EP1802409B1 - Formstoffmischung zur herstellung von giessformen für die metallverarbeitung - Google Patents

Formstoffmischung zur herstellung von giessformen für die metallverarbeitung Download PDF

Info

Publication number
EP1802409B1
EP1802409B1 EP05783967A EP05783967A EP1802409B1 EP 1802409 B1 EP1802409 B1 EP 1802409B1 EP 05783967 A EP05783967 A EP 05783967A EP 05783967 A EP05783967 A EP 05783967A EP 1802409 B1 EP1802409 B1 EP 1802409B1
Authority
EP
European Patent Office
Prior art keywords
moulding mixture
casting
molding material
proportion
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP05783967A
Other languages
English (en)
French (fr)
Other versions
EP1802409A2 (de
Inventor
Günter Weicker
Diether Koch
Jens Müller
Udo Skerdi
Henning Rehse
Anton Gienic
Reinhard Stötzel
Thomas Dünnwald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASK Chemicals GmbH
Original Assignee
ASK Chemicals GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35701554&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1802409(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ASK Chemicals GmbH filed Critical ASK Chemicals GmbH
Priority to SI200531505T priority Critical patent/SI1802409T1/sl
Priority to PL11006910T priority patent/PL2392424T3/pl
Priority to PL05783967T priority patent/PL1802409T3/pl
Priority to EP11006910.1A priority patent/EP2392424B1/de
Publication of EP1802409A2 publication Critical patent/EP1802409A2/de
Application granted granted Critical
Publication of EP1802409B1 publication Critical patent/EP1802409B1/de
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • B22C1/186Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents contaming ammonium or metal silicates, silica sols
    • B22C1/188Alkali metal silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents

Definitions

  • the invention relates to a molding material mixture for the production of casting molds for metal processing, which comprises at least one free-flowing refractory molding base material and a water glass-based binder. Furthermore, the invention relates to a method for the production of molds for metal processing using the molding material mixture as well as a mold obtained by the method.
  • Molds for the production of metal bodies are essentially produced in two versions.
  • a first group form the so-called cores or forms. From these, the casting mold is assembled, which essentially represents the negative mold of the casting to be produced.
  • a second group form hollow bodies, so-called feeders, which act as a compensation reservoir. These take up liquid metal, whereby appropriate measures are taken to ensure that the metal lasts longer the liquid phase remains as the metal which is in the mold forming the negative mold. If the metal solidifies in the negative mold, liquid metal can flow out of the compensation reservoir to compensate for the volume contraction that occurs when the metal solidifies.
  • Casting molds are made of a refractory material, such as quartz sand, whose grains are connected after molding of the mold by a suitable binder to ensure sufficient mechanical strength of the mold.
  • a refractory molding material which has been treated with a suitable binder.
  • the refractory molding base material is preferably present in a free-flowing form, so that it can be filled into a suitable mold and compacted there.
  • the binder produces a firm cohesion between the particles of the molding base material, so that the casting mold obtains the required mechanical stability.
  • Molds must meet different requirements. During the casting process itself, they must first of all have sufficient stability and temperature resistance in order to receive the liquid metal in the mold formed from one or more casting molds. After the start of the solidification process, the mechanical stability of the mold is ensured by a solidified metal layer, which forms along the walls of the mold. The material of the casting mold must now decompose under the influence of the heat given off by the metal in such a way that it loses its mechanical strength, that is to say the cohesion between individual particles of the refractory material is removed. This is achieved, for example, by decomposing the binder under heat. After cooling, the solidified casting is shaken, ideally, the material of the casting molds again to a fine Sand breaks down, which can be poured out of the cavities of the metal mold.
  • both organic and inorganic binders can be used, the curing of which can be carried out in each case by cold or hot processes.
  • Cold processes are processes which are carried out essentially at room temperature without heating the casting mold.
  • the curing is usually carried out by a chemical reaction, which is triggered for example by the fact that a gas is passed as a catalyst through the mold to be cured.
  • hot processes the molding material mixture is heated to a sufficiently high temperature after molding to expel, for example, the solvent contained in the binder or to initiate a chemical reaction by which the binder is cured, for example, by crosslinking.
  • organic binders are often used for the production of casting molds, in which the curing reaction is accelerated by a gaseous catalyst or cured by reaction with a gaseous hardener. These methods are referred to as "cold-box" methods.
  • Ashland cold box process An example of the production of molds using organic binders is the so-called Ashland cold box process. It is a two-component system. The first component consists of the solution of a polyol, usually a phenolic resin. The second component is the solution of a polyisocyanate.
  • the curing reaction of polyurethane binders is a polyaddition, ie a reaction without elimination of By-products, such as water.
  • advantages of this cold-box process include good productivity, dimensional accuracy of the molds, and good engineering properties such as the strength of the molds, the processing time of the mixture of mold base and binder, etc.
  • Hot-curing organic processes include the hot-box process based on phenolic or furan resins, the warm box process based on furan resins, and the croning process based on phenolic novolac resins.
  • liquid resins are processed with a latent curing agent which is only effective at elevated temperatures to form a molding material mixture.
  • mold base materials such as quartz, chrome ore, zirconium, etc., are coated at a temperature of about 100 to 160 ° C with a liquid at this temperature phenol novolac resin. Hexamethylenetetramine is added as a reaction partner for the subsequent curing.
  • the shaping and curing take place in heatable tools, which are heated to a temperature of up to 300 ° C.
  • all organic systems have in common that they thermally decompose when the liquid metal is poured into the mold, releasing pollutants such as benzene, toluene, xylenes, phenol, formaldehyde and higher, sometimes unidentified cracking products.
  • pollutants such as benzene, toluene, xylenes, phenol, formaldehyde and higher, sometimes unidentified cracking products.
  • pollutants such as benzene, toluene, xylenes, phenol, formaldehyde and higher, sometimes unidentified cracking products.
  • binder systems which are based on inorganic materials or contain at most a very small proportion of organic compounds.
  • binder systems have been known for some time. Binder systems have been developed which can be cured by the introduction of gases. Such a system is for example in the GB 782,205 described in which an alkali water glass is used as a binder, which can be cured by the introduction of CO 2 . In the DE 199 25 167 will describe an exothermic feeder mass containing an alkali silicate as a binder. Furthermore, binder systems have been developed which are self-curing at room temperature.
  • thermosetting binder systems are for example from US 5,474,606 in which a binder system consisting of alkali water glass and aluminum silicate is described.
  • Inorganic binders have the disadvantage, in comparison to organic binders, that the casting molds produced therefrom have relatively low strengths. This is especially evident immediately after the removal of the mold from the tool. Good strength at this time, however, are particularly important for the production of complicated, thin-walled moldings and their safe handling. The reason for the low strength is primarily that the molds still contain residual water from the binder. Longer dwell times in the hot, closed tool will only be of help, as the water vapor can not escape sufficiently. To complete the drying of the molds as complete as possible will reach in the WO 98/06522 proposed to leave the molding material mixture after molding only in a tempered core box so long that forms a dimensionally stable and sustainable edge shell. After opening the core box, the mold is removed and then completely dried under the action of microwaves. However, the additional drying is complex, prolongs the production time of the molds and contributes, not least by the energy costs, significantly to the increase in the cost of the manufacturing process.
  • an alkali metal hydroxide in particular sodium hydroxide solution
  • a particulate metal oxide which can form a metalate in the presence of the alkali metal hydroxide solution.
  • the particles are dried after a layer of the metal has formed at the edge of the particles. At the core of the particles remains a section in which the metal oxide was not reacted.
  • a dispersed silica or finely divided titanium oxide or zinc oxide is preferably used.
  • WO 94/14555 describes a molding material mixture, which is also suitable for the production of molds and which contains a binder in addition to a refractory molding material, which consists of a phosphate or borate glass, wherein the mixture further contains a finely divided refractory material.
  • a refractory molding material which consists of a phosphate or borate glass
  • the mixture further contains a finely divided refractory material.
  • silicon dioxide can also be used as the refractory material.
  • a molding material mixture for producing metal working molds comprising a refractory molding base, a water glass based binder and a proportion of a particulate metal oxide is known from the JP 52-138434 A which discloses titanium oxide, zinc oxide, iron oxide and aluminosilicates as metal oxides.
  • JP 52-138434 A discloses titanium oxide, zinc oxide, iron oxide and aluminosilicates as metal oxides.
  • synthetic amorphous silica as the particulate metal oxide is not known in the art.
  • the waterglass-based binder system consists of an aqueous alkali silicate solution and a hygroscopic base, such as sodium hydroxide, added in a ratio of 1: 4 to 1: 6.
  • the water glass has a modulus SiO 2 / M 2 O of 2.5 to 3.5 and a solids content of 20 to 40%.
  • the binder system also contains a surface-active substance, such as silicone oil, which has a boiling point ⁇ 250 ° C.
  • the binder system is mixed with a suitable refractory material, such as quartz sand, and then injected into a core box with a core shooter.
  • a suitable refractory material such as quartz sand
  • the hardening of the molding material mixture takes place by removal of the water still contained.
  • the drying or hardening of the casting mold can also take place under the action of microwaves.
  • the previously known molding material mixtures for the production of casting molds still have room for an improvement in the properties, for example, in terms of the strength of the molds produced and in terms of their resistance to atmospheric moisture during storage for a long period. Furthermore, the goal is to achieve a high quality of the surface of the casting after the casting, so that the finishing of the surface can be carried out with little effort.
  • the object of the invention was therefore to provide a molding material mixture for the production of casting molds for metalworking, which comprises at least one refractory molding base material and a water glass-based binder system which enables the production of casting molds. which have high strength both immediately after shaping and during prolonged storage.
  • the molding material mixture should allow the production of casting molds, with which castings can be produced, which have a high quality of the surface, so that only a small finishing of the surfaces is required.
  • a refractory molding base material can be used for the production of molds usual materials. Suitable examples are quartz or zircon sand. Furthermore, fibrous refractory mold bases are suitable, such as chamotte fibers. Other suitable refractory mold bases are, for example, olivine, chrome ore sand, vermiculite.
  • artificial molding materials can also be used as refractory molding base materials, for example aluminum silicate hollow spheres (so-called microspheres), glass beads, glass granules or spherical ceramic molding base materials known under the name "Cerabeads" or "Carboaccucast”.
  • These spherical ceramic mold bases contain as minerals, for example mullite, corundum, ⁇ -cristobalite in different proportions. They contain as essential proportions alumina and silica. Typical compositions contain, for example, Al 2 O 3 and SiO 2 in approximately equal proportions. In addition, other constituents may be present in proportions of ⁇ 10%, such as TiO 2 Fe 2 O 3 .
  • the diameter of the microspheres is preferably less than 1000 ⁇ m, in particular less than 600 ⁇ m.
  • These artificial molding bases are not of natural origin and may have been subjected to a special molding process, such as in the production of aluminum silicate microbubbles, glass beads or spherical ceramic molding bases.
  • Glass materials are particularly preferably used as refractory artificial mold base materials. These are used in particular either as glass beads or as glass granules. Conventional glasses can be used as the glass, with glasses showing a high melting point being preferred. Suitable examples are glass beads and / or glass granules, which is made of glass breakage. Also suitable are borate glasses. The composition of such glasses is exemplified in the table below. Table: Composition of glasses component glass breakage borate glass SiO 2 50 - 80% 50 - 80% Al 2 O 3 0 -15% 0 - 15% Fe 2 O 3 ⁇ 2% ⁇ 2% M II O 0 - 25% 0 - 25% M I 2 O 5 - 25% 1 - 10% B 2 O 3 ⁇ 15% Otherwise. ⁇ 10% ⁇ 10% M II : alkaline earth metal, eg Mg, Ca, Ba M I : alkali metal, eg Na, K
  • glasses listed in the table it is also possible to use other glasses whose content of the abovementioned compounds lies outside the ranges mentioned.
  • special glasses can be used which contain other elements or their oxides in addition to the aforementioned oxides.
  • the diameter of the glass beads is preferably less than 1000 ⁇ m, in particular less than 600 ⁇ m.
  • the preferred proportion of the artificial molding base materials is at least about 3 wt .-%, more preferably at least 5 wt .-%, particularly preferably at least 10 wt .-%, preferably at least about 15 wt .-%, particularly preferably at least about 20 Wt .-%, based on the total amount of refractory molding material.
  • the refractory molding base material preferably has a free-flowing state, so that the molding material mixture according to the invention can be processed in conventional core shooting machines.
  • the molding material mixture according to the invention comprises a water glass-based binder.
  • a water glass while standard water glasses can be used, as they are already used as binders in molding material mixtures. These water glasses contain dissolved sodium or potassium silicates and can be prepared by dissolving glassy potassium and sodium silicates in water.
  • the water glass preferably has a modulus SiO 2 / M 2 O in the range of 1.6 to 4.0, in particular 2.0 to 3.5, wherein M is sodium and / or potassium.
  • the water glasses preferably have a solids content in the range of 30 to 60 wt .-%. The solids content refers to the amount of SiO 2 and M 2 O contained in the water glass.
  • the molding material mixture contains a proportion of a particulate metal oxide which is a particulate synthetic amorphous silica.
  • the particle size of these metal oxides is preferably less than 300 microns, preferably less than 200 microns, more preferably less than 100 microns.
  • the particle size can be determined by sieve analysis.
  • the sieve residue on a sieve with a mesh width of 63 ⁇ m is less than 10% by weight, preferably less than 8% by weight.
  • Precipitated silica is obtained by reaction of an aqueous alkali metal silicate solution with mineral acids. The resulting precipitate is then separated, dried and ground.
  • Fumed silicas are understood to mean silicic acids which are obtained by coagulation from the gas phase at high temperatures.
  • the production of fumed silica can be carried out, for example, by flame hydrolysis of silicon tetrachloride or in an electric arc furnace by reduction of quartz sand with coke or anthracite to silicon monoxide gas with subsequent oxidation to silica.
  • the pyrogenic silicas produced by the arc furnace process may still contain carbon.
  • Precipitated silica and fumed silica are equally well suited for the molding material mixture according to the invention. These silicas are hereinafter referred to as "synthetic amorphous silica”.
  • the molding material mixture according to the invention represents an intensive mixture of at least the constituents mentioned.
  • the particles of the refractory molding material are preferably coated with a layer of the binder.
  • evaporating the water present in the binder about 40 to 70 wt .-%, based on the weight of the binder
  • a solid cohesion between the particles of the refractory base molding material can be achieved.
  • the binder i. the water glass as well as the particulate synthetic amorphous silica is preferably contained in the molding material mixture in a proportion of less than 20% by weight. If massive molding base materials are used, such as quartz sand, the binder is preferably present in a proportion of less than 10% by weight, preferably less than 8% by weight, more preferably less than 5% by weight. If refractory mold bases are used which have a low density, such as the hollow microspheres described above, the proportion of binder increases accordingly.
  • the particulate synthetic amorphous silica based on the weight of the binder, is preferably contained in a proportion of 2 to 60% by weight, preferably between 3 and 50% by weight, especially preferably between 4 and 40% by weight.
  • the ratio of water glass to particulate synthetic amorphous silica can be varied within wide ranges. This offers the advantage of improving the initial strength of the casting mold, ie the strength immediately after removal from the hot tool and the moisture resistance, without significantly affecting the final strengths, ie the strengths after cooling of the casting mold, compared to a waterglass binder without amorphous silica. This is of great interest especially in light metal casting.
  • high initial strengths are desired in order to be able to easily transport these after the production of the casting mold or to assemble them with other casting molds.
  • the hardness after curing should not be too high to cause difficulties Binder decomposition after casting to avoid, ie the molding material should be able to be easily removed from the cavities of the mold after casting.
  • the molding material contained in the molding material mixture according to the invention may contain at least a proportion of hollow microspheres in one embodiment of the invention.
  • the diameter of the hollow microspheres is usually in the range of 5 to 500 ⁇ m, preferably in the range of 10 to 350 ⁇ m, and the thickness of the shell is usually in the range of 5 to 15% of the diameter of the microspheres.
  • These microspheres have a very low specific gravity, so that the molds produced using hollow microspheres have a low weight.
  • Particularly advantageous is the insulating effect of the hollow microspheres.
  • the hollow microspheres are therefore used in particular for the production of molds, if they are to have an increased insulating effect.
  • Such casting molds are, for example, the feeders already described in the introduction, which act as a compensation reservoir and contain liquid metal, wherein the metal should be kept in a liquid state until the metal filled into the mold has solidified.
  • Another application of casting molds containing hollow microspheres are, for example, sections of a casting mold which correspond to particularly thin-walled sections of the finished casting mold. The insulating effect of the hollow microspheres ensures that the metal in the thin-walled sections does not prematurely solidify and thus clog the paths within the casting mold.
  • the binder due to the low density of these hollow microspheres, is preferably used in a proportion in the range of preferably less than 20% by weight, particularly preferably in the range from 10 to 18% by weight.
  • the hollow microspheres are preferably made of an aluminum silicate. These aluminum silicate microbubbles preferably have an aluminum oxide content of more than 20% by weight, but may also have a content of more than 40% by weight.
  • Such hollow microspheres are for example from Omega Minerals Germany GmbH, Norderstedt, under the names OmegaSpheres ® SG with an alumina content of about 28 - 33%, Omega-Spheres ® WSG with an alumina content of about 35 - 39% and E-Spheres ® with an aluminum oxide content of about 43% in the trade. Corresponding products are available from the PQ Corporation (USA) under the name "Extendospheres ®".
  • hollow microspheres are used as the refractory molding base, which are made of glass.
  • the hollow microspheres consist of a borosilicate glass.
  • the borosilicate glass has a proportion of boron, calculated as B 2 O 3 , of more than 3% by weight.
  • the proportion of hollow microspheres is preferably chosen to be less than 20% by weight, based on the molding material mixture.
  • a small proportion is preferably selected. This is preferably less than 5 wt .-%, preferably less than 3 wt .-%, and is more preferably in the range of 0.01 to 2 wt .-%.
  • the molding material mixture according to the invention in a preferred embodiment contains at least a proportion of glass granules and / or glass beads as refractory molding base material.
  • the molding material mixture is an exothermic molding material mixture, which is suitable, for example, for the production of exothermic feeders.
  • the oxidizable metals preferably form a proportion of 15 to 35 wt .-%.
  • the oxidizing agent is preferably added in a proportion of 20 to 30 wt .-%, based on the molding material mixture.
  • Suitable oxidizable metals are, for example, aluminum or magnesium.
  • Suitable oxidizing agents are, for example, iron oxide or potassium nitrate.
  • the molding material mixture according to the invention contains a proportion of platelet-shaped lubricants, in particular graphite or MoS 2.
  • platelet-shaped lubricants in particular graphite or MoS 2.
  • the amount of added platelet-shaped lubricant, in particular graphite is preferably 0.1 wt .-% to 1 wt .-%, based on the molding material.
  • the molding material mixture according to the invention may also comprise further additives.
  • internal release agents can be added which facilitate the separation of the molds from the mold. Suitable internal release agents are, for example, calcium stearate, fatty acid esters, waxes, natural resins or special alkyd resins.
  • silanes can also be added to the molding material mixture according to the invention.
  • the molding material mixture according to the invention contains an organic additive which has a melting point in the range from 40 to 180 ° C., preferably from 50 to 175 ° C., ie is solid at room temperature.
  • Organic additives are understood to be compounds whose molecular skeleton is composed predominantly of carbon atoms, that is, for example, organic polymers.
  • the inventors assume that at least some of the organic additives are burnt during the casting process, thereby creating a thin gas cushion between the liquid metal and the molding material forming the wall of the casting mold and thus a reaction between the liquid metal and the molding material is prevented. Further, the inventors believe that some of the organic additives under the reducing atmosphere of the casting form a thin layer of so-called lustrous carbon, which also prevents reaction between metal and molding material. As a further advantageous effect, an increase in the strength of the casting mold after curing can be achieved by adding the organic additives.
  • the organic additives are preferably used in an amount of 0.01 to 1.5% by weight, more preferably 0.05 to 1.3% by weight, particularly preferably 0.1 to 1.0% by weight, respectively based on the molding material added.
  • Suitable organic additives are, for example, phenol-formaldehyde resins, such as novolacs, epoxy resins, such as bisphenol A epoxy resins, bisphenol F epoxy resins or epoxidized novolacs, polyols, such as Polyethylene glycols or polypropylene glycols, polyolefins such as polyethylene or polypropylene, copolymers of olefins such as ethylene or propylene, and other comonomers such as vinyl acetate, polyamides such as polyamide-6, polyamide-12 or polyamide-6,6, natural resins such for example, gum rosin, fatty acid esters such as cetyl palmitate, fatty acid amides such as ethylenediamine bisstearamide, and metal soaps such as stearates or oleates of di- or tri-valent metals.
  • the organic additives can be contained both as
  • the molding material mixture according to the invention contains a proportion of at least one silane.
  • Suitable silanes are, for example, aminosilanes, epoxysilanes, mercaptosilanes, hydroxysilanes and ureidosilanes.
  • silanes examples include ⁇ -aminopropyltrimethoxysilane, ⁇ -hydroxypropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) trimethoxysilane and N- ⁇ (aminoethyl) - ⁇ -aminopropyltrimethoxysilane.
  • silane Based on the particulate metal oxide typically about 5 to 50% silane are used, preferably about 7 to 45%, more preferably about 10 to 40%.
  • the procedure is generally such that initially the refractory molding base material is introduced and then the binder is added with stirring.
  • the water glass and the particulate synthetic amorphous silica can be added per se in any order.
  • the molding material mixture is then brought into the desired shape.
  • customary methods are used for the shaping.
  • the molding material mixture can be shot by means of a core shooting machine with the aid of compressed air into the mold.
  • the molding material mixture is then cured by supplying heat in order to evaporate the water contained in the binder.
  • the heating can be done for example in the mold. It is possible to fully cure the mold already in the mold. But it is also possible to auspatizten the mold only in its edge region, so that it has sufficient strength to be removed from the mold can.
  • the casting mold can then be completely finished be cured by their further water is withdrawn. This can be done for example in an oven.
  • the dehydration can for example also be done by the water is evaporated at reduced pressure.
  • the curing of the molds can be accelerated by blowing heated air into the mold.
  • a rapid removal of the water contained in the binder is achieved, whereby the mold is solidified in suitable periods for industrial use.
  • the temperature of the injected air is preferably 100 ° C to 180 ° C, particularly preferably 120 ° C to 150 ° C.
  • the flow rate of the heated air is preferably adjusted to cure the mold in periods suitable for industrial use. The periods depend on the size of the molds produced. It is desirable to cure in less than 5 minutes, preferably less than 2 minutes. For very large molds, however, longer periods may be required.
  • the removal of the water from the molding material mixture can also be carried out in such a way that the heating of the molding material mixture is effected by irradiation of microwaves.
  • the irradiation of the microwaves is preferably carried out after the casting mold has been removed from the molding tool.
  • the casting mold must already have sufficient strength. As already explained, this can be achieved, for example, by curing at least one outer shell of the casting mold already in the molding tool.
  • the flowability of the molding material mixture according to the invention can be improved by the addition of platelet-shaped lubricants, in particular graphite and / or MoS 2 .
  • the platy Lubricant, in particular graphite thereby be added separately from the two binder components of the molding material mixture.
  • the addition of the organic additive per se can be carried out at any time during the preparation of the molding material mixture.
  • the addition of the organic additive can be carried out in bulk or in the form of a solution.
  • Water-soluble organic additives can be used in the form of an aqueous solution. If the organic additives are soluble in the binder and are stable in storage over several months in the binder, they can also be dissolved in the binder and thus added to the molding material together with it. Water-insoluble additives may be used in the form of a dispersion or a paste. The dispersions or pastes preferably contain water as solvent. As such, solutions or pastes of the organic additives can also be prepared in organic solvents. However, if a solvent is used for the addition of the organic additives, water is preferably used.
  • the addition of the organic additives is carried out as a powder or as a short fiber, wherein the average particle size or the fiber length is preferably selected so that it does not exceed the size of the molding material particles.
  • the organic additives can be sieved through a sieve with the mesh size of about 0.3 mm.
  • the particulate Metal oxide and the organic or the additives preferably not separately added to the molding sand, but mixed in advance.
  • the silanes are usually added in the form that they are incorporated into the binder in advance.
  • the silanes can also be added to the molding material as a separate component.
  • it is particularly advantageous to silanize the particulate metal oxide i. To mix the metal oxide with the silane, so that its surface is provided with a thin silane layer. If one uses the thus pretreated particulate metal oxide, one finds compared to the untreated metal oxide increased strengths and an improved resistance to high humidity. If, as described, an organic additive is added to the molding material mixture or the particulate metal oxide, it is expedient to do so before the silanization.
  • the inventive method is in itself suitable for the production of all casting molds customary for metal casting, that is to say, for example, of cores and molds.
  • the inventive method for the production of feeders is.
  • the molds produced from the molding material mixture according to the invention or with the inventive method have a high strength immediately after the production, without the strength of the molds after curing is so high that difficulties after the production of the casting occur during removal of the mold. Furthermore, these molds have a high stability at elevated humidity, ie the molds can be stored easily for a long time.
  • Another object of the invention is therefore a casting mold which has been obtained by the process according to the invention described above.
  • the casting mold according to the invention is generally suitable for metal casting, in particular light metal casting. Particularly advantageous results are obtained in aluminum casting.
  • Georg Fischer test bars are cuboid test bars measuring 150 mm x 22.36 mm x 22.36 mm.
  • test bars were placed in a Georg Fischer strength testing machine equipped with a 3-point bending device (DISA Industrie AG, Schaffhausen, CH) and the force was measured which resulted in the breakage of the test bars.
  • Examples 1.4 to 1.7 increasing amounts of amorphous silica, which had been produced in the electric arc furnace, were added to the molding material mixtures. The amount of mold base and water glass was kept constant.
  • Comparative Example 1.1 a molding material mixture was prepared, which had the same composition as the molding material mixtures of Examples 1.4 to 1.7, but no amorphous silica was added.
  • the results from Table 2 show that the addition of amorphous, arc-prepared silica markedly increases the flexural strength of the test bars.
  • the flexural strength of the test bars increases particularly strongly in the case of a measurement after storage in the climatic cabinet at elevated air humidity. This means that the test bars produced with the molding material mixture according to the invention substantially retain their strength even after prolonged storage.
  • Increasing amounts of added amorphous silica lead to increasing flexural strengths.
  • the flexural strengths measured after storage in the climatic chamber, a strong increase in the flexural strengths is observed initially, which flattens out as the amount of added amorphous silicon dioxide increases.
  • Examples 1.4, 1.8 and 1.9 equal amounts of mold base, water glass and amorphous silicon dioxide (produced in the arc) were processed, but the ratio SiO 2 : M 2 O of the alkali water glass was changed.
  • the comparative examples 1.1, 1.2 and 1.3 in each case equal amounts of mold base material and water glass were processed, but also the ratio SiO 2 : M 2 O of the alkali water glass was varied.
  • the amorphous silica produced in the arc furnace is effective regardless of the ratio SiO 2 : M 2 O of the alkali water glass.
  • Examples 1.4, 1.10 and 1.11 equal amounts of mold base, water glass and amorphous silica were processed respectively, but the nature of the synthetic amorphous silica was varied.
  • the flexural strengths listed in Table 2 show that precipitated and pyrogenic, by Flame hydrolysis produced silicas are as effective as in the arc furnace produced amorphous silica.
  • the hot strengths and high humidity resistance can be improved without simultaneously increasing the cold strengths.
  • Examples 3.3-3.5 show that the addition of silane has a positive effect on the strengths, especially with respect to the resistance to high humidity.
  • the positive effect of the amorphous silica is not limited to quartz sand as a molding material, but that it also increases the strength of other molding materials, e.g. Microspheres, ceramic balls and glass beads.
  • composition was used as exothermic composition: Aluminum (0.063 - 0.5 mm grain size) 25% potassium nitrate 22% Micro hollow spheres (Omegaspheres ® WSG der 44% Company Omega Minerals Germany GmbH) Refractory surcharge (fireclay) 9%
  • the amorphous silica also increases strength in the case of exothermic compositions as a molding material.
  • the flowability of the molding material mixtures was determined by means of the degree of filling of the in Fig. 1 determined mold 1 determined.
  • the mold 1 consists of two halves, which can be connected to each other, so that a cavity 2 is formed.
  • the cavity 2 comprises three chambers 2a, 2b and 2c of circular cross-section having a diameter of 100 mm and a height of 30 mm.
  • the chambers 2a, 2b and 2c are each connected by circular openings 3a, 3b having a diameter of 15 mm.
  • the circular openings are made in partitions 4a, 4b, which have a thickness of 8 mm.
  • the openings 3a, 3b are each 37.5 mm to the central axis 6 offset at a maximum distance from each other.
  • an access 5 through which the molding material mixture can be filled.
  • the access 5 has a circular cross section with a diameter of 15 mm.
  • a vent opening 7 is further provided, which has a circular cross-section with a diameter of 9 mm and which is provided with a so-called slot nozzle.
  • the mold 1 is used for filling in a core shooting machine.
  • the determined weights of the moldings are summarized in Table 12.
  • Table 11 ⁇ / u> Composition of the molding material mixtures Quartz sand H 32 Alkaline water glass a) amorphous silica b) graphite 6.1 100 GT 2.5 GT 0.2 GT - Comparison, not according to the invention 6.2 100 GT 2.5 GT 0.2 GT 0.2 GT inventively 6.3 100 GT 2.5 GT 0.2 GT 0.2 GT inventively 6.4 100 GT 2.5 GT 0.2 GT 1.0 GT inventively a) Alkali water glass with modulus SiO 2 : M 2 O of approx. 2.3 b) Elkem Microsilica 971 Weight of the moldings Weight [g] 6.1 512 Comparison, not according to the invention 6.2 534 inventively 6.3 564 inventively 6.4 588 inventively
  • composition of the investigated molding material mixtures is listed in Table 14.
  • Table 14 shows that the addition of organic additives improves the casting surface.

