kohlendioxidschneekristallen bildbar ist,
    wobei das zu reinigende Bauteil (B) von einem Roboter (RB) geführt wird, der so konfiguriert ist, dass er das zu reinigende Bauteil (B) vor die Trockeneisdüse (2) positioniert und während des Reinigungsvorgangs relativ zu der Trockeneisdüse (2) bewegt.
  2. Lackieranlagen-Reinigungseinrichtung (1) zur Reinigung zumindest eines Bauteils (40) einer Lackieranlage, mit einem zu reinigenden Bauteil, das der folgenden Gruppe angehört:
    a) Zerstäuber, der von einem Lackierroboter geführt wird, oder anderes Bauteil eines Lackierroboters,
    b) Griff eines Handhabungsroboters oder anderes Bauteil eines Handhabungsroboters,
    c) Handachse eines Lackierroboters oder eines Handhabungsroboters,
    d) proximaler Roboterarm eines Lackierroboters oder eines Handhabungsroboters,
    e) distaler Roboterarm eines Lackierroboters oder eines Handhabungsroboters,
    f) Gitterrost in dem Boden der Lackierkabine,
    g) Gestell zum Aufhängen von zu lackierenden Bauteilen,
    h) ringförmig umlaufender Außenaufladungsring eines Zerstäubers oder Elektrodenfinger,
    gekennzeichnet durch mindestens eine ortsfest oder bewegbar angeordnete Trockeneisdüse (42) zur Erzeugung eines das Bauteil reinigenden Trockeneisstrahls,
    und durch einen das zu reinigende Bauteil (40) führenden Roboter (RB), der so konfiguriert ist, dass er das zu reinigende Bauteil (40) vor die Trockeneisdüse (42) positioniert und während des Reinigungsvorgangs relativ zu der Trockeneisdüse (42) bewegt,
    wobei zur indirekten Bestrahlung einer zu reinigenden Fläche (41) des Bauteils (40) die Trockeneisdüse (42) nicht direkt auf diese Fläche (41) gerichtet, sondern so angeordnet und ausgerichtet ist und der Roboter (RB) das zu reinigende Bauteil (40) relativ zu der Trockeneisdüse (42) so bewegt, dass der Trockeneisstrahl (43) seitlich oder tangential an der zu reinigenden Fläche (41) vorbeistreicht.
  3. Lackieranlagen-Reinigungseinrichtung (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Trockeneisdüse (2) von einem Roboter (RT) beweglich geführt wird, der so konfiguriert ist, dass er die Trockeneisdüse (2) vor das zu reinigende Bauteil (B) positioniert und während des Reinigungsvorgangs relativ zu dem zu reinigenden Bauteil (B) bewegt.
  4. Lackieranlagen-Reinigungseinrichtung nach Anspruch 3, dadurch gekennzeichnet,
    a) dass die Trockeneisdüse (2) fest an dem Roboter (RT) montiert ist, oder
    b) dass die Trockeneisdüse (2) auswechselbar an dem Roboter (RT) montiert ist.
  5. Lackieranlagen-Reinigungseinrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    a) dass ein Roboter sowohl einen Zerstäuber als auch die Trockeneisdüse (2) trägt, und
    b) dass die Trockeneisdüse (2) so an dem Roboter angebracht ist, dass die Funktion des Zerstäubers durch die Trockeneisdüse (2) nicht beeinträchtigt wird, insbesondere durch eine Abdeckung für die Trockeneisdüse (2).
  6. Lackieranlagen-Reinigungseinrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Trockeneisdüse (2) in ihrer Düsenkontur und/oder in ihrer Ausrichtung verstellbar ist, um eine Anpassung an unterschiedliche Außenkonturen des zu reinigenden Bauteils (B) zu ermöglichen,
    und/oder dass das zu reinigende Bauteil (B) eine vorgegebene Außenkontur aufweist und mehrere Trockeneisdüsen (2) vorgesehen sind, die so anordbar oder angeordnet sind, dass sie den Außenumfang des zu reinigenden Bauteils (B) abdecken und/oder der Außenkontur des zu reinigenden Bauteils (B) entsprechen.
  7. Lackieranlagen-Reinigungseinrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    a) dass die Trockeneisdüse (2) während eines Reinigungsvorgangs nach unten gerichtet ist, so dass abgelöste Schmutzpartikel nach unten abgeführt werden, und/oder
    b) dass ein Schutzelement (S) vorgesehen ist, insbesondere ein Schutzblech oder ein Gehäuse, um zu verhindern, dass bei der Reinigung abgelöste Schmutzpartikel oder Trockeneis (3) auf ein zu lackierendes Bauteil auftreffen.
  8. Lackieranlagen-Reinigungseinrichtung (1) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch
