EP0889977B1 - Zinkphosphatierung mit geringen gehalten an kupfer und mangan - Google Patents

Zinkphosphatierung mit geringen gehalten an kupfer und mangan Download PDF

Info

Publication number
EP0889977B1
EP0889977B1 EP97902356A EP97902356A EP0889977B1 EP 0889977 B1 EP0889977 B1 EP 0889977B1 EP 97902356 A EP97902356 A EP 97902356A EP 97902356 A EP97902356 A EP 97902356A EP 0889977 B1 EP0889977 B1 EP 0889977B1
Authority
EP
European Patent Office
Prior art keywords
ions
phosphating
phosphating solution
free
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97902356A
Other languages
English (en)
French (fr)
Other versions
EP0889977A1 (de
Inventor
Karl-Dieter Brands
Jürgen Geke
Peter Kuhm
Bernd Mayer
Karl-Heinz Gottwald
Jan-Willem Brouwer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0889977A1 publication Critical patent/EP0889977A1/de
Application granted granted Critical
Publication of EP0889977B1 publication Critical patent/EP0889977B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/186Orthophosphates containing manganese cations containing also copper cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • C23C22/365Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations containing also zinc and nickel cations

Definitions

  • the invention relates to processes for phosphating metal surfaces with aqueous, acid phosphating solutions, the zinc and phosphate ions and a maximum of 70 ppm manganese and contain 30 ppm copper ions.
  • the invention further relates to the use of such Process as pretreatment of the metal surfaces for a subsequent painting, in particular an electro dip coating or a powder coating.
  • the procedure is applicable for the treatment of surfaces made of steel, galvanized or alloy galvanized Steel. Aluminum, aluminized or alloy-aluminized steel.
  • the phosphating of metals pursues the goal of being firmly adhered to the metal surface
  • metal phosphate layers that already improve the corrosion resistance and in connection with lacquers or other organic coatings to an essential Increased paint adhesion and resistance to infiltration when exposed to corrosion contribute.
  • Such phosphating processes have long been known.
  • the Pretreatment before painting especially electrocoating, is suitable especially the low-zinc phosphating processes, in which the phosphating solutions are comparatively high low levels of zinc ions of e.g. Have 0.5 to 2 g / l.
  • the parameter in these low-zinc phosphating baths is the weight ratio of phosphate ions to zinc ions, which is usually in the range greater than 8 and assume values up to 30 can.
  • nickel and the alternative cobalt can also be used from toxicological and wastewater engineering Classified as critical, there is a need for phosphating processes, which have a similar level of performance as the trication procedures, but with essential lower bath concentrations of nickel and / or cobalt and preferably without them get along with both metals.
  • a phosphating solution is known from DE-A-20 49 350, which as essential components 3 up to 20 g / l phosphate ions, 0.5 to 3 g / l zinc ions, 0.003 to 0.7 g / l cobalt ions or 0.003 to 0.04 g / l copper ions or preferably 0.05 to 3 g / l nickel ions, 1 to 8 g / l magnesium ions, 0.01 to 0.25 g / l nitrite ions and 0.1 to 3 g / l fluorine ions and / or 2 to 30 g / l chlorine ions contains.
  • This method therefore describes a zinc-magnesium phosphating, where the phosphating solution additionally one of the ions cobalt, copper or preferably nickel contains. Such zinc-magnesium phosphating was not possible in technology push through.
  • EP-B-18 841 describes a chlorate-nitrite-accelerated zinc phosphating solution containing among others 0.4 to 1 g / l zinc ions. 5 to 40 g / l phosphate ions and optionally at least 0.2 g / l, preferably 0.2 to 2 g / l, of one or more ions selected from nickel, Cobalt, calcium and manganese. Accordingly, the optional manganese, nickel or Cobalt content at least 0.2 g / l. In the exemplary embodiments, nickel contents of 0.53 and 1.33 g / l stated.
  • EP-A-459 541 describes phosphating solutions which are essentially free of nickel and which contain 0.2 to 4 g / l manganese and 1 to 30 mg / l copper in addition to zinc and phosphate.
  • nickel-free phosphating solutions which contain 0.2 to 2 g / l zinc ions, 0.5 to 25 mg / l copper ions , 5 to 30 g / l phosphate ions (calculated as P 2 O 5 ) and hydroxylamine salts, hydroxylamine complexes and / or hydroxylamine in an amount of 500 to 5000 ppm hydroxylamine, based on the phosphating solution.
  • Such phosphating solutions are used to treat metal surfaces selected from galvanized steel, galvanized alloy steel and aluminum and its alloys.
  • the phosphating solutions can additionally contain 0.1 to 5 g / l, in particular 0.5 to 1.5 g / l, of manganese (II) ions.
  • Other preferred components of this phosphating solution are alkaline earth metal cations, in particular magnesium and / or calcium ions, in an amount of up to 2.5 g / l.
  • the phosphating solutions are essentially free of nitrate ions.
  • phosphating processes described in the last two documents meet the requirements for corrosion protection. Thereby in In practice, however, phosphating baths are used which have a relatively high content Manganese of about 1 g / l. These phosphating baths therefore do not meet the requirements modern ecological requirements with the lowest possible levels Heavy metal ions to work, so that in the treatment of rinsing and Waste water produces as little metal-containing sludge as possible.
  • WO-A-94/08074 describes a method for phosphating galvanized steel surfaces by treating them with phosphating solutions which contain the following components: 0.1 to 5 g / l Zn 2+ cations, 5 to 50 g / l PO 4 3 anions, 0.1 to 50 g / l NO 3 - anions and 0.1 to 5 g / l Mn 2+ cations and 0.001 to 1 g / l Cu 2+ cations.
  • the following conditions are observed: pH value of the phosphating solutions in the range from 1.5 to 4.5, temperature of the phosphating solutions in the range from 10 to 80 ° C, treatment time in the range from 1 to 300 sec.
  • the workpieces are treated cathodically with a direct current with a density in the range from 0.01 to 100 mA / cm 2 .
  • EP-A-0 564 286 relates to a process for phosphating metal surfaces, selected from iron or zinc surfaces, with acid phosphating solutions, the 0.1 to 2.0 g / l zinc ions, 5 to 40 g / l phosphate ions, 0.001 to 3 g / l of a lanthanum compound (based on lanthanum metal), 0.1 to 3 g / l of manganese ions and contain a phosphating accelerator and a weight ratio of zinc ions to lanthanum metal in the range of 1: 0.01 to 1: 1.5.
  • these solutions can contain one or more of the following cations: 0.1 to 4 g / l cobalt ions, 0.01 to 3 g / l magnesium ions, 0.01 to 3 g / l calcium ions and 0.005 to 0.2 g / l copper ions.
  • the zinc concentration is preferably in the range between about 0.3 and about 2 g / l and in particular between about 0.8 and about 1.6 g / l.