Description

  • Die Erfindung betrifft eine Formstoffmischung zur Herstellung von Gießformen für die Metallverarbeitung, welche mindestens einen rieselfähigen feuerfesten Formgrundstoff sowie ein auf Wasserglas basierendes Bindemittel umfasst. Weiter betrifft die Erfindung ein Verfahren zur Herstellung von Gießformen für die Metallverarbeitung unter Verwendung der Formstoffmischung sowie eine mit dem Verfahren erhaltene Gießform.
  • Gießformen für die Herstellung von Metallkörpern werden im Wesentlichen in zwei Ausführungen hergestellt. Eine erste Gruppe bilden die so genannten Kerne oder Formen. Aus diesen wird die Gießform zusammengesetzt, welche im Wesentlichen die Negativform des herzustellenden Gussstücks darstellt. Eine zweite Gruppe bilden Hohlkörper, sog. Speiser, welche als Ausgleichsreservoir wirken. Diese nehmen flüssiges Metall auf, wobei durch entsprechende Maßnahmen dafür gesorgt wird, dass das Metall länger in der flüssigen Phase verbleibt, als das Metall, das sich in der die Negativform bildenden Gießform befindet. Erstarrt das Metall in der Negativform, kann flüssiges Metall aus dem Ausgleichsreservoir nachfließen, um die beim Erstarren des Metalls auftretende Volumenkontraktion auszugleichen.
  • Gießformen bestehen aus einem feuerfesten Material, beispielsweise Quarzsand, dessen Körner nach dem Ausformen der Gießform durch ein geeignetes Bindemittel verbunden werden, um eine ausreichende mechanische Festigkeit der Gießform zu gewährleisten. Für die Herstellung von Gießformen verwendet man also einen feuerfesten Formgrundstoff, welcher mit einem geeigneten Bindemittel behandelt wurde. Der feuerfeste Formgrundstoff liegt bevorzugt in einer rieselfähigen Form vor, so dass er in eine geeignete Hohlform eingefüllt und dort verdichtet werden kann. Durch das Bindemittel wird ein fester Zusammenhalt zwischen den Partikeln des Formgrundstoffs erzeugt, so dass die Gießform die erforderliche mechanische Stabilität erhält.
  • Gießformen müssen verschiedene Anforderungen erfüllen. Beim Gießvorgang selbst müssen sie zunächst eine ausreichende Stabilität und Temperaturbeständigkeit aufweisen, um das flüssige Metall in die aus einem oder mehreren Gieß(teil)formen gebildete Hohlform aufzunehmen. Nach Beginn des Erstarrungsvorgangs wird die mechanische Stabilität der Gießform durch eine erstarrte Metallschicht gewährleistet, die sich entlang der Wände der Hohlform ausbildet. Das Material der Gießform muss sich nun unter dem Einfluss der vom Metall abgegebenen Hitze in der Weise zersetzen, dass es seine mechanische Festigkeit verliert, also der Zusammenhalt zwischen einzelnen Partikeln des feuerfesten Materials aufgehoben wird. Dies wird erreicht, indem sich beispielsweise das Bindemittel unter Hitzeeinwirkung zersetzt. Nach dem Abkühlen wird das erstarrte Gussstück gerüttelt, wobei im Idealfall das Material der Gießformen wieder zu einem feinen Sand zerfällt, der sich aus den Hohlräumen der Metallform ausgießen lässt.
  • Zur Herstellung der Gießformen können sowohl organische als auch anorganische Bindemittel eingesetzt werden, deren Aushärtung jeweils durch kalte oder heiße Verfahren erfolgen kann. Als kalte Verfahren bezeichnet man dabei Verfahren, welche im Wesentlichen bei Raumtemperatur ohne Erhitzen der Gießform durchgeführt werden. Die Aushärtung erfolgt dabei meist durch eine chemische Reaktion, die beispielsweise dadurch ausgelöst wird, dass ein Gas als Katalysator durch die zu härtende Form geleitet wird. Bei heißen Verfahren wird die Formstoffmischung nach der Formgebung auf eine ausreichend hohe Temperatur erhitzt, um beispielsweise das im Bindemittel enthaltene Lösungsmittel auszutreiben oder um eine chemische Reaktion zu initiieren, durch welche das Bindemittel beispielsweise durch Vernetzen ausgehärtet wird.
  • Gegenwärtig werden für die Herstellung von Gießformen vielfach solche organischen Bindemittel eingesetzt, bei denen die Härtungsreaktion durch einen gasförmigen Katalysator beschleunigt wird oder die durch Reaktion mit einem gasförmigen Härter ausgehärtet werden. Diese Verfahren werden als "Cold-Box"-Verfahren bezeichnet.
  • Ein Beispiel für die Herstellung von Gießformen unter Verwendung organischer Bindemittel ist das so genannte Ashland-Cold-Box-Verfahren. Es handelt sich dabei um ein Zweikomponenten-System. Die erste Komponente besteht aus der Lösung eines Polyols, meistens eines Phenolharzes. Die zweite Komponente ist die Lösung eines Polyisocyanates. So werden gemäß der US 3,409,579 A die beiden Komponenten des Polyurethanbinders zur Reaktion gebracht, indem nach der Formgebung ein gasförmiges tertiäres Amin durch das Gemisch aus Formgrundstoff und Bindemittel geleitet wird. Bei der Aushärtereaktion von Polyurethanbindern handelt es sich um eine Polyaddition, d.h. eine Reaktion ohne Abspaltung von Nebenprodukten, wie z.B. Wasser. Zu den weiteren Vorteilen dieses Cold-Box-Verfahrens gehören gute Produktivität, Maßgenauigkeit der Gießformen sowie gute technische Eigenschaften, wie die Festigkeit der Gießformen, die Verarbeitungszeit des Gemisches aus Formgrundstoff und Bindemittel, usw.
  • Zu den heißhärtenden organischen Verfahren gehört das Hot-Box-Verfahren auf Basis von Phenol- oder Furanharzen, das Warm-Box-Verfahren auf Basis von Furanharzen und das Croning-Verfahren auf Basis von Phenol-Novolak-Harzen. Beim Hot-Box- sowie beim Warm-Box-Verfahren werden flüssige Harze mit einem latenten, erst bei erhöhter Temperatur wirksamen Härter zu einer Formstoffmischung verarbeitet. Beim Croning-Verfahren werden Formgrundstoffe, wie Quarz, Chromerz-, Zirkonsande, etc. bei einer Temperatur von ca. 100 bis 160°C mit einem bei dieser Temperatur flüssigen Phenol-Novolak-Harz umhüllt. Als Reaktionspartner für die spätere Aushärtung wird Hexamethylentetramin zugegeben. Bei den oben genannten heißhärtenden Technologien findet die Formgebung und Aushärtung in beheizbaren Werkzeugen statt, die auf eine Temperatur von bis zu 300°C aufgeheizt werden. Unabhängig vom Aushärtemechanismus ist allen organischen Systemen gemeinsam, dass sie sich beim Einfüllen des flüssigen Metalls in die Gießform thermisch zersetzen und dabei Schadstoffe, wie z.B. Benzol, Toluol, Xylole, Phenol, Formaldehyd und höhere, teilweise nicht identifizierte Crackprodukte freisetzen können. Es ist zwar durch verschiedene Maßnahmen gelungen, diese Emissionen zu minimieren, völlig vermeiden lassen sie sich bei organischen Bindemitteln jedoch nicht. Auch bei anorganisch-organischen.Hybridsystemen, die, wie die z.B. beim Resol-CO2-Verfahr eingesetzten Bindemittel, einen Anteil an organischen Verbindungen enthalten, treten solche unerwünschten Emissionen beim Gießen der Metalle auf.
  • Um die Emission von Zersetzungsprodukten während des Gießvorgangs zu vermeiden, müssen Bindemittel verwendet werden, die auf anorganischen Materialien beruhen bzw. die höchstens einen sehr geringen Anteil an organischen Verbindungen enthalten. Solche Bindemittelsysteme sind bereits seit längerem bekannt. Es sind Bindemittelsysteme entwickelt worden, welche sich durch Einleitung von Gasen aushärten lassen. Ein derartiges System ist beispielsweise in der GB 782 205 beschrieben, in welcher ein Alkaliwasserglas als Bindemittel verwendet wird, das durch Einleitung von CO2 ausgehärtet werden kann. In der DE 199 25 167 wird eine exotherme Speisermasse beschreiben, die ein Alkalisilikat als Bindemittel enthält. Ferner sind Bindemittelsysteme entwickelt worden, welche bei Raumtemperatur selbsthärtend sind. Ein solches, auf Phosphorsäure und Metalloxiden beruhendes System ist z.B. in der US 5,582,232 beschrieben. Schließlich sind noch anorganische Bindemittelsysteme bekannt, die bei höheren Temperaturen ausgehärtet werden, beispielsweise in einem heißen Werkzeug. Solche heißhärtenden Bindemittelsysteme sind beispielsweise aus der US 5,474,606 bekannt, in welcher ein aus Alkaliwasserglas und Aluminiumsilikat bestehendes Bindemittelsystem beschrieben wird.
  • Anorganische Bindemittel haben im Vergleich zu organischen Bindemitteln den Nachteil, dass die daraus hergestellten Gießformen relativ geringe Festigkeiten aufweisen. Dies tritt besonders deutlich unmittelbar nach der Entnahme der Gießform aus dem Werkzeug zutage. Gute Festigkeiten zu diesem Zeitpunkt sind aber besonders wichtig für die Produktion komplizierter, dünnwandiger Formteile und deren sichere Handhabung. Der Grund für die niedrigen Festigkeiten besteht in erster Linie darin, dass die Gießformen noch Restwasser aus dem Bindemittel enthalten. Längere Verweilzeiten im heißen geschlossenen Werkzeug helfen nur be-dingt, da der Wasserdampf nicht in ausreichendem Maß entweichen kann. Um eine möglichst vollständige Trocknung der Gießformen zu erreichen, wird in der WO 98/06522 vorgeschlagen, die Formstoffmischung nach dem Ausformen nur solange in einem temperierten Kernkasten zu belassen, dass sich eine formstabile und tragfähige Randschale ausbildet. Nach dem Öffnen des Kernkastens wird die Form entnommen und anschließend unter Einwirkung von Mikrowellen vollständig getrocknet. Die zusätzliche Trocknung ist jedoch aufwändig, verlängert die Produktionszeit der Gießformen und trägt, nicht zuletzt auch durch die Energiekosten, erheblich zur Verteuerung des Herstellungsprozesses bei.
  • Eine weitere Schwachstelle der bisher bekannten anorganischen Bindemittel ist die geringe Stabilität der damit hergestellten Gießformen gegen hohe Luftfeuchtigkeit. Damit ist eine Lagerung der Formkörper über einen längeren Zeitraum, wie bei organischen Bindemitteln üblich, nicht gesichert möglich.
  • In der EP 1 122 002 wird ein Verfahren beschrieben, das sich zur Herstellung von Gießformen für den Metallguss eignet. Zur Herstellung des Bindemittels wird ein Alkalihydroxid, insbesondere Natronlauge, mit einem teilchenförmigen Metalloxid vermischt, welches in Gegenwart der Alkalilauge ein Metallat ausbilden kann. Die Teilchen werden getrocknet, nachdem sich am Rand der Teilchen eine Schicht aus dem Metallat ausgebildet hat. Im Kern der Teilchen verbleibt ein Abschnitt, in welchem das Metalloxid nicht umgesetzt wurde. Als Metalloxid wird vorzugsweise ein disperses Siliciumdioxid oder auch feinteiliges Titanoxid oder Zinkoxid verwendet.
  • In der WO 94/14555 wird eine Formstoffmischung beschrieben, welche auch zur Herstellung von Gießformen geeignet ist und die neben einem feuerfesten Formgrundstoff ein Bindemittel enthält, welches aus einem Phosphat- oder Boratglas besteht, wobei die Mischung weiter ein feinteiliges feuerfestes Material enthält. Als feuerfestes Material kann beispielsweise auch Siliciumdioxid verwendet werden.
  • Eine Formstoffmischung zur Herstellung von Gießformen für die Metallverarbeitung umfassend einen feuerfesten Formgrundstoff, ein auf Wasserglas basierendes Bindemittel und einen Anteil eines teilchenförmigen Metalloxids ist aus der JP 52-138434 A bekannt, die Titanoxid, Zinkoxid, Eisenoxid und Alumosilikate als Metalloxide offenbart. Die Verwendung von synthetischem, amorphen Siliziumdioxid als teilchenförmiges Metalloxid ist jedoch aus dem Stand der Technik nicht bekannt.
  • In der EP 1 095 719 A2 wird ein Bindemittelsystem für Formsande zur Herstellung von Kernen beschrieben. Das Bindemittelsystem auf Wasserglasbasis besteht aus einer wässrigen Alkalisilikatlösung und einer hygroskopischen Base, wie beispielsweise Natriumhydroxid, die im Verhältnis 1:4 bis 1:6 zugesetzt wird. Das Wasserglas weist ein Modul SiO2/M2O von 2,5 bis 3,5 und einen Feststoffanteil von 20 bis 40 % auf. Um eine rieselfähige Formstoffmischung zu erhalten, welche auch in komplizierte Kernformen eingefüllt werden kann, sowie zur Steuerung der hygroskopischen Eigenschaften, enthält das Bindemittelsystem noch einen oberflächenaktiven Stoff, wie Silikonöl, das einen Siedepunkt ≥ 250°C aufweist. Das Bindemittelsystem wird mit einem geeigneten Feuerfeststoff, wie Quarzsand, vermischt und kann dann mit einer Kernschießmaschine in einen Kernkasten eingeschossen werden. Die Aushärtung der Formstoffmischung erfolgt durch Entzug des noch enthaltenen Wassers. Die Trocknung bzw. Aushärtung der Gießform kann auch unter Einwirkung von Mikrowellen erfolgen.
  • Die bisher bekannten Formstoffmischungen zur Herstellung von Gießformen weisen noch Raum für eine Verbesserung der Eigenschaften beispielsweise hinsichtlich der Festigkeit der hergestellten Gießformen sowie hinsichtlich deren Beständigkeit gegenüber Luftfeuchtigkeit bei einer Lagerung über einen längeren Zeitraum auf. Weiter wird angestrebt, nach dem Guss bereits eine hohe Qualität der Oberfläche des Gussstücks zu erreichen, sodass die Nachbearbeitung der Oberfläche mit geringem Aufwand durchgeführt werden kann.
  • Der Erfindung lag daher die Aufgabe zugrunde, eine Formstoffmischung zur Herstellung von Gießformen für die Metallverarbeitung zur Verfügung zu stellen, welche mindestens einen feuerfesten Formgrundstoff sowie ein auf Wasserglas basierendes Bindemittelsystem umfasst, welche die Herstellung von Gießformen ermöglicht, die eine hohe Festigkeit sowohl unmittelbar nach der Formgebung als auch bei längerer Lagerung aufweisen.
  • Ferner soll die Formstoffmischung die Herstellung von Gießformen ermöglichen, mit welchen Gussstücke hergestellt werden können, die eine hohe Qualität der Oberfläche aufweisen, sodass nur eine geringe Nachbearbeitung der Oberflächen erforderlich ist.
  • Diese Aufgabe wird mit einer formstoffmischung mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Weiterbildungen der erfindungsgemäßen Formstoffmischung sind Gegenstand der abhängigen Fatentansprtiche.
  • Überraschend wurde gefunden, dass durch die Verwendung eines Bindemittels, welches ein Alkaliwasserglas sowie ein teilchen-förmiges Metalloxid enthält, welches ein teilchenförmiges synthetisches amorphes Siliciumdioxid ist, die Festigkeit von Gießformen sowohl unmittelbar nach der Formgebung und Aushärtung als auch bei einer Lagerung unter erhöhter Luftfeuchtigkeit deutlich verbessert werden kann.
  • Die erfindungsgemäße Formstoffmischung zur Herstellung von Gießformen für die Metallverarbeitung umfasst mindestens:
    • einen feuerfesten Formgrundstoff; sowie
    • ein auf Wasserglas basierendes Bindemittel.
  • Als feuerfester Formgrundstoff können für die Herstellung von Gießformen übliche Materialien verwendet werden. Geeignet sind beispielsweise Quarz- oder Zirkonsand. Weiter sind auch faserförmige feuerfeste Formgrundstoffe geeignet, wie beispielsweise Schamottefasern. Weitere geeignete feuerfeste Formgrundstoffe sind beispielsweise Olivin, Chromerzsand, Vermiculit.