    a) eine Versorgungsvorrichtung (V) zur Versorgung der Trockeneisdüse (2) mit dem Trockeneis (3) oder Kohlendioxid zur Erzeugung von Trockeneis (3), und/oder
    b) eine Versorgungsleitung (RL) zur Verbindung der Versorgungsvorrichtung (V) mit mehreren Trockeneisdüsen (2) über jeweils eine Stichleitung (SL), die von der Versorgungsleitung (RL) zu der jeweiligen Trockeneisdüse (2) abzweigt, und/oder
    c) eine Mischvorrichtung zum Mischen von Kohlendioxid oder Trockeneis (3) mit einem Trägergas, und/oder
    d) einen Trägergaserhitzer (TE) zum Erwärmen des Trägergases, und/oder
    e) einen Sensor, insbesondere einen Kamerasensor, der das Reinigungsergebnis ermittelt, und/oder
    f) einen Temperatursensor zur Ermittlung der Temperatur des zu reinigenden Bauteils (B).
  9. Lackieranlagen-Reinigungseinrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Trockeneis (3) mindestens teilweise aus einem Kohlendioxidgemisch besteht, das Kohlendioxidgas und Kohlendioxidpartikel umfasst, und das vor Applikation des Trockeneises (3) aus der Trockeneisdüse (2) mit einem druckbeaufschlagten Trägergas in der Trockeneisdüse (2) mischbar ist,
    und/oder dass das Kohlendioxidgemisch in der Agglomerationskammer (AK) und/oder einer Mischkammer mit einem druckbeaufschlagten Trägergas vermischbar ist, um das zu applizierende Trockeneis (3) zu beschleunigen, wobei insbesondere flüssiges Kohlendioxid in der Agglomerationskammer (AK) entspannt wird und Kohlendioxidkristalle entstehen, die verdichtet und agglomeriert werden.
  10. Lackieranlagen-Reinigungseinrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Menge, Druck und/oder Temperatur des mit dem Kohlendioxid mischbaren Trägergases und des Kohlendioxids zur Erzeugung des Trockeneises (3) mittels mindestens einer Einstelleinrichtung (ER) einstellbar sind, um die Reinigungswirkung zu beeinflussen, vorzugsweise vor oder während des Reinigungsvorgangs, und/oder gekennzeichnet durch mindestens eine Kontrolleinheit (KE) zur Kontrolle mindestens eines Parameters, der einen Rückschluss auf zumindest eines von folgenden zulässt:
    - Druck, Menge und/oder Temperatur des Kohlendioxids zur Erzeugung des Trockeneises (3),
    - Druck, Menge und/oder Temperatur des Trockeneises (3),
    - Druck, Menge und/oder Temperatur eines Trägergases,
    - Raumtemperatur,
    - Reinigungsabstand zwischen Trockeneisdüse (2) und zu reinigendem Bauteil (B),
    - Position des zu reinigenden Bauteils (B),
    - Ausrichtung des zu reinigenden Bauteils (B),
    - Position der Trockeneisdüse (2),
    - Ausrichtung der Trockeneisdüse (2),
    wobei insbesondere in Abhängigkeit des mindestens einen Parameters mittels mindestens einer Einstelleinrichtung (ER) zumindest eine Ausgangsgröße der Lackieranlagen-Reinigungseinrichtung (1) eingestellt werden kann und die Ausgangsgröße ausgewählt wird aus der Gruppe umfassend:
    - Ausrichtung der Trockeneisdüse (2) relativ zu dem zu reinigenden Bauteil (B),
    - Menge, Druck und/oder Temperatur des Kohlendioxids zur Erzeugung des Trockeneises (3),
    - Menge, Druck und/oder Temperatur des Trockeneises (3),
    - Menge, Druck und/der Temperatur des Trägergases,
    - Reinigungsabstand zwischen Trockeneisdüse (2) und zu reinigendem Bauteil (B),
    - Reinigungsdauer,
    - Reinigungsintervall,
    - Positionierungs-/Bewegungsparameter des die Trockeneisdüse tragenden Roboters (RB),
    - Positionierungs-/Bewegungsparameter des das zu reinigenden Bauteil (B) tragenden Roboters (RB).
  11. Lackieranlagen-Reinigungseinrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lackieranlagen-Reinigungseinrichtung (1)
    - explosionsgeschützt ausgeführt ist, und/oder
    - zumindest ein Ventil (SV) umfasst, das aus Sicherheitsgründen automatisch schließt oder einen Kohlendioxidausstoß zumindest reduziert, wenn mittels einer Erfassungseinrichtung ein erfolgter oder potentieller übermäßiger Kohlendioxidaustritt festgestellt wird,
