EP1716193A1 - Polyurethane polishing pad - Google Patents

Polyurethane polishing pad

Info

Publication number
EP1716193A1
EP1716193A1 EP05705694A EP05705694A EP1716193A1 EP 1716193 A1 EP1716193 A1 EP 1716193A1 EP 05705694 A EP05705694 A EP 05705694A EP 05705694 A EP05705694 A EP 05705694A EP 1716193 A1 EP1716193 A1 EP 1716193A1
Authority
EP
European Patent Office
Prior art keywords
isocyanate
curative
polishing pad
reaction product
prepolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05705694A
Other languages
German (de)
English (en)
French (fr)
Inventor
Mary Jo Kulp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Electronic Materials CMP Holdings Inc
Rohm and Haas Electronic Materials LLC
Original Assignee
Rohm and Haas Electronic Materials CMP Holdings Inc
Rohm and Haas Electronic Materials LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34808579&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1716193(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Rohm and Haas Electronic Materials CMP Holdings Inc, Rohm and Haas Electronic Materials LLC filed Critical Rohm and Haas Electronic Materials CMP Holdings Inc
Publication of EP1716193A1 publication Critical patent/EP1716193A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group

Definitions

  • Polyurethane polishing pads are the primary pad-type for a variety of demanding precision polishing applications. These polyurethane polishing pads are effective for polishing silicon wafers, patterned wafers, flat panel displays and magnetic storage disks.
  • polyurethane polishing pads provide the mechanical integrity and chemical resistance for most polishing operations used to fabricate integrated circuits. For example, polyurethane polishing pads have high strength for resisting tearing; abrasion resistance for avoiding wear problems during polishing; and stability for resisting attack by strong acidic and strong caustic polishing solutions.
  • CMP chemical mechanical planarization
  • the invention provides a polishing pad suitable for planarizing at least one of semiconductor, optical and magnetic substrates, the polishing pad comprising a cast polyurethane polymeric material formed from a prepolymer reaction of a prepolymer polyol and a polyfunctional aromatic isocyanate to form an isocyanate-terminated reaction product, the polyfunctional aromatic isocyanate having less than 8 weight percent aliphatic isocyanate and the isocyanate-terminated reaction product having 4.5 to 8.7 weight percent unreacted NCO, the isocyanate-terminated reaction product being cured with a curative agent selected from the group comprising curative polyamines, curative polyols, curative alcoholamines and mixtures thereof; and the polishing pad containing at least 0.1 volume percent filler or porosity.
  • the invention provides a polishing pad suitable for planarizing semiconductor substrates, the polishing pad comprising a cast polyurethane polymeric material formed from a prepolymer reaction of a prepolymer polyol selected from the group comprising polytetramethylene ether glycol, polyester polyols, polypropylene ether glycols, copolymers thereof and mixtures thereof and a polyfunctional aromatic isocyanate to form an isocyanate-terminated reaction product, the polyfunctional aromatic isocyanate having less than 5 weight percent aliphatic isocyanate and the isocyanate-terminated reaction product having 4.5 to 8.7 weight percent unreacted NCO, the isocyanate-terminated reaction product being cured with a curative agent with expandable polymeric microspheres, the curative agent selected from the group comprising curative polyamines, curative polyols, curative alcoholamines and mixtures thereof; and the polishing pad containing a porosity of at least 0.1 volume percent.
  • the invention provides a method of forming a polishing pad suitable for planarizing semiconductor substrates comprising casting polyurethane polymeric material from a prepolymer reaction of a prepolymer polyol and a polyfunctional aromatic isocyanate to form an isocyanate-terminated reaction product, the polyfunctional aromatic isocyanate having less than 8 weight percent aliphatic isocyanate and the isocyanate-terminated reaction product having 4.5 to 8.7 weight percent unreacted NCO, the isocyanate-terminated reaction product being cured with a curative agent selected from the group comprising curative polyamines, curative polyols, curative alcoholamines and mixtures thereof; and the polishing pad containing at least 0.1 volume percent filler or porosity.
  • Cast polyurethane polishing pads are suitable for planarizing semiconductor, optical and magnetic substrates.
  • the pads' particular polishing properties arise in part from a prepolymer reaction product of a prepolymer polyol and a polyfunctional isocyanate.
  • the prepolymer product is cured with a curative agent selected from the group comprising curative polyamines, curative polyols, curative alcohol amines and mixtures thereof to form a polishing pad. It has been discovered that controlling the amount of unreacted NCO in the prepolymer reaction product can improve porous pads' uniformity throughout a polyurethane casting.