  • Weiter können als feuerfeste Formgrundstoffe auch künstliche Formstoffe verwendet werden, wie z.B. Aluminiumsilikathohlkugeln (sog. Microspheres), Glasperlen, Glasgranulat oder unter der Bezeichnung "Cerabeads" bzw. "Carboaccucast" bekannte kugelförmige keramische Formgrundstoffe. Diese kugelförmigen keramischen Formgrundstoffe enthalten als Mineralien beispielsweise Mullit, Korund, β-Cristobalit in unterschiedlichen Anteilen. Sie enthalten als wesentliche Anteile Aluminiumoxid und Siliciumdioxid. Typische Zusammensetzungen enthalten beispielsweise Al2O3 und SiO2 in etwa gleichen Anteilen. Daneben können noch weitere Bestandteile in Anteilen von <10 % enthalten sein, wie TiO2 Fe2O3. Der Durchmesser der Mikrokugeln beträgt vorzugsweise weniger als 1000 µm, insbesondere weniger als 600 µm. Geeignet sind auch synthetisch hergestellte feuerfeste Formgrundstoffe, wie beispielsweise Mullit (x Al2O3 · y SiO2, mit x = 2 bis 3, y = 1 bis 2; ideale Formel: Al2SiO5). Diese künstlichen Formgrundstoffe gehen nicht auf einen natürlichen Ursprung zurück und können auch einem besonderen Formgebungsverfahren unterworfen worden sein, wie beispielsweise bei der Herstellung von Aluminiumsilikatmikrohohlkugeln, Glasperlen oder kugelförmigen keramischen Formgrundstoffen.
  • Besonders bevorzugt werden als feuerfeste künstliche Formgrundstoffe Glasmaterialien verwendet. Diese werden insbesondere entweder als Glaskugeln oder als Glasgranulat eingesetzt. Als Glas können übliche Gläser verwendet werden, wobei Gläser, die einen hohen Schmelzpunkt zeigen, bevorzugt sind. Geeignet sind beispielsweise Glasperlen und/oder Glasgranulat, das aus Glasbruch hergestellt wird. Ebenfalls geeignet sind Boratgläser. Die Zusammensetzung derartiger Gläser ist beispielhaft in der nachfolgenden Tabelle angegeben. Tabelle: Zusammensetzung von Gläsern
    Bestandteil Glasbruch Boratglas
    SiO2 50 - 80 % 50 - 80 %
    Al2O3 0 -15 % 0 - 15 %
    Fe2O3 < 2 % < 2 %
    MIIO 0 - 25 % 0 - 25 %
    MI 2O 5 - 25 % 1 - 10 %
    B2O3 < 15 %
    Sonst. < 10 % < 10 %
    MII : Erdalkalimetall, z.B. Mg, Ca, Ba
    MI: Alkalimetall, z.B. Na, K
  • Neben den in der Tabelle aufgeführten Gläsern können jedoch auch andere Gläser verwendet werden, deren Gehalt an den oben genannten Verbindungen außerhalb der genannten Bereiche liegt. Ebenso können auch Spezialgläser verwendet werden, die neben den Genannten Oxiden auch andere Elemente bzw. deren Oxide enthalten.
  • Der Durchmesser der Glaskugeln beträgt vorzugsweise weniger als 1000 µm, insbesondere weniger als 600 µm.
  • In Gießversuchen mit Aluminium wurde gefunden, dass bei Verwendung künstlicher Formgrundstoffe, vor allem bei Glasperlen, Glasgranulat bzw. Microspheres, nach dem Gießen weniger Formsand an der Metalloberfläche haften bleibt als bei Verwendung von reinem Quarzsand. Der Einsatz künstlicher Formgrundstoffe ermöglicht daher die Erzeugung glätterer Gussoberflächen, wobei eine aufwändige Nachbehandlung durch Strahlen nicht oder zumindest in erheblich geringerem Ausmaß erforderlich ist.
  • Es ist nicht notwendig, den gesamten Formgrundstoff aus den künstlichen Formgrundstoffen zu bilden. Der bevorzugte Anteil der künstlichen Formgrundstoffe liegt bei mindestens etwa 3 Gew.-%, besonders bevorzugt mindestens 5 Gew.-%, insbesondere bevorzugt mindestens 10 Gew.-%, vorzugsweise bei mindestens etwa 15 Gew.-%, besonders bevorzugt bei mindestens etwa 20 Gew.-%, bezogen auf die gesamte Menge des feuerfesten Formgrundstoffs. Der feuerfeste Formgrundstoff weist vorzugsweise einen rieselfähigen Zustand auf, so dass die erfindungsgemäße Formstoffmischung in üblichen Kernschießmaschinen verarbeitet werden kann.
  • Als weitere Komponente umfasst die erfindungsgemäße Formstoffmischung ein auf Wasserglas basierendes Bindemittel. Als Wasserglas können dabei übliche Wassergläser verwendet werden, wie sie bereits bisher als Bindemittel in Formstoffmischungen verwendet werden. Diese Wassergläser enthalten gelöste Natrium- oder Kaliumsilikate und können durch Lösen von glasartigen Kalium- und Natriumsilikaten in Wasser hergestellt werden. Das Wasserglas weist vorzugsweise ein Modul SiO2/M2O im Bereich von 1,6 bis 4,0, insbesondere 2,0 bis 3,5, auf, wobei M für Natrium und/oder Kalium steht. Die Wassergläser weisen vorzugsweise einen Feststoffanteil im Bereich von 30 bis 60 Gew.-% auf. Der Feststoffanteil bezieht sich auf die im Wasserglas enthaltene Menge an SiO2 und M2O.
  • Erfindungsgemäß enthält die Formstoffmischung einen Anteil eines teilchenförmigen Metalloxids, das ein teilchen Förmiges Synthetisches amorphes Siliciumdioxid ist. Die Teilchengröße dieser Metalloxide beträgt vorzugsweise weniger als 300 µm, bevorzugt weniger als 200 µm, insbesondere bevorzugt weniger als 100 µm. Die Teilchengröße lässt sich durch Siebanalyse bestimmen. Besonders bevorzugt beträgt der Siebrückstand auf einem Sieb mit einer Maschenweite von 63 µm weniger als 10 Gew.-%, vorzugsweise weniger als 8 Gew.-%.
  • Als teilchenförmiges Siliciumdioxid wird vorzugsweise Fällungskieselsäure und/oder pyrogene Kieselsäure verwendet. Fällungskieselsäure wird durch Reaktion einer wässrigen Alkalisilikatlösung mit Mineralsäuren erhalten. Der dabei anfallende Niederschlag wird anschließend abgetrennt, getrocknet und vermahlen. Unter pyrogenen Kieselsäuren werden Kieselsäuren verstanden, die bei hohen Temperaturen durch Koagulation aus der Gasphase gewonnen werden. Die Herstellung pyrogener Kieselsäure kann beispielsweise durch Flammhydrolyse von Siliciumtetrachlorid oder im Lichtbogenofen durch Reduktion von Quarzsand mit Koks oder Anthrazit zu Siliciummonoxidgas mit anschließender Oxidation zu Siliciumdioxid erfolgen. Die nach dem Lichtbogenofen-Verfahren hergestellten pyrogenen Kieselsäuren können noch Kohlenstoff enthalten. Fällungskieselsäure und pyrogene Kieselsäure sind für die erfindungsgemäße Formstoffmischung gleich gut geeignet. Diese Kieselsäuren werden im weiteren als "synthetisches amorphes Siliciumdioxid" bezeichnet.
  • Die Erfinder nehmen an, dass das stark alkalische Wasserglas mit den an der Oberfläche des synthetisch hergestellten amorphen Siliciumdioxids angeordneten Silanolgruppen reagieren kann und dass beim Verdampfen des Wassers eine intensive Verbindung zwischen dem Siliciumdioxid und dem dann festen Wasserglas hergestellt wird.
  • Die erfindungsgemäße Formstoffmischung stellt eine intensive Mischung aus zumindest den genannten Bestandteilen dar. Dabei sind die Teilchen des feuerfesten Formgrundstoffs vorzugsweise mit einer Schicht des Bindemittels überzogen. Durch Verdampfen des im Bindemittel vorhandenen Wassers (ca. 40 - 70 Gew.-%, bezogen auf das Gewicht des Bindemittels) kann dann ein fester zusammenhalt zwischen den Teilchen des feuerfesten Formgrundstoffs erreicht werden.
  • Das Bindemittel, d.h. das Wasserglas sowie das teilchenförmigen synthetische amorphe Siliciumdioxid ist in der Formstoffmischung bevorzugt in einem Anteil von weniger als'20 Gew.-% enthalten. Werden massive Formgrundstoffe verwendet, wie beispielsweise Quarzsand, ist das Bindemitteln vorzugsweise in einem Anteil von weniger als 10 Gew.-% bevorzugt weniger als 8 Gew.-% insbesondere bevorzugt weniger als 5 Gew.-% enthalten. Werden feuerfeste Formgrundstoffe verwendet, welche eine geringe Dichte aufweisen, wie beispielsweise die oben beschriebenen Mikrohohlkugeln, erhöht sich der Anteil des Bindemittels entsprechend.
  • Das teilchenförmige synthetische amorphe Siliciumdioxid, ist, bezogen auf das Gewicht des Bindemittels, vorzugsweise in einem Anteil von 2 bis 60 Gew.-% enthalten, vorzugsweise zwisehen 3 und 50 Gew.-%, insbesondere bevorzug zwischen 4 und 40 Gew.-%.
  • Das Verhältnis von Wasserglas zu teilehenförmigem synthetischem amorphem siliciumdioxid, kann innerhalb weiter Bereiche variiert werden. Dies bietet den Vorteil, die Anfangsfestigkeit der Gießform, d.h. die Festigkeit unmittelbar nach Entnahme aus dem heißen werkzeugs und die Feuchtigkeitsbeständigkeit zu verbessern, ohne die Endfestigkeiten, d.h. die Festigkeiten nach dem Erkalten der Gießform, gegenüber einem Wasserglasbindemittel ohne amorphes Siliciumdioxid wesentlich zu beeinflussen. Dies ist vor allem im Leichtmetallguss von großen Interesse. Auf der einen Seite sind hohe Anfangsfestigkeiten erwünscht, um nach der Herstellung der Gießform diese problemlos transportieren oder mit anderem Gießformen zusammensetzen zu können. Auf der anderen Seite sollte die Zufestigkeit nach dem Aushärten nicht zu hoch sein, um Schwierigkeiten bein Binderzerfall nach dem Abguss zu vermeiden, d.h. der Formstoff sollte nach dem Gießen problemlos aus Hohlräumen der Gussform entfernt werden können.
  • Der in der erfindungsgemäßen Formstoffmischung enthaltene Formgrundstoff kann in einer Ausführungsform der Erfindung zumindest einen Anteil von Mikrohohlkugeln enthalten. Der Durchmesser der Mikrohohlkugeln liegt normalerweise im Bereich von 5 bis 500 µm, vorzugsweise im Bereich von 10 bis 350 µm und die Dicke der Schale liegt gewöhnlich im Bereich von 5 bis 15 % des Durchmessers der Mikrokugeln. Diese Mikrokugeln weisen ein sehr geringes spezifisches Gewicht auf, so dass die unter Verwendung von Mikrohohlkugeln hergestellten Gießformen ein niedriges Gewicht aufweisen. Besonders vorteilhaft ist die Isolierwirkung der Mikrohohlkugeln. Die Mikrohohlkugeln werden daher insbesondere dann für die Herstellung von Gießformen verwendet, wenn diese eine erhöhte Isolierwirkung aufweisen sollen. Solche Gießformen sind beispielsweise die bereits in der Einleitung beschriebenen Speiser, welche als Ausgleichsreservoir wirken und flüssiges Metall enthalten, wobei das Metall solange in einem flüssigen Zustand erhalten werden soll, bis das in die Hohlform eingefüllte Metall erstarrt ist. Ein anderes Anwendungsgebiet von Gießformen, welche Mikrohohlkugeln enthalten, sind beispielsweise Abschnitte einer Gießform, welche besonders dünnwandigen Abschnitten der fertigen Gussform entsprechen. Durch die isolierende Wirkung der Mikrohohlkugeln wird sichergestellt, dass das Metall in den dünnwandigen Abschnitten nicht vorzeitig erstarrt und damit die Wege innerhalb der Gießform verstopft.
  • Werden Mikrohohlkugeln verwendet, wird das Bindemittel, bedingt durch die geringe Dichte dieser Mikrohohlkugeln, vorzugsweise in einem Anteil im Bereich von vorzugsweise weniger als 20 Gew.-%, insbesondere bevorzugt im Bereich von 10 bis 18 Gew.-% verwendet.
  • Die Mikrohohlkugeln bestehen vorzugsweise aus einem Aluminiumsilikat. Diese Aluminiumsilikatmikrohohlkugeln weisen vorzugsweise einen Gehalt an Aluminiumoxid von mehr als 20 Gew.-% auf, können jedoch auch einen Gehalt von mehr als 40 Gew.-% aufweisen. Solche Mikrohohlkugeln werden beispielsweise von der Omega Minerals Germany GmbH, Norderstedt, unter den Bezeichnungen OmegaSpheres® SG mit einem Aluminiumoxidgehalt von ca. 28 - 33 %, Omega-Spheres® WSG mit einem Aluminiumoxidgehalt von ca. 35 - 39 % und E-Spheres® mit einem Aluminiumoxidgehalt von ca. 43 % in den Handel gebracht. Entsprechende Produkte sind bei der PQ Corporation (USA) unter der Bezeichnung "Extendospheres®" erhältlich.
  • Gemäß einer weiteren Ausführungsform werden Mikrohohlkugeln als feuerfester Formgrundstoff verwendet, welche aus Glas aufgebaut sind.
  • Gemäß einer besonders bevorzugten Ausführungsform bestehen die Mikrohohlkugeln aus einem Borsilikatglas. Das Borsilikatglas weist dabei einen Anteil an Bor, berechnet als B2O3, von mehr als 3 Gew.-% auf. Der Anteil der Mikrohohlkugeln wird vorzugsweise kleiner als 20 Gew.-% gewählt, bezogen auf die Formstoffmischung. Bei Verwendung von Borsilikatglas-Mikrohohlkugeln wird bevorzugt ein geringer Anteil gewählt. Dieser beträgt vorzugsweise weniger als 5 Gew.-%, bevorzugt weniger als 3 Gew.-%, und liegt insbesondere bevorzugt im Bereich von 0,01 bis 2 Gew.-%.
  • Wie bereits erläutert, enthält die erfindungsgemäße Formstoffmischung in einer bevorzugten Ausführungsform zumindest einen Anteil an Glasgranulat und/oder Glasperlen als feuerfesten Formgrundstoff.
  • Es ist auch möglich, die Formstoffmischung als exotherme Formstoffmischung auszubilden, die beispielsweise für die Herstellung exothermer Speiser geeignet ist. Dazu enthält die Formstoffmischung ein oxidierbares Metall und ein geeignetes Oxidationsmittel. Bezogen auf die Gesamtmasse der Formstoffmischung bilden die oxidierbaren Metalle bevorzugt einen Anteil von 15 bis 35 Gew.-%. Das Oxidationsmittel wird bevorzugt in einem Anteil von 20 bis 30 Gew.-%, bezogen auf die Formstoffmischung zugesetzt. Geeignete oxidierbare Metalle sind beispielsweise Aluminium oder Magnesium. Geeignete Oxidationsmittel sind beispielsweise Eisenoxid oder Kaliumnitrat.
  • Bindemittel, welche Wasser enthalten, weisen im Vergleich zu Bindemitteln auf Basis organischer Lösungsmittel eine schlechtere Fließfähigkeit auf. Dies bedeutet, dass sich Formwerkzeuge mit engen Durchgängen und mehrere Umlenkungen schlechter füllen lassen. Als Folge davon besitzen die Gießformen Abschnitte mit ungenügender Verdichtung, was wiederum beim Abguss zu Gussfehlern führen kann. Gemäß einer vorteilhaften Ausführungsform enthält die erfindungsgemäße Formstoffmischung einen Anteil an plättchenförmigen Schmiermitteln, insbesondere Grafit oder MoS2, Überraschend hat sich gezeigt, dass bei einem Zusatz derartiger Schmiermittel, insbesondere von Grafit, auch komplexe Formen mit dünnwandigen Abschnitten hergestellt werden können, wobei die Gießformen durchgängig eine gleichmäßig hohe Dichte und Festigkeit aufweisen, so dass beim Gießen im Wesentlichen keine Gussfehler beobachtet wurden. Die Menge des zugesetzten plättchenförmigen Schmiermittels, insbesondere Grafits, beträgt vorzugsweise 0,1 Gew.-% bis 1 Gew.-%, bezogen auf den Formgrundstoff.
  • Neben den genannten Bestandteilen kann die erfindungsgemäße Formstoffmischung noch weitere Zusätze umfassen. Beispielsweise können interne Trennmittel zugesetzt werden, welche die Ablösung der Gießformen aus dem Formwerkzeug erleichtern. Geeignete interne Trennmittel sind z.B. Calciumstearat, Fettsäureester, Wachse, Naturharze oder spezielle Alkydharze. Weiter können auch Silane zur erfindungsgemäßen Formstoffmischung gegeben werden.
  • So enthält die erfindungsgemäße Formstoffmischung in einer bevorzugten Ausführungsform ein organisches Additiv, welches einen Schmelzpunkt im Bereich von 40 bis 180 °C, vorzugsweise 50 bis 175 °C aufweist, also bei Raumtemperatur fest ist. Unter organischen Additiven werden dabei Verbindungen verstanden, deren Molekülgerüst überwiegend aus Kohlenstoffatomen aufgebaut ist, also beispielsweise organische Polymere. Durch die Zugabe der organischen Additive kann die Güte der Oberfläche des Gussstücks weiter verbessert werden. Der Wirkmechanismus der organischen Additive ist nicht geklärt. Ohne an diese Theorie gebunden sein zu wollen nehmen die Erfinder jedoch an, dass zumindest ein Teil der organischen Additive beim Gießvorgang verbrennt und dabei ein dünnes Gaspolster zwischen flüssigem Metall und dem die Wand der Gießform bildenden Formstoff entsteht und so eine Reaktion zwischen flüssigem Metall und Formstoff verhindert wird. Ferner nehmen die Erfinder an, dass ein Teil der organischen Additive unter der beim Gießen herrschenden reduzierenden Atmosphäre eine dünne Schicht von so genanntem Glanzkohlenstoff bildet, der ebenfalls eine Reaktion zwischen Metall und Formstoff verhindert. Als weitere vorteilhafte Wirkung kann durch die Zugabe der organischen Additive eine Steigerung der Festigkeit der Gießform nach dem Aushärten erreicht werden.
  • Die organischen Additive werden bevorzugt in einer Menge von 0,01 bis 1,5 Gew.-%, insbesondere bevorzugt 0,05 bis 1,3 Gew.-%, besonders bevorzugt 0,1 bis 1,0 Gew.-%, jeweils bezogen auf den Formstoff, zugegeben.