    und/oder dass die Lackieranlagen-Reinigungseinrichtung (1) ausgeführt ist, um das zu reinigende Bauteil (B) im Wesentlichen freiliegend durch das Trockeneis (3) zu reinigen und vorzugsweise eine Luftstromerzeugungseinrichtung (LE) vorgesehen ist, die einen Luftstrom nach unten erzeugt, um abgereinigten Schmutz oder ausgegebenes Trockeneis (3) nach unten zu führen, zweckmäßig über einen Lackierkabinenboden aus einer Lackierkabine hinaus.
  12. Lackieranlagen-Reinigungsvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Abstand zwischen der Trockeneisdüse (2) und der zu reinigenden Fläche des Bauteils (B) zwischen 1 mm und 30 mm beträgt.
  13. Lackieranlagen-Reinigungsvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass verschiedene Sektionen (51-54) eines zu reinigenden Bauteils (50) sequentiell zu verschiedenen vorbestimmten oder wählbaren Reinigungszeiten mit dem Trockeneis angestrahlt werden, und dass das Bauteil (50) zwischen diesen verschiedenen Reinigungszeiten für seinem Verwendungszweck entsprechende Arbeitsvorgänge verwendbar ist,
    und/oder dass eine Vorrichtung zum Erwärmen der zu reinigenden Bauteilfläche in Verbindung mit der Trockeneisbestrahlung vorgesehen ist, wofür insbesondere mindestens eines der folgenden Merkmale vorgesehen ist:
    a) auf die zu reinigende Fläche ist ein Warmluftgebläse gerichtet;
    b) die zu reinigende Fläche wird mit Infrarotstrahlung erwärmt;
    c) das zu reinigende Bauteil (B) enthält zur Erwärmung der zu reinigenden Fläche Kanäle, durch die Warmluft geleitet wird;
    d) das zu reinigende Bauteil (B) enthält eine die zu reinigende Fläche erwärmende elektrische Heizvorrichtung, und/oder dass die Trockeneisdüse (2) als Laval-Düse ausgebildet ist.
  14. Lackieranlage mit einer Lackieranlagen-Reinigungseinrichtung (1) nach einem der vorhergehenden Ansprüche.
  15. Lackieranlagen-Reinigungsverfahren zur Reinigung zumindest eines Bauteils (B) einer Lackieranlage, wobei das zu reinigende Bauteil der folgenden Gruppe angehört:
    a) Zerstäuber, der von einem Lackierroboter geführt wird, oder anderes Bauteil eines Lackierroboters,
    b) Griff eines Handhabungsroboters oder anderes Bauteil eines Handhabungsroboters,
    c) Handachse eines Lackierroboters oder eines Handhabungsroboters,
    d) proximaler Roboterarm eines Lackierroboters oder eines Handhabungsroboters,
    e) distaler Roboterarm eines Lackierroboters oder eines Handhabungsroboters,
    f) Gitterrost in dem Boden der Lackierkabine,
    g) Gestell zum Aufhängen von zu lackierenden Bauteilen,
    h) ringförmig umlaufender Außenaufladungsring eines Zerstäubers oder Elektrodenfinger, dadurch gekennzeichnet,
    dass das zu reinigende Bauteil (B, 40) von einem Roboter (RB) geführt wird, der so konfiguriert ist, dass er das zu reinigende Bauteil vor eine Trockeneisdüse(2, 42) positioniert und während des Reinigungsvorgangs relativ zu der Trockeneisdüse bewegt,
    und dass zur Reinigung des Bauteils (B)
    ein Strahl aus Trockeneis, das mindestens teilweise aus einem Kohlendioxidgas und Kohlendioxidpartikel umfassenden Kohlendioxidgemisch besteht, von einer Trockeneisdüse (2) auf das zu reinigende Bauteil (B) appliziert wird, wobei das Kohlendioxidgemisch in einer Agglomerationskammer (AK), der fluides Kohlendioxid zugeführt wird, durch Agglomeration von Kohlendioxidschneekristallen gebildet wird,
    oder zur indirekten Bestrahlung einer zu reinigenden Fläche (41) des Bauteils (40) eine Trockeneisdüse (42) so angeordnet und ausgerichtet wird und das zu reinigende Bauteil (40) von dem Roboter (RB) relativ zu der Trockeneisdüse (42) nicht direkt auf diese Fläche (41) gerichtet, sondern so bewegt wird, dass der Trockeneisstrahl (43) seitlich oder tangential an der zu reinigenden Fläche (41) vorbeistreicht.
EP13719014.6A 2012-03-30 2013-03-28 Trockeneis-reinigungseinrichtung und verfahren für eine lackieranlage Active EP2830779B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012006567A DE102012006567A1 (de) 2012-03-30 2012-03-30 Trockeneis-Reinigungseinrichtung für eine Lackieranlage
PCT/EP2013/000955 WO2013143707A1 (de) 2012-03-30 2013-03-28 Trockeneis-reinigungseinrichtung und verfahren für eine lackieranlage

