EP1324817B1 - Procede permettant de produire une membrane composite a composants multiples - Google Patents

Procede permettant de produire une membrane composite a composants multiples Download PDF

Info

Publication number
EP1324817B1
EP1324817B1 EP01943923.1A EP01943923A EP1324817B1 EP 1324817 B1 EP1324817 B1 EP 1324817B1 EP 01943923 A EP01943923 A EP 01943923A EP 1324817 B1 EP1324817 B1 EP 1324817B1
Authority
EP
European Patent Office
Prior art keywords
preparation
precursor film
polymer
active layer
support layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01943923.1A
Other languages
German (de)
English (en)
Other versions
EP1324817A4 (fr
EP1324817A1 (fr
Inventor
Sang-Young Lee
Byeong-In Ahn
Soon-Yong Park
You-Jin Kyung
Heon-Sik Song
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chemical Co Ltd filed Critical LG Chemical Co Ltd
Publication of EP1324817A1 publication Critical patent/EP1324817A1/fr
Publication of EP1324817A4 publication Critical patent/EP1324817A4/fr
Application granted granted Critical
Publication of EP1324817B1 publication Critical patent/EP1324817B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/009After-treatment of organic or inorganic membranes with wave-energy, particle-radiation or plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/023Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets
    • B29C55/026Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets of preformed plates or sheets coated with a solution, a dispersion or a melt of thermoplastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • B29C55/065Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed in several stretching steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/34Use of radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • Y10T428/249979Specified thickness of void-containing component [absolute or relative] or numerical cell dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • Y10T428/24998Composite has more than two layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/266Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension of base or substrate