  • the polyurethane will have too long of a gel time that can also lead to non-uniformity, such as, the sinking of high-density particles or floating of low-density particles and pores during an extended gelation process.
  • Controlling the prepolymer' s weight percent unreated NCO to between 4.5 and 8.7 weight percent provides cast polyurethane polishing pads with uniform properties.
  • the prepolymer's weight percent unreacted NCO is between 4.7 and 8.5.
  • the polymer is effective for forming porous and filled polishing pads.
  • filler for polishing pads include solid particles that dislodge or dissolve during polishing, and liquid-filled particles or spheres.
  • porosity includes gas-filled particles, gas-filled spheres and voids formed from other means, such as mechanically frothing gas into a viscous system, injecting gas into the polyurethane melt, introducing gas in situ using a chemical reaction with gaseous product,or decreasing pressure to cause disolved gas to form bubbles.
  • the polishing pads contain a porosity or filler concentration of at least 0.1 volume percent. This porosity or filler contributes to the polishing pad's ability to transfer polishing fluids during polishing.
  • the polishing pad has a porosity or filler concentration of 0.2 to 70 volume percent.
  • the polishing pad has a porosity or filler concentration of 0.25 to 60 volume percent.
  • the pores or filler particles have a weight average diameter of 10 to 100 ⁇ m. Most preferably, the pores or filler particles have a weight average diameter of 15 to 90 ⁇ m. The nominal range of expanded hollow-polymeric microspheres' weight average diameters is 15 to 50 ⁇ m. Controlling the unreacted NCO concentration is particularly effective for controlling the pore uniformity for pores formed directly or indirectly with a filler gas. This is because gases tend to undergo thermal expansion at a much greater rate and to a greater extent than solids and liquids.
  • the method is particularly effective for porosity formed by casting hollow microspheres, either pre-expanded or expanded in situ; by using chemical foaming agents; by mechanically frothing in gas; and by use of dissolved gases, such as argon, carbon dioxide, helium, nitrogen, and air, or supercritical fluids, such as supercritical carbon dioxide or gases formed in situ as a reaction product.
  • gases such as argon, carbon dioxide, helium, nitrogen, and air
  • supercritical fluids such as supercritical carbon dioxide or gases formed in situ as a reaction product.
  • a polishing pad's non-uniformity appears to be driven by the following: 1) the temperature profile of the reacting system; 2) the resulting pore expansion in areas where the temperature increases above that of the expansion temperature of the pore while the surrounding polymeric matrix remains not-so-locked in place as to be able to respond; and 3) the viscosity profile of the reacting or solidifying polymer matrix as a result of reaction and various local heating and cooling effects.
  • Tg is related to the threshhold temperature for response. Polymeric microspheres above this temperature tend to grow and deform in shape.
  • the microspheres' pre-casting volume and the microspheres' final volume preferably remains within 8 percent of the average pre-casting volume throughout the cast polyurethane material. Most preferably, the microspheres' final volume remains within 7 percent of the pre-casting volume throughout the cast polyurethane material.
  • Literature shows a volume decrease as a function of time for pre-expanded Expancel microspheres maintained at elevated temperatures. However, the further expansion of the expanded microspheres contributes to increased non-uniformity of the polishing pads.
  • Pad formulations with more unifonn density can provide more consistent removal rates and topographical control than pad formulations where this is uncontrolled, giving greater CMP process control in actual use.
  • peak exotherm temperatures reach as high as 264°F (129°C). These temperatures are well above the expansion onset temperature and closely approach the temperatures of maximum expansion for Expancel microsphere 551DU40 — the unexpanded microspheres from which 551DE40d42 is produced— 275-289°F (135- 143°C).
  • the density in the center of the cast cake is lower due to greater heating and the resulting greater pore expansion.
  • polishing pads' porosity variation also tends to increase with increasing initial pore volume, increasing material temperatures and increasing mass of cast material. Because the pore can only expand if the surrounding polymer is still sufficiently mobile that it can rearrange with a small pressure, it is also important that the weight percent unreacted NCO of the system and the ability of the polymer backbone to order is not too low, or the pores or filler can slowly expand or segregate by density, yielding a broader density distribution.
  • the polymeric material is a polyurethane.
  • polyurethanes are products derived from difunctional or polyfunctional isocyanates, e.g.