Publications (2)

Publication Number Publication Date
EP2830779A1 EP2830779A1 (de) 2015-02-04
EP2830779B1 true EP2830779B1 (de) 2019-01-16

Family

ID=48190898

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13719014.6A Active EP2830779B1 (de) 2012-03-30 2013-03-28 Trockeneis-reinigungseinrichtung und verfahren für eine lackieranlage

Country Status (7)

Country Link
US (1) US10279453B2 (de)
EP (1) EP2830779B1 (de)
JP (1) JP2015518415A (de)
CN (1) CN104271254B (de)
DE (1) DE102012006567A1 (de)
MX (1) MX2014011501A (de)
WO (1) WO2013143707A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013019126A1 (de) * 2013-11-04 2015-05-07 Laura Eisfeld Verfahren zum Reinigen eines mit Lackoverspray verunreinigten Luftstroms
CN104889002A (zh) * 2014-10-17 2015-09-09 苏州富强科技有限公司 一种吹胶方法
CN105057238A (zh) * 2015-07-10 2015-11-18 成都科力夫科技有限公司 一种自动清洗室外悬空物体表面的方法
CN105107654B (zh) * 2015-08-27 2018-02-23 哈尔滨商业大学 一种面向大型工件的机器人连续式自动喷漆设备
DE102015219430A1 (de) 2015-10-07 2017-04-13 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zum Reinigen von Klebeflächen
DE102015219429A1 (de) 2015-10-07 2017-04-13 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Reinigen mithilfe von festem Kohlenstoffdioxid
CN108057687A (zh) * 2017-11-17 2018-05-22 深圳市瑞德丰精密制造有限公司 去除导电片表面金属屑的干冰除屑工艺
CN107930916B (zh) * 2017-12-19 2021-03-26 荣成市成达金属制品有限公司 一种环保的汽车车架喷漆设备
CN108007606A (zh) * 2018-01-17 2018-05-08 普聚智能系统(苏州)有限公司 一种干冰传输监测装置及其监测方法
JP7151761B2 (ja) * 2018-03-26 2022-10-12 新東工業株式会社 ショット処理装置
DE112019001610T5 (de) * 2018-03-26 2020-12-17 Sintokogio, Ltd. Abstrahl-verarbeitungsvorrichtung
CN109226104A (zh) * 2018-10-10 2019-01-18 北京德高洁清洁设备有限公司 一种多晶硅炉盘干式清洗机
CN110238145B (zh) * 2019-05-22 2020-10-27 西安交通大学 一种火箭贮箱表面智能清洗与检测机器人系统及方法
CN110480516A (zh) * 2019-08-06 2019-11-22 领益智造科技(东莞)有限公司 一种干冰去毛刺四轴自动化装置
DE102019129446A1 (de) * 2019-10-31 2021-05-06 Krones Ag Vorrichtung und Verfahren zur Kopfrauminertisierung und Produktrestentfernung bei Flaschen
CN111054698A (zh) * 2019-12-04 2020-04-24 天津开发区玲达盛钰科技有限公司 自动吹扫除尘清洗系统及作业方法
DE102020204125A1 (de) * 2020-03-30 2021-09-30 Volkswagen Aktiengesellschaft Verfahren zur Reinigung eines Werkstückträgers sowie Fertigungslinie aufweisend eine Vorrichtung zur Durchführung des Verfahrens
DE102020109974A1 (de) 2020-04-09 2021-10-14 Dürr Systems Ag Prüfvorrichtung und Prüfverfahren zur akustischen Funktionsprüfung eines Applikationsgeräts
CN111672833A (zh) * 2020-06-11 2020-09-18 格力电器(武汉)有限公司 聚氨酯发泡溢料清除系统
CN112223611B (zh) * 2020-09-22 2022-04-19 南通天木绝缘复合材料有限公司 一种玻璃钢格栅板生产制造精加工处理机械
CN112680996B (zh) * 2021-01-11 2023-10-10 振欣透平机械有限公司 一种提高纸机效能的系统及方法
CN114042697B (zh) * 2021-11-10 2022-12-06 千思跃智能科技(苏州)有限公司 一种用于uv三防漆载具的清洗机构
FR3132032A1 (fr) * 2022-01-26 2023-07-28 Revcoo Procédé et système de capture de dioxyde de carbone