Definitions

  • the present invention relates to a method of preparing a multi-component composite membrane.
  • the multi-component composite membrane comprising a support layer and an active layer having a structure as dense as the conventional active layers, which is capable of having pores formed thereon according to process conditions and with improved permeability due to the pores of a controllable size, the composite membrane having characteristics of an active layer, and with an interfacial adhesion strength between the support layer and the active layer strengthened by ion beams irradiation.
  • membranes are currently in use, such as microfiltration membranes, ultrafiltration membranes, gas separation membranes, pervaporation membranes, and reverse osmosis membranes.
  • the membrane relates to a microfiltration membrane, and in particular to a separator comprising polyolefins such as polyethylene and polypropylene, for a rechargeable lithium ion battery.
  • HCPP high crystalline polypropylene
  • the crystallinity of common polypropylenes is less than 50%, but the crystallinity of HCPP is greater than 50% and it is highly isotactic, so that density, melting point, heat of fusion, and crystallization temperature are high, and characteristics such as rigidity, heat-resistance, impact strength, scratch-resistance, and dimensional stability are excellent.
  • WO 99/25464 describes a process for producing a microporous membrane made with only one polymer.
  • a composite membrane is generally prepared by interfacial polymerization, modification of membranes, and dip coating.
  • Dip coating is widely used in order to prepare the composite membrane, by using a microporous membrane such as a microfiltration membrane or an ultrafiltration membrane as a support layer, coating the microporous membrane with a solution of a material used as an active layer, and drying the coated membrane.
  • the composite membrane prepared by dip coating has a support layer comprising regularly-sized pores, and an active layer having a dense structure with few pores.
  • the composite membrane is limited in application, since the active layer has few pores of a size similar to those of the microfiltration or ultrafiltration membranes, and it is easily delaminated due to a weak interfacial adhesion strength between the support layer and the active layer.
  • the composite membrane may be prepared by coating a polymer on the microporous membrane as disclosed in U.S. Patent Nos. 3,249,109 , 4,388,189 , and 5,102,552 .
  • a hydrophilic monomer such as an acrylic acid
  • polymers such as polyethylene oxide are grafted with corona treatment so that the membrane has a modified surface, and in particular so that it has hydrophilicity as disclosed in U.S. Patent Nos. 4,346,142 , 5,085,775 , and 5,294,346 .
  • the membrane has a modified surface and hydrophilicity, the method of graft polymerization is not applied, since the process is complicated and permeability of the membrane is not satisfactory.
  • a separator having regularly-sized pores for a common battery is coated with a polymer electrolyte solution, and it is used as a separator for a rechargeable lithium ion battery as disclosed in U.S. Patent No. 5,716,421 and European Patent No. 0933824A2 .
  • the separator is prepared by the aforementioned method, the membrane has a dense structure, that is, no pores are formed on the surface of the membrane, and permeability (e.g. air permeability) deteriorates, and the interfacial adhesion strength between the support layer and the active layer is inadequate.
  • EP 0 082 393 describes reinforced microporous membranes suitable for the filtration of aqueous fluids, and a process for producing them by impregnating a porous reinforcing web with a polymeric microporous inner membrane and by laminating to each side of said impregnated web at least one polymeric microporous outer membrane, wherein the pore size of the inner membrane is greater than the pore size of the outer membranes.
  • US 4 919 856 describes a method for producing gas separation membranes comprising a microporous support having provided thereon two non-porous coating layer. This method comprises annealing, drawing and heat-setting steps after the coating of the support.
  • It is an object of the present invention to provide a method for preparing a multi-component composite membrane comprising a support layer and an active layer having a structure as dense as the conventional active layers, which is capable of having pores formed thereon according to process conditions and with improved permeability due to the pores of a controllable size, the composite membrane having characteristics of an active layer, and with an interfacial adhesion strength between the support layer and the active layer strengthened by ion beams irradiation.
  • the present invention provides a preparation method of a multi-component composite membrane comprising the steps defined in claim 1
  • the present invention provides a preparation method for a composite membrane that involves coating a common film having no pores with an active material, instead of as in the conventional method of coating a microporous-film with an active material.
  • the composite membrane is prepared by joint-use of a conventional dry process in which the pores are formed by stretching, and a phase inversion that is used with a solution.
  • an ion beam irradiation step is added in the preparation steps to prepare the membrane, an interface bond between a support layer and an active layer is improved.
  • a separator for batteries comprising the multi-component composite membrane and rechargeable lithium ion batteries, and rechargeable lithium ion polymer batteries, comprising the multi-component composite membrane as a separator are described.
  • the preparation method using a conventional dry process is a method in which pores are formed by rupturing a relatively weak amorphous region through cold stretching after orientating a polymer crystalline region in a certain direction, and the orientation uniformity of the crystalline region is critical for characteristics of the membrane.
  • the method using phase inversion is a method in which pores are formed by phase-separation of a polymer and a solvent from the solution under a controlled temperature, or the use of a non-solvent after preparing a polymer solution.
  • an ion beam irradiation process in which gases such as gaseous argon, hydrogen, oxygen, nitrogen, and carbon dioxide are ionized and irradiated to the surface under an atmosphere of reactive gases to be reacted with the ions and the surface when the ionized gases collide with the surface of the membrane.