  • Zinc levels above 1.6 g / l, for example between 2 and 3 g / l bring little advantages for the process, but can on the other hand increase the amount of sludge in the phosphating bath.
  • Such zinc levels can change adjust a working phosphating bath when phosphating galvanized surfaces additional zinc gets into the phosphating bath due to the pickling removal.
  • Nickel- and / or cobalt ions in the concentration range of about 1 to about 50 mg / l each for Nikkel and about 5 to about 100 mg / l for cobalt improve in conjunction with one if possible low nitrate content of no more than about 0.5 g / l against corrosion protection and paint adhesion Phosphating baths that do not contain nickel or cobalt or that contain nitrates of more than 0.5 g / l. This creates a favorable compromise between performance the phosphating baths on the one hand and the requirements for wastewater treatment the rinse water reached on the other hand.
  • Lithium ions in the amount range from about 0.2 to about 1.5 g / l with zinc phosphating baths improve achievable corrosion protection.
  • Lithium contents in the range from 0.2 to approximately 1.5 g / l and in particular from about 0.4 to about 1 g / l also have an effect on the invention low-heavy metal phosphating processes favorably on the achieved corrosion protection out.
  • copper contents are used particularly favorable in the range from about 0.002 to about 0.01 g / l.
  • copper contents in the range of 0.005 to 0.02 g / l are preferred.
  • the phosphating baths usually sodium, potassium and / or ammonium ions for adjustment of free acid.
  • free acid is known to the person skilled in the phosphating field common. The method of determination of free acid chosen in this document as well the total acidity is given in the example section. Free acid and total acid make you important control parameters for phosphating baths, since they have a great influence on the Have layer weight. Free acid values between 0 and 1.5 points for partial phosphating, with band phosphating up to 2.5 points and the total acidity between about 15 and about 30 points are within the technical range and are within the scope of this invention suitable.
  • phosphating baths that should be suitable for different substrates become free and / or complex bound fluoride in amounts up to 2.5 g / l total fluoride, add up to 1 g / l free fluoride.
  • the presence of such amounts of fluoride is also advantageous for the phosphating baths according to the invention.
  • the aluminum content of the bath should not exceed 3 mg / l.
  • higher Al contents are tolerated as a result of the complex formation, provided the concentration of not complexed Al does not exceed 3 mg / l.
  • the use of fluoride-containing baths is therefore advantageous if the surfaces to be phosphated are at least partially made of aluminum exist or contain aluminum. In these cases it’s cheap, not complex, but only free fluoride, preferably in concentrations in the range 0.5 to 1.0 g / l, to use.
  • the Phosphating baths For the phosphating of zinc surfaces, it would not be absolutely necessary that the Phosphating baths contain so-called accelerators.
  • the phosphating solution For the phosphating of Steel surfaces, however, require that the phosphating solution contain one or more Contains accelerator.
  • Such accelerators are in the prior art as components of Zinc phosphating baths common. These are understood to mean substances that are caused by the When the acid is attacked by the acid on the metal surface, the resulting chemical chemical bind that they themselves are reduced. Accelerators with an oxidizing effect continue to have the effect of iron (II) ions released by the pickling attack on steel surfaces to the trivalent Oxidize stage so that they can precipitate as iron (III) phosphate.
  • the phosphating solution contains as little nitrate as possible. Nitrate concentrations of 0.5 g / l should not be exceeded because at higher nitrate concentrations there is a risk of so-called "speck formation" consists. This means white, crater-like defects in the phosphate layer. Moreover paint adhesion on galvanized surfaces is impaired.
  • nitrite as an accelerator leads in particular to steel surfaces technically satisfactory results.
  • For occupational safety reasons risk of development nitrous gases
  • Hydrogen peroxide is for reasons of environmental friendliness, for technical reasons
  • the simplified formulation options for replenishing solutions is hydroxylamine as Accelerators particularly preferred. Sharing these two accelerators is not advisable, however, since hydroxylamine is decomposed by hydrogen peroxide. You sit down Concentrations are hydrogen peroxide in free or bound form as an accelerator from 0.005 to 0.02 g / l of hydrogen peroxide are particularly preferred.
  • the hydrogen peroxide be added to the phosphating solution as such.
  • it is also possible Use hydrogen peroxide in bound form as compounds in the phosphating bath deliver hydrogen peroxide by hydrolysis reactions. Examples of such connections are persalts such as perborates, percarbonates, peroxosulfates or peroxodisulfates.
  • a preferred embodiment of the invention is that a combination of chlorate ions and hydrogen peroxide in the phosphating process is used.
  • concentration of chlorate for example in the range of 2 to 4 g / l, the concentration of hydrogen peroxide in the range 10 to 50 ppm.
  • reducing sugars as accelerators is known from US-A-5 378 292. You can within the scope of the present invention in amounts between about 0.1 and about 10 g / l, preferably in amounts between about 0.5 and about 2.5 g / l. Examples Such sugars are galactose, mannose and especially glucose (dextrose).
  • Hydroxylamine can be used as a free base, as a hydroxylamine complex, as oxime, which is a condensation product of hydroxylamine with a ketone, or be used in the form of hydroxylammonium salts.
  • oxime which is a condensation product of hydroxylamine with a ketone
  • hydroxylammonium salts Add free hydroxylamine the phosphating bath or a phosphating bath concentrate, it becomes due to the acid Character of these solutions largely exist as a hydroxylammonium cation.
  • the sulfates and the phosphates are particularly suitable for use as the hydroxylammonium salt suitable. In the case of the phosphates, the acid salts are preferred due to the better solubility.
  • Hydroxylamine or its compounds are used in the phosphating bath Amounts added that the calculated concentration of free hydroxylamine between 0.1 and 10 g / l, preferably between 0.3 and 5 g / l. It is preferred that the Phosphating baths as the only accelerator hydroxylamine, at most together with maximum 0.5 g / l nitrate. Accordingly, in a preferred embodiment, phosphating baths used that none of the other known accelerators such as Contain nitrite, oxo anions of halogens, peroxides or nitrobenzenesulfonate. As a positive As a side effect, hydroxylamine concentrations above about 1.5 g / l reduce the risk rust formation in insufficiently flooded areas of the components to be phosphated.
  • the hydroxylamine accelerator is slow even then can be inactivated if there are no metal parts to be phosphated in the phosphating bath be introduced. It has surprisingly been found that the inactivation of the hydroxylamine can be significantly slowed down if you add the phosphating bath one or more aliphatic hydroxy or amino carboxylic acids with 2 to 6 carbon atoms in a total amount of 0.01 to 1.5 g / l.
  • the carboxylic acids are preferred selected from glycine, lactic acid, gluconic acid, tartronic acid, malic acid, tartaric acid and citric acid, with citric acid, lactic acid and glycine being particularly preferred are.
  • iron goes in the form of Iron (II) ions in solution.