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1051815B (de) 1956-04-19 1959-03-05 Bayer Ag Verfahren zum Granulieren von Pulvern
JP3225557B2 (ja) 1991-10-29 2001-11-05 日産自動車株式会社 塗装装置の洗浄方法
US5782253A (en) * 1991-12-24 1998-07-21 Mcdonnell Douglas Corporation System for removing a coating from a substrate
JPH05331689A (ja) 1992-06-03 1993-12-14 Teisan Kk 電着塗装用治具の付着塗膜除去方法
US5472369A (en) * 1993-04-29 1995-12-05 Martin Marietta Energy Systems, Inc. Centrifugal accelerator, system and method for removing unwanted layers from a surface
JPH10202210A (ja) 1997-01-17 1998-08-04 Fuji Xerox Co Ltd リサイクル部品の洗浄システム
US6004190A (en) * 1998-03-25 1999-12-21 L'air Liquide, Societe Anonyme Pour E'tude Et L'exploitation Des Procedes Georges Claude Apparatus for cleaning an inner wall of a mold
DE19926119C2 (de) * 1999-06-08 2001-06-07 Fraunhofer Ges Forschung Strahlwerkzeug
DE19943005A1 (de) * 1999-09-09 2001-05-23 Heinrich Gruber Verfahren zum Reinigen der Oberfläche eines Kunststoffgegenstands
ES2204853T3 (es) * 2000-03-15 2004-05-01 Paul-Eric Preising Procedimiento y dispositivo de limpieza para piezas de instalaciones conductoras de alta tension.
JP2002035659A (ja) 2000-07-24 2002-02-05 Yamaha Motor Co Ltd 塗装システム
JP2002177828A (ja) 2000-12-12 2002-06-25 Canon Inc 洗浄方法,その装置およびこれによる洗浄物ならびにホッパ
US6516645B2 (en) * 2000-12-27 2003-02-11 General Motors Corporation Hot die cleaning for superplastic and quick plastic forming
JP2002200464A (ja) 2000-12-28 2002-07-16 Kyowa Machinery Co Ltd 卵洗浄装置
JP2003225596A (ja) 2002-02-04 2003-08-12 Chuyu Shoji Kk 車両下部自動塗装装置およびその使用方法
JP2003311228A (ja) 2002-04-25 2003-11-05 Kinseki Ltd 炭酸ガススノーを用いた水晶振動子の洗浄方法
DE10251815A1 (de) 2002-11-07 2004-05-19 Abb Patent Gmbh Verfahren und Anordnung zum Trocknen von Kunststoffoberflächen
JP2004322007A (ja) 2003-04-25 2004-11-18 Kyocera Kinseki Corp 炭酸ガススノー噴射装置
JP2004358312A (ja) * 2003-06-03 2004-12-24 Bridgestone Corp 塗装用ハンガーの洗浄方法
JP2007534496A (ja) * 2004-04-24 2007-11-29 デア オーエ,ユルゲン フォン Co2ドライアイスを用いた溶接バーナーの洗浄方法及び装置
JP4599112B2 (ja) 2004-07-30 2010-12-15 京セラキンセキ株式会社 炭酸ガススノーを用いた洗浄装置
GB0417789D0 (en) 2004-08-10 2004-09-15 Instr Ltd Access control
EP1824614A4 (de) 2004-12-13 2012-08-29 Cool Clean Technologies Inc Kohlendioxid-schneeerzeugungsvorrichtung