  • Überraschend wurde gefunden, dass eine Verbesserung der Oberfläche des Gussstücks mit sehr unterschiedlichen organischen Additiven erreicht werden kann. Geeignete organische Additive sind beispielsweise Phenol-Formaldehydharze, wie z.B. Novolake, Epoxidharze, wie beispielsweise Bisphenol-A-Epoxidharze, Bisphenol-F-Epoxidharze oder epoxidierte Novolake, Polyole, wie beispielsweise Polyethylenglykole oder Polypropylenglykole, Polyolefine, wie beispielsweise Polyethylen oder Polypropylen, Copolymere aus Olefinen, wie Ethylen oder Propylen, und weiteren Comonomeren, wie Vinylacetat, Polyamide, wie beispielsweise Polyamid-6, Polyamid-12 oder Polyamid-6,6, natürliche Harze, wie beispielsweise Balsamharz, Fettsäureester, wie beispielsweise Cetylpalmitat, Fettsäureamide, wie beispielsweise Ethylendiaminbisstearamid, sowie Metallseifen, wie beispielsweise Stearate oder Oleate zwei- oder dreiwertiger Metalle. Die organischen Additive können sowohl als reiner Stoff enthalten sein, als auch als Gemisch verschiedener organischer Verbindungen.
  • Gemäß einer weiteren bevorzugten Ausführungsform enthält die erfindungsgemäße Formstoffmischung einen Anteil zumindest eines Silans. Geeignete Silane sind beispielsweise Aminosilane, Epoxysilane, Mercaptosilane, Hydroxysilane und Ureidosilane. Beispiele für geeignete Silane sind γ-Aminopropyl-trimethoxysilan, γ-Hydroxypropyltrimethoxysilan, 3-Ureidopropyltriethoxysilan, γ-Mercaptopropyltrimethoxysilan, γ-Glycidoxypropyltrimethoxysilan, β-(3,4-Epoxycyclohexyl)trimethoxysilan und N-β(Aminoethyl)-γ-aminopropyltrimethoxysilan.
  • Bezogen auf das teilchenförmige Metalloxid werden typischerweise ca. 5 - 50 % Silan eingesetzt, vorzugsweise ca. 7 - 45 %, besonders bevorzugt ca. 10 - 40 %.
  • Trotz der mit dem erfindungsgemäßen Bindemittel erreichbaren hohen Festigkeiten zeigen die mit der erfindungsgemäßen Formstoffmischung hergestellten Gießformen, insbesondere Kerne und Formen, nach dem Abguss einen guten Zerfall, insbesondere beim Aluminiumguss. Die Verwendung der aus der erfindungsgemäßen Formstoffmischung hergestellten Formkörper ist jedoch nicht auf den Leichtmetallguss beschränkt. Die Gießformen eignen sich generell zum Gießen von Metallen. Solche Metalle sind beispielsweise Buntmetalle, wie Messing oder Bronzen, sowie Eisenmetalle. Die Erfindung betrifft weiter ein Verfahren zur Herstellung von Gießformen, für die Metallverarbeitung, wobei die erfindungsgemä-βe Formstoffmischung verwendet wird. Das erfindungsgemäße Verfahrere umfasst die Schritte:
    • Herstellen der oben beschriebenen Formstoffmischung;
    • Formen der Formstoffmischung;
    • Aushärten der Formstoffmischung, indem die Formstoffmischung erwärmt wird, wobei die ausgehärtete Gießform erhalten wird.
  • Bei der Herstellung der erfindungsgemäßen Formstoffmischung wird im Allgemeinen so vorgegangen, dass zunächst der feuerfeste Formgrundstoff vorgelegt und dann unter Rühren das Bindemittel zugegeben wird. Dabei kann das Wasserglas sowie das teilchenförmige synthetische amorphe Siliciumdioxid an sich in beliebiger Reihenfolge zugegeben werden. Es ist jedoch vorteilhaft, die flüssige Komponente als erstes zuzugeben. Die Zugabe erfolgt unter heftigem Rühren, so dass das Bindemittel gleichmäßig im feuerfesten Formgrundstoff verteilt wird und diesen beschichtet.
  • Die Formstoffmischung wird anschließend in die gewünschte Form gebracht. Dabei werden für die Formgebung übliche Verfahren verwendet. Beispielsweise kann die Formstoffmischung mittels einer Kernschießmaschine mit Hilfe von Druckluft in das Formwerkzeug geschossen werden. Die Formstoffmischung wird anschließend durch Wärmezufuhr ausgehärtet, um das im Bindemittel enthaltene Wasser zu verdampfen. Das Erwärmen kann beispielsweise im Formwerkzeug erfolgen. Es ist möglich, die Gießform bereits im Formwerkzeug vollständig auszuhärten. Es ist aber auch möglich, die Gießform nur in ihrem Randbereich auszuhäzten, so dass sie eine ausreichende Festigkeit aufweist, um aus dem Formwerkzeug entnommen werden zu können. Die Gießform kann dann anschließend vollständig ausgehärtet werden, indem ihr weiteres Wasser entzogen wird. Dies kann beispielsweise in einem Ofen erfolgen. Der Wasserentzug kann beispielsweise auch erfolgen, indem das Wasser bei vermindertem Druck verdampft wird.
  • Die Aushärtung der Gießformen kann durch Einblasen von erhitzter Luft in das Formwerkzeug beschleunigt werden. Bei dieser Ausführungsform des Verfahrens wird ein rascher Abtransport des im Bindemittel enthaltenen Wassers erreicht, wodurch die Gießform in für eine industrielle Anwendung geeigneten Zeiträumen verfestigt wird. Die Temperatur der eingeblasenen Luft beträgt vorzugsweise 100°C bis 180°C, insbesondere bevorzugt 120°C bis 150°C. Die Strömungsgeschwindigkeit der erhitzten Luft wird vorzugsweise so eingestellt, dass eine Aushärtung der Gießform in für eine industrielle Anwendung geeigneten Zeiträumen erfolgt. Die Zeiträume hängen von der Größe der hergestellten Gießformen ab. Angestrebt wird eine Aushärtung im Zeitraum von weniger als 5 Minuten, vorzugsweise weniger als 2 Minuten. Bei sehr großen Gießformen können jedoch auch längere Zeiträume erforderlich sein.
  • Die Entfernung des Wassers aus der Formstoffmischung kann auch in der Weise erfolgen, dass das Erwärmen der Formstoffmischung durch Einstrahlen von Mikrowellen bewirkt wird. Die Einstrahlung der Mikrowellen wird aber bevorzugt vorgenommen, nachdem die Gießform aus dem Formwerkzeug entnommen wurde. Dazu muss die Gießform jedoch bereits eine ausreichende Festigkeit aufweisen. Wie bereits erläutert, kann dies beispielsweise dadurch bewirkt werden, dass zumindest eine äußere Schale der Gießform bereits im Formwerkzeug ausgehärtet wird.
  • Wie bereits weiter oben erläutert, kann durch den Zusatz von plättchenförmigen Schmiermitteln, insbesondere Grafit und/oder MoS2, die Fließfähigkeit der erfindungsgemäßen Formstoffmischung verbessert werden. Bei der Herstellung kann das plättchenförmige Schmiermittel, insbesondere Grafit dabei getrennt von den beiden Binderkomponenten der Formstoffmischung zugesetzt werden. Es ist aber genauso gut möglich, das plättchenförmige Schmiermittel, insbesondere Grafit, mit dem teilchenförmigen synthetischen amorphen Siliciumdioxid vorzumischen und erst dann mit dem Wasserglas und dem feuerfesten Formgrundstoff zu vermengen.
  • Umfasst die Formstoffmischung ein organisches Additiv, so kann die Zugabe des organischen Additivs an sich zu jedem Zeitpunkt der Herstellung der Formstoffmischung erfolgen. Die Zugabe des organischen Additivs kann dabei in Substanz oder auch in Form einer Lösung erfolgen.
  • Wasserlösliche organische Additive können in Form einer wässrigen Lösung eingesetzt werden. Sofern die organischen Additive im Bindemittel löslich und darin unzersetzt über mehrere Monate lagerstabil sind, können sie auch im Bindemitteln gelöst und so gemeinsam mit diesem dem Formstoff zugegeben werden. Wasserunlösliche Additive können in Form einer Dispersion oder einer Paste verwendet werden. Die Dispersionen oder Pasten enthalten bevorzugt Wasser als Lösungsmittel. An sich können Lösungen oder Pasten der organischen Additive auch in organischen Lösemitteln hergestellt werden. Wird für die Zugabe der organischen Additive jedoch ein Lösungsmittel verwendet, so wird vorzugsweise Wasser eingesetzt.
  • Vorzugsweise erfolgt die Zugabe der organischen Additive als Pulver oder als Kurzfaser, wobei die mittlere Teilchengröße bzw. die Faserlänge bevorzugt so gewählt wird, dass sie die Größe der Formstoffpartikel nicht übersteigt. Besonders bevorzugt lassen sich die organischen Additive durch ein Sieb mit der Maschenweite von ca. 0,3 mm sieben. Um die Anzahl der dem Formstoff zugegebenen Komponenten zu reduzieren, werden das teilchenförmige Metalloxid und das bzw. die organischen Additive dem Formsand vorzugsweise nicht getrennt zugesetzt, sondern vorab gemischt.
  • Enthält die Formstoffmischung Silane, so erfolgt die Zugabe der Silane üblicherweise in der Form, dass sie vorab in das Bindemittel eingearbeitet werden. Die Silane können dem Formstoff aber auch als getrennte Komponente zugegeben werden. Besonders vorteilhaft ist es jedoch, das teilchenförmige Metalloxid zu silanisieren, d.h. das Metalloxid mit dem Silan zu mischen, so dass seine Oberfläche mit einer dünnen Silanschicht versehen ist. Setzt man das so vorbehandelte teilchenförmige Metalloxid ein, so findet man gegenüber dem unbehandelten Metalloxid erhöhte Festigkeiten sowie eine verbesserte Resistenz gegen hohe Luftfeuchtigkeit. Setzt man, wie beschrieben, der Formstoffmischung bzw. dem teilchenförmigen Metalloxid ein organisches Additiv zu, ist es zweckmäßig, dies vor der Silanisierung zu tun.
  • Das erfindungsgemäße Verfahren eignet sich an sich für die Herstellung aller für den Metallguss üblicher Gießformen, also beispielsweise von Kernen und Formen. Insbesondere bei Zusatz von isolierendem feuerfestem Formgrundstoff oder bei Zusatz von exothermen Materialien zur erfindungsgemäßen Formstoffmischung eignet sich das erfindungsgemäße Verfahren zur Herstellung von Speisern.
  • Die aus der erfindungsgemäßen Formstoffmischung bzw. mit dem erfindungsgemäßen Verfahren hergestellten Gießformen weisen eine hohe Festigkeit unmittelbar nach der Herstellung auf, ohne dass die Festigkeit der Gießformen nach dem Aushärten so hoch ist, dass Schwierigkeiten nach der Herstellung des Gussstücks beim Entfernen der Gießform auftreten. Weiterhin weisen diese Gießformen eine hohe Stabilität bei erhöhter Luftfeuchtigkeit auf, d.h. die Gießformen können auch über längere Zeit hinweg problemlos gelagert werden. Ein weiterer Gegenstand der Erfindung ist daher eine Gießform, welche nach dem oben beschriebenen erfindungsgemäßen Verfahren erhalten wurde.
  • Die erfindungsgemäße Gießform eignet sich allgemein für den Metallguss, insbesondere Leichtmetallguss. Besonders vorteilhafte Ergebnisse werden beim Aluminiumguss erhalten.
  • Die Erfindung wird im Weiteren anhand von Beispielen sowie unter Bezugnahme auf die beigefügten Figuren näher erläutert. Dabei zeigt:
  • Fig. 1:
    einen Querschnitt durch ein zur Prüfung der Fließfähigkeit verwendetes Formwerkzeug;
    Fig. 2:
    einen Querschnitt durch eine Gießform, welche zur Prüfung der erfindungsgemäßen Formstoffmischung verwendet wurde.
    Beispiel 1 Einfluss von synthetisch hergestelltem amorphem Siliciumdioxid auf die Festigkeit von Formkörpern mit Quarzsand als Formgrundstoff 1. Herstellung und Prüfung der Formstoffmischung
  • Für die Prüfung der Formstoffmischung wurden sog. Georg-Fischer-Prüfriegel hergestellt. Unter Georg-Fischer-Prüfriegeln werden quaderförmige Prüfriegel mit den Abmessungen 150 mm x 22,36 mm x 22,36 mm verstanden.
  • Die Zusammensetzung der Formstoffmischung ist in Tabelle 1 angegeben. Zur Herstellung der Georg-Fischer-Prüfriegel wurde wie folgt vorgegangen:
    • Die in Tabelle 1 aufgeführten Komponenten wurden in einem Laborflügelmischer (Firma Vogel & Schemmann AG, Hagen, DE) gemischt. Dazu wurde zunächst der Quarzsand vorgelegt und unter Rühren das Wasserglas zugegeben. Als Wasserglas wurde ein Natriumwasserglas verwendet, das Anteile von Kalium aufwies. In den nachfolgenden Tabellen ist das Modul daher mit SiO2 : M2O angegeben, wobei M die Summe aus Natrium und Kalium angibt. Nachdem die Mischung für eine Minute gerührt worden war, wurde ggf. das amorphe Siliciumdioxid (erfindungsgemäße Beispiele) unter weiterem Rühren zugegeben. Die Mischung wurde anschließend noch für eine weitere Minute gerührt;
    • Die Formstoffmischungen wurden in den Vorratsbunker einer H 2,5 Hot-Box-Kernschießmaschine der Firma Röperwerk - Gießereimaschinen GmbH, Viersen, DE, überführt, deren Formwerkzeug auf 200°C erwärmt war;
    • Die Formstoffmischungen wurden mittels Druckluft (5 bar) in das Formwerkzeug eingebracht und verblieben für weitere 35 Sekunden im Formwerkzeug;
    • Zur Beschleunigung der Aushärtung der Mischungen wurde während der letzten 20 Sekunden Heißluft (2 bar, 120°C beim Eintritt in das Werkzeug) durch das Formwerkzeug geleitet;
    • Das Formwerkzeug wurde geöffnet und die Prüfriegel entnommen.
  • Zur Bestimmung der Biegefestigkeiten wurden die Prüfriegel in ein Georg-Fischer-Festigkeitsprüfgerät, ausgerüstet mit einer 3-Punkt-Biegevorrichtung (DISA Industrie AG, Schaffhausen, CH) eingelegt und die Kraft gemessen, welche zum Bruch der Prüfriegel führte.
  • Die Biegefestigkeiten wurden nach folgendem Schema gemessen:
    • 10 Sekunden nach der Entnahme (Heißfestigkeiten) ;
    • ca. 1 Stunde nach der Entnahme (Kaltfestigkeiten);
    • Nach 3 Stunden Lagerung der erkalteten Kerne im Klimaschrank bei 25°C und 75 % relativer Luftfeuchte.
  • Die gemessenen Biegefestigkeiten sind in Tabelle 2 zusammengefasst. Tabelle 1
    Zusammensetzung der Formstoffmischungen
    Quarzsand H 32 Alkaliwasserglas amorphes Siliciumdioxid
    1.1 100 GT 2, 5 GT a) - Vergleich, nicht erfindungsgemäß
    1.2 100 GT 2, 5 GT b) - Vergleich, nicht erfindungsgemäß
    1.3 100 GT 2, 5 GT c) - Vergleich, nicht erfindungsgemäß
    1.4 100 GT 2, 5 GT a) 0,2 GT d) erfindungsgemäß
    1.5 100 GT 2, 5 GT a) 0,6 GT d) erfindungsgemäß
    1.6 100 GT 2, 5 GT a) 1, 0 GT d) erfindungsgemäß
    1.7 100 GT 2, 5 GT a) 1,5 GT d) erfindungsgemäß
    1.8 100 GT 2, 5 GT b) 0,2 GT d) erfindungsgemäß
    1.9 100 GT 2, 5 GT c) 0,2 GT d) erfindungsgemäß
    1.10 100 GT 2, 5 GT a) 0,2 GT e) erfindungsgemäß
    1.11 100 GT 2, 5 GT a) 0,2 GT f) erfindungsgemäß
    a) Alkaliwasserglas mit Modul SiO2: M2O von ca. 2,3
    b) Alkaliwasserglas mit Modul SiO2: M2O von ca. 3,35
    c) Alkaliwasserglas mit Modul SiO2: M2O von ca. 2,03
    d) Elkem Microsilica 971 (pyrogene Kieselsäure; Herstellung im Lichtbogenofen)
    e) Degussa Sipernat 360 (Fällungskieselsäure)
    f) Wacker HDK N 20 (pyrogene Kieselsäure, Herstellung durch Flammhydrolyse)
    Tabelle 2
    Biegefestigkeiten
    Heißfestigkeiten [N/cm2] Kaltfestigkeiten [N/cm2] Nach Lagerung im Klimaschrank [N/cm2]
    1.1 80 490 30 Vergleich, nicht erfindungsgemäß
    1.2 110 220 210 Vergleich, nicht erfindungsgemäß
    1.3 60 400 110 Vergleich, nicht erfindungsgemäß
    1.4 105 570 250 erfindungsgemäß
    1.5 185 670 515 erfindungsgemäß
    1.6 250 735 690 erfindungsgemäß
    1.7 315 810 700 erfindungsgemäß
    1.8 140 280 270 erfindungsgemäß
    1.9 90 510 170 erfindungsgemäß
    1.10 95 550 280 erfindungsgemäß
    1.11 110 540 290 erfindungsgemäß
  • 2. Ergebnis a) Einfluss der zugesetzten Menge an amorphem Siliciumdioxid
  • In den Beispielen 1.4 bis 1.7 wurde den Formstoffmischungen steigende Mengen an amorphem Siliciumdioxid zugesetzt, welches im Lichtbogenofen hergestellt worden war. Die Menge an Formgrundstoff sowie an Wasserglas wurde jeweils konstant gehalten. Im Vergleichsbeispiel 1.1 wurde eine Formstoffmischung hergestellt, welche die gleiche Zusammensetzung aufwies, wie die Formstoffmischungen der Beispiele 1.4 bis 1.7, wobei jedoch kein amorphes Siliciumdioxid zugesetzt worden war.