  • the phosphating baths according to the invention are not substances contain that have an oxidizing effect on iron (II)
  • the divalent iron only goes into Result from air oxidation into the trivalent state, so that it is called ferric phosphate can fail. This is the case, for example, when using hydroxylamine. Therefore can build up iron (II) contents in the phosphating baths, which are clearly above the Laid down containing baths containing oxidizing agents. In this sense, iron (II) concentrations are up to 50 ppm normal, with short-term values in the production process up to 500 ppm can occur.
  • the phosphating baths can be used in hard water also the hardness cations Mg (II) and Ca (II) in a total concentration up to 7 mmol / l. Mg (II) or Ca (II) can also be used in the phosphating bath in quantities up to 2.5 g / l can be added.
  • the weight ratio of phosphate ions to zinc ions in the phosphating baths can vary within a wide range, provided that it is in the range between 3.7 and 30. A weight ratio between 10 and 20 is particularly preferred.
  • the total phosphorus content of the phosphating bath is considered to be present in the form of phosphate ions PO 4 3- .
  • the pH values of the phosphating baths which are usually in the range from about 3 to about 3.6, only a very small part of the phosphate is actually in the form of the triple negative charged anions. At these pH values, it is rather to be expected that the phosphate is present primarily as a single negatively charged dihydrogenphosphate anion, together with smaller amounts of undissociated phosphoric acid and double negatively charged hydrogenphosphate anions.
  • Phosphating baths are usually sold in the form of aqueous concentrates which are adjusted to the application concentrations on site by adding water.
  • these concentrates can contain an excess of free phosphoric acid, so that when diluted to a bath concentration, the value of the free acid is initially too high or the pH is too low.
  • alkalis such as sodium hydroxide, sodium carbonate or ammonia
  • the value of the free acid is reduced to the desired range.
  • the free acid content during use of the phosphating baths can increase over time due to the consumption of the layer-forming cations and, if appropriate, through decomposition reactions of the accelerator. In these cases it is necessary to readjust the value of the free acid to the desired range from time to time by adding alkalis.
  • the weight ratio of alkali metal and / or ammonium ions to zinc ions can therefore be very low in freshly prepared phosphating baths, for example ⁇ 0.5 and in extreme cases even 0, while it usually increases over time due to bath maintenance measures, so that the ratio> 1 and can take values up to 10 and larger.
  • Low-zinc phosphating baths generally require additions of alkali metal or ammonium ions in order to be able to adjust the free acid to the desired value range at the desired weight ratio PO 4 3- : Zn> 8.
  • Analogous considerations can also be made regarding the proportions of alkali metal and / or ammonium ions to other bath components, for example phosphate ions.
  • lithium-containing phosphating baths the use of is preferably avoided Sodium compounds to adjust the free acid, because of too high sodium concentrations the beneficial effect of lithium on corrosion protection is suppressed.
  • basic lithium compounds are preferably used to adjust the free acid.
  • potassium compounds are also suitable.
  • nitrates should be avoided in order not to exceed the preferred upper limit of the nitrate content.
  • Phosphating baths according to the invention are suitable for phosphating surfaces Steel, galvanized or alloy galvanized steel, aluminum, aluminized or alloy aluminized Steel.
  • aluminum includes the technically usual aluminum alloys such as AlMg0.5Si1.4. The materials mentioned can - as is becoming increasingly common in automotive engineering - also exist side by side.
  • Parts of the bodywork can also consist of material that has already been pretreated, such as is produced using the Bonazink R process.
  • the base material is first chromated or phosphated and then coated with an organic resin.
  • the phosphating process according to the invention then leads to phosphating on damaged areas of this pretreatment layer or on untreated rear sides.
  • the process is suitable for use in immersion, spray or spray / immersion processes. It can be used in particular in automobile construction, where treatment times between 1 and 8 minutes, especially 2 to 5 minutes, are usual. Use in tape phosphating in the steel mill, with treatment times between 3 and 12 seconds however also possible. It is recommended when used in tape phosphating processes.
  • the zinc content can range from 1.5 to 2.0 g / l and the free acid content is in the range of 1.5 to 2.5 points.
  • As a substrate for strip phosphating is particularly suitable for galvanized steel, especially electrolytically galvanized steel.
  • the phosphating process according to the invention is in particular for the treatment of the named Metal surfaces before painting, for example before cathodic electro-painting thought as it is common in automotive engineering. It is also suitable as a pretreatment before a powder coating, such as that used for household appliances becomes.
  • the phosphating process is part of the technically usual pretreatment chain to see. In this chain, the steps of cleaning / degreasing are usually the Intermediate rinsing and activation upstream, the activation usually with activating agents containing titanium phosphate.
  • the phosphating according to the invention can, with or without intermediate rinsing, optionally a passivating aftertreatment consequences. Chromic acid-containing ones are used for such a passivating aftertreatment Treatment baths widely used.
  • Such a rinse is also suitable for improving the corrosion protection of the phosphating process according to the invention.
  • An aqueous solution which is 0.002 to 1 g / l contains copper ions.
  • the copper is preferably used as acetate.
  • a rinsing solution which has a pH in the range from 3.4 to 6 and has a temperature in the range of 20 to 50 ° C.
  • the mass per unit area was determined by dissolving in 5% chromic acid solution in accordance with DIN 50942. It was in the range 2.5-4.5 g / m 2
  • the phosphated test panels were coated with a cathodic dip coating from BASF (FT 85-7042) coated.
  • the corrosion protection effect for electrolytically galvanized steel was tested in an alternating climate test according to VDA 621-415 over 5 laps.
  • VDA 621-415 the paint infiltration at the Ritz (half the width of the Ritz) is shown in Table 1.
  • Table 1 also contains as "K-values" the results of a stone chip test according to the VW standard (the smaller K, the better the paint adhesion).
  • Table 1 contains the paint infiltration at the Ritz (half of the Ritz width).

Description

Die Erfindung betrifft Verfahren zur Phosphatierung von Metalloberflächen mit wäßrigen, sauren Phosphatierlösungen, die Zink- und Phosphationen sowie maximal 70 ppm Mangan- und 30 ppm Kupferionen enthalten. Weiterhin betrifft die Erfindung die Anwendung derartiger Verfahren als Vorbehandlung der Metalloberflächen für eine anschließende Lackierung, insbesondere eine Elektrotauchlackierung oder eine Pulverlackierung. Das Verfahren ist anwendbar zur Behandlung von Oberflächen aus Stahl, verzinktem oder legierungsverzinktem Stahl. Aluminium, aluminiertem oder legierungsaluminiertem Stahl.