US7293570B2 (en) 2004-12-13 2007-11-13 Cool Clean Technologies, Inc. Carbon dioxide snow apparatus
DE102004061322A1 (de) * 2004-12-20 2006-06-22 Dürr Systems GmbH Verfahren und Reinigungsgerät zum Reinigen einer Sprühvorrichtung
US7292856B2 (en) * 2004-12-22 2007-11-06 Qualcomm Incorporated Methods and apparatus for flexible forward-link and reverse-link handoffs
DE102005002365B3 (de) 2005-01-18 2006-04-13 Air Liquide Gmbh Strahlverfahren und Vorrichtung zur Reinigung von Oberflächen
DE102005005638B3 (de) * 2005-02-05 2006-02-09 Cryosnow Gmbh Verfahren und Vorrichtung zum Reinigen, Aktivieren oder Vorbehandeln von Werkstücken mittels Kohlendioxidschnee-Strahlen
KR101359009B1 (ko) * 2005-04-08 2014-02-06 프라운호퍼-게젤샤프트 추르 푀르데룽 데어 안제반텐 포르슝 에 파우 페인트칠 설비의 구성요소 및 이로부터 페인트를 제거하는장치
JP2007049065A (ja) * 2005-08-12 2007-02-22 Ntt Advanced Technology Corp 超臨界処理装置
JP4668821B2 (ja) 2006-03-23 2011-04-13 旭サナック株式会社 ドライアイススノー噴出ノズル
DE102007027618A1 (de) 2007-06-12 2008-12-18 Rehau Ag + Co Verfahren zur Vorbehandlung von zu lackierenden polymeren Oberflächen
DE102007033788A1 (de) 2007-07-09 2009-01-15 Gerd Wurster Vorbehandlungsanlage und Verfahren zur Vorbehandlung von Werkstücken
JP5082736B2 (ja) 2007-10-05 2012-11-28 株式会社大林組 付着物除去方法
DE102007048248A1 (de) * 2007-10-08 2009-05-14 Dürr Systems GmbH Roboter mit einer Reinigungseinrichtung und zugehöriges Betriebsverfahren
JP2009131743A (ja) 2007-11-29 2009-06-18 Itec Co Ltd ドライアイス噴射装置
ATE536224T1 (de) * 2009-05-26 2011-12-15 Ibc Robotics Ab System, werkzeug und verfahren zum reinigen des innenraums eines frachtbehälters
DE102011103117A1 (de) 2011-06-01 2012-12-06 Eisenmann Ag Anlage zum Beschichten, insbesondere Lackieren, von Gegenständen, insbesondere von Fahrzeugkarosserien
US20140137910A1 (en) * 2012-11-20 2014-05-22 Bratney Companies Dry ice blasting cleaning system and method of using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2830779A1 (de) 2015-02-04
WO2013143707A1 (de) 2013-10-03
MX2014011501A (es) 2014-12-05
CN104271254B (zh) 2018-06-01
CN104271254A (zh) 2015-01-07
US20150158145A1 (en) 2015-06-11
US10279453B2 (en) 2019-05-07
DE102012006567A1 (de) 2013-10-02
JP2015518415A (ja) 2015-07-02