  • urethane production involves the preparation of an isocyanate-terminated urethane prepolymer from a polyfunctional aromatic isocyanate and a prepolymer polyol.
  • prepolymer polyol includes diols, polyols, polyol-diols, copolymers thereof and mixtures thereof.
  • the prepolymer polyol is selected from the group comprising polytetramethylene ether glycol [PTMEG], polypropylene ether glycol [PPG], ester-based polyols, such as ethylene or butylene adipates, copolymers thereof and mixtures thereof.
  • Example polyfunctional aromatic isocyanates include 2,4-toluene diisocyanate, 2,6- toluene diisocyanate, 4,4'- diphenylmethane diisocyanate, naphthalene- 1,5- diisocyanate, tolidine diisocyanate, para- phenylene diisocyanate, xylylene diisocyanate and mixtures thereof.
  • the polyfunctional aromatic isocyanate contains less than 8 weight percent aliphatic isocyanates, such as 4,4'- dicyclohexylmethane diisocyanate, isophorone diisocyanate and cyclohexanediisocyanate.
  • aliphatic isocyanates are less reactive than aromatic isocyanates and release heat into the system more gradually.
  • the polyfunctional aromatic isocyanate contains less than 5 weight percent aliphatic isocyanates and more preferably, less than 1 weight percent aliphatic isocyanate.
  • Example prepolymer polyols include polyether polyols, such as, poly(oxytetramethylene)glycol, poly(oxypropylene)glycol and mixtures thereof, polycarbonate polyols, polyester polyols, polycaprolactone polyols and mixtures thereof.
  • Example polyols can be mixed with low molecular weight polyols, including ethylene glycol, 1,2-propylene glycol, 1,3- propylene glycol, 1,2-butanediol, 1,3-butanediol, 2- methyl-1, 3- propanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 3-methyl- 1,5- pentanediol, 1,6-hexanediol, diethylene glycol, dipropylene glycol and mixtures thereof.
  • low molecular weight polyols including ethylene glycol, 1,2-propylene glycol, 1,3- propylene glycol, 1,2-butanediol, 1,3-butanediol, 2- methyl-1, 3- propanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 3-methyl- 1,5- pen
  • the prepolymer polyol is selected from the group comprising polytetramethylene ether glycol, polyester polyols, polypropylene ether glycols, polycaprolactone polyols, copolymers thereof and mixtures thereof. If the prepolymer polyol is PTMEG, copolymer thereof or a mixture thereof, then the isocyanate-terminated reaction product most preferably has a weight percent unreacted NCO range of 5.8 to 8.7.
  • PTMEG family polyols are as follows: Terathane® 2900, 2000, 1800, 1400, 1000, 650 and 250 from DuPont; Polymeg® 2000, 1000, 1500, 650 from Lyondell; PolyTHF® 650, 1000, 1800, 2000 from BASF, and lower molecular weight species such as 1,2-butanediol, 1,3-butanediol, and 1,4-butanediol. If the prepolymer polyol is a PPG, copolymer thereof or a mixture thereof, then the isocyanate-terminated reaction product most preferably has a weight percent unreacted NCO range of 5 to 8.
  • PPG polyols are as follows: Arcol® PPG-425, 725, 1000, 1025, 2000, 2025, 3025 and 4000 from Bayer; Noranol® 220-028, 220-094, 220-110 ⁇ , 220-260, 222-029, 222-056, 230-056 from Dow; Desmophen® 1110BD, Acclaim® Polyol 4200 both from Bayer If the prepolymer polyol is an ester, copolymer thereof or a mixture thereof, then the isocyanate-terminated reaction product most preferably has a weight percent unreacted NCO range of 4.5 to 7.
  • ester polyols are as follows: Millester 1, 11, 2, 23, 132, 231, 272, 4, 5, 510, 51, 7, 8, 9, 10,16, 253, from Polyurethane Specialties Company, Inc.; Desmophen® 1700, 1800, 2000, 2001KS, 2001K 2 , 2500, 2501, 2505, 2601, PE65B from Bayer; Rucoflex S-1021-70, S-1043-46, S-1043-55 from Bayer.
  • the prepolymer reaction product is reacted or cured with a curative polyol, polyamine, alcohol amine or mixture thereof.
  • polyamines include diamines and other multifunctional amines.
  • Example curative polyamines include aromatic diamines or polyamines, such as, 4,4'-methylene ⁇ bis-o- chloroaniline [MBCA], 4,4'-methylene-bis-(3-chloro-2,6- diethylaniline) [MCDEA]; dimethylthiotoluenediamine; trimethyleneglycol dip-aminobenzoate; polytetramethyleneoxide di-p-aminobenzoate; polytetramethyleneoxide mono-p- aminobenzoate; polypropyleneoxide di-p-aminobenzoate; polypropyleneoxide mono-p- aminobenzoate; l,2-bis(2-aminophenylthio)ethane; 4,4'-methylene-bis- aniline; diethyltoluenediamine; 5-tert-butyl-2,4- and 3-tert-butyl- 2,6- toluenediamine; 5-tert-amyl- 2,4- and 3-tert-amyl
  • urethane polymers for polishing pads with a single mixing step that avoids the use of prepolymers.
  • the components of the polymer used to make the polishing pad are preferably chosen so that the resulting pad morphology is stable and easily reproducible.
  • MBCA 4,4'-methylene-bis-o-chloroaniline
  • additives such as anti-oxidizing agents, and impurities such as water for consistent manufacturing.
  • the polyurethane polymeric material is preferably formed from a prepolymer reaction product of toluene diisocyanate and polytetramethylene ether glycol with 4,4'-methylene- bis-o-chloroaniline.