Die Phosphatierung von Metallen verfolgt das Ziel, auf der Metalloberfläche festverwachsene Metallphosphatschichten zu erzeugen, die für sich bereits die Korrosionsbeständigkeit verbessern und in Verbindung mit Lacken oder anderen organischen Beschichtungen zu einer wesentlichen Erhöhung der Lackhaftung und der Resistenz gegen Unterwanderung bei Korrosionsbeanspruchung beitragen. Solche Phosphatierverfahren sind seit langem bekannt. Für die Vorbehandlung vor der Lackierung, insbesondere der Elektrotauchlackierung, eignen sich insbesondere die Niedrig-Zink-Phosphatierverfahren, bei denen die Phosphatierlösungen vergleichsweise geringe Gehalte an Zinkionen von z.B. 0,5 bis 2 g/l aufweisen. Ein wesentlicher Parameter in diesen Niedrig-Zink-Phosphatierbädern ist das Gewichtsverhältnis Phosphationen zu Zinkionen, das üblicherweise im Bereich größer 8 liegt und Werte bis zu 30 annehmen kann.
Es hat sich gezeigt, daß durch die Mitverwendung anderer mehrwertiger Kationen in den Zink-Phosphatierbädern Phosphatschichten mit deutlich verbesserten Korrosionsschutz- und Lackhaftungseigenschaften ausgebildet werden können. Beispielsweise finden Niedrig-Zink-Verfahren mit Zusatz von z.B. 0,5 bis 1,5 g/l Manganionen und z.B. 0,3 bis 2,0 g/l Nickelionen als sogenannte Trikation-Verfahren zur Vorbereitung von Metalloberflächen für die Lakkierung, beispielsweise für die kathodische Elektrotauchlackierung von Autokarosserien, weite Anwendung.
Da Nickel und das alternativ einzusetzende Cobalt auch aus toxikologischer und abwassertechnischer Sicht als kritisch eingestuft werden, besteht ein Bedarf nach Phosphatierverfahren, die ein ähnliches Leistungsniveau wie die Trikation-Verfahren aufweisen, jedoch mit wesentlich geringeren Badkonzentrationen von Nickel- und/oder Cobalt und vorzugsweise ohne diese beiden Metalle auskommen.
Aus der DE-A-20 49 350 ist eine Phosphatierlösung bekannt, die als essentielle Bestandteile 3 bis 20 g/l Phosphationen, 0,5 bis 3 g/l Zinkionen, 0,003 bis 0,7 g/l Cobaltionen oder 0,003 bis 0,04 g/l Kupferionen oder vorzugsweise 0,05 bis 3 g/l Nickelionen, 1 bis 8 g/l Magnesiumionen, 0,01 bis 0,25 g/l Nitritionen und 0,1 bis 3 g/l Fluorionen und/oder 2 bis 30 g/l Chlorionen enthält. Dieses Verfahren beschreibt demnach eine Zink-Magnesium-Phosphatierung, wobei die Phosphatierlösung zusätzlich eines der Ionen Cobalt, Kupfer oder vorzugsweise Nickel enthält. Eine derartige Zink-Magnesium-Phosphatierung konnte sich in der Technik nicht durchsetzen.
Die EP-B-18 841 beschreibt eine Chlorat-Nitrit-beschleunigte Zinkphosphatierlösung, enthaltend unter anderem 0,4 bis 1 g/l Zinkionen. 5 bis 40 g/l Phosphationen sowie fakultativ mindestens 0.2 g/l vorzugsweise 0.2 bis 2 g/l eines oder mehrere Ionen, ausgewählt aus Nickel, Cobalt, Calcium und Mangan. Demnach beträgt der fakultative Mangan-, Nickel- oder Cobalt-Gehalt mindestens 0.2 g/l. In den Ausführungsbeispielen werden Nickelgehalte von 0,53 und 1,33 g/l angegeben.
Die EP-A-459 541 beschreibt Phosphatierlösungen, die im wesentlichen frei von Nickel sind und die neben Zink und Phosphat 0,2 bis 4 g/l Mangan und 1 bis 30 mg/l Kupfer enthalten.
Aus der DE-A-42 10 513 (= WO-A-93/20259) sind nickelfreie Phosphatierlösungen bekannt, die 0,2 bis 2 g/l Zink-Ionen, 0,5 bis 25 mg/l Kupfer-Ionen, 0,5 bis 30 g/l Phosphat-Ionen (berechnet als P2O5) sowie Hydroxylaminsalze, Hydroxylaminkomplexe und/oder Hydroxylamin in einer Menge von 500 bis 5000 ppm Hydroxylamin, bezogen auf die Phosphatierlösung, enthalten. Derartige Phosphatierlösungen dienen zur Behandlung von Metalloberflächen, ausgewählt aus Stahl verzinktem Stahl, legierungsverzinktem Stahl sowie Aluminium und dessen Legierungen. Die Phosphatierlösungen können zusätzlich 0,1 bis 5 g/l, insbesondere 0,5 bis 1,5 g/l, Mangan(II)-Ionen enthalten. Weitere bevorzugte Bestandteile dieser Phosphatierlösung sind Erdalkalimetallkationen, insbesondere Magnesium und/oder Calciumionen, in einer Menge von bis zu 2,5 g/l. Die Phosphatierlösungen sind im wesentlichen frei von Nitrationen.
Die in den beiden letztgenannten Dokumenten beschriebenen Phosphatierverfahren erfüllen durchaus die Ansprüche an den Korrosionsschutz. Dabei werden in der Praxis jedoch Phosphatierbäder eingesetzt, die einen relativ hohen Gehalt an Mangan von etwa 1 g/l aufweisen. Diese Phosphatierbäder erfüllen daher nicht die modernen ökologischen Anforderungen, mit möglichst geringen Gehalten an Schwermetallionen zu arbeiten, so daß bei der Behandlung der Spül- und Abwässer möglichst wenig metallhaltiger Schlamm anfällt.
Die WO-A-94/08074 beschreibt ein Verfahren zum Phosphatieren von verzinkten Stahloberflächen durch Behandeln derselben mit Phosphatierlösungen, die die folgenden Komponenten enthalten: 0,1 bis 5 g/l Zn2+-Kationen, 5 bis 50 g/l PO4 3- Anionen, 0,1 bis 50 g/l NO3 --Anionen sowie 0,1 bis 5 g/l Mn2+-Kationen und 0,001 bis 1 g/l Cu2+-Kationen. Hierbei werden die folgenden Bedingungen eingehalten: pH-Wert der Phosphatierlösungen im Bereich von 1,5 bis 4,5, Temperatur der Phosphatierlösungen im Bereich von 10 bis 80 °C, Behandlungsdauer im Bereich von 1 bis 300 sec. Während der Phosphatierung werden die Werkstücke kathodisch mit einem Gleichstrom einer Dichte im Bereich von 0,01 bis 100 mA/cm2 behandelt.
Gegenstand der EP-A-0 564 286 ist ein Verfahren zum Phosphatieren von Metalloberflächen, ausgewählt aus Eisen- oder Zinkoberflächen, mit sauren Phosphatierlösungen, die 0,1 bis 2,0 g/l Zinkionen, 5 bis 40 g/l Phosphationen, 0,001 bis 3 g/l einer Lanthanverbindung (bezogen auf Lanthan-Metall), 0,1 bis 3 g/l Manganionen und einen Phosphatierbeschleuniger enthalten und ein Gewichtsverhältnis von Zinkionen zu Lanthan-Metall im Bereich von 1 : 0,01 bis 1 : 1,5 aufweisen. Zusätzlich können diese Lösungen eines oder mehrere der folgenden Kationen enthalten: 0,1 bis 4 g/l Kobaltionen, 0,01 bis 3 g/l Magnesiumionen, 0,01 bis 3 g/l Calciumionen sowie 0,005 bis 0,2 g/l Kupferionen.