  • gases such as gaseous argon, hydrogen, oxygen, nitrogen, and carbon dioxide are ionized and irradiated to the surface under an atmosphere of reactive gases to be reacted with the ions and the surface when the ionized gases collide with the surface of the membrane.
  • a precursor film is prepared in one step of the drying process, it is coated with a polymer solution used for an active layer, it is phase-separated from the polymer solution under suitable conditions, and it is stretched, and thereby the membrane is prepared and pores are formed on the membrane.
  • the ion beam irradiation process is performed before the coating process, so that the membrane surface is modified.
  • the composite membrane comprises materials having pores, which are used for the support layer and the active layer, respectively.
  • the pore size and distribution of the support layer and active layer are different from each other, with the pores of the support layer being formed by a stretching process after orientating a polymer crystalline region in a certain direction during the precursor film preparation.
  • the pores of the active layer are formed by a stretching process after forming a densely structured polymer film through phase-inversion. Micro-cracks and micro-pores of the polymer film can be formed according to the phase-inversion conditions before the film is stretched, so the degree of pore formation is controllable according to said phase-inversion conditions.
  • the support layer of the present invention has the same characteristics as a membrane prepared from the conventional dry process, and the active layer has pores with various sizes according to the process conditions.
  • inter-diffusion among the polymer chains of the support layer and active layer improves through high temperature-stretching and heat-setting, and the surface bond between the support layer and the active layer strengthens. When ion beams are irradiated to the layers, the surface bond may further strengthen.
  • the material used for the support layer of the present invention is not limited to a certain material, and it generally includes one or more materials selected from the group consisting of high density polyethylene, low density polyethylene, linear low density polyethylene, polypropylene, high crystalline polypropylene, polyethylene-propylene copolymer, polyethylene-butylene copolymer, polyethylene-hexene copolymer, polyethylene-octene copolymer, polystyrene-butylene-styrene-copolymer, polystyrene-ethylene-butylene-styrene copolymer, polystyrene, polyphenylene oxide, polysulfone, polycarbonate, polyester, polyamide, polyurethane, polyacrylate, polyvinylidene chloride, polyvinylidene fluoride, polysiloxane, polyolefin, ionomer, polymethylpentene, and hydrogenated oligocyclopentadiene (HOCP), and
  • the high crystalline polypropylene preferably has one or more physical properties selected from the group consisting of a density of 0.905 g/cc or more, a melting point of 164 °C or higher, a crystallization temperature of 125 °C or higher, a crystallinity of 50% or greater, an isotacticity of 96% or greater, and an atactic fraction of 5% or less.
  • the polymer of the polymer solution used for the active layer is selected according to the eventual use of the composite membrane, and it preferably includes at least one material selected from the group consisting of polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, polyethylene oxide, polypropylene oxide, polybutylene oxide, polyurethane, polyacrylonitrile, polyacrylate, polyacrylic acid, polyamide, polyacrylamide, polyvinylacetate, polyvinylpyrrolidone, polytetraethylene glycol diacrylate, polysulfone, polyphenylene, oxide, polycarbonate, polyester, polyvinylidene chloride, polysiloxane, and a polyolefin inomer, and a derivative thereof.
  • the solvent of the polymer solution is selected according to the polymer used, and it preferably includes at least one solvent selected from 1-methyl-2-pyrrolidone (NMP), acetone, ethanol, n-propanol, n-butanol, n-hexane, cyclohexanol, acetic acid, ethyl acetate, diethyl ether, dimethyl formamide (DMF), dimethylacetamide (DMAc), dioxane, tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), cyclohexane, benzene, toluene, xylene, and water, and a mixture thereof.
  • NMP 1-methyl-2-pyrrolidone
  • acetone ethanol
  • n-propanol n-butanol
  • n-hexane cyclohexanol
  • acetic acid ethyl acetate
  • the polymer solution is preferably used under the following conditions. During the coating process of the polymer solution, a common film having no pores is dip-coated in the polymer solution, with the concentration of the polymer solution preferably being 0.01 wt% or greater. In addition, it is preferable that the drying of the coated polymer is performed at a relative humidity ranging from 1 to 100% under an atmosphere of a gas selected from gases compnsing nitrogen, oxygen, carbon dioxide, and air preferably at a saturated vapor pressure of less than a saturated vapor pressure of the solvent
  • the thickness of the active layer after coating and drying preferably ranges from 0.1 to 20 ⁇ m.
  • the ion beam irradiation is performed under a vacuum ranging from 10 -1 to 10 -6 torr, by activation of electrons and a gas selected from the group consisting of hydrogen, helium, oxygen, nitrogen, carbon dioxide, air, fluorine, neon, argon, krypton, and N 2 O, and a mixture thereof, the aforementioned gas having an energy ranging from 0.01 to 10 6 keV, and irradiation of the ion beams on the surface of the precursor film.
  • the amount of the ion particle ranges from 10 5 to 10 20 ions/ cm 2 .
  • the reactive gases preferably include helium, hydrogen, oxygen, nitrogen, ammoma, carbon monoxide, carbon dioxide, chlorofluorocarbon, methane, and N 2 O, and a mixture thereof, and the flow rate of the reactive gases preferably ranges from 0.5 to 20 ml/minute.
  • the preparation method of the composite membrane according to the present invention comprises the following steps.
  • the preparation steps of the multi-component composite membrane describe the overall processes for preparing a membrane having optimum physical properties, wherein the membrane can be prepared by adding processes depending on physical properties.
  • the support layer preferably has a thickness in the range from 1 to 50 ⁇ m and the pore size of the support layer is preferably within the range from 0.001 to 10 ⁇ m.
  • the pore size of the active layer is preferably equal to or less than 10 ⁇ m.
  • the air permeability of the composite membrane is preferably equal to or less than 7,000 sec /100 cc.
  • the wet-out rate of the composite membrane is preferably equal to or less than 30 seconds.
  • Example 1 Composite membrane prepared from high crystalline polypropylene and Kynar461 (not according to the invention).