  • Die Ergebnisse aus Tabelle 2 zeigen, dass der Zusatz von amorphem, im Lichtbogen hergestellten Siliciumdioxid die Biegefestigkeit der Prüfriegel deutlich erhöht. Besonders stark erhöht sich dabei die Biegefestigkeit der Prüfriegel bei einer Messung nach Lagerung im Klimaschrank bei erhöhter Luftfeuchtigkeit. Dies bedeutet, dass die mit der erfindungsgemäßen Formstoffmischung hergestellten Prüfriegel auch nach längerer Lagerung ihre Festigkeit im Wesentlichen beibehalten. Steigende Mengen an zugegebenem amorphem Siliciumdioxid führen zu steigenden Biegefestigkeiten. Dabei ist bei den Biegefestigkeiten, gemessen nach Lagerung im Klimaschrank, zunächst ein starker Anstieg der Biegefestigkeiten zu beobachten, der sich mit zunehmender Menge an zugesetztem amorphem Siliciumdioxid abflacht.
  • b) Einfluss des Verhältnisses SiO2 : M2O des Alkaliwasserglases
  • In den Beispielen 1.4, 1.8 und 1.9 wurden jeweils gleiche Mengen an Formgrundstoff, Wasserglas und amorphem Siliciumdioxid (im Lichtbogen hergestellt) verarbeitet, wobei jedoch das Verhältnis SiO2 : M2O des Alkaliwasserglases verändert wurde. In den Vergleichsbeispielen 1.1, 1.2 und 1.3 wurden jeweils gleiche Mengen an Formgrundstoff sowie Wasserglas verarbeitet, wobei jedoch ebenfalls das Verhältnis SiO2 : M2O des Alkaliwasserglases variiert wurde. Wie die in Tabelle 2 aufgeführten Biegefestigkeiten zeigen, ist das amorphe Siliciumdioxid, hergestellt im Lichtbogenofen, unabhängig vom Verhältnis SiO2 : M2O des Alkaliwasserglases wirksam.
  • c) Einfluss der Art des synthetischen amorphen Siliciumdioxids
  • In den Beispielen 1.4, 1.10 und 1.11 wurden jeweils gleiche Mengen an Formgrundstoff, Wasserglas und amorphem Siliciumdioxid verarbeitet, wobei jedoch die Art des synthetischen amorphen Siliciumdioxids variiert wurde. Die in Tabelle 2 aufgeführten Biegefestigkeiten zeigen, dass gefällte und pyrogene, durch Flammhydrolyse hergestellte Kieselsäuren ebenso wirksam sind, wie im Lichtbogenofen hergestelltes amorphes Siliciumdioxid.
  • Beispiel 2
  • Einfluss des Verhältnisses Alkaliwasserglas : amorphes Siliciumdioxid auf die Festigkeiten von Formkörpern bei konstanter Gesamtbindermenge mit Quarzsand als Formgrundstoff.
  • 1. Herstellung und Prüfung der Formstoffmischung
  • Die Herstellung der Formstoffmischungen und ihre Prüfung erfolgte analog Bsp. 1. Die Zusammensetzungen der für die Herstellung der Prüfriegel verwendeten Formstoffmischungen sind in Tabelle 3 aufgeführt. Die bei den Tests zur Biegefestigkeit gefundenen Werte sind in Tabelle 4 zusammengefasst. Tabelle 3
    Zusammensetzung der Formstoffmischungen
    Quarzsand H 32 Alkaliwasser glas b) amorphes Siliciumdi oxid c)
    2.1 a) 100 GT 2,5 GT - Vergleich, nicht erfindungsgemäß
    2.2 100 GT 2,3 GT 0,2 GT erfindungsgemäß
    2.3 100 GT 1,9 GT 0,6 GT erfindungsgemäß
    2.4 100 GT 1,5 GT 1,0 GT erfindungsgemäß
    a) entspricht Versuch 1.1
    b) Alkaliwasserglas mit Modul SiO2: M2O von ca. 2,3
    c) Elkem Microsilica 971
    Tabelle 4
    Biegefestigkeiten
    Heißfestigkeiten [N/cm2] Kaltfestigkeiten [N/cm2] Nach Lagerung im Klimaschrank [N/cm2]
    2.1 80 490 30 Vergleich, nicht erfindungsgemäß
    2.2 90 505 220 erfindungsgemäß
    2.3 160 505 390 erfindungsgemäß
    2.4 185 470 380 erfindungsgemäß
  • 2. Ergebnis
  • Durch Variation des Verhältnisses Wasserglas : amorphes Siliciumdioxid unter Beibehaltung der Gesamtmenge an Wasserglas und amorphem Siliciumdioxid können die Heißfestigkeiten und die Resistenz gegen hohe Luftfeuchtigkeit verbessert werden, ohne gleichzeitig die Kaltfestigkeiten anzuheben.
  • Beispiel 3 Einfluss von Silanen auf die Festigkeiten der Formkörper 1. Herstellung und Prüfung der Formstoffmischungen
  • Die Herstellung der Formstoffmischungen und ihre Prüfung erfolgte analog Bsp.1. Die Zusammensetzung der für die Herstellung der Prüfriegel verwendeten Formstoffmischungen sind in Tabelle 5 aufgeführt. Die bei den Tests zur Biegefestigkeit gefundenen Werte sind in Tab. 6 zusammengefasst. Tabelle 5
    Zusammensetzung der Formstoffmischungen
    Quarzsand H 32 Alkaliwasserglasc) amorphes Siliciumdioxidd) Silan
    3.1a) 100 GT 2, 5 GT --- --- Vergleich, nicht erfindungsgemäß
    3.2b) 100 GT 2, 5 GT 0,2 GT --- erfindungsgemäß
    3.3 100 GT 2, 5 GT 0,2 GT 0,02 GTe) erfindungsgemäß
    3.4 100 GT 2, 5 GT 0,2 GT 0,08 GTe) erfindungsgemäß
    3.5 100 GT 2, 5 GT 0,2 GT 0,02 GTf) erfindungsgemäß
    a) entspricht Versuch 1.1
    b) entspricht Versuch 1.4
    c) Alkaliwasserglas mit Modul SiO2 : M2O von ca. 2,3
    d) Elkem Microsilica 971
    e) Dynasilan Glymo (Degussa AG), vor dem Versuch mit dem amorphen Siliciumdioxid vermischt
    f) Dynasilan Ameo T (Degussa AG), vor dem Versuch mit dem amorphen Siliciumdioxid vermischt
    Tabelle 6
    Biegefestigkeiten
    Heißfestigkeiten Kaltfestigkeiten Nach Lagerung im Klimaschrank
    [N/cm2] [N/cm2] [N/cm2]
    3.1 80 490 30 Vergleich, nicht erfindungsgemäß
    3.2 105 570 250 erfindungsgemäß
    3.3 120 620 300 erfindungsgemäß
    3.4 140 670 400 erfindungsgemäß
    3.5 125 650 380 erfindungsgemäß
  • 2. Ergebnis
  • Die Beispiele 3.3-3.5 zeigen, dass sich die Zugabe von Silan positiv auf die Festigkeiten auswirkt, vor allem hinsichtlich der Beständigkeit gegen hohe Luftfeuchtigkeit.
  • Beispiel 4 Einfluss des amorphen Siliciumdioxids auf die Festigkeiten von Formkörpern mit künstlichen Formgrundstoffen 1. Herstellung und Prüfung der Formstoffmischung
  • Die Herstellung der Formstoffmischungen und ihre Prüfung erfolgte analog Bsp. 1. Die Zusammensetzungen der für die Herstellung der Prüfriegel verwendeten Formstoffmischungen sind in Tabelle 7 aufgeführt. Die bei den Tests zur Biegefestigkeit gefundenen Werte sind in Tabelle 8 zusammengefasst. Tabelle 7
    Zusammensetzung der Formstoffmischungen
    Formgrundstoff Alkaliwasserglasd) amorphes Siliciumdioxide)
    4.1 Aluminiumsilikatmikrohohlkugelna) 100 GT 14 GT - Vergleich, nicht erfindungsgemäß
    4.2 Aluminiumsilikatmikrohohlkugelna) 100 GT 14 GT 1,5 GT erfindungsgemäß
    4.3 Aluminiumsilikatmikrohohlkugelna) 100 GT 14 GT 3, 0 GT erfindungsgemäß
    4.4 Keramikkugelnb) 100 GT 2 , 5 GT - Vergleich, nicht erfindungsgemäß
    4.5 Keramikkugeln b) 100 GT 2, 5 GT 0, 2 GT erfindungsgemäß
    4.6 Glasperlenc) 100 GT 2, 5 GT - Vergleich, nicht erfindungsgemäß
    4.7 Glasperlenc) 100 GT 2 , 5 GT 0,2 GT erfindungsgemäß
    a) Omegaspheres WSG der Firma Omega Minerals Germany GmbH
    b) Carbo Accucast LD 50 der Firma Carbo Ceramics Inc.
    c) Glasperlen 100-200 µm der Firma Reidt GmbH & Co.KG
    d) Alkaliwasserglas mit Modul SiO2 : M2O von ca. 2,3
    e) Elkem Microsilica 971
    Tabelle 8
    Biegefestigkeit en
    Heißfestigkeiten [N/cm2] Kaltfestigkeiten [N/cm2] Nach Lagerung im Klimaschrank [N/cm2]
    4.1 120 230 zerfallen Vergleich, nicht erfindungsgemäß
    4.2 160 290 130 erfindungsgemäß
    4.3 200 340 180 erfindungsgemäß
    4.4 70 370 20 Vergleich, nicht erfindungsgemäß
    4.5 100 470 100 erfindungsgemäß
    4.6 170 650 30 Vergleich, nicht erfindungsgemäß
    4.7 260 770 100 erfindungsgemäß
  • 2. Ergebnis
  • Man erkennt, dass die positive Wirkung des amorphen Siliciumdioxids nicht auf Quarzsand als Formgrundstoff beschränkt ist, sondern dass es auch bei anderen Formgrundstoffen festigkeitssteigernd wirkt, z.B. bei Microspheres, Keramikkugeln und Glasperlen.
  • Beispiel 5
  • Einfluss des amorphen Siliciumdioxids auf die Festigkeiten von Formkörpern mit exothermer Masse.
  • Als exotherme Masse wurde folgende Zusammensetzung verwendet:
    Aluminium (0,063 - 0,5 mm Körnung) 25 %
    Kaliumnitrat 22 %
    Mikrohohlkugeln (Omegaspheres® WSG der 44 %
    Firma Omega Minerals Germany GmbH)
    Feuerfestzuschlag (Schamotte) 9 %
  • 1. Herstellung und Prüfung der Formstoff-Bindemittel-Gemische
  • Die Herstellung der Formstoff-Bindemittelgemische und ihre Prüfung erfolgte analog Bsp. 1. Die Zusammensetzungen der für die Herstellung der Prüfriegel verwendeten Formstoffmischungen sind in Tabelle 9 aufgeführt. Die bei den Tests zur Biegefestigkeit gefundenen Werte sind in Tabelle 10 zusammengefasst. Tabelle 9
    Exotherme Masse Alkaliwasserglasa) amorphes Sili ciumdioxidb)
    5.1 100 GT 14 GT - Vergleich, nicht erfin dungsgemäß
    5.2 100 GT 14 GT 1,5 GT erfindungsgemäß
    5.3 100 GT 14 GT 3 ,0 GT erfindungsgemäß
    a) Alkaliwasserglas mit Modul SiO2 : M2O von ca. 2,3
    b) Elkem Microsilica 971
    Tabelle 10
    Biegefestigkeiten
    Heiß festig keiten [N/cm2] Kalt festig keiten [N/cm2] Nach Lagerung im Klima schrank [N/cm2]
    5.1 50 180 zerfallen Vergleich, nicht erfin dungsgemäß
    5.2 70 225 70 erfindungsgemäß
    5.3 95 280 110 erfindungsgemäß
  • 2. Ergebnis
  • Das amorphe Siliciumdioxid wirkt auch bei exothermen Massen als Formgrundstoff festigkeitssteigernd.
  • Beispiel 6 Verbesserung der Fließfähigkeit der Formstoffmischung 1. Herstellung und Prüfung der Formstoffmischung
  • Die in Tabelle 11 aufgeführten Komponenten wurden in einem Laborflügelmischer (Firma Vogel & Schemmann AG, Hagen, DE) gemischt. Dazu wurde zunächst der Quarzsand vorgelegt und unter Rühren das Wasserglas zugegeben. Nachdem die Mischung für eine Minute gerührt worden war, wurde das amorphe Siliciumdioxid unter weiterem Rühren zugegeben. Die Mischung wurde anschließend noch für eine weitere Minute gerührt. Schließlich wurde bei den Beispielen 6.2 bis 6.4 noch Grafit zugegeben und die Mischung abschließend für eine weitere Minute gerührt.
  • Die Fließfähigkeit der Formstoffmischungen wurde mit Hilfe des Füllungsgrades des in Fig. 1 dargestellten Formwerkzeugs 1 ermittelt. Das Formwerkzeug 1 besteht aus zwei Hälften, welche miteinander verbunden werden können, sodass sich ein Hohlraum 2 ausbildet. Der Hohlraum 2 umfasst drei Kammern 2a, 2b und 2c mit kreisförmigem Querschnitt, die einen Durchmesser von 100 mm und eine Höhe von 30 mm aufweisen. Die Kammern 2a, 2b und 2c sind jeweils durch kreisförmige Öffnungen 3a, 3b verbunden, die einen Durchmesser von 15 mm aufweisen. Die kreisförmigen Öffnungen sind in Zwischenwänden 4a, 4b eingebracht, welche eine Stärke von 8 mm aufweisen. Die Öffnungen 3a, 3b sind jeweils 37,5 mm zur Mittelachse 6 versetzt in maximalem Abstand zueinander angeordnet. In die Kammer 2a führt ferner entlang der Mittelachse 6 ein Zugang 5, durch welche die Formstoffmischung eingefüllt werden kann. Der Zugang 5 weist einen kreisförmigen Querschnitt mit einem Durchmesser von 15 mm auf. In der Kammer 2c ist ferner eine Entlüftungsöffnung 7 vorgesehen, welche einen kreisförmigen Querschnitt mit einem Durchmesser von 9 mm aufweist und die mit einer so genannten Schlitzdüse versehen ist. Das Formwerkzeug 1 wird zum Befüllen in eine Kernschießmaschine eingesetzt.
  • Im Einzelnen wurde wie folgt vorgegangen:
    • Mischen der in Tabelle 11 aufgeführten Komponenten;
    • Überführung der Mischungen in den Vorratsbunker einer H 1-Cold-Box-Kernschießmaschine der Firma Röperwerke - Gießereimaschinen GmbH, Viersen, DE;
    • Einbringen der Mischungen in das nicht erwärmte Formwerkzeug 1 mittels Druckluft (5 bar);
    • Aushärtung der Mischungen durch Einleiten von CO2;
    • Entnahme der gehärteten Formkörper aus dem Werkzeug und Registrierung ihres Gewichts.
  • Die ermittelten Gewichte der Formkörper sind in Tabelle 12 zusammengefasst. Tabelle 11
    Zusammensetzung der Formstoffmischungen
    Quarzsand H 32 Alkaliwas-serglas a) amorphes Siliciumdioxid b) Grafit
    6.1 100 GT 2,5 GT 0,2 GT - Vergleich, nicht erfindungsgemäß
    6.2 100 GT 2,5 GT 0,2 GT 0,2 GT erfindungsgemäß
    6.3 100 GT 2,5 GT 0,2 GT 0,2 GT erfindungsgemäß
    6.4 100 GT 2,5 GT 0,2 GT 1,0 GT erfindungsgemäß
    a) Alkaliwasserglas mit Modul SiO2 : M2O von ca. 2,3
    b) Elkem Microsilica 971
    Tabelle 12
    Gewicht der Formkörper
    Gewicht [g]
    6.1 512 Vergleich, nicht erfindungsgemäß
    6.2 534 erfindungsgemäß
    6.3 564 erfindungsgemäß
    6.4 588 erfindungsgemäß
  • 2. Ergebnis
  • Durch die Zugabe von Grafit verbessert sich die Fließfähigkeit der Formstoffmischungen, d.h. das Werkzeug wird besser gefüllt.
  • Beispiel 7 Gießversuche 1. Herstellung und Prüfung der Formstoffmischung
  • Zur Durchführung der Gießversuche wurden jeweils vier der in den Beispielen 1 bis 6 hergestellten Georg-Fischer-Prüfriegel 8 jeweils um 90° versetzt in das Unterteil 9 der in Fig. 2 wiedergegebenen Probenform eingeklebt. Anschließend wurde das trichterförmige Oberteil 10 der Probenform auf das Unterteil 9 geklebt. Unterteil 9 und Oberteil 10 der Probenform wurden nach einem konventionellen Polyurethan-Cold-Box-Verfahren hergestellt. Danach wurde die Probenform mit flüssigem Aluminium (740°C) gefüllt. Nach dem Erkalten des Metalls wurde die äußere Probenform entfernt und die Probeabgüsse in den Abschnitten der vier Prüfkörper hinsichtlich ihrer Oberflächengüte (Sandanhäftungen, Glätte) begutachtet. Die Bewertung erfolgte mit den Noten 1 (sehr gut) bis 10 (sehr schlecht). Die Ergebnisse sind in Tabelle 13 zusammengefasst. Tabelle 13
    Zusammensetzung der Formstoffgemische und Gussergebnis
    Zusammensetzung siehe Bsp. Oberflächen güte
    7.1 1.1 (Tab. 1) 5 Vergleich, nicht erfindungsgemäß
    7.2 1.4 (Tab. 1) 5 erfindungsgemäß
    7.3 4.1 (Tab. 7) 2 nicht erfingungsgemäß
    7.4 4.2 (Tab. 7) 2 erfindungsgemäß
    7.5 4.4 (Tab. 7) 4 nicht erfindungsgemäß
    7.6 4.5 (Tab. 7) 4 erfindungsgemäß
    7.7 4.6 (Tab. 7) 1 nicht erfindungsgemäß
    7.8 4.7 (Tab. 7) 1 erfindungsgemäß
  • 2. Ergebnis
  • Die Ergebnisse aus Tabelle 13 zeigen, dass die Verwendung von künstlichen Formgrundstoffen wie z.B. Aluminiumsilikatmikrohohlkugeln, Keramikkugeln oder Glasperlen die Oberflächengüte der Gussstücke z.T. erheblich verbessert.
  • Beispiel 8 Auswirkung organischer Additive auf das Gussergebnis 1. Herstellung und Prüfung der Formstoffmischungen
  • Die Zusammensetzung der untersuchten Formstoffmischungen ist in Tabelle 14 aufgelistet.
  • Die Gießversuche und ihre Auswertung erfolgte analog Bsp.7. Das Ergebnis der Gießversuche kann ebenfalls der Tabelle 14 entnommen werden. Tabelle 14
    Zusammensetzung der Formstoffmischungen und Gussergebnis
    Quarzsand H 32 Alkaliwasserglasb) amorphes Silicium dioxid c) organisches Additiv Gusser gebnis
    8.1a) 100 GT 2,5 GT 0,2 GT --- 5
    8.2 100 GT 2,5 GT 0,2 GT 0,2 GT d) 3
    8.3 100 GT 2, 5 GT 0,2 GT 0,2 GT e) 1
    8.4 100 GT 2,5 GT 0,2 GT 0,2 GT f) 3
    8.5 100 GT 2,5 GT 0, 2 GT 0,2 GT g) 2
    8.6 100 GT 2,5 GT 0, 2 GT 1,0 GT h) 2
    8.7 100 GT 2,5 GT 0,2 GT 1,0 GT i) 2
    8.8 100 GT 2,5 GT 0,2 GT 0,2 GT j) 1
    8.9 100 GT 2,5 GT 0,2 GT 0, 2 GT k) 3
    8.10 100 GT 2,5 GT 0,2 GT 0,2 GT l) 1
    8.11 100 GT 2,5 GT 0,2 GT 0,2 GT m) 1
    a) entspricht versuch 1.4
    b) Alkaliwasserglas mit Modul SiO2 : M2O von ca. 2,3
    c) Elkem Microsilica 971
    d) Novolak Bakelite 0235 DP (Bakelite AG)
    e) Polyethylenglykol PEG 6000 (BASF AG)
    f) Polyol PX (Peratorp AB)
    g) PE-Faser Stewathix 500 (Schwarzwälder Textilwerke GmbH)
    h) Vinylacetat-Ethylen-Copolymer Vinnex C 50 (Wacker Chemie GmbH)
    i) Polyamid 12 Vestosint 1111 (Degussa AG)
    j) Balsamharz WW (Bassermann & Co)
    k) Zinkglukonat (Merck KGaA)
    l) Zinkoleat (Peter Greven Fettchemie GmbH & Co. KG)
    m) Aluminiumstearat (Peter Greven Fettchemie GmbH & Co. KG)
  • 2. Ergebnis
  • Tabelle 14 zeigt, dass der Zusatz von organischen Additiven die Gussoberfläche verbessert.