Der Erfindung liegt die Aufgabe zugrunde, ein schwermetall-armes Phosphatierverfahren zur Verfügung zu stellen, das die Leistungsfähigkeit der Trikation-Phosphatierverfahren auf den unterschiedlichen im Automobilbau verwendeten Materialien erreicht. Diese Aufgabe wird gelöst durch ein Verfahren zum Phosphatieren von Metalloberflächen aus Stahl, verzinktem oder legierungsverzinktem Stahl und/oder aus Aluminium, bei dem man die Metalloberflächen durch Spritzen oder Tauchen für eine Zeit zwischen 3 Sekunden und 8 Minuten mit einer zinkhaltigen Phosphatierlösung mit einer Temperatur zwischen 30 und 70 °C in Berührung bringt, die ein Gewichtsverhältnis Phosphationen zu Zinkionen zwischen 3,7 und 30 aufweist, dadurch gekennzeichnet, daß die Phosphatierlösung frei ist von Lanthanverbindungen und daß sie
  • 0,2 bis 2 g/l Zinkionen
  • 3 bis 50 g/l Phosphationen, berechnet als PO4,
  • 1 bis 70 mg/l Manganionen,
  • 1 bis 30 mg/l Kupferionen und
  • einen oder mehrere Beschleuniger ausgewählt aus
    • 0,3 bis 4 g/l Chlorationen,
    • 0,01 bis 0,2 g/l Nitritionen,
    • 0,05 bis 2 g/l m-Nitrobenzolsulfonationen,
    • 0,05 bis 2 g/l m-Nitrobenzoationen,
    • 0,05 bis 2 g/l p-Nitrophenol,
    • 0,005 bis 0,15 g/l Wasserstoffperoxid in freier oder gebundener Form,
    • 0,1 bis 10 g/l Hydroxylamin in freier oder gebundener Form,
    • 0,1 bis 10 g/l eines reduzierenden Zuckers
    enthält.
    Die Zink-Konzentration liegt vorzugsweise im Bereich zwischen etwa 0,3 und etwa 2 g/l und insbesondere zwischen etwa 0,8 und etwa 1,6 g/l. Zinkgehalte oberhalb 1,6 g/l, beispielsweise zwischen 2 und 3 g/l bringen für das Verfahren nur noch geringe Vorteile, können aber andererseits den Schlammanfall im Phosphatierbad erhöhen. Derartige Zinkgehalte können sich in einem arbeitenden Phosphatierbad einstellen, wenn bei der Phosphatierung verzinkter Oberflächen durch den Beizabtrag zusätzliches Zink in das Phosphatierbad gelangt. Nickel- und/oder Cobaltionen im Konzentrationsbereich von jeweils etwa 1 bis etwa 50 mg/l für Nikkel und etwa 5 bis etwa 100 mg/l für Cobalt verbessern in Verbindung mit einem möglichst geringem Nitratgehalt von nicht mehr als etwa 0,5 g/l Korrosionsschutz und Lackhaftung gegenüber Phosphatierbädern, die kein Nickel oder Cobalt enthalten oder die einen Nitratgehalt von mehr als 0,5 g/l aufweisen. Hierdurch wird ein günstiger Kompromiß zwischen der Leistung der Phosphatierbäder einerseits und den Anforderungen an die abwassertechnische Behandlung der Spülwässer andererseits erreicht.
    Aus der deutschen Patentanmeldung mit dem Aktenzeichen 195 00 927.4 ist bekannt, daß Lithiumionen im Mengenbereich von etwa 0,2 bis etwa 1,5 g/l den mit Zinkphosphatierbädern erreichbaren Korrosionsschutz verbessern. Lithiumgehalte im Mengenbereich von 0,2 bis etwa 1.5 g/l und insbesondere von etwa 0,4 bis etwa 1 g/l wirken sich auch bei dem erfindungsgemäßen schwermetall-armen Phosphatierverfahren günstig auf den erreichten Korrosionsschutz aus.
    Soll das erfindungsgemäße Verfahren als Spritzverfahren eingesetzt werden, sind Kupfergehalte im Bereich von etwa 0,002 bis etwa 0,01 g/l besonders günstig. Bei der Anwendung als Tauchverfahren sind Kupfergehalte im Bereich von 0,005 bis 0,02 g/l bevorzugt.
    Außer den vorstehend genannten Kationen, die in die Phosphatschicht mit eingebaut werden oder die zumindest das Kristallwachstum der Phosphatschicht positiv beeinflussen, enthalten die Phosphatierbäder in der Regel Natrium-, Kalium- und/oder Ammoniumionen zur Einstellung der freien Säure. Der Begriff der freien Säure ist dem Fachmann auf dem Phosphatiergebiet geläufig. Die in dieser Schrift gewählte Bestimmungsmethode der freien Säure sowie der Gesamtsäure wird im Beispielteil angegeben. Freie Säure und Gesamtsäure stellen einen wichtigen Regelungsparameter für Phosphatierbäder dar, da sie einen großen Einfluß auf das Schichtgewicht haben. Werte der freien Säure zwischen 0 und 1,5 Punkten bei Teilephosphatierung, bei Bandphosphatierung bis zu 2,5 Punkten und der Gesamtsäure zwischen etwa 15 und etwa 30 Punkten liegen im technisch üblichen Bereich und sind im Rahmen dieser Erfindung geeignet.
    Bei Phosphatierbädern, die für unterschiedliche Substrate geeignet sein sollen, ist es üblich geworden, freies und/oder komplexgebundenes Fluorid in Mengen bis zu 2,5 g/l Gesamtfluorid, davon bis zu 1 g/l freies Fluorid zuzusetzen. Die Anwesenheit solcher Fluoridmengen ist auch für die erfindungsgemäßen Phosphatierbäder von Vorteil. Bei Abwesenheit von Fluorid soll der Aluminiumgehalt des Bades 3 mg/l nicht überschreiten. Bei Gegenwart von Fluorid werden infolge der Komplexbildung höhere Al-Gehalte toleriert, sofern die Konzentration des nicht komplexierten Al 3 mg/l nicht übersteigt. Die Verwendung fluoridhaltiger Bäder ist daher vorteilhaft, wenn die zu phosphatierenden Oberflächen zumindest teilweise aus Aluminium bestehen oder Aluminium enthalten. In diesen Fällen ist es günstig, kein komplexgebundenes, sondern nur freies Fluorid, vorzugsweise in Konzentrationen im Bereich 0,5 bis 1,0 g/l, einzusetzen.