  • a high crystalline polypropylene was used for a support layer and a polyvinylidene fluoride (PVDF) was used for an active layer in order to prepare a precursor film, and the precursor film was stretched through a dry process in order to prepare a composite membrane.
  • PVDF polyvinylidene fluoride
  • High crystalline polypropylene was used for a component of a support layer. It has a melting index of 0.50 g/min, a density of 0.91 g/cc, a melting point of 166.5°C measured with a dynamic scanning calorimeter (DSC), a crystallization temperature of 134.5°C, a crystallinity of 57%, isotacticity of 98% measured by C 13 nuclear magnetic resonance (NMR), and an atactic fraction of about 2% measured after dissolution in xylene, and a precursor film was prepared from the high crystalline polypropylene with use of a single screw extruder equipped with T-die and a take-up device. Extrusion temperature and cooling-roll temperature was 220°C and 80°C respectively, take-up speed was 20 m/min, and a draw down rate (DDR) was 60.
  • DDR draw down rate
  • the prepared precursor film was annealed in a dry oven at 150°C for 1 hour.
  • the coated film was mono-axially low-temperature stretched to 50% of the stretching ratio based on the initial length of the film at room temperature.
  • the low-temperature-stretched film was mono-axially high-temperature stretched to 100% of the stretching ratio based on the initial length of the film, at 140°C.
  • Example 2 A composite membrane prepared from high crystallinity polypropylene and Kynar461 with irradiation of ion beams
  • a composite membrane was prepared by same method of Example 1, except that ion beams were irradiated on a precursor film before coating with the Kynar461 solution.
  • the precursor film prepared in the same manner as in Example 1 was placed in a vacuum chamber while keeping the pressure ranging from 10 -5 to 10 -6 torr, argon cations were irradiated to both sides of the precursor film with an ion gun, and simultaneously oxygen used as an reactive gas was injected into the chamber in an amount of 4 ml/min in order to treat the precursor film surface.
  • Energy of the ion beams was 0.5 keV, and the irradiation amount of ions was 10 16 ions/ cm 2 .
  • a composite membrane was prepared in the same manner as in Example 1.
  • Example 3 A membrane prepared from high density polyethylene/ Kynar461. (not according to the invention).
  • a composite membrane was prepared in the same manner as in Example 1, except that high density polyethylene was used for a support layer instead of high crystalline polypropylene.
  • the high density polyethylene had a melt index of 0.3 g/10. min and a density of 0.964 g/cc.
  • a precursor film was prepared in the same manner as in Example 1.
  • the extrusion temperature and cooling-roll temperature of the take-up device were respectively 200°C and 80°C, the take-up speed of the film was 30 m/min, and the draw-down ratio of the prepared precursor film was 80.
  • the prepared precursor film was annealed in a dry oven at 125°C for 1 hour. Both sides of the annealed precursor film were coated with Kynar461 in the same manner as in Example 1.
  • the coated precursor film was mono-axially stretched at room temperature to 50% of the stretching ratio based on the initial length of the film, and then it was immediately mono-axially high-temperature stretched to 50% of the stretching ratio based on the initial length of the film, at 120°C.
  • the high-temperature stretched film was heat-set at 120°C under tension for 10 minutes, and then a composite membrane was prepared by cooling the heat-set film. Table 1 shows properties of the prepared composite membrane.
  • Comparative Example 1 A composite membrane prepared from Celgard2400 and Kynar461
  • An active layer was coated on a microporous membrane by the conventional method.
  • Celgard2400 (a product by Celanese Co.) prepared from only polypropylene was used for the porous membrane as a support layer, Kynar461 solution was coated on the Celgard2400 having pores, and thereby a composite membrane was prepared.
  • Figs. 1 and 2 show that the composite membrane of Comparative Example 1 has no pores, unlike the composite membrane of the examples according to the present invention that have pores formed on the active layer.
  • Table 1 shows properties of the prepared composite membranes. It is shown that the composite membrane prepared from Celgard2400 and Kynar461 had an air permeability too inferior to measure, and the interfacial adhesion strength and wet-out rate of electrolyte were inferior.
  • Example 1 Example 2
  • Example 3 Comparative Example 1 Thickness ( ⁇ m) 20 20 20 20 20 Pore size ( ⁇ m) Support layer 0.3 x 0.1 0.3 x 0.1 0.4 x 0.1 0.3 x 0.1 Active layer 0.8 x 0.3 0.8 x 0.3 0.6 x 0.3 Unable to be measured Air permeability (sec/ 100 cc) 560 565 620 Unable to be measured Interfacial adhesion strength (g f ) 180 250 240 85 Wet-out rate of an electrolyte (sec) 10 8 9 45
  • the composite membrane prepared by the conventional method has a permeability that is too inferior to be measured, but the composite membranes obtained by the present invention have an improved air permeability ranging from 560 to 620 sec/ 100 cc, because both the active layer and the support layer have a dense structure with pores of a controllable size prepared under suitable preparation conditions.
  • the active layer located on the exterior side of the composite membrane has good properties. That is, the support layer of the present invention has the same properties as the membrane prepared by the conventional dry process, and the active layer has pores with various sizes according to the process condition.
  • the composite membrane prepared by the conventional method has an interfacial adhesion strength of 85 g f
  • the composite membrane obtained by the present invention has an improved interfacial adhesion strength ranging from 180 to 250 g f .
  • the improved interfacial adhesion strength results from high-temperature stretching and heat-setting, that is, the interfacial adhesion strength increases because the mutual bond between polymer chains of the support and active layers strengthens.
  • the interfacial adhesion strength improves further by irradiation of ion beams.
  • the wet-out rate improves appreciably, and it is supposed that the improvement of the wet-out rate is due to changes of morphology and an increase of the interfacial adhesion strength.
  • the multi-component composite membrane is also useful for water treatment, hemodialysis, enzyme purification, patches for drug delivery, gas separation, pervaporation, reverse osmosis, and electrolysis separation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Cell Separators (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Secondary Cells (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • External Artificial Organs (AREA)