Claims (22)

  1. Formstoffmischung zur Herstellung von Gießformen für die Metallverarbeitung, mindestens umfassend:
    - einen feuerfesten Formgrundstoff;
    - ein auf Wasserglas basierendes Bindemittel;
    dadurch gekennzeichnet, dass der Formstoffmischung ein Anteil eines teilchenförmigen synthetischen amorphen Siliciumdioxids zugesetzt ist.
  2. Formstoffmischung nach Anspruch 1, dadurch gekennzeichnet, dass das synthetische amorphe Siliziumdioxid ausgewählt ist aus der Gruppe von Fällungskieselsäure und pyrogener Kieselsäure.
  3. Formstoffmischung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Wasserglas ein Modul SiO2/M2O im Bereich von 1,6 bis 4,0, insbesondere 2,0 bis 3,5 aufweist, wobei M Natriumionen und/oder Kaliumionen bedeutet.
  4. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wasserglas einen Feststoffanteil an SiO2 und M2O im Bereich von 30 bis 60 Gew.-% aufweist.
  5. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bindemittel in einem Anteil von weniger als 20 Gew.-% in der Formstoffmischung enthalten ist.
  6. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das teilchenförmige synthetische amorphe Siliziumdioxid in einem Anteil von 2 bis 60 Gew.-% bezogen auf das Bindemittel enthalten ist.
  7. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Formgrundstoff zumindest einen Anteil von Mikrohohlkugeln enthält.
  8. Formstoffmischung nach Anspruch 7, dadurch gekennzeichnet, dass die Mikrohohlkugeln Aluminiumsilikatmikrohohlkugeln und/ oder Glasmikrohohlkugeln sind.
  9. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Formgrundstoff zumindest einen Anteil an Glasgranulat, Glasperlen und/oder kugelförmigen keramischen Formkörpern enthält.
  10. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Formgrundstoff zumindest einen Anteil an Mullit, Chromerzsand und/oder Olivin enthält.
  11. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Formstoffmischung ein oxidierbares Metall und ein Oxidationsmittel zugesetzt ist.
  12. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Formstoffmischung einen Anteil eines plättchenförmigen Schmiermittels enthält.
  13. Formstoffmischung nach Anspruch 12, dadurch gekennzeichnet, dass das plättchenförmige Schmiermittel ausgewählt ist aus Grafit und Molybdänsulfid.
  14. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Formstoffmischung einen Anteil zumindest eines bei Raumtemperatur festen organischen Additivs enthält.
  15. Formstoffmischung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Formstoffmischung zumindest ein Silan enthält.
  16. Verfahren zur Herstellung von Gießformen für die Metallverarbeitung, mit den Schritten:
    - Herstellen einer Formstoffmischung nach einem der Ansprüche 1 bis 15;
    - Formen der Formstoffmischung;
    - Aushärten der Formstoffmischung, indem die Formstoffmischung erwärmt wird, wobei die ausgehärtete Gießform erhalten wird.
  17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die Formstoffmischung auf eine Temperatur im Bereich von 100 bis 300°C erwärmt wird.
  18. Verfahren nach einem der Ansprüche 16 oder 17, dadurch gekennzeichnet, dass zum Aushärten erhitzte Luft in die Formstoffmischung eingeblasen wird.
  19. Verfahren nach einem der Ansprüche 16 oder 17, dadurch gekennzeichnet, dass das Erwärmen der Formstoffmischung durch Einwirkung von Mikrowellen bewirkt wird.
  20. Verfahren nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet das die Gießform ein Speiser ist.
  21. Gießform, erhalten nach einem Verfahren gemäß einem der Ansprüche 16 bis 20.
  22. Verwendung der Gießform nach Anspruch 21 für den Metallguss, insbesondere Leichtmetallguss.
EP05783967A 2004-09-02 2005-09-02 Formstoffmischung zur herstellung von giessformen für die metallverarbeitung Revoked EP1802409B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SI200531505T SI1802409T1 (sl) 2004-09-02 2005-09-02 Mešanica za proizvodnjo kalupov za predelavo kovin
PL11006910T PL2392424T3 (pl) 2004-09-02 2005-09-02 Sposób wytwarzania form odlewniczych do przetwarzania metali, formy odlewnicze wytworzone według tego sposobu i ich zastosowanie
PL05783967T PL1802409T3 (pl) 2004-09-02 2005-09-02 Mieszanka masy formierskiej do wytwarzania form odlewniczych do przetwarzania metali
EP11006910.1A EP2392424B1 (de) 2004-09-02 2005-09-02 Verfahren zur Herstellung von Giessformen für die Metallverarbeitung, Giessformen hergestellt nach dem Verfahren und deren Verwendung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004042535.3A DE102004042535B4 (de) 2004-09-02 2004-09-02 Formstoffmischung zur Herstellung von Gießformen für die Metallverarbeitung, Verfahren und Verwendung
PCT/EP2005/009470 WO2006024540A2 (de) 2004-09-02 2005-09-02 Formstoffmischung zur herstellung von giessformen für die metallverarbeitung

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP11006910.1A Division EP2392424B1 (de) 2004-09-02 2005-09-02 Verfahren zur Herstellung von Giessformen für die Metallverarbeitung, Giessformen hergestellt nach dem Verfahren und deren Verwendung
EP11006910.1 Division-Into 2011-08-24

Publications (2)

Publication Number Publication Date
EP1802409A2 EP1802409A2 (de) 2007-07-04
EP1802409B1 true EP1802409B1 (de) 2012-01-25

Family

ID=35701554

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11006910.1A Active EP2392424B1 (de) 2004-09-02 2005-09-02 Verfahren zur Herstellung von Giessformen für die Metallverarbeitung, Giessformen hergestellt nach dem Verfahren und deren Verwendung
EP05783967A Revoked EP1802409B1 (de) 2004-09-02 2005-09-02 Formstoffmischung zur herstellung von giessformen für die metallverarbeitung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11006910.1A Active EP2392424B1 (de) 2004-09-02 2005-09-02 Verfahren zur Herstellung von Giessformen für die Metallverarbeitung, Giessformen hergestellt nach dem Verfahren und deren Verwendung