  • the prepolymer reaction product has a 4.55 to 8.7 weight percent unreacted NCO.
  • Suitable prepolymers within this unreacted NCO range include: Airthane® prepolymers PET-70D, PHP-70D, PET-60D, PET-95A, PET- 93A, PST-95A, PPT-95A, Nersathane® prepolymers STE-95A, STE-P95, Nersathane®-C prepolymers 1050, 1160, D-5QM, D-55, D-6 manufactured by Air Products and Chemicals, Inc.
  • LF600D, LF601D, LF700D, and LFG963A are low-free isocyanate prepolymers that have less than 0.1 weight percent free TDI monomer and have a more consistent prepolymer molecular weight distribution than conventional prepolymers, and so facilitate forming polishing pads with excellent polishing characteristics.
  • This improved prepolymer molecular weight consistency and low free isocyanate monomer give an initially lower viscosity prepolymer that tends to gel more rapidly, facilitating viscosity control that can further improve porosity distribution and polishing pad consistency.
  • the low free isocyanate monomer is preferably below 0.5 weight percent.
  • the curative and prepolymer reaction product preferably has an OH or NH 2 to unreacted NCO stoichiometric ratio of 80 to 120 percent; and most preferably, it has an OH or NH 2 to unreacted NCO stoichiometric ratio of 80 to 110 percent.
  • the polishing pad is a polyurethane material
  • the polishing pad preferably has a density of 0.5 to 1.25 g/cm .
  • polyurethane polishing pads have a density of 0.6 to 1.15 g/cm 3 . Examples The following Table provides prepolymer and microsphere formulations for casting polyurethane calces.
  • formulations 1 to 9 represent formulations of the invention and formulations A to E represent comparative examples.
  • comparative example A corresponds to the formulation of Example 1 of US Pat. No. 5,578,362
  • comparative example B corresponds to the formulation of the IC1000TM polyurethane polishing pads sold by Rohm and Haas Electronic Materials CMP Technologies.
  • the amount of unreacted NCO contained in the isocyanate-terminated prepolymers range from 5.3 to 9.11 percent.
  • Adiprene® is a urethane prepolymer product of Crompton/Uniroyal Chemical.
  • L325 is a H ⁇ 2 MDI/TDI - PTMEG having an unreacted NCO of 8.95 to 9.25 wt%.
  • LF600D is a TDI - PTMEG having an unreacted NCO of 7.1 to 7.4 wt%.
  • LF700D is a TDI - PTMEG having an unreacted NCO of 8.1 to 8.4 wt%.
  • LF75 ID is a TDI - PTMEG having an unreacted NCO of 8.9 to 9.2 wt%.
  • LF950A is a TDI - PTMEG having an unreacted NCO of 5.9 to 6.2 wt%.
  • LFG963A is a TDI-PPG having an unreacted NCO of 5.55 to 5.85 wt%.
  • LF1950A is a TDI-ester having an unreacted NCO of 5.24 to 5.54 wt%.
  • Expancel® 551DE40d42 is a 30-50 ⁇ m weight average diameter hollow-polymeric microsphere manufactured by Akzo Nobel
  • the microspheres represent hollow or gas-filled polymeric spheres expanded from other Expancel® microspheres. Table 2 below provides the expansion onset and expansion maximum temperatures for the microspheres before expansion.
  • the polymeric pad materials were prepared by mixing various amounts of isocyanate- terminated-urethane prepolymers with 4,4'-methylene-bis-o-chloroaniline [MBCA] at the prepolymer temperatures and MBCA temperatures provided in Table 3. At these temperatures, the urethane/polyfunctional amine mixture had a gel time on the order of 4 to 12 minutes after adding of hollow elastic polymeric microspheres to the mixture.
  • MBCA 4,4'-methylene-bis-o-chloroaniline
  • the 551 DE40d42 microspheres had a weight average diameter of 30 to 50 ⁇ m, with a range of 5 to 200 ⁇ m; and the 551DE20d60 microspheres had a weight average diameter of 15 to 25 ⁇ m, and were blended at approximately 3,600 rpm using a high shear mixer to evenly distribute the microspheres in the mixture. The final mixture was transferred to a mold and permitted to gel for about 15 minutes.
  • the mold was then placed in a curing oven and cured with a cycle as follows: thirty minutes ramped from ambient temperature to a set point of 104°C, fifteen and one half hours at 104°C (except comparative examples A-l and A-2 where this segment is changed to 5 h hours at 93°C) and two hours with a set point reduced to 21 °C.
  • the molded article was then "skived" into thin sheets and macro-channels or grooves were machined into the surface at room temperature — slaving at higher temperatures may improve surface roughness.
  • the formulation 8 calculation uses Uniroyal's Adiprene LFG963A S.G. of 1.15 for unfilled material
  • the formulation 9 calculation uses Uniroyal's Adiprene LF1950A S.G. of 1.29 for unfilled material
  • Table 4 shows a general correlation between top pad density and the predicted pad density.
  • Table 5 contains the maximum exotherm temperature obtained for casting each polyurethane cake.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
EP05705694A 2004-02-03 2005-01-13 Polyurethane polishing pad Withdrawn EP1716193A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/772,054 US20050171224A1 (en) 2004-02-03 2004-02-03 Polyurethane polishing pad
PCT/US2005/001192 WO2005077999A1 (en) 2004-02-03 2005-01-13 Polyurethane polishing pad