Claims (12)

  1. Procédé de préparation d'une membrane composite multi-composants comprenant des couches actives et une couche de support placée entre les couches actives, dans laquelle les couches actives et la couche de support sont chacune dotées de leur porosité respective, lequel procédé comporte les étapes suivantes :
    a) préparer un film précurseur par injection, dans une extrudeuse, d'un polymère utilisé pour la couche de support ;
    b) faire recuire le film précurseur en le chauffant à une température inférieure au point de fusion du polymère ;
    c) irradier par faisceaux d'ions l'une ou l'autre des surfaces, ou les deux, du film précurseur recuit, à l'aide d'un gaz réactif ;
    d) revêtir les deux surfaces du film précurseur irradié d'une solution d'un polymère utilisé pour une couche active ;
    e) faire sécher le film précurseur revêtu pour former, par inversion de phases, un film de polymère de couche active, doté de micropores et de microfissures ;
    f) étirer à basse température le film précurseur séché, à une température qui n'est pas supérieure à la température ambiante ;
    g) étirer à haute température le film précurseur déjà étiré à basse température, à une température inférieure aux points de fusion des polymères de couche de support et de couche active ;
    h) et fixer à chaud le film précurseur étiré à haute température, sous tension et à une température inférieure aux points de fusion des polymères de couche de support et de couche active.
  2. Procédé de préparation conforme à la revendication 1, dans lequel, dans l'étape (d), on revêt de la solution de polymère les deux faces du film précurseur, en opérant par immersion.
  3. Procédé de préparation conforme à la revendication 1, dans lequel la concentration de la solution de polymère de l'étape (d) est égale ou supérieure à 0,01 % en poids.
  4. Procédé de préparation conforme à la revendication 1, dans lequel le séchage de l'étape (e) est effectué sous un taux d'humidité relative valant de 1 à 100 %.
  5. Procédé de préparation conforme à la revendication 1, dans lequel le séchage de l'étape (e) est effectué sous la pression de vapeur saturante.
  6. Procédé de préparation conforme à la revendication 1, dans lequel le séchage de l'étape (e) est effectué dans une atmosphère comprenant un gaz choisi dans l'ensemble constitué par de l'azote, de l'oxygène, du dioxyde de carbone, et de l'air.
  7. Procédé de préparation conforme à la revendication 1, dans lequel les étapes de revêtement (d) et de séchage (e) aboutissent à la formation d'une couche active dont l'épaisseur vaut de 0,1 à 20 µm.
  8. Procédé de préparation conforme à la revendication 1, dans lequel l'irradiation par faisceaux d'ions de l'étape (c) est effectuée sous un vide de 10-1 à 10-6 torr.
  9. Procédé de préparation conforme à la revendication 1, dans lequel l'irradiation par faisceaux d'ions de l'étape (c) est effectuée par activation, à l'aide d'électrons, d'un gaz choisi dans l'ensemble formé par les hydrogène, hélium, oxygène, azote, dioxyde de carbone, air, fluor, néon, argon, krypton, protoxyde d'azote (N2O) et leurs mélanges, de telle sorte que le gaz acquière une énergie valant de 0,01 à 106 keV, puis irradiation de la surface du film précurseur par les faisceaux d'ions.
  10. Procédé de préparation conforme à la revendication 1, dans lequel l'intensité de l'irradiation par faisceaux d'ions vaut de 105 à 1020 ions par centimètre carré.
  11. Procédé de préparation conforme à la revendication 1, dans lequel l'irradiation de l'étape (c) est effectuée dans une atmosphère comprenant un gaz choisi dans l'ensemble constitué par les hélium, hydrogène, azote, ammoniac, monoxyde de carbone, dioxyde de carbone, chlorofluorométhane, méthane, protoxyde d'azote (N2O) et leurs mélanges.
  12. Procédé de préparation conforme à la revendication 11, dans lequel le débit du gaz réactif vaut de 0,5 à 20 mL/min.
EP01943923.1A 2000-06-23 2001-06-22 Procede permettant de produire une membrane composite a composants multiples Expired - Lifetime EP1324817B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR2000034948 2000-06-23
KR10-2000-0034948A KR100409017B1 (ko) 2000-06-23 2000-06-23 다성분계 복합 분리막 및 그의 제조방법
PCT/KR2001/001076 WO2001097957A1 (fr) 2000-06-23 2001-06-22 Membrane composite a composants multiples et procede permettant de la produire

Publications (3)

Publication Number Publication Date
EP1324817A1 EP1324817A1 (fr) 2003-07-09
EP1324817A4 EP1324817A4 (fr) 2006-08-23
EP1324817B1 true EP1324817B1 (fr) 2013-09-11

Family

ID=19673589

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01943923.1A Expired - Lifetime EP1324817B1 (fr) 2000-06-23 2001-06-22 Procede permettant de produire une membrane composite a composants multiples

Country Status (7)