Country Status (23)

Country Link
US (1) US7770629B2 (de)
EP (2) EP2392424B1 (de)
JP (1) JP5102619B2 (de)
KR (1) KR101301829B1 (de)
CN (1) CN100563869C (de)
AT (1) ATE542619T1 (de)
AU (1) AU2005279301A1 (de)
BR (1) BRPI0514810A (de)
CA (1) CA2578437C (de)
DE (2) DE102004042535B4 (de)
DK (1) DK1802409T3 (de)
ES (2) ES2769603T3 (de)
HR (1) HRP20120325T1 (de)
HU (1) HUE047434T2 (de)
IL (1) IL181594A0 (de)
MX (1) MX2007002585A (de)
NO (1) NO20071755L (de)
PL (2) PL2392424T3 (de)
PT (1) PT1802409E (de)
RU (1) RU2007111891A (de)
SI (2) SI2392424T1 (de)
WO (1) WO2006024540A2 (de)
ZA (1) ZA200701859B (de)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013159762A1 (de) 2012-04-26 2013-10-31 Ask Chemicals Gmbh Verfahren zur herstellung von formen und kernen für den metallguss sowie nach diesem verfahren hergestellte formen und kerne
WO2013182186A2 (de) 2012-06-06 2013-12-12 Ask Chemicals Gmbh Formstoffmischungen enthaltend bariumsulfat
DE102012020510A1 (de) 2012-10-19 2014-04-24 Ask Chemicals Gmbh Formstoffmischungen auf der Basis anorganischer Bindemittel und Verfahren zur Herstellung von Formen und Kerne für den Metallguss
DE102012020511A1 (de) 2012-10-19 2014-04-24 Ask Chemicals Gmbh Formstoffmischungen auf der Basis anorganischer Bindemittel und Verfahren zur Herstellung von Formen und Kerne für den Metallguss
WO2014059967A2 (de) 2012-10-19 2014-04-24 Ask Chemicals Gmbh Formstoffmischungen auf der basis anorganischer bindemittel und verfahren zur herstellung von formen und kerne für den metallguss
DE102012113074A1 (de) 2012-12-22 2014-07-10 Ask Chemicals Gmbh Formstoffmischungen enthaltend Metalloxide des Aluminiums und Zirkoniums in partikulärer Form
DE102012113073A1 (de) 2012-12-22 2014-07-10 Ask Chemicals Gmbh Formstoffmischungen enthaltend Aluminiumoxide und/oder Aluminium/Silizium-Mischoxide in partikulärer Form
DE102013106276A1 (de) 2013-06-17 2014-12-18 Ask Chemicals Gmbh Lithiumhaltige Formstoffmischungen auf der Basis eines anorganischen Bindemittels zur Herstellung von Formen und Kernen für den Metallguss
DE102013111626A1 (de) 2013-10-22 2015-04-23 Ask Chemicals Gmbh Formstoffmischungen enthaltend eine oxidische Bor-Verbindung und Verfahren zur Herstellung von Formen und Kernen
DE102013114581A1 (de) 2013-12-19 2015-06-25 Ask Chemicals Gmbh Verfahren zur Herstellung von Formen und Kernen für den Metallguss unter Verwendung einer Carbonylverbindung sowie nach diesem Verfahren hergestellte Formen und Kerne
DE102014118577A1 (de) 2014-12-12 2016-06-16 Ask Chemicals Gmbh Verfahren zum schichtweisen Aufbau von Formen und Kernen mit einem wasserglashaltigen Bindemittel und ein wasserglashaltiges Bindemittel
DE102015223008A1 (de) 2015-11-21 2017-05-24 H2K Minerals Gmbh Form, Verfahren zu ihrer Herstellung und Verwendung
EP3620244A1 (de) 2018-09-07 2020-03-11 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur herstellung einer teilchenförmigen feuerfesten zusammensetzung zur verwendung bei der herstellung von giessereiformen und kernen, entsprechende verwendungen und rückgewinnungsmischung zur thermischen behandlung
DE102019113008A1 (de) * 2019-05-16 2020-11-19 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verwendung eines partikulären Materials umfassend ein teilchenförmiges synthetisches amorphes Siliciumdioxid als Additiv für eine Formstoffmischung, entsprechende Verfahren, Mischungen und Kits
WO2020253917A1 (de) 2019-06-19 2020-12-24 Ask Chemicals Gmbh Geschlichtete giessformen erhältlich aus einer formstoffmischung enthaltend ein anorganisches bindemittel und phosphahaltige verbindungen und oxidische borverbindungen und verfahren zu deren herstellung und deren verwendung
WO2021023493A1 (de) 2019-08-08 2021-02-11 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung VERFAHREN ZUR HERSTELLUNG EINES ARTIKELS ZUR VERWENDUNG IN DER GIEßEREIINDUSTRIE, ENTSPRECHENDES GRANULAT SOWIE KIT, VORRICHTUNGEN UND VERWENDUNGEN
DE102020119013A1 (de) 2020-07-17 2022-01-20 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines Artikels zur Verwendung in der Gießereiindustrie, entsprechende Form, Kern, Speiserelement oder Formstoffmischung sowie Vorrichtungen und Verwendungen
DE102021116930A1 (de) 2021-06-30 2023-01-05 Ask Chemicals Gmbh Verfahren zum schichtweisen aufbau von formen und kernen mit einem wasserglashaltigen bindemittel

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005041863A1 (de) * 2005-09-02 2007-03-29 Ashland-Südchemie-Kernfest GmbH Borsilikatglashaltige Formstoffmischungen
DE102006011530A1 (de) 2006-03-10 2007-09-13 Minelco Gmbh Form oder Formling, Gießerei-Formstoffgemisch und Verfahren zu seiner Herstellung
FR2902424B1 (fr) * 2006-06-19 2008-10-17 Saint Gobain Ct Recherches Ciment de jointoiement a spheres creuses pour filtre a particules.
DE102006036381A1 (de) * 2006-08-02 2008-02-07 Minelco Gmbh Formstoff, Gießerei-Formstoff-Gemisch und Verfahren zur Herstellung einer Form oder eines Formlings
DE202007019192U1 (de) * 2006-10-19 2011-02-03 Ashland-Südchemie-Kernfest GmbH Kohlenhydrathaltige Formstoffmischung
DE102006049379A1 (de) * 2006-10-19 2008-04-24 Ashland-Südchemie-Kernfest GmbH Phosphorhaltige Formstoffmischung zur Herstellung von Giessformen für die Metallverarbeitung
WO2008094928A1 (en) * 2007-01-29 2008-08-07 Evonik Degussa Gmbh Fumed metal oxides for investment casting
DE102007008149A1 (de) * 2007-02-19 2008-08-21 Ashland-Südchemie-Kernfest GmbH Thermische Regenerierung von Gießereisand
DE102007009468A1 (de) * 2007-02-27 2008-08-28 Mtu Aero Engines Gmbh Verfahren zur Herstellung eines Strukturelements
DE102007012660B4 (de) * 2007-03-16 2009-09-24 Chemex Gmbh Kern-Hülle-Partikel zur Verwendung als Füllstoff für Speisermassen
DE102007026229A1 (de) * 2007-06-05 2008-12-11 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Strukturhohlbauteils aus faserverstärktem Kunststoff
DE102007027577A1 (de) * 2007-06-12 2008-12-18 Minelco Gmbh Formstoffmischung, Formling für Gießereizwecke und Verfahren zur Herstellung eines Formlings
DE102007045649B4 (de) 2007-09-25 2015-11-19 H2K Minerals Gmbh Verfahren zur Herstellung einer Form und/oder eines Kernes unter Verwendung von zerkleinerten natürlichen partikulären amorphen Kieselsäurematerialien im Gießereibereich und Binderzusammensetzung
DE102007051850A1 (de) * 2007-10-30 2009-05-07 Ashland-Südchemie-Kernfest GmbH Formstoffmischung mit verbesserter Fliessfähigkeit
DE102007061968A1 (de) 2007-12-21 2009-06-25 Ashland-Südchemie-Kernfest GmbH Haltbare Beschichtungen für Werkzeuge zur Herstellung von Kernen, Formen und Speisern für den Metallguss
FR2948307B1 (fr) * 2009-07-24 2014-07-25 Huettenes Albertus France Procede d'obtention d'un corps forme a partir d'un melange granulaire
KR101199111B1 (ko) * 2009-10-30 2012-11-09 현대자동차주식회사 주물용 중자 재료 혼합물, 주물용 중자 제조방법 및 이를 이용하여 제조된 주물용 중자
KR101273962B1 (ko) * 2010-12-21 2013-06-12 재단법인 포항산업과학연구원 쌍롤식 박판주조기용 에지댐
JP5801900B2 (ja) * 2010-12-30 2015-10-28 アー エセ カー ケミカルズ エスパーニャ,エセ.アー 鋳型及び鋳造コア製造用抗ベーニング添加剤
DE102011102454A1 (de) * 2011-05-24 2012-11-29 Bernd Kuhs Anorganisches Bindemittel und Verfahren zur schnellen Verfestigung von Baustoffmaterialien aller Art mittels Begasung mit Kohlendioxid
DE102011114626A1 (de) 2011-09-30 2013-04-04 Ask Chemicals Gmbh Beschichtungsmassen für anorganische Giessformen und Kerne und deren Verwendung
DE102011115024A1 (de) 2011-10-07 2013-04-11 Ask Chemicals Gmbh Beschichtungsmassen für anorganische Gießformen und Kerne umfassend Ameisensäureester und deren Verwendung
DE102011115025A1 (de) 2011-10-07 2013-04-11 Ask Chemicals Gmbh Beschichtungsmassen für anorganische Gießformen und Kerne enthaltend Salze und deren Verwendung
JP4920794B1 (ja) * 2011-11-02 2012-04-18 株式会社ツチヨシ産業 鋳型材料及び鋳型並びに鋳型の製造方法
CN102921885B (zh) * 2012-10-30 2015-01-28 西安泵阀总厂有限公司 钛、锆、镍及其合金铸件砂型铸造工艺
US20150367406A1 (en) * 2013-01-04 2015-12-24 S & B Industrial Minerals Gmbh Method for the production of core sand and/or molding sand for casting purposes
CN103302231A (zh) * 2013-06-20 2013-09-18 重庆长江造型材料(集团)股份有限公司 一种水基型粘结剂湿态型芯的固化方法
US20150078912A1 (en) * 2013-09-18 2015-03-19 General Electric Company Ceramic core compositions, methods for making cores, methods for casting hollow titanium-containing articles, and hollow titanium-containing articles
CN103567364A (zh) * 2013-10-11 2014-02-12 铜陵市经纬流体科技有限公司 用于铸铝的型砂及其制备方法
PL2916976T3 (pl) 2013-10-19 2017-08-31 Peak Deutschland Gmbh Sposób wytwarzania traconych rdzeni lub elementów formowanych do produkcji odlewów
DE102014106177A1 (de) * 2014-05-02 2015-11-05 Ask Chemicals Gmbh Formstoffmischung enthaltend Resole und amorphes Siliciumdioxid, aus diesen hergestellte Formen und Kerne und Verfahren zu deren Herstellung
CN104014715B (zh) * 2014-05-29 2016-04-13 朱小英 一种铝合金铸造型砂的制备方法
WO2015194550A1 (ja) 2014-06-20 2015-12-23 旭有機材工業株式会社 鋳型の製造方法及び鋳型
CN104439041A (zh) * 2014-10-20 2015-03-25 沈阳汇亚通铸造材料有限责任公司 一种温芯盒制芯砂组合物及制芯方法
KR101527909B1 (ko) * 2014-12-16 2015-06-10 한국생산기술연구원 주조용 무기 바인더 조성물
KR101614401B1 (ko) 2015-03-10 2016-04-21 (주)피알테크 주물사용 무기 바인더 조성물
CA3004367C (en) * 2015-12-18 2022-07-26 ASK Chemicals LLC Molding materials for non-ferrous casting
CN105665615B (zh) * 2016-02-05 2018-10-02 济南圣泉集团股份有限公司 一种铸造水玻璃用固化剂及其制备方法和用途
ITUA20162227A1 (it) 2016-04-01 2017-10-01 Cavenaghi S P A Sistema legante inorganico per fonderia
US20180056373A1 (en) 2016-08-29 2018-03-01 Charles Earl Bates Anti-Veining Additive for Silica Sand Mold
DE102017107655A1 (de) 2017-01-04 2018-07-05 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verwendung einer Säure enthaltenden Schlichtezusammensetzung in der Gießereiindustrie
DE102017107658A1 (de) 2017-01-04 2018-07-05 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Schlichtezusammensetzung für die Gießereiindustrie, enthaltend partikuläres, amorphes Siliziumdioxid und Säure
DE102017107657A1 (de) 2017-01-04 2018-07-05 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Schlichtezusammensetzung, umfassend organische Esterverbindungen und partikuläres, amorphes Siliziumdioxid, zur Verwendung in der Gießereiindustrie
JP2020514078A (ja) * 2017-01-11 2020-05-21 トリノフスキー,ダグラス,エム. 高圧ダイカストにおける鋳造用中子のための組成物及び方法
CN108393430B (zh) 2017-02-04 2020-05-08 济南圣泉集团股份有限公司 一种铸造水玻璃用固化剂
DE102017107531A1 (de) 2017-04-07 2018-10-11 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung von Gießformen, Kernen und daraus regenerierten Formgrundstoffen
DE102017114628A1 (de) 2017-06-30 2019-01-03 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung einer Formstoffmischung und eines Formkörpers daraus in der Gießereiindustrie sowie Kit zur Anwendung in diesem Verfahren
JP6888527B2 (ja) 2017-11-09 2021-06-16 新東工業株式会社 鋳型用発泡骨材混合物、鋳型、及び鋳型の製造方法
EP3501690A1 (de) 2017-12-20 2019-06-26 Imertech Sas Verfahren zur herstellung partikelfester feuerfestmittel und von diesem verfahren hergestelltes produkt
JP7177089B2 (ja) 2017-12-28 2022-11-22 旭有機材株式会社 コーテッドサンド及びその製造方法並びに鋳型の製造方法
JP7142030B2 (ja) 2017-12-28 2022-09-26 旭有機材株式会社 鋳型材料及びその製造方法並びに鋳型の製造方法
CN110064727A (zh) * 2019-06-10 2019-07-30 沈阳汇亚通铸造材料有限责任公司 一种酯固化铸造用水玻璃砂组合物
DE102019116406A1 (de) 2019-06-17 2020-12-17 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Additivmischung für Formstoffmischungen zur Herstellung wasserglasgebundener Gießereiformen und Gießereikerne
DE102020110289A1 (de) * 2020-04-15 2021-10-21 Peak Deutschland Gmbh Verfahren unter Verwendung eines anorganischen Binders für die Herstellung von ausgehärteten dreidimensional geschichteten Formkörpern für Gießereikerne und -formen
CN112028596B (zh) * 2020-09-01 2022-04-08 和县华顺铸造有限公司 一种铸造封箱泥膏的制备方法
CN112264575B (zh) * 2020-10-20 2021-11-19 西安工程大学 一种模具摇摆法空心陶瓷型芯及其制备方法
DE102020127603A1 (de) 2020-10-20 2022-04-21 Kurtz Gmbh Verfahren und Vorrichtung zum Gießen eines metallenen Gussteils mittels eines Sandkernes
JP2022117455A (ja) * 2021-01-29 2022-08-10 花王株式会社 無機コーテッドサンド
AU2022310919A1 (en) * 2021-07-12 2024-02-01 Foseco International Limited Inorganic binder system