    Für die Phosphatierung von Zinkoberflächen wäre es nicht zwingend erforderlich, daß die Phosphatierbäder sogenannte Beschleuniger enthalten. Für die Phosphatierung von Stahloberflächen ist es jedoch erforderlich, daß die Phosphatierlösung einen oder mehrere Beschleuniger enthält. Solche Beschleuniger sind im Stand der Technik als Komponenten von Zinkphosphatierbädern geläufig. Hierunter werden Substanzen verstanden, die den durch den Beizangriff der Säure an der Metalloberfläche entstehenden Wasserstoff dadurch chemisch binden, daß sie selbst reduziert werden. Oxidierend wirkende Beschleuniger haben weiterhin den Effekt, durch den Beizangriff auf Stahloberflächen freigesetzte Eisen(II)-Ionen zur dreiwertigen Stufe zu oxidieren, so daß sie als Eisen(III)-Phosphat ausfallen können.
    Die erfindungsgemäßen Phosphatierbäder können als Beschleuniger eine oder mehrere der folgenden Komponenten enthalten:
  • 0,3 bis 4 g/l Chlorationen,
  • 0,01 bis 0,2 g/l Nitritionen,
  • 0,05 bis 2 g/l m-Nitrobenzolsulfonationen,
  • 0,05 bis 2 g/l m-Nitrobenzoationen,
  • 0,05 bis 2 g/l p-Nitrophenol,
  • 0,005 bis 0,15 g/l Wasserstoffperoxid in freier oder gebundener Form,
  • 0,1 bis 10 g/l Hydroxylamin in freier oder gebundener Form,
  • 0,1 bis 10 g/l eines reduzierenden Zuckers
  • Bei der Phosphatierung von verzinktem Stahl ist es erforderlich, daß die Phosphatierlösung möglichst wenig Nitrat enthält. Nitratkonzentrationen von 0,5 g/l sollten nicht überschritten werden, da bei höheren Nitratkonzentrationen die Gefahr einer sogenannten "Stippenbildung" besteht. Hiermit sind weiße, kraterartige Fehlstellen in der Phosphatschicht gemeint. Außerdem wird die Lackhaftung auf verzinkten Oberflächen beeinträchtigt.
    Die Verwendung von Nitrit als Beschleuniger führt insbesondere auf Stahloberflächen zu technisch befriedigenden Ergebnissen. Aus Gründen der Arbeitssicherheit (Gefahr der Entwicklung nitroser Gase) ist es jedoch empfehlenswert, auf Nitrit als Beschleuniger zu verzichten. Für die Phosphatierung verzinkter Oberflächen ist dies auch aus technischen Gründen ratsam. da sich aus Nitrit Nitrat bilden kann, was, wie vorstehend erläutert, zum Problem der Stippenbildung und zu verringerter Lackhaftung auf Zink führen kann.
    Aus Gründen der Umweltfreundlichkeit ist Wasserstoffperoxid, aus den technischen Gründen der vereinfachten Formulierungsmöglichkeiten für Nachdosierlösungen ist Hydroxylamin als Beschleuniger besonders bevorzugt. Die gemeinsame Verwendung dieser beiden Beschleuniger ist jedoch nicht ratsam, da Hydroxylamin von Wasserstoffperoxid zersetzt wird. Setzt man Wasserstoffperoxid in freier oder gebundener Form als Beschleuniger ein, so sind Konzentrationen von 0,005 bis 0,02 g/l Wasserstoffperoxid besonders bevorzugt. Dabei kann das Wasserstoffperoxid der Phosphatierlösung als solches zugegeben werden. Es ist jedoch auch möglich, Wasserstoffperoxid in gebundener Form als Verbindungen einzusetzen, die im Phosphatierbad durch Hydrolysereaktionen Wasserstoffperoxid liefern. Beispiele solcher Verbindungen sind Persalze wie Perborate, Percarbonate, Peroxosulfate oder Peroxodisulfate. Als weitere Quellen für Wasserstoffperoxid kommen ionische Peroxide wie beispielsweise Alkalimetallperoxide in Betracht. Eine bevorzugte Ausführungsform der Erfindung besteht darin, daß bei der Phosphatierung im Tauchverfahren eine Kombination aus Chlorationen und Wasserstoffperoxid eingesetzt wird. In dieser Ausführungsform kann die Konzentration an Chlorat beispielsweise im Bereich von 2 bis 4 g/l, die Konzentration von Wasserstoffperoxid im Bereich von 10 bis 50 ppm liegen.
    Die Verwendung reduzierender Zucker als Beschleuniger ist aus der US-A-5 378 292 bekannt. Sie können im Rahmen der vorliegenden Erfindung in Mengen zwischen etwa 0,1 und etwa 10 g/l, bevorzugt in Mengen zwischen etwa 0,5 und etwa 2,5 g/l eingesetzt werden. Beispiele derartiger Zucker sind Galaktose, Mannose und insbesondere Glucose (Dextrose).
    Eine weitere bevorzugte Ausführungsform der Erfindung besteht darin, als Beschleuniger Hydroxylamin zu verwenden. Hydroxylamin kann als freie Base, als Hydroxylaminkomplex, als Oxim, das ein Kondensationsprodukt von Hydroxylamin mit einem Keton darstellt, oder in Form von Hydroxylammoniumsalzen eingesetzt werden. Fügt man freies Hydroxylamin dem Phosphatierbad oder einem Phosphatierbad-Konzentrat zu, wird es aufgrund des sauren Charakters dieser Lösungen weitgehend als Hydroxylammonium-Kation vorliegen. Bei einer Verwendung als Hydroxylammonium-Salz sind die Sulfate sowie die Phosphate besonders geeignet. Im Falle der Phosphate sind aufgrund der besseren Löslichkeit die sauren Salze bevorzugt. Hydroxylamin oder seine Verbindungen werden dem Phosphatierbad in solchen Mengen zugesetzt, daß die rechnerische Konzentration des freien Hydroxylamins zwischen 0,1 und 10 g/l, vorzugsweise zwischen 0,3 und 5 g/l liegt. Dabei ist es bevorzugt, daß die Phosphatierbäder als einzigen Beschleuniger Hydroxylamin, allenfalls zusammen mit maximal 0.5 g/l Nitrat, enthalten. Demnach werden in einer bevorzugten Ausführungsform Phosphatierbäder eingesetzt, die keine der sonstigen bekannten Beschleuniger wie beispielsweise Nitrit, Oxoanionen von Halogenen, Peroxide oder Nitrobenzolsulfonat enthalten. Als positiver Nebeneffekt verringern Hydroxylamin-Konzentrationen oberhalb von etwa 1,5 g/l die Gefahr einer Rostbildung an ungenügend umfluteten Stellen der zu phosphatierenden Bauteile.