Country Link
US (1) US7087269B2 (fr)
EP (1) EP1324817B1 (fr)
JP (2) JP4209669B2 (fr)
KR (1) KR100409017B1 (fr)
CN (1) CN100531874C (fr)
TW (1) TW572775B (fr)
WO (1) WO2001097957A1 (fr)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
DE60144235D1 (de) * 2000-08-12 2011-04-28 Lg Chemical Ltd Zusammengesetzter film mit mehreren komponenten und verfahren zu seiner herstellung
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
JP2003062422A (ja) * 2001-08-27 2003-03-04 Inst Of Physical & Chemical Res 気体分離膜及びその製造方法
KR100472503B1 (ko) * 2002-06-07 2005-03-10 삼성에스디아이 주식회사 세퍼레이터 및 이를 채용한 리튬전지
KR100573358B1 (ko) 2002-09-17 2006-04-24 가부시키가이샤 도모에가와 세이시쇼 리튬이온2차전지용 세퍼레이터 및 이를 포함한리튬이온2차전지
KR100511634B1 (ko) * 2003-05-20 2005-09-01 주식회사 화인폴 고성능 리튬폴리머 2차 전지용 분리막, 그 제조방법 및리튬폴리머 2차 전지
JP4610213B2 (ja) * 2003-06-19 2011-01-12 三洋電機株式会社 リチウム二次電池及びその製造方法
JP2005019156A (ja) * 2003-06-25 2005-01-20 Tomoegawa Paper Co Ltd 電子部品用セパレータおよび電子部品
EP1648298A4 (fr) 2003-07-25 2010-01-13 Dexcom Inc Systemes a membrane accroissant la disponibilite en oxygene pour des dispositifs implantables
US7276561B2 (en) * 2003-08-28 2007-10-02 Japan Atomic Energy Research Institute Processes for producing nano-space controlled polymer ion-exchange membranes
US20050202163A1 (en) * 2004-03-09 2005-09-15 Celgard Inc. Method of making a composite microporous membrane
KR20050093018A (ko) 2004-03-18 2005-09-23 한국과학기술연구원 고효율 3차원 나노 구조 분리막
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
KR100511618B1 (ko) * 2005-01-17 2005-08-31 이경범 약물방출 조절형 다층 코팅 스텐트 및 이의 제조방법
WO2006106783A1 (fr) * 2005-03-31 2006-10-12 Tonen Chemical Corporation Film polyolefinique microporeux et son procede de production
US8744546B2 (en) 2005-05-05 2014-06-03 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
CN101253609B (zh) * 2005-08-31 2012-06-13 住友化学株式会社 晶体管及其制造方法、以及具有该晶体管的半导体装置
PL1946905T3 (pl) * 2005-10-19 2017-04-28 Toray Battery Separator Film Co., Ltd. Sposób wytwarzania wielowarstwowej mikroporowatej folii poliolefinowej
WO2007120381A2 (fr) 2006-04-14 2007-10-25 Dexcom, Inc. Capteur d'analytes
WO2007136328A1 (fr) 2006-05-18 2007-11-29 Marilyn Rayner Procédé de fabrication d'une membrane et membrane obtenue à partir de celui-ci pour une émulsification
US7811359B2 (en) * 2007-01-18 2010-10-12 General Electric Company Composite membrane for separation of carbon dioxide
CN101754794A (zh) * 2007-05-24 2010-06-23 富士胶片制造欧洲有限公司 膜及其生产方法和用途
CN101754797A (zh) * 2007-05-24 2010-06-23 富士胶片制造欧洲有限公司 包含氧乙烯基的膜
CN101754798B (zh) * 2007-05-24 2013-01-02 富士胶片制造欧洲有限公司 包含氧乙烯基的膜
TWI367229B (en) * 2007-10-05 2012-07-01 Toray Tonen Specialty Separato Microporous polymer membrane
JPWO2009054460A1 (ja) * 2007-10-26 2011-03-10 旭化成ケミカルズ株式会社 気体分離膜
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8682408B2 (en) 2008-03-28 2014-03-25 Dexcom, Inc. Polymer membranes for continuous analyte sensors
JP5635970B2 (ja) * 2008-04-08 2014-12-03 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. 高耐熱性被覆層を有するポリオレフィン系複合微多孔膜の製造方法
WO2010033724A2 (fr) 2008-09-19 2010-03-25 Dexcom, Inc. Membrane contenant des particules et électrode particulaire pour capteurs d’analytes
DE102008054187B4 (de) * 2008-10-20 2014-08-21 Dritte Patentportfolio Beteiligungsgesellschaft Mbh & Co.Kg Lithiumionen-Akku und Verfahren zur Herstellung eines Lithiumionen-Akkus
KR100911753B1 (ko) 2009-02-04 2009-08-10 (주)씨에스텍 경피투여형 패치제 및 이의 제조방법
US8118910B2 (en) * 2009-03-23 2012-02-21 General Electric Company Layered filtration membrane and methods of making same
WO2010144057A1 (fr) * 2009-06-10 2010-12-16 National University Of Singapore Membranes à deux couches sélectives
KR20110032679A (ko) * 2009-09-23 2011-03-30 현대자동차주식회사 광택특성이 향상된 플라스틱 및 플라스틱 표면의 광택 처리 방법
KR101134480B1 (ko) * 2009-09-28 2012-04-13 현대자동차주식회사 나노 엠보 패턴 표면을 갖는 플라스틱 및 이의 제조 방법
JP2012015073A (ja) * 2010-07-05 2012-01-19 Asahi Kasei E-Materials Corp 微多孔性フィルム、その製造方法及び電池用セパレータ
CN102151492B (zh) * 2011-03-28 2013-01-16 昊辰(无锡)塑业有限公司 用于污水处理的分离膜及其制备方法
AU2011369056A1 (en) * 2011-05-25 2012-11-29 Bp P.L.C. Membranes
CN102820444B (zh) * 2011-06-10 2015-09-30 比亚迪股份有限公司 一种电池隔膜及其制备方法
CN103703366B (zh) * 2011-07-12 2015-08-05 塔斯马尼亚大学 多孔聚合物材料用于存储生物样品的用途
KR101440971B1 (ko) 2012-01-05 2014-09-17 주식회사 엘지화학 내오염성이 우수한 역삼투막 및 그 제조방법
KR101412563B1 (ko) * 2012-05-24 2014-07-02 주식회사 엘지화학 역삼투 분리막 제조방법 및 이에 의해 제조된 역삼투 분리막
KR20140052412A (ko) 2012-10-24 2014-05-07 삼성에스디아이 주식회사 리튬 이차 전지 및 이의 제조방법
US9211507B2 (en) 2012-11-21 2015-12-15 Lg Chem, Ltd. Water-treatment separating membrane of high flux having good chlorine resistance and method of manufacturing the same
CN103958037B (zh) 2012-11-21 2016-08-24 Lg化学株式会社 具有良好耐氯性的高通量水处理分离膜
WO2014148841A1 (fr) * 2013-03-20 2014-09-25 주식회사 엘지화학 Membrane de séparation pour dispositif électrochimique et son procédé de fabrication
CN106659982B (zh) * 2014-08-12 2020-06-26 巴斯夫欧洲公司 制备膜的方法
EP3051609A1 (fr) * 2015-01-29 2016-08-03 Innovia Films Limited Séparateur traité au plasma
WO2016120580A1 (fr) * 2015-01-29 2016-08-04 Innovia Films Limited Séparateur
CN104888625A (zh) * 2015-05-20 2015-09-09 苏州市贝克生物科技有限公司 一种聚丙烯腈血液透析膜及其制备方法
KR102013914B1 (ko) 2015-11-12 2019-08-23 주식회사 엘지화학 겔 폴리머 전해질의 제조를 위한 경화용 다이 및 이를 사용한 겔 폴리머 전지셀의 제조방법
KR102034459B1 (ko) * 2015-12-30 2019-11-18 주식회사 엘지화학 분리막
JP6759511B2 (ja) * 2016-03-16 2020-09-23 住友電工ファインポリマー株式会社 積層体
CN108452689A (zh) * 2017-03-06 2018-08-28 青岛致用新材料科技有限公司 一种高选择性全脂环族聚酰胺纳滤膜及其制备方法
CN107065042B (zh) * 2017-05-05 2020-02-14 湖北松诺电子有限公司 一种薄膜透镜及其制备工艺
US10896804B2 (en) * 2017-07-27 2021-01-19 Lawrence Livermore National Security, Llc Planarization, densification, and exfoliation of porous materials by high-energy ion beams
KR102107903B1 (ko) 2017-08-17 2020-05-07 주식회사 엘지화학 고분자 전해질막의 후처리 방법
JP2019063727A (ja) * 2017-09-29 2019-04-25 三菱製紙株式会社 半透膜支持体
CN111093811B (zh) 2017-10-05 2022-05-24 费森尤斯医疗保健控股公司 聚砜-氨基甲酸酯共聚物、包含其的膜和产品及其制备和使用方法
JP7015159B2 (ja) * 2017-12-08 2022-02-02 旭化成株式会社 多層セパレータ、並びにその捲回体及び製造方法
JP7495266B2 (ja) 2019-04-18 2024-06-04 住友化学株式会社 電池用セパレータの製造システムおよび製造方法
CN110170255B (zh) * 2019-06-03 2021-12-28 哈尔滨工业大学(威海) 一种基于聚丙烯腈超亲水膜的制备方法
CN110548421B (zh) * 2019-08-27 2022-03-08 武汉艾科滤膜技术有限公司 一种强吸附型超滤膜的制备方法及应用
CN110479102A (zh) * 2019-09-03 2019-11-22 盐城海普润膜科技有限公司 渗透蒸发脱盐非对称膜及其制备方法
CN112973458B (zh) * 2021-02-08 2022-12-27 中国科学院近代物理研究所 离子径迹多孔膜及其物理制备方法与应用
CN114204142B (zh) * 2021-12-02 2023-08-11 厦门大学 一种全固态电池界面缓冲层、制备方法及其电池
CN114243222B (zh) * 2021-12-23 2022-09-20 中材锂膜有限公司 截面结构一致性高的隔膜及其制备方法
WO2024070574A1 (fr) * 2022-09-26 2024-04-04 日東電工株式会社 Membrane de pervaporation