Publications (1)

Publication Number Publication Date
EP1716193A1 true EP1716193A1 (en) 2006-11-02

Family

ID=34808579

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05705694A Withdrawn EP1716193A1 (en) 2004-02-03 2005-01-13 Polyurethane polishing pad

Country Status (7)

Country Link
US (3) US20050171224A1 (ko)
EP (1) EP1716193A1 (ko)
JP (2) JP4954716B2 (ko)
KR (1) KR101141880B1 (ko)
CN (1) CN1914241B (ko)
TW (1) TWI378994B (ko)
WO (1) WO2005077999A1 (ko)

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050171224A1 (en) * 2004-02-03 2005-08-04 Kulp Mary J. Polyurethane polishing pad
US20060046064A1 (en) * 2004-08-25 2006-03-02 Dwaine Halberg Method of improving removal rate of pads
US20060099891A1 (en) * 2004-11-09 2006-05-11 Peter Renteln Method of chemical mechanical polishing, and a pad provided therefore
US20060046627A1 (en) * 2004-08-25 2006-03-02 Peter Renteln Method of improving planarization of urethane polishing pads, and urethane polishing pad produced by the same
WO2006095591A1 (ja) * 2005-03-08 2006-09-14 Toyo Tire & Rubber Co., Ltd. 研磨パッド及びその製造方法
KR20060099398A (ko) * 2005-03-08 2006-09-19 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스 인코포레이티드 수계 연마 패드 및 제조 방법
KR100949560B1 (ko) 2005-05-17 2010-03-25 도요 고무 고교 가부시키가이샤 연마 패드
JP4884726B2 (ja) * 2005-08-30 2012-02-29 東洋ゴム工業株式会社 積層研磨パッドの製造方法
JP4884725B2 (ja) * 2005-08-30 2012-02-29 東洋ゴム工業株式会社 研磨パッド
US7445847B2 (en) * 2006-05-25 2008-11-04 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad
US7169030B1 (en) 2006-05-25 2007-01-30 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad
CN101489721B (zh) * 2006-08-28 2014-06-18 东洋橡胶工业株式会社 抛光垫
JP5008927B2 (ja) * 2006-08-31 2012-08-22 東洋ゴム工業株式会社 研磨パッド
US20100009611A1 (en) * 2006-09-08 2010-01-14 Toyo Tire & Rubber Co., Ltd. Method for manufacturing a polishing pad
US20080063856A1 (en) * 2006-09-11 2008-03-13 Duong Chau H Water-based polishing pads having improved contact area
WO2008087797A1 (ja) 2007-01-15 2008-07-24 Toyo Tire & Rubber Co., Ltd. 研磨パッド及びその製造方法
JP5078000B2 (ja) * 2007-03-28 2012-11-21 東洋ゴム工業株式会社 研磨パッド
JP5061694B2 (ja) * 2007-04-05 2012-10-31 信越半導体株式会社 研磨パッドの製造方法及び研磨パッド並びにウエーハの研磨方法
US20090062414A1 (en) * 2007-08-28 2009-03-05 David Picheng Huang System and method for producing damping polyurethane CMP pads
US8052507B2 (en) * 2007-11-20 2011-11-08 Praxair Technology, Inc. Damping polyurethane CMP pads with microfillers
JP4593643B2 (ja) * 2008-03-12 2010-12-08 東洋ゴム工業株式会社 研磨パッド
US20100035529A1 (en) * 2008-08-05 2010-02-11 Mary Jo Kulp Chemical mechanical polishing pad
US8551201B2 (en) * 2009-08-07 2013-10-08 Praxair S.T. Technology, Inc. Polyurethane composition for CMP pads and method of manufacturing same
JP5606083B2 (ja) * 2010-01-29 2014-10-15 日本発條株式会社 独泡ウレタンシート及びその製造方法
US8702479B2 (en) 2010-10-15 2014-04-22 Nexplanar Corporation Polishing pad with multi-modal distribution of pore diameters
US8357446B2 (en) * 2010-11-12 2013-01-22 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Hollow polymeric-silicate composite
US8512427B2 (en) 2011-09-29 2013-08-20 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Acrylate polyurethane chemical mechanical polishing layer
KR101631974B1 (ko) 2011-12-16 2016-06-20 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스, 인코포레이티드 연마 패드
JP6155018B2 (ja) * 2011-12-16 2017-06-28 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド 研磨パッド
US10722997B2 (en) * 2012-04-02 2020-07-28 Thomas West, Inc. Multilayer polishing pads made by the methods for centrifugal casting of polymer polish pads
US10022842B2 (en) 2012-04-02 2018-07-17 Thomas West, Inc. Method and systems to control optical transmissivity of a polish pad material
US11090778B2 (en) 2012-04-02 2021-08-17 Thomas West, Inc. Methods and systems for centrifugal casting of polymer polish pads and polishing pads made by the methods
US9144880B2 (en) * 2012-11-01 2015-09-29 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Soft and conditionable chemical mechanical polishing pad
JP5661130B2 (ja) * 2013-01-31 2015-01-28 東洋ゴム工業株式会社 研磨パッド
US9238295B2 (en) * 2013-05-31 2016-01-19 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Soft and conditionable chemical mechanical window polishing pad
US9238296B2 (en) * 2013-05-31 2016-01-19 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Multilayer chemical mechanical polishing pad stack with soft and conditionable polishing layer
US9233451B2 (en) * 2013-05-31 2016-01-12 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Soft and conditionable chemical mechanical polishing pad stack
KR102066002B1 (ko) 2013-06-10 2020-02-11 삼성전자주식회사 연마 패드 조성물
US20150065013A1 (en) * 2013-08-30 2015-03-05 Dow Global Technologies Llc Chemical mechanical polishing pad
US9102034B2 (en) * 2013-08-30 2015-08-11 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method of chemical mechanical polishing a substrate
US20150059254A1 (en) * 2013-09-04 2015-03-05 Dow Global Technologies Llc Polyurethane polishing pad
JP2015059199A (ja) * 2013-09-20 2015-03-30 Dic株式会社 ウレタン組成物及び研磨材
US8980749B1 (en) * 2013-10-24 2015-03-17 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method for chemical mechanical polishing silicon wafers
CN103862365B (zh) * 2014-01-21 2016-05-04 湖北鼎龙化学股份有限公司 聚氨酯材料抛光垫及其制备方法
US9463550B2 (en) * 2014-02-19 2016-10-11 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method of manufacturing chemical mechanical polishing layers
WO2015127077A1 (en) * 2014-02-20 2015-08-27 Thomas West, Inc. Method and systems to control optical transmissivity of a polish pad material