Similar Documents

Publication Publication Date Title
EP2830779B1 (de) Trockeneis-reinigungseinrichtung und verfahren für eine lackieranlage
EP0333040B1 (de) Verfahren und Vorrichtung zum Reinigen einer Sprühvorrichtung
EP2566627B1 (de) Beschichtungseinrichtung mit zertropfenden beschichtungsmittelstrahlen
EP2040854B1 (de) Lackieranlage und zugehöriges betriebsverfahren
EP3017875B1 (de) Reinigungsverfahren und reinigungsvorrichtung für ein oder mehrere teile eines applikationssystems
EP0183812B1 (de) Gerät zum reinigen der gasdüse eines schweissbrenners
EP2714288B1 (de) Anlage zum beschichten, insbesondere zum lackieren, von gegenständen, insbesondere von fahrzeugkarosserien
DE102007048248A1 (de) Roboter mit einer Reinigungseinrichtung und zugehöriges Betriebsverfahren
EP1214154A2 (de) Verfahren und vorrichtung zum herstellen einer abziehbaren schutzschicht für oberflächen, insbesondere für lackierte oberflächen von kraftfahrzeugkarosserien
DE202017100079U1 (de) Vorrichtung zum thermischen Spritzen und System zum thermischen Spritzen
CH642281A5 (de) Verfahren und einrichtung zum bemalen einer vielzahl von teilen.
EP2671647A1 (de) Lacknebeltrennvorrichtung
DE102015015090A1 (de) Beschichtungsverfahren und entsprechende Beschichtungsanlage
DE102020215283A1 (de) Strahlbehandlungsvorrichtung und Strahlbehandlungsverfahren
DE102004049471A1 (de) Vorrichtung zum Auftragen einer Konservierungsschicht und Verfahren zum Auftragen derselben
DE19943005A1 (de) Verfahren zum Reinigen der Oberfläche eines Kunststoffgegenstands
EP1349694A1 (de) Verfahren und vorrichtung zum reinigen von schweissbrennern
DE102012018940A1 (de) Anlage zum Beschichten, insbesondere zum Lackieren, von Gegenständen, insbesondere von Fahrzeugkarosserien
EP0777534B1 (de) Vorrichtung zur sprühbeschichtung von werkstücken mit farbe
DE102007003981B4 (de) Reinigungsanlage
DE102016001073B4 (de) Mehrachsroboter sowie Verfahren zu dessen Steuerung bei der Lackierung von Gegenständen
DE102012024040A1 (de) Reinigungsvorrichtung für ein Lackierwerkzeug
DE102006022897B4 (de) Verfahren zur Durchführung eines Reinigungsvorganges und Vorrichtung zur Durchführung des Verfahrens
EP2319628B1 (de) Beschichtungsvorrichtung für Werkstücke sowie Verfahren zum Betreiben der Beschichtungsvorrichtung
DE102005024766A1 (de) Sprühkühler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140808

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DUERR SYSTEMS AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013012063

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B05B0015120000

Ipc: B24C0001000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B05B 7/04 20060101ALI20180918BHEP

Ipc: B24C 1/00 20060101AFI20180918BHEP

Ipc: B08B 7/00 20060101ALI20180918BHEP

Ipc: B05B 14/40 20180101ALI20180918BHEP

INTG Intention to grant announced

Effective date: 20181010

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BUCK, THOMAS

Inventor name: BAUMANN, MICHAEL

Inventor name: SOMMER, GEORG M.

Inventor name: HERRE, FRANK

Inventor name: FREY, MARCUS

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNGEN

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013012063

Country of ref document: DE

RIC2 Information provided on ipc code assigned after grant

Ipc: B05B 14/40 20180101ALI20180918BHEP

Ipc: B24C 1/00 20060101AFI20180918BHEP

Ipc: B08B 7/00 20060101ALI20180918BHEP

Ipc: B05B 7/04 20060101ALI20180918BHEP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1089360

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190116

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190516

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190416

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190516

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190416

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013012063

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190328

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

26N No opposition filed

Effective date: 20191017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190328

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1089360

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230324

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230322

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 12

Ref country code: GB

Payment date: 20240320

Year of fee payment: 12