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3249109A (en) 1963-11-01 1966-05-03 Maeth Harry Topical dressing
DE2724131C2 (de) * 1977-05-27 1982-06-09 C. Conradty Nürnberg GmbH & Co KG, 8505 Röthenbach Plattenförmiger Kohlenstoffkörper und Verfahren zu seiner Herstellung
JPS54102292A (en) 1978-01-30 1979-08-11 Mitsubishi Rayon Co Ltd Composite hollow yarn and gas selective permeating method used above yarn
JPS55105968A (en) * 1979-02-05 1980-08-14 Japan Atom Energy Res Inst Manufacturing method of separator for cell
US4294893A (en) * 1979-05-21 1981-10-13 Centro Ricerche Fiat S.P.A. Graphite-resin composite electrode structure, and a process for its manufacture
US4346142A (en) 1979-09-04 1982-08-24 Celanese Corporation Hydrophilic monomer treated microporous films and process
JPS5695304A (en) 1979-12-28 1981-08-01 Teijin Ltd Perm selective composite membrane and its production
US4438185A (en) * 1980-07-31 1984-03-20 Celanese Corporation Hydrophilic polymer coated microporous membranes capable of use as a battery separator
JPS57212232A (en) * 1981-06-24 1982-12-27 Asahi Chem Ind Co Ltd Composite hydrophilic membrane and its preparation
JPS5820421A (ja) * 1981-07-30 1983-02-05 Toray Ind Inc 多孔質ポリプロピレンフイルムの製造方法
DE82393T1 (de) 1981-12-18 1983-10-13 AMF Inc., 10604 White Plains, N.Y. Verstaerkte mikroporoese membran.
US4603109A (en) * 1984-06-01 1986-07-29 Norton Company Method and apparatus for contacting reactants in chemical and biological reactions
JPS62117811A (ja) * 1985-11-13 1987-05-29 Mitsubishi Rayon Co Ltd 複合中空繊維状膜の製造法
US4814082A (en) 1986-10-20 1989-03-21 Memtec North America Corporation Ultrafiltration thin film membranes
US4863604A (en) * 1987-02-05 1989-09-05 Parker-Hannifin Corporation Microporous asymmetric polyfluorocarbon membranes
US5102552A (en) 1987-12-16 1992-04-07 Hoechst Celanese Corporation Membranes from UV-curable resins
US4919856A (en) * 1988-02-23 1990-04-24 Dainippon Ink And Chemicals, Inc. Process for producing membranes for use in gas separation
CA2029879A1 (fr) * 1989-04-18 1990-10-19 Naoki Nakashima Mode de preparation d'une membrane poreuse modifiee
DE69023176T2 (de) * 1989-07-14 1996-04-04 Dow Chemical Co Isotrope oder anisotrope mikroporöse Membranen aus syndiotaktischem Polystyrol und Herstellungsverfahren.
JPH0365229A (ja) 1989-07-31 1991-03-20 Toray Ind Inc 浸透気化用複合膜
US5085775A (en) 1990-12-05 1992-02-04 Allied-Signal Inc. Thin film composite ultrafiltration membrane
US5677360A (en) * 1991-02-13 1997-10-14 Mitsubishi Rayon Co., Ltd. Hydrophilic polymer alloy, fiber and porous membrane comprising this polymer alloy, and methods for preparing them
US5281491A (en) * 1991-12-20 1994-01-25 W. R. Grace & Co. Battery separator
US5294342A (en) 1992-10-01 1994-03-15 Hoechst Celanese Corporation Composite porous membranes
JPH06142468A (ja) * 1992-11-11 1994-05-24 Dainippon Ink & Chem Inc 細孔を有する表面親水性膜の製造方法
US5514461A (en) * 1993-10-05 1996-05-07 Kureha Chemical Industry Co., Ltd. Vinylidene fluoride porous membrane and method of preparing the same
NL9401260A (nl) * 1993-11-12 1995-06-01 Cornelis Johannes Maria Van Ri Membraan voor microfiltratie, ultrafiltratie, gasscheiding en katalyse, werkwijze ter vervaardiging van een dergelijk membraan, mal ter vervaardiging van een dergelijk membraan, alsmede diverse scheidingssystemen omvattende een dergelijk membraan.
KR0123279B1 (ko) * 1994-05-31 1997-11-11 하기주 염제거능이 우수한 복합반투막 및 그 제조방법
CN1038562C (zh) 1994-06-20 1998-06-03 中国科学院化学研究所 聚丙烯微孔膜为基膜的离子交换膜及其制法
JP3250644B2 (ja) * 1995-04-12 2002-01-28 東洋紡績株式会社 複合中空糸膜およびその製造方法
US5783079A (en) 1994-08-29 1998-07-21 Toyo Boseki Kabushiki Kaisha Composite hollow fiber membrane and process for its production
TW297171B (fr) * 1994-12-20 1997-02-01 Hoechst Celanese Corp
US5620807A (en) * 1995-08-31 1997-04-15 The Dow Chemical Company Flow field assembly for electrochemical fuel cells
JPH09213295A (ja) * 1996-02-02 1997-08-15 Nitto Denko Corp 電池用セパレータ
JP3939778B2 (ja) * 1996-02-09 2007-07-04 日東電工株式会社 電池用セパレータ
DE19629154C2 (de) 1996-07-19 2000-07-06 Dornier Gmbh Bipolare Elektroden-Elektrolyt-Einheit
JP3645051B2 (ja) * 1996-11-22 2005-05-11 三菱樹脂株式会社 多孔質複層プラスチックフィルタおよびその製造方法
US5716421A (en) * 1997-04-14 1998-02-10 Motorola, Inc. Multilayered gel electrolyte bonded rechargeable electrochemical cell and method of making same
JPH1149882A (ja) 1997-08-05 1999-02-23 Nitto Denko Corp 多孔質膜およびそれを用いた電池用セパレータ
KR19990040319A (ko) 1997-11-17 1999-06-05 성재갑 고분자 표면의 이온 입자 조사에 의한 미세 기공 막의 제조
DE19751297A1 (de) * 1997-11-19 1999-05-20 Siemens Ag Gasdiffusionselektrode und deren Herstellung
US6322923B1 (en) * 1998-01-30 2001-11-27 Celgard Inc. Separator for gel electrolyte battery
CN1255249A (zh) * 1998-02-05 2000-05-31 三菱电机株式会社 锂离子电池及其制造方法
JPH11300180A (ja) * 1998-02-20 1999-11-02 Mitsubishi Chemical Corp 多孔質樹脂膜
JPH11297297A (ja) 1998-04-10 1999-10-29 Ube Ind Ltd 多孔質フイルムの製造方法および多孔質フイルム
US6753114B2 (en) * 1998-04-20 2004-06-22 Electrovaya Inc. Composite electrolyte for a rechargeable lithium battery
KR100271926B1 (ko) * 1998-08-27 2000-12-01 장용균 미다공성 폴리올레핀 필름의 제조방법
JP2000093768A (ja) * 1998-09-21 2000-04-04 Nok Corp 複合多孔質中空糸膜
WO2000032294A1 (fr) 1998-12-02 2000-06-08 Lg Chemical Ltd. Procedes de reformage d'une surface polymere destines a ameliorer son aptitude au mouillage
JP2000317280A (ja) * 1999-05-06 2000-11-21 Teijin Ltd 超高分子量ポリエチレン多孔膜を濾過媒体とするフィルター
US6451864B1 (en) * 1999-08-17 2002-09-17 Battelle Memorial Institute Catalyst structure and method of Fischer-Tropsch synthesis
JP2003519723A (ja) * 2000-01-10 2003-06-24 エルジー・ケミカル・カンパニー・リミテッド 高結晶性ポリプロピレンの微細気孔膜、多成分系微細気孔膜及びその製造方法
DE60144235D1 (de) * 2000-08-12 2011-04-28 Lg Chemical Ltd Zusammengesetzter film mit mehreren komponenten und verfahren zu seiner herstellung
US6579342B2 (en) * 2001-02-07 2003-06-17 Pall Corporation Oleophobic membrane materials by oligomer polymerization for filter venting applications