US20150306731A1 (en) * 2014-04-25 2015-10-29 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad
US20150375361A1 (en) * 2014-06-25 2015-12-31 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing method
US9731398B2 (en) * 2014-08-22 2017-08-15 Rohm And Haas Electronic Materials Cmp Holding, Inc. Polyurethane polishing pad
US9873180B2 (en) 2014-10-17 2018-01-23 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US10875153B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
US9776361B2 (en) 2014-10-17 2017-10-03 Applied Materials, Inc. Polishing articles and integrated system and methods for manufacturing chemical mechanical polishing articles
US10875145B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
KR102436416B1 (ko) 2014-10-17 2022-08-26 어플라이드 머티어리얼스, 인코포레이티드 애디티브 제조 프로세스들을 이용한 복합 재료 특성들을 갖는 cmp 패드 구성
US10821573B2 (en) 2014-10-17 2020-11-03 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
US10399201B2 (en) 2014-10-17 2019-09-03 Applied Materials, Inc. Advanced polishing pads having compositional gradients by use of an additive manufacturing process
US9452507B2 (en) * 2014-12-19 2016-09-27 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Controlled-viscosity CMP casting method
US9481070B2 (en) * 2014-12-19 2016-11-01 Rohm And Haas Electronic Materials Cmp Holdings, Inc. High-stability polyurethane polishing pad
JP6600149B2 (ja) * 2015-04-03 2019-10-30 富士紡ホールディングス株式会社 研磨パッド及びその製造方法
KR101615547B1 (ko) 2015-05-20 2016-04-26 에프엔에스테크 주식회사 연마 패드 및 이의 제조 방법
US10092998B2 (en) * 2015-06-26 2018-10-09 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method of making composite polishing layer for chemical mechanical polishing pad
US10011002B2 (en) * 2015-06-26 2018-07-03 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method of making composite polishing layer for chemical mechanical polishing pad
US9539694B1 (en) 2015-06-26 2017-01-10 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Composite polishing layer chemical mechanical polishing pad
US9630293B2 (en) 2015-06-26 2017-04-25 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad composite polishing layer formulation
US9776300B2 (en) * 2015-06-26 2017-10-03 Rohm And Haas Electronic Materials Cmp Holdings Inc. Chemical mechanical polishing pad and method of making same
US9457449B1 (en) 2015-06-26 2016-10-04 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad with composite polishing layer
CN113103145B (zh) 2015-10-30 2023-04-11 应用材料公司 形成具有期望ζ电位的抛光制品的设备与方法
US10593574B2 (en) 2015-11-06 2020-03-17 Applied Materials, Inc. Techniques for combining CMP process tracking data with 3D printed CMP consumables
US10391605B2 (en) 2016-01-19 2019-08-27 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
CN106041719B (zh) * 2016-06-03 2018-10-23 湖北鼎龙控股股份有限公司 一种抛光层及其制备方法以及化学机械抛光垫
CN105904352B (zh) * 2016-06-03 2018-06-01 湖北鼎汇微电子材料有限公司 一种抛光层及其制备方法以及低损伤化学机械抛光垫
CN106965100A (zh) * 2017-04-19 2017-07-21 台山市远鹏研磨科技有限公司 一种湿式抛光垫及其制备方法
US20180304539A1 (en) 2017-04-21 2018-10-25 Applied Materials, Inc. Energy delivery system with array of energy sources for an additive manufacturing apparatus
KR101835087B1 (ko) * 2017-05-29 2018-03-06 에스케이씨 주식회사 다공성 폴리우레탄 연마패드 및 이를 사용하여 반도체 소자를 제조하는 방법
CN107163213A (zh) * 2017-05-31 2017-09-15 蓝思科技(长沙)有限公司 抛光垫、制备方法及其应用
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
US11072050B2 (en) 2017-08-04 2021-07-27 Applied Materials, Inc. Polishing pad with window and manufacturing methods thereof
WO2019032286A1 (en) 2017-08-07 2019-02-14 Applied Materials, Inc. ABRASIVE DISTRIBUTION POLISHING PADS AND METHODS OF MAKING SAME
CN107553313B (zh) * 2017-08-31 2019-12-31 湖北鼎龙控股股份有限公司 一种抛光垫、聚氨酯抛光层及其制备方法
US11179822B2 (en) 2017-08-31 2021-11-23 Hubei Dinghui Microelectronics Materials Co., Ltd Polyurethane polishing layer, polishing pad comprising polishing layer, method for preparing polishing layer and method for planarizing material
US11642752B2 (en) * 2017-09-11 2023-05-09 Sk Enpulse Co., Ltd. Porous polyurethane polishing pad and process for preparing the same
CN108047420B (zh) * 2017-11-28 2021-01-12 湖北鼎龙控股股份有限公司 一种聚氨酯抛光层及其制备方法
EP3778688A4 (en) * 2018-04-10 2021-12-29 Tokuyama Corporation Urethane resin using polyrotaxane, and pad for polishing
KR20210042171A (ko) 2018-09-04 2021-04-16 어플라이드 머티어리얼스, 인코포레이티드 진보한 폴리싱 패드들을 위한 제형들
CN109693176B (zh) * 2019-01-15 2020-12-08 湖北鼎汇微电子材料有限公司 抛光层、抛光垫及制备方法
CN113330070A (zh) * 2019-02-11 2021-08-31 陶氏环球技术有限责任公司 防火聚氨酯涂层组合物以及包括防火聚氨酯涂层组合物的防火产品
CN110003426B (zh) * 2019-03-08 2021-05-25 合肥宏光研磨科技有限公司 一种聚氨酯海绵复合抛光盘
KR102237362B1 (ko) * 2019-06-17 2021-04-07 에스케이씨솔믹스 주식회사 연마패드용 조성물, 연마패드 및 반도체 소자의 제조방법
KR102237351B1 (ko) * 2019-06-17 2021-04-07 에스케이씨솔믹스 주식회사 연마패드용 조성물, 연마패드 및 반도체 소자의 제조방법
CN110528287B (zh) * 2019-08-08 2022-03-08 安徽安利材料科技股份有限公司 一种毛刷式高耐用化学机械抛光聚氨酯材料及其制备方法
US11813712B2 (en) 2019-12-20 2023-11-14 Applied Materials, Inc. Polishing pads having selectively arranged porosity
CN110977756B (zh) * 2019-12-27 2021-09-07 万华化学集团电子材料有限公司 一种化学机械抛光垫的抛光层及其应用
JP7489808B2 (ja) 2020-03-30 2024-05-24 富士紡ホールディングス株式会社 研磨パッド、研磨方法及び研磨パッドの評価方法
US11806829B2 (en) 2020-06-19 2023-11-07 Applied Materials, Inc. Advanced polishing pads and related polishing pad manufacturing methods
CN114227531B (zh) * 2020-09-07 2024-04-26 Sk恩普士有限公司 抛光垫及其制备方法以及半导体器件的制备方法
US11807710B2 (en) * 2020-10-19 2023-11-07 Cmc Materials, Inc. UV-curable resins used for chemical mechanical polishing pads
US11878389B2 (en) 2021-02-10 2024-01-23 Applied Materials, Inc. Structures formed using an additive manufacturing process for regenerating surface texture in situ