    In der Praxis hat es sich gezeigt, daß der Beschleuniger Hydroxylamin auch dann langsam inaktiviert werden kann, wenn in das Phosphatierbad keine zu phosphatierenden Metallteile eingebracht werden. Es hat sich überraschend gezeigt, daß die Inaktivierung des Hydroxylamins deutlich verlangsamt werden kann, wenn man dem Phosphatierbad zusätzlich eine oder mehrere aliphatische Hydroxy- oder Aminocarbonsäuren mit 2 bis 6 Kohlenstoffatomen in einer Gesamtmenge von 0,01 bis 1,5 g/l zusetzt. Dabei sind die Carbonsäuren vorzugsweise ausgewählt aus Glycin, Milchsäure, Gluconsäure, Tartronsäure, Äpfelsäure, Weinsäure und Citronensäure, wobei Citronensäure, Milchsäure und Glycin besonders bevorzugt sind.
    Bei der Anwendung des Phosphatierverfahrens auf Stahloberflächen geht Eisen in Form von Eisen(II)-Ionen in Lösung. Falls die erfindungsgemäßen Phosphatierbäder keine Substanzen enthalten, die gegenüber Eisen(II) oxidierend wirken, geht das zweiwertige Eisen lediglich in Folge von Luftoxidation in den dreiwertigen Zustand über, so daß es als Eisen(III)-Phosphat ausfallen kann. Dies ist beispielsweise bei der Verwendung von Hydroxylamin der Fall. Daher können sich in den Phosphatierbädern Eisen(II)-Gehalte aufbauen, die deutlich über den Gehalten liegen, die Oxidationsmittel-haltige Bäder enthalten. In diesem Sinne sind Eisen(II)-Konzentrationen bis zu 50 ppm normal, wobei kurzfristig im Produktionsablauf auch Werte bis zu 500 ppm auftreten können. Für das erfindungsgemäße Phosphatierverfahren sind solche Eisen(II)-Konzentrationen nicht schädlich. Bei Ansatz in hartem Wasser können die Phosphatierbäder weiterhin die Härtebildner-Kationen Mg(II) und Ca(II) in einer Gesamtkonzentration von bis zu 7 mmol/l enthalten. Mg(II) oder Ca(II) können dem Phosphatierbad auch in Mengen bis zu 2.5 g/l zugesetzt werden.
    Das Gewichtsverhältnis Phosphationen zu Zinkionen in den Phosphatierbädern kann in weiten Grenzen schwanken, sofern es im Bereich zwischen 3,7 und 30 liegt. Ein Gewichtsverhältnis zwischen 10 und 20 ist besonders bevorzugt. Für die Angabe der Phosphatkonzentration wird der gesamte Phosphorgehalt des Phosphatierbades als in Form von Phosphationen PO4 3- vorliegend angesehen. Demnach wird bei der Berechnung des Mengenverhältnisses die bekannte Tatsache außer acht gelassen, daß bei den pH-Werten der Phosphatierbäder, die üblicherweise im Bereich von etwa 3 bis etwa 3,6 liegen, nur ein sehr geringer Teil des Phosphats tatsächlich in Form der dreifach negativ geladenen Anionen vorliegt. Bei diesen pH-Werten ist vielmehr zu erwarten, daß das Phosphat vornehmlich als einfach negativ geladenes Dihydrogenphosphat-Anion vorliegt, zusammen mit geringeren Mengen an undissoziierter Phosphorsäure und an zweifach negativ geladenen Hydrogenphosphat-Anionen.
    Phosphatierbäder werden üblicherweise in Form von wäßrigen Konzentraten vertrieben, die vor Ort durch Zugabe von Wasser auf die Anwendungskonzentrationen eingestellt werden. Aus Stabilitätsgründen können diese Konzentrate einen Überschuß an freier Phosphorsäure enthalten, so daß beim Verdünnen auf Badkonzentration der Wert der freien Säure zunächst zu hoch bzw. der pH-Wert zu niedrig liegt. Durch Zugabe von Alkalien wie Natriumhydroxid, Natriumcarbonat oder Ammoniak wird der Wert der freien Säure auf den erwünschten Bereich abgesenkt. Weiterhin ist es bekannt, daß der Gehalt an freier Säure während des Gebrauchs der Phosphatierbäder durch den Verbrauch der schichtbildenden Kationen und gegebenenfalls durch Zersetzungsreaktionen des Beschleunigers mit der Zeit ansteigen kann. In diesen Fällen ist es erforderlich, den Wert der freien Säure durch Alkalienzugabe von Zeit zu Zeit auf den erwünschten Bereich wieder einzustellen. Dies bedeutet, daß die Gehalte der Phosphatierbäder an Alkalimetall- oder Ammoniumionen in weiten Grenzen schwanken können und im Laufe der Gebrauchsdauer der Phosphatierbäder durch das Abstumpfen der freien Säure tendenziell ansteigen. Das Gewichtsverhältnis von Alkalimetall- und/oder Ammoniumionen zu beispielsweise Zinkionen kann demnach bei frisch angesetzten Phosphatierbädern sehr niedrig liegen, beispielsweise < 0,5 sein und im Extremfall sogar 0 betragen, während es mit der Zeit durch Badpflegemaßnahmen üblicherweise ansteigt, so daß das Verhältnis > 1 werden und Werte bis zu 10 und größer annehmen kann. Niedrigzink-Phosphatierbäder erfordern in der Regel Zusätze von Alkalimetall- oder Ammoniumionen, um bei dem erwünschten Gewichtsverhältnis PO4 3- : Zn > 8 die freie Säure auf den Sollwert-Bereich einstellen zu können. Analoge Betrachtungen lassen sich auch über die Mengenverhältnisse von Alkalimetall- und/oder Ammoniumionen zu anderen Badbestandteilen, beispielsweise zu Phosphationen, anstellen.
    Bei Lithium-haltigen Phosphatierbädern vermeidet man vorzugsweise die Verwendung von Natriumverbindungen zum Einstellen der freien Säure, da durch zu hohe Natriumkonzentrationen die günstige Wirkung von Lithium auf den Korrosionsschutz unterdrückt wird. In diesem Falle verwendet man zur Einstellung der freien Säure vorzugsweise basische Lithiumverbindungen. Hilfsweise sind auch Kaliumverbindungen geeignet.
    Prinzipiell ist es gleichgültig in welcher Form die schichtbildenden oder schichtbeeinflussenden Kationen in die Phosphatierbäder eingebracht werden. Nitrate sind jedoch zu vermeiden, um die bevorzugte Obergrenze des Nitratgehalts nicht zu überschreiten. Vorzugsweise setzt man die Metallionen in Form solcher Verbindungen ein, die keine Fremdionen in die Phosphatierlösung eintragen. Daher ist es am günstigsten, die Metalle in Form ihrer Oxide oder ihrer Carbonate einzusetzen. Lithium kann auch als Sulfat, Kupfer vorzugsweise als Acetat eingesetzt werden.