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2881081A (en) * 1954-06-02 1959-04-07 John A Henricks Refractory binder for metal casting molds
GB782205A (en) 1955-03-07 1957-09-04 Foundry Services Ltd Improvements in or relating to sand cores
US3429848A (en) 1966-08-01 1969-02-25 Ashland Oil Inc Foundry binder composition comprising benzylic ether resin,polyisocyanate,and tertiary amine
US4316744A (en) 1973-07-17 1982-02-23 E. I. Du Pont De Nemours And Company High ratio silicate foundry sand binders
FR2237706A1 (en) * 1973-07-17 1975-02-14 Du Pont Sand core or mould composition for foundries - containing mixture of alkali metal polysilicate and silica as binder
US4162238A (en) * 1973-07-17 1979-07-24 E. I. Du Pont De Nemours And Company Foundry mold or core compositions and method
FR2237705A1 (en) * 1973-07-17 1975-02-14 Du Pont Sand core or mould for metal casting - prepd. by shaping and hardening silicon oxide sand-alkali silicate mixture
JPS52810B2 (de) * 1973-11-07 1977-01-11
JPS5135621A (ja) * 1974-09-20 1976-03-26 Nippon Steel Corp Jikoseiigatanoseizoho
JPS5149121A (en) 1974-10-25 1976-04-28 Hitachi Ltd Igatano setsuchakuzai
JPS52124414A (en) * 1976-04-14 1977-10-19 Kogyo Gijutsuin Molding material
JPS52138434A (en) * 1976-05-14 1977-11-18 Toyo Kogyo Co Self harden molding material
JPS52146720A (en) * 1976-05-31 1977-12-06 Toyo Kogyo Co Water glass system binding material for mold
AT381884B (de) * 1979-03-14 1986-12-10 Brugger Gottfried Schlichte fuer die herstellung einer auskleidung von metallischen schleudergusskokillen fuer kupfer oder dessen legierungen und verfahren zur beschichtung einer schleudergusskokille
JPS57127074A (en) * 1981-01-30 1982-08-07 Mitsubishi Heavy Ind Ltd Construction of concrete liquid tank
JPS6171152A (ja) * 1984-09-13 1986-04-12 Komatsu Ltd 鋳型の製造方法
DE3600956A1 (de) * 1986-01-15 1987-07-16 Kuepper August Gmbh & Co Kg Verfahren zur herstellung von giessereikernen
US5275114A (en) * 1989-04-11 1994-01-04 American Colloid Company Sodium bentonite clay binder mixture for the metal casting industry
JPH0663683A (ja) 1992-08-18 1994-03-08 Mitsubishi Heavy Ind Ltd 鋳型の製造方法
GB9226815D0 (en) 1992-12-23 1993-02-17 Borden Uk Ltd Improvements in or relating to water dispersible moulds
DE9307468U1 (de) * 1993-05-17 1994-09-29 Huettenes Albertus Schlichte zur Herstellung von Formüberzügen
US5382289A (en) * 1993-09-17 1995-01-17 Ashland Oil, Inc. Inorganic foundry binder systems and their uses
US5417751A (en) * 1993-10-27 1995-05-23 Ashland Oil, Inc. Heat cured foundry binders and their use
US5474606A (en) * 1994-03-25 1995-12-12 Ashland Inc. Heat curable foundry binder systems
JPH07303935A (ja) 1994-05-12 1995-11-21 Asahi Tec Corp 鋳型成形方法
US6139619A (en) * 1996-02-29 2000-10-31 Borden Chemical, Inc. Binders for cores and molds
DE19632293C2 (de) 1996-08-09 1999-06-10 Thomas Prof Dr In Steinhaeuser Verfahren zur Herstellung von Kernformlingen für die Gießereitechnik
US5837047A (en) * 1996-12-11 1998-11-17 Ashland Inc. Heat curable binder systems and their use
AT2581U1 (de) * 1998-03-20 1999-01-25 Kaerntner Montanindustrie Ges Verwendung von eisenglimmer bei der herstellung von gussformen
JP3374242B2 (ja) * 1998-10-09 2003-02-04 正光 三木 鋳物用発熱性アセンブリ
DE19923779A1 (de) 1999-05-22 2000-11-23 Luengen Gmbh & Co Kg As Formstoff für Brechkerne für den Sphäroguß
DE19925167A1 (de) 1999-06-01 2000-12-14 Luengen Gmbh & Co Kg As Exotherme Speisermasse
WO2001015833A2 (en) * 1999-08-31 2001-03-08 Ashland Inc. Exothermic sleeve mixes containing fine aluminum
US6232368B1 (en) * 1999-10-12 2001-05-15 Borden Chemical, Inc. Ester cured binders
DE29925010U1 (de) 1999-10-26 2008-09-04 Mincelco Gmbh Wasserglasgebundener Kernformstoff
US6416572B1 (en) 1999-12-02 2002-07-09 Foseco International Limited Binder compositions for bonding particulate material
GB0026902D0 (en) * 2000-11-03 2000-12-20 Foseco Int Machinable body and casting process
DE10145417A1 (de) * 2001-09-14 2003-05-22 Vaw Mandl & Berger Gmbh Linz Formgrundstoff, Formstoff und Formteil für eine Giessform
JP4149697B2 (ja) * 2001-11-02 2008-09-10 旭有機材工業株式会社 鋳型用有機粘結剤組成物及びそれを用いて成る鋳型用材料
CN1255234C (zh) * 2001-11-21 2006-05-10 沈阳汇亚通铸造材料有限责任公司 一种吹气硬化冷芯盒制芯的方法
DE10256953A1 (de) * 2002-12-05 2004-06-24 Ashland-Südchemie-Kernfest GmbH Heißhärtendes Bindemittel auf Polyurethanbasis
JP2005021962A (ja) * 2003-07-02 2005-01-27 Sintokogio Ltd 鋳型製造方法、その鋳型およびその鋳物

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013159762A1 (de) 2012-04-26 2013-10-31 Ask Chemicals Gmbh Verfahren zur herstellung von formen und kernen für den metallguss sowie nach diesem verfahren hergestellte formen und kerne
DE102012103705A1 (de) 2012-04-26 2013-10-31 Ask Chemicals Gmbh Verfahren zur Herstellung von Formen und Kernen für den Metallguss sowie nach diesem Verfahren hergestellte Formen und Kerne
WO2013182186A2 (de) 2012-06-06 2013-12-12 Ask Chemicals Gmbh Formstoffmischungen enthaltend bariumsulfat
DE102012104934A1 (de) 2012-06-06 2013-12-12 Ask Chemicals Gmbh Forstoffmischungen enthaltend Bariumsulfat
WO2014059969A2 (de) 2012-10-19 2014-04-24 Ask Chemicals Gmbh Formstoffmischungen auf der basis anorganischer bindemittel und verfahren zur herstellung von formen und kerne für den metallguss
DE102012020511A1 (de) 2012-10-19 2014-04-24 Ask Chemicals Gmbh Formstoffmischungen auf der Basis anorganischer Bindemittel und Verfahren zur Herstellung von Formen und Kerne für den Metallguss
EP3950168A1 (de) 2012-10-19 2022-02-09 ASK Chemicals GmbH Formstoffmischungen auf der basis anorganischer bindemittel zur herstellung von formen und kernen für den metallguss
WO2014059967A2 (de) 2012-10-19 2014-04-24 Ask Chemicals Gmbh Formstoffmischungen auf der basis anorganischer bindemittel und verfahren zur herstellung von formen und kerne für den metallguss
WO2014059968A2 (de) 2012-10-19 2014-04-24 Ask Chemicals Gmbh Formstoffmischungen auf der basis anorganischer bindemittel und verfahren zur herstellung von formen und kerne für den metallguss
DE102012020509A1 (de) 2012-10-19 2014-06-12 Ask Chemicals Gmbh Formstoffmischungen auf der Basis anorganischer Bindemittel und Verfahren zur Herstellung von Formen und Kerne für den Metallguss
RU2650219C2 (ru) * 2012-10-19 2018-04-11 Аск Кемикалз Гмбх Смеси формовочных материалов на основе неорганических связующих и способ получения пресс-форм и стержней для литья металла
DE102012020510B4 (de) 2012-10-19 2019-02-14 Ask Chemicals Gmbh Formstoffmischungen auf der Basis anorganischer Bindemittel und Verfahren zur Herstellung von Formen und Kerne für den Metallguss
WO2014059967A3 (de) * 2012-10-19 2014-07-17 Ask Chemicals Gmbh Formstoffmischungen auf der basis anorganischer bindemittel und verfahren zur herstellung von formen und kerne für den metallguss
DE102012020510A1 (de) 2012-10-19 2014-04-24 Ask Chemicals Gmbh Formstoffmischungen auf der Basis anorganischer Bindemittel und Verfahren zur Herstellung von Formen und Kerne für den Metallguss
DE102012113074A1 (de) 2012-12-22 2014-07-10 Ask Chemicals Gmbh Formstoffmischungen enthaltend Metalloxide des Aluminiums und Zirkoniums in partikulärer Form
DE102012113073A1 (de) 2012-12-22 2014-07-10 Ask Chemicals Gmbh Formstoffmischungen enthaltend Aluminiumoxide und/oder Aluminium/Silizium-Mischoxide in partikulärer Form
WO2014202042A1 (de) 2013-06-17 2014-12-24 Ask Chemicals Gmbh Lithiumhaltige formstoffmischungen auf der basis eines anorganischen bindemittels zur herstellung von formen und kernen für den metallguss
DE102013106276A1 (de) 2013-06-17 2014-12-18 Ask Chemicals Gmbh Lithiumhaltige Formstoffmischungen auf der Basis eines anorganischen Bindemittels zur Herstellung von Formen und Kernen für den Metallguss
DE102013111626A1 (de) 2013-10-22 2015-04-23 Ask Chemicals Gmbh Formstoffmischungen enthaltend eine oxidische Bor-Verbindung und Verfahren zur Herstellung von Formen und Kernen
WO2015058737A2 (de) 2013-10-22 2015-04-30 Ask Chemicals Gmbh Formstoffmischungen enthaltend eine oxidische bor-verbindung und verfahren zur herstellung von formen und kernen
WO2015090269A1 (de) 2013-12-19 2015-06-25 Ask Chemicals Gmbh Verfahren zur herstellung von formen und kernen für den metallguss unter verwendung einer carbonylverbindung sowie nach diesem verfahren hergestellte formen und kerne
DE102013114581A1 (de) 2013-12-19 2015-06-25 Ask Chemicals Gmbh Verfahren zur Herstellung von Formen und Kernen für den Metallguss unter Verwendung einer Carbonylverbindung sowie nach diesem Verfahren hergestellte Formen und Kerne
WO2016091249A1 (de) 2014-12-12 2016-06-16 Ask Chemicals Gmbh Verfahren zum schichtweisen aufbau von formen und kernen mit einem wasserglashaltigen bindemittel und ein wasserglashaltiges bindemittel
DE102014118577A1 (de) 2014-12-12 2016-06-16 Ask Chemicals Gmbh Verfahren zum schichtweisen Aufbau von Formen und Kernen mit einem wasserglashaltigen Bindemittel und ein wasserglashaltiges Bindemittel
EP4234132A2 (de) 2014-12-12 2023-08-30 ASK Chemicals GmbH Verfahren zum schichtweisen aufbau von formen und kernen mit einem wasserglashaltigen bindemittel und ein wasserglashaltiges bindemittel
WO2017084851A1 (de) 2015-11-21 2017-05-26 H2K Minerals Gmbh Form, verfahren zu ihrer herstellung und verwendung
DE102015223008A1 (de) 2015-11-21 2017-05-24 H2K Minerals Gmbh Form, Verfahren zu ihrer Herstellung und Verwendung
EP3620244A1 (de) 2018-09-07 2020-03-11 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur herstellung einer teilchenförmigen feuerfesten zusammensetzung zur verwendung bei der herstellung von giessereiformen und kernen, entsprechende verwendungen und rückgewinnungsmischung zur thermischen behandlung
WO2020229623A1 (de) 2019-05-16 2020-11-19 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verwendung eines partikulären materials umfassend ein teilchenförmiges synthetisches amorphes siliciumdioxid als additiv für eine formstoffmischung, entsprechende verfahren, mischungen und kits
DE102019113008A1 (de) * 2019-05-16 2020-11-19 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verwendung eines partikulären Materials umfassend ein teilchenförmiges synthetisches amorphes Siliciumdioxid als Additiv für eine Formstoffmischung, entsprechende Verfahren, Mischungen und Kits
WO2020253917A1 (de) 2019-06-19 2020-12-24 Ask Chemicals Gmbh Geschlichtete giessformen erhältlich aus einer formstoffmischung enthaltend ein anorganisches bindemittel und phosphahaltige verbindungen und oxidische borverbindungen und verfahren zu deren herstellung und deren verwendung
WO2021023493A1 (de) 2019-08-08 2021-02-11 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung VERFAHREN ZUR HERSTELLUNG EINES ARTIKELS ZUR VERWENDUNG IN DER GIEßEREIINDUSTRIE, ENTSPRECHENDES GRANULAT SOWIE KIT, VORRICHTUNGEN UND VERWENDUNGEN
DE102020119013A1 (de) 2020-07-17 2022-01-20 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines Artikels zur Verwendung in der Gießereiindustrie, entsprechende Form, Kern, Speiserelement oder Formstoffmischung sowie Vorrichtungen und Verwendungen
WO2022013129A1 (de) 2020-07-17 2022-01-20 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung VERFAHREN ZUR HERSTELLUNG EINES ARTIKELS ZUR VERWENDUNG IN DER GIEßEREIINDUSTRIE, ENTSPRECHENDE FORM, KERN, SPEISERELEMENT ODER FORMSTOFFMISCHUNG SOWIE VORRICHTUNGEN UND VERWENDUNGEN
DE102021116930A1 (de) 2021-06-30 2023-01-05 Ask Chemicals Gmbh Verfahren zum schichtweisen aufbau von formen und kernen mit einem wasserglashaltigen bindemittel
WO2023274450A1 (de) 2021-06-30 2023-01-05 Ask Chemicals Gmbh Verfahren zum schichtweisen aufbau von formen und kernen mit einem wasserglashaltigen bindemittel

Also Published As

Publication number Publication date
KR101301829B1 (ko) 2013-08-30
JP2008511447A (ja) 2008-04-17
KR20070057233A (ko) 2007-06-04
ATE542619T1 (de) 2012-02-15
BRPI0514810A (pt) 2008-06-24
HUE047434T2 (hu) 2020-04-28
SI1802409T1 (sl) 2012-05-31
DE202005021896U1 (de) 2011-01-20
EP2392424A1 (de) 2011-12-07
CA2578437C (en) 2013-01-29
US7770629B2 (en) 2010-08-10
WO2006024540A3 (de) 2006-07-13
US20080099180A1 (en) 2008-05-01
ZA200701859B (en) 2008-07-30
JP5102619B2 (ja) 2012-12-19
AU2005279301A1 (en) 2006-03-09
RU2007111891A (ru) 2008-10-10
ES2769603T3 (es) 2020-06-26
DE102004042535B4 (de) 2019-05-29
CN101027147A (zh) 2007-08-29
MX2007002585A (es) 2007-07-13
NO20071755L (no) 2007-05-21
IL181594A0 (en) 2007-07-04
PL2392424T3 (pl) 2020-05-18
ES2380349T3 (es) 2012-05-10
PT1802409E (pt) 2012-05-08
PL1802409T3 (pl) 2012-07-31
CA2578437A1 (en) 2006-03-09
EP1802409A2 (de) 2007-07-04
WO2006024540A2 (de) 2006-03-09
DE102004042535A1 (de) 2006-03-09
EP2392424B1 (de) 2019-11-06
DK1802409T3 (da) 2012-04-16
HRP20120325T1 (hr) 2012-05-31
SI2392424T1 (sl) 2020-03-31
CN100563869C (zh) 2009-12-02

Similar Documents

Publication Publication Date Title
EP1802409B1 (de) Formstoffmischung zur herstellung von giessformen für die metallverarbeitung
EP2097192B1 (de) Phosphorhaltige formstoffmischung zur herstellung von giessformen für die metallverarbeitung
EP2209572B1 (de) Formstoffmischung mit verbesserter fliessfähigkeit
EP2104580B1 (de) Kohlenhydrathaltige formstoffmischung mit ein anteil eines teilchenförmigen metalloxids zum auf wasserglas basierendem bindemittel zugesetz
DE102012020510B4 (de) Formstoffmischungen auf der Basis anorganischer Bindemittel und Verfahren zur Herstellung von Formen und Kerne für den Metallguss
EP2117749B1 (de) Thermische regenerierung von giessereisand
EP2908968B1 (de) Formstoffmischungen auf der basis anorganischer bindemittel und verfahren zur herstellung von formen und kerne für den metallguss
WO2013159762A1 (de) Verfahren zur herstellung von formen und kernen für den metallguss sowie nach diesem verfahren hergestellte formen und kerne
DE102012020511A1 (de) Formstoffmischungen auf der Basis anorganischer Bindemittel und Verfahren zur Herstellung von Formen und Kerne für den Metallguss
EP3137245B1 (de) Formstoffmischung enthaltend resole und amorphes siliciumdioxid, aus diesen hergestellte formen und kerne und verfahren zu deren herstellung
EP3986634A1 (de) Geschlichtete giessformen erhältlich aus einer formstoffmischung enthaltend ein anorganisches bindemittel und phosphahaltige verbindungen und oxidische borverbindungen und verfahren zu deren herstellung und deren verwendung
DE102006061876A1 (de) Kohlenhydrathaltige Formstoffmischung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070227

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: HR YU

RAX Requested extension states of the european patent have changed

Extension state: YU

Payment date: 20070227

Extension state: HR

Payment date: 20070227

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AS LUENGEN GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASK CHEMICALS GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: HR YU

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 542619

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005012398

Country of ref document: DE

Effective date: 20120322

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20120325

Country of ref document: HR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20120424

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2380349

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120510

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20120325

Country of ref document: HR

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 11427

Country of ref document: SK

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120525

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E014095

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: S & B INDUSTRIAL MINERALS GMBH

Effective date: 20121023

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: HUETTENES-ALBERTUS CHEMISCHE-WERKE GMBH

Effective date: 20121025

Opponent name: S & B INDUSTRIAL MINERALS GMBH

Effective date: 20121023

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502005012398

Country of ref document: DE

Effective date: 20121023

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

R26 Opposition filed (corrected)

Opponent name: HUETTENES-ALBERTUS CHEMISCHE-WERKE GMBH

Effective date: 20121025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120902

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: IMERYS METALCASTING GERMANY GMBH

Effective date: 20121023

PLAO Information deleted related to despatch of communication that opposition is rejected

Free format text: ORIGINAL CODE: EPIDOSDREJ1

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: IMERYS METALCASTING GERMANY GMBH

Effective date: 20121023

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20170925

Year of fee payment: 13

Ref country code: PT

Payment date: 20170824

Year of fee payment: 13

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

R26 Opposition filed (corrected)

Opponent name: IMERYS METALCASTING GERMANY GMBH

Effective date: 20121023

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: HUETTENES -ALBERTUS CHEMISCHE WERKE GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CESSION; FORMER OWNER NAME: ASK CHEMICALS GMBH

Effective date: 20180917

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190304

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20120325

Country of ref document: HR

Payment date: 20190826

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191126

Year of fee payment: 15

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20120325

Country of ref document: HR

Payment date: 20200826

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20200827

Year of fee payment: 16

Ref country code: GB

Payment date: 20200923

Year of fee payment: 16

Ref country code: FR

Payment date: 20200921

Year of fee payment: 16

Ref country code: NL

Payment date: 20200921

Year of fee payment: 16

Ref country code: SK

Payment date: 20200825

Year of fee payment: 16

Ref country code: FI

Payment date: 20200918

Year of fee payment: 16

Ref country code: TR

Payment date: 20200831

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200925

Year of fee payment: 16

Ref country code: AT

Payment date: 20200918

Year of fee payment: 16

Ref country code: HU

Payment date: 20200822

Year of fee payment: 16

Ref country code: PL

Payment date: 20200715

Year of fee payment: 16

Ref country code: SI

Payment date: 20200821

Year of fee payment: 16

Ref country code: BE

Payment date: 20200921

Year of fee payment: 16

Ref country code: SE

Payment date: 20200923

Year of fee payment: 16

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

R26 Opposition filed (corrected)

Opponent name: IMERYS METALCASTING GERMANY GMBH

Effective date: 20121023

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20201016

Year of fee payment: 16

Ref country code: IT

Payment date: 20200930

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502005012398

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502005012398

Country of ref document: DE

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FI

Ref legal event code: MGE

27W Patent revoked

Effective date: 20210207

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20210207

REG Reference to a national code

Ref country code: SK

Ref legal event code: MC4A

Ref document number: E 11427

Country of ref document: SK

Effective date: 20210207

REG Reference to a national code

Ref country code: HR

Ref legal event code: PNEV

Ref document number: P20120325

Country of ref document: HR

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 542619

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210902

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20220520