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4282344A (en) * 1978-11-02 1981-08-04 E. I. Du Pont De Nemours And Company Polyurethane curing agent dispersion, process and product
US4511605A (en) * 1980-09-18 1985-04-16 Norwood Industries, Inc. Process for producing polishing pads comprising a fully impregnated non-woven batt
EP0370408A1 (en) * 1988-11-21 1990-05-30 Air Products And Chemicals, Inc. Process for the preparation of polyisocyanate prepolymers and polyurethanes and resulting compositions
US5114982A (en) * 1989-11-20 1992-05-19 Westinghouse Electric Corp. Acoustic scattering and high reflection loss compositions
CA2048232A1 (en) * 1990-09-05 1992-03-06 Jerry W. Williams Energy curable pressure-sensitive compositions
JPH09506641A (ja) * 1992-06-26 1997-06-30 ミネソタ マイニング アンド マニュファクチャリング カンパニー ポリウレタン/ポリ尿素エラストマー
MY114512A (en) * 1992-08-19 2002-11-30 Rodel Inc Polymeric substrate with polymeric microelements
US5260343A (en) * 1993-01-04 1993-11-09 Basf Corporation Low density flexible integral skin polyurethane systems using thermoplastic hydrocarbon microspheres and water as co-blowing agents
JPH10130356A (ja) * 1996-10-24 1998-05-19 Sanyo Chem Ind Ltd 模型素材用組成物、成形品、模型の製法
US5821316A (en) * 1997-01-24 1998-10-13 Air Products And Chemicals, Inc. Polyurethane prepolymers for making elastomers having improved dynamic properties
US6022268A (en) * 1998-04-03 2000-02-08 Rodel Holdings Inc. Polishing pads and methods relating thereto
US6020387A (en) * 1997-09-22 2000-02-01 Caschem, Inc. Low density polymers and methods of making and using same
JPH11322877A (ja) * 1998-05-12 1999-11-26 Dainippon Ink & Chem Inc 微細泡含有成形物の製造方法及び微細泡含有成形物用ウレタン樹脂組成物
JPH11322878A (ja) * 1998-05-13 1999-11-26 Dainippon Ink & Chem Inc 泡含有ポリウレタン成形物の製造方法、泡含有成形物用ウレタン樹脂組成物及びそれを用いた研磨パッド
US7718102B2 (en) 1998-06-02 2010-05-18 Praxair S.T. Technology, Inc. Froth and method of producing froth
US6095902A (en) * 1998-09-23 2000-08-01 Rodel Holdings, Inc. Polyether-polyester polyurethane polishing pads and related methods
JP3685066B2 (ja) * 1998-11-09 2005-08-17 東レ株式会社 研磨パッド及び研磨装置
JP2000344902A (ja) * 1999-06-04 2000-12-12 Fuji Spinning Co Ltd 研磨パッド用ウレタン成形物の製造法及び研磨パッド用ウレタン成形物
TWI228522B (en) * 1999-06-04 2005-03-01 Fuji Spinning Co Ltd Urethane molded products for polishing pad and method for making same
US20010050268A1 (en) * 2000-05-23 2001-12-13 Reinhardt Heinz F. Polishing pad of a polyurethane of propane diol
US6454634B1 (en) * 2000-05-27 2002-09-24 Rodel Holdings Inc. Polishing pads for chemical mechanical planarization
KR100770852B1 (ko) * 2000-05-27 2007-10-26 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스 인코포레이티드 화학 기계적 평탄화용 그루브형 연마 패드
US6777455B2 (en) * 2000-06-13 2004-08-17 Toyo Tire & Rubber Co., Ltd. Process for producing polyurethane foam
EP1184397B1 (en) * 2000-08-29 2004-07-21 Tokai Rubber Industries, Ltd. Conveyor belt transport roll made from polyurethane elastomer
US6477926B1 (en) * 2000-09-15 2002-11-12 Ppg Industries Ohio, Inc. Polishing pad
US6979701B2 (en) 2000-12-08 2005-12-27 Kuraray Co., Ltd. Thermoplastic polyurethane foam, process for production thereof and polishing pads made of the foam
JP3306417B2 (ja) * 2000-12-27 2002-07-24 東洋ゴム工業株式会社 半導体研磨用ポリウレタン研磨パッドを製造する方法
JP2003062748A (ja) * 2001-08-24 2003-03-05 Inoac Corp 研磨用パッド
US20030069321A1 (en) * 2001-10-05 2003-04-10 Lin Wendy Wen-Ling High modulus, impact resistant foams for structural components
JP2003145414A (ja) * 2001-11-13 2003-05-20 Toyobo Co Ltd 研磨パッド及びその製造方法
JP3325562B1 (ja) * 2001-12-07 2002-09-17 東洋ゴム工業株式会社 発泡ポリウレタン研磨パッドの製造方法
JP4047577B2 (ja) * 2001-11-26 2008-02-13 Sriスポーツ株式会社 ウレタンカバーを有するゴルフボール
KR100467765B1 (ko) 2002-02-04 2005-01-24 에스케이씨 주식회사 고경도 및 우수한 내마모성을 갖는 폴리우레탄 탄성체제조용 조성물
JP2003257905A (ja) * 2002-03-01 2003-09-12 Disco Abrasive Syst Ltd 被研磨物の研磨方法
JP2003342341A (ja) * 2002-05-30 2003-12-03 Inoac Corp ポリウレタン系発泡体およびその製造方法
JP3983610B2 (ja) * 2002-07-02 2007-09-26 株式会社クラレ 熱可塑性ポリウレタン発泡体およびそれからなる研磨パッド
US20040021243A1 (en) * 2002-08-02 2004-02-05 Wen-Chang Shih Method for manufacturing auxiliary gas-adding polyurethae/polyurethane-urea polishing pad
US20060022368A1 (en) * 2002-11-18 2006-02-02 Kyu-Don Lee Method of fabricating polyurethane foam with micro pores and polishing pad therefrom
US7074115B2 (en) * 2003-10-09 2006-07-11 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Polishing pad
SG111222A1 (en) 2003-10-09 2005-05-30 Rohm & Haas Elect Mat Polishing pad
JP2005169571A (ja) * 2003-12-11 2005-06-30 Toyo Tire & Rubber Co Ltd 微細気泡を有する研磨パッド用発泡ポリウレタンの製造方法。
US20050171224A1 (en) * 2004-02-03 2005-08-04 Kulp Mary J. Polyurethane polishing pad