Also Published As

Publication number Publication date
EP1324817A4 (fr) 2006-08-23
KR20020001035A (ko) 2002-01-09
KR100409017B1 (ko) 2003-12-06
EP1324817A1 (fr) 2003-07-09
JP4209669B2 (ja) 2009-01-14
JP2003535683A (ja) 2003-12-02
CN100531874C (zh) 2009-08-26
WO2001097957A1 (fr) 2001-12-27
US7087269B2 (en) 2006-08-08
CN1383390A (zh) 2002-12-04
TW572775B (en) 2004-01-21
JP4988656B2 (ja) 2012-08-01
US20040213985A1 (en) 2004-10-28
JP2008302359A (ja) 2008-12-18

Similar Documents

Publication Publication Date Title
EP1324817B1 (fr) Procede permettant de produire une membrane composite a composants multiples
US8617645B2 (en) Multi-component composite film method for preparing the same
US6540953B1 (en) Microporous membrane and method for providing the same
JP4184608B2 (ja) 湿潤性向上のための高分子表面改質方法
KR100373204B1 (ko) 고분자 전해질용 다성분계 복합 분리막 및 그의 제조방법
JP2012061791A (ja) 複合多孔質膜、複合多孔質膜の製造方法並びにそれを用いた電池用セパレーター
KR100378022B1 (ko) 두께방향으로기공크기차이를갖는미세기공막의제조
KR100417254B1 (ko) 고결정성 폴리프로필렌의 미세 기공막 및 이의 제조방법
KR20000051284A (ko) 미세 기공막 및 그의 제조 방법
KR20000055678A (ko) 다단계 공정을 이용한 미세 기공막의 제조 방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020320

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE FR GB LI SE

A4 Supplementary search report drawn up and despatched

Effective date: 20060725

RIC1 Information provided on ipc code assigned before grant

Ipc: B01D 67/00 20060101ALI20060719BHEP

Ipc: B01D 69/12 20060101ALI20060719BHEP

Ipc: B01D 71/06 20060101AFI20020103BHEP

Ipc: H01M 2/16 20060101ALI20060719BHEP

17Q First examination report despatched

Effective date: 20070802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 60148315

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01D0071060000

Ipc: B01D0071260000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 2/16 20060101ALI20130204BHEP

Ipc: B29C 55/06 20060101ALI20130204BHEP

Ipc: B01D 67/00 20060101ALI20130204BHEP

Ipc: B01D 69/12 20060101ALI20130204BHEP

Ipc: B01D 71/06 20060101ALI20130204BHEP

Ipc: H01M 2/14 20060101ALI20130204BHEP

Ipc: B01D 71/34 20060101ALI20130204BHEP

Ipc: B29C 55/02 20060101ALI20130204BHEP

Ipc: B01D 71/26 20060101AFI20130204BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Ref country code: DE

Ref legal event code: R081

Ref document number: 60148315

Country of ref document: DE

Owner name: LG CHEM. LTD., KR

Free format text: FORMER OWNER: LG CHEMICAL CO., LTD., SEOUL/SOUL, KR

Ref country code: DE

Ref legal event code: R081

Ref document number: 60148315

Country of ref document: DE

Owner name: TORAY BATTERY SEPARATOR FILM CO., LTD., NASUSH, JP

Free format text: FORMER OWNER: LG CHEMICAL CO., LTD., SEOUL/SOUL, KR

Ref country code: DE

Ref legal event code: R081

Ref document number: 60148315

Country of ref document: DE

Owner name: TORAY INDUSTRIES, INC., JP

Free format text: FORMER OWNER: LG CHEMICAL CO., LTD., SEOUL/SOUL, KR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60148315

Country of ref document: DE

Owner name: TORAY BATTERY SEPARATOR FILM CO., LTD., NASUSH, JP

Free format text: FORMER OWNER: LG CHEMICAL CO. LTD, SEOUL, KR

Ref country code: DE

Ref legal event code: R081

Ref document number: 60148315

Country of ref document: DE

Owner name: LG CHEM. LTD., KR

Free format text: FORMER OWNER: LG CHEMICAL CO. LTD, SEOUL, KR

Ref country code: DE

Ref legal event code: R081

Ref document number: 60148315

Country of ref document: DE

Owner name: TORAY INDUSTRIES, INC., JP

Free format text: FORMER OWNER: LG CHEMICAL CO. LTD, SEOUL, KR

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: LG CHEM, LTD.

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60148315

Country of ref document: DE

Effective date: 20131031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60148315

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140612

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60148315

Country of ref document: DE

Effective date: 20140612

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60148315

Country of ref document: DE

Owner name: TORAY BATTERY SEPARATOR FILM CO., LTD., NASUSH, JP

Free format text: FORMER OWNER: LG CHEM. LTD., SEOUL, KR

Ref country code: DE

Ref legal event code: R081

Ref document number: 60148315

Country of ref document: DE

Owner name: LG CHEM. LTD., KR

Free format text: FORMER OWNER: LG CHEM. LTD., SEOUL, KR

Ref country code: DE

Ref legal event code: R081

Ref document number: 60148315

Country of ref document: DE

Owner name: TORAY INDUSTRIES, INC., JP

Free format text: FORMER OWNER: LG CHEM. LTD., SEOUL, KR

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20160714 AND 20160720

REG Reference to a national code

Ref country code: FR

Ref legal event code: TQ

Owner name: TORAY BATTERY SEPARATOR FILM CO., LTD., JP

Effective date: 20161213

Ref country code: FR

Ref legal event code: TQ

Owner name: LG CHEM, LTD., KR

Effective date: 20161213

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60148315

Country of ref document: DE

Owner name: LG CHEM. LTD., KR

Free format text: FORMER OWNERS: LG CHEM. LTD., SEOUL, KR; TORAY BATTERY SEPARATOR FILM CO., LTD., NASUSHIOBARA-SHI, TOCHIGI-KEN, JP

Ref country code: DE

Ref legal event code: R081

Ref document number: 60148315

Country of ref document: DE

Owner name: TORAY INDUSTRIES, INC., JP

Free format text: FORMER OWNERS: LG CHEM. LTD., SEOUL, KR; TORAY BATTERY SEPARATOR FILM CO., LTD., NASUSHIOBARA-SHI, TOCHIGI-KEN, JP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180111 AND 20180117

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: TQ

Owner name: LG CHEM, LTD., KR

Effective date: 20180619

Ref country code: FR

Ref legal event code: TQ

Owner name: TORAY INDUSTRIES, INC., JP

Effective date: 20180619

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200520

Year of fee payment: 20

Ref country code: FR

Payment date: 20200526

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20200522

Year of fee payment: 20

Ref country code: GB

Payment date: 20200522

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60148315

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210621

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210621

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230412