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005077999A1 *

Also Published As

Publication number Publication date
JP5593337B2 (ja) 2014-09-24
JP4954716B2 (ja) 2012-06-20
CN1914241B (zh) 2011-03-23
US20110054057A9 (en) 2011-03-03
JP2007520617A (ja) 2007-07-26
JP2012115982A (ja) 2012-06-21
US7414080B2 (en) 2008-08-19
US20080242755A1 (en) 2008-10-02
TW200530382A (en) 2005-09-16
TWI378994B (en) 2012-12-11
US20050171224A1 (en) 2005-08-04
US20050171225A1 (en) 2005-08-04
WO2005077999A1 (en) 2005-08-25
US8288448B2 (en) 2012-10-16
CN1914241A (zh) 2007-02-14
KR20060124686A (ko) 2006-12-05
KR101141880B1 (ko) 2012-05-03

Similar Documents

Publication Publication Date Title
US7414080B2 (en) Polyurethane polishing pad
JP5346445B2 (ja) ケミカルメカニカル研磨パッド
US7074115B2 (en) Polishing pad
KR102449539B1 (ko) 컨디셔닝 내성을 갖는 화학적 기계적 연마 층 배합물
EP2151299B1 (en) Chemical mechanical polishing pad
JP4313761B2 (ja) 微細気孔が含まれたポリウレタン発泡体の製造方法及びそれから製造された研磨パッド
KR101526010B1 (ko) 화학 기계적 연마 패드
JP5346446B2 (ja) ケミカルメカニカル研磨パッド
KR20160023575A (ko) 폴리우레탄 연마 패드
KR20160000855A (ko) 화학적 기계적 연마 방법
US9452507B2 (en) Controlled-viscosity CMP casting method
JP4722446B2 (ja) 研磨パッド
TW201930413A (zh) 得自含胺引發之多元醇之固化劑的高移除速率化學機械拋光墊
US20150059254A1 (en) Polyurethane polishing pad
US9481070B2 (en) High-stability polyurethane polishing pad
JP2005169578A (ja) Cmp用研磨パッドの製造方法
KR101769328B1 (ko) 연마 패드의 제조 방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060829

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR

17Q First examination report despatched

Effective date: 20080401

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101119