    Erfindungsgemäße Phosphatierbäder sind geeignet zur Phosphatierung von Oberflächen aus Stahl, verzinktem oder legierungsverzinktem Stahl, Aluminium, aluminiertem oder legierungsaluminiertem Stahl. Der Begriff "Aluminium" schließt dabei die technisch üblichen Aluminiumlegierungen wie beispielsweise AlMg0,5Si1,4 mit ein. Die genannten Materialien können - wie es im Automobilbau zunehmend üblich wird - auch nebeneinander vorliegen.
    Dabei können Teile der Karosserie auch aus bereits vorbehandeltem Material bestehen, wie es beispielsweise nach dem BonazinkR-Verfahren entsteht. Hierbei wird das Grundmaterial zunächst chromatiert oder phosphatiert und anschließend mit einem organischen Harz beschichtet. Das erfindungsgemäße Phosphatierverfahren führt dann zu einer Phosphatierung an Schadstellen dieser Vorbehandlungsschicht oder an unbehandelten Rückseiten.
    Das Verfahren ist für die Anwendung im Tauch-, Spritz- oder Spritz/Tauchverfahren geeignet. Es kann insbesondere im Automobilbau eingesetzt werden, wo Behandlungszeiten zwischen 1 und 8 Minuten, insbesondere 2 bis 5 Minuten, üblich sind. Der Einsatz bei der Bandphosphatierung im Stahlwerk, wobei die Behandlungszeiten zwischen 3 und 12 Sekunden liegen, ist jedoch ebenfalls möglich. Bei der Verwendung in Bandphosphatierverfahren ist es empfehlenswert. die Badkonzentrationen jeweils in der oberen Hälfte der erfindungsgemäß bevorzugten Bereiche einzustellen. Beispielsweise kann der Zinkgehalt im Bereich von 1,5 bis 2,0 g/l und der Gehalt von freier Säure im Bereich von 1,5 bis 2,5 Punkten liegen. Als Substrat für die Bandphosphatierung eignet sich besonders verzinkter Stahl, insbesondere elektrolytisch verzinkter Stahl.
    Wie bei anderen Phosphatierbädern des Standes der Technik ebenfalls üblich, liegen die geeigneten Badtemperaturen unabhängig vom Anwendungsgebiet zwischen 30 und 70 °C, wobei der Temperaturbereich zwischen 45 und 60 °C bevorzugt wird.
    Das erfindungsgemäße Phosphatierverfahren ist insbesondere zur Behandlung der genannten Metalloberflächen vor einer Lackierung, beispielsweise vor einer kathodischen Elektrotauchlackierung gedacht, wie sie im Automobilbau üblich ist. Es eignet sich weiterhin als Vorbehandlung vor einer Pulverlackierung, wie sie beispielsweise für Haushaltsgeräte eingesetzt wird. Das Phosphatierverfahren ist als Teilschritt der technisch üblichen Vorbehandlungskette zu sehen. In dieser Kette sind der Phosphatierung üblicherweise die Schritte Reinigen/Entfetten, Zwischenspülen und Aktivieren vorgeschaltet, wobei die Aktivierung üblicherweise mit Titanphosphat-haltigen Aktiviermitteln erfolgt. Der erfindungsgemäßen Phosphatierung kann, mit oder ohne Zwischenspülung, gegebenenfalls eine passivierende Nachbehandlung folgen. Für eine solche passivierende Nachbehandlung sind chromsäure-haltige Behandlungsbäder weit verbreitet. Aus Gründen des Arbeits- und Umweltschutzes sowie aus Entsorgungsgründen besteht jedoch die Tendenz, diese chromhaltigen Passivierbäder durch chromfreie Behandlungsbäder zu ersetzen. Hierfür sind rein anorganische Badlösungen, insbesondere auf der Basis von Zirkonverbindungen, oder auch organisch-reaktive Badlösungen, beispielsweise auf Basis von Poly(vinylphenolen), bekannt. Aus der deutschen Patentanmeldung mit dem Aktenzeichen 195 11 573.2 ist bekannt, bestimmten Phosphatierverfahren eine passivierende Nachspülung mit einer wäßrigen Lösung mit einem pH-Wert im Bereich von etwa 3 bis etwa 7 nachfolgen zu lassen, die 0,001 bis 10 g/l eines oder mehrerer der folgenden Kationen enthält: Lithiumionen, Kupferionen und/oder Silberionen. Eine derartige Nachspülung eignet sich auch zur Verbesserung des Korrosionsschutzes des erfindungsgemäßen Phosphatierverfahrens. Vorzugsweise setzt man hierfür eine wäßrige Lösung ein, die 0,002 bis 1 g/l Kupferionen enthält. Dabei wird das Kupfer vorzugsweise als Acetat eingesetzt. Besonders bevorzugt ist eine derartige Nachspüllösung, die einen pH-Wert im Bereich von 3,4 bis 6 und eine Temperatur im Bereich von 20 bis 50 °C aufweist.
    Zwischen dieser Nachpassivierung und der sich üblicherweise anschließenden Lackierung wird in der Regel eine Zwischenspülung mit vollentsalztem Wasser durchgeführt.
    Ausführungsbeispiele
    Die erfindungsgemäßen Phosphatierverfahren sowie Vergleichsverfahren wurden an Stahlblechen ST 1405 sowie an elektrolytisch verzinkten Stahlblechen, wie sie im Automobilbau Verwendung finden, überprüft. Dabei wurde folgender, in der Karosseriefertigung üblicher, Verfahrensgang als Tauchverfahren ausgeführt:
  • 1. Reinigen mit einem alkalischen Reiniger (RidolineR 1501, Henkel KGaA), Ansatz 2 % in Stadtwasser, 55 °C, 4 Minuten.
  • 2. Spülen mit Stadtwasser, Raumtemperatur, 1 Minute.
  • 3. Aktivieren mit einem Titanphosphat-haltigen Aktiviermittel (FixodineR 950, Henkel KGaA), Ansatz 0,1 % in vollentsalztem Wasser, Raumtemperatur, 1 Minute.
  • 4. Phosphatieren mit Phosphatierbädern gemäß Tabelle 1, 4 Minuten, Temperatur 55 °C. Außer den in Tabelle 1 genannten Kationen enthielten die nitratfreien Phosphatierbäder 0,1 g/l Eisen (II) und erforderlichenfalls Natriumionen zum Einstellen der freien Säure. Li-haltige Phosphatierbäder enthielten kein Natrium. Alle Bäder enthielten 0,95 g/l SiF6- und 0,2 g/l F- sowie als Beschleuniger 1,7 g/l Hydroxylammoniumsulfat. Die Punktzahl der freien Säure betrug 1,0 - 1,1, der Gesamtsäure 23-25. Unter Punktzahl der freien Säure wird der Verbrauch in ml an 0,1-normaler Natronlauge verstanden, um 10 ml Badlösung bis zu einem pH-Wert von 3,6 zu titrieren. Analog gibt die Punktzahl der Gesamtsäure den Verbrauch in ml bis zu einem pH-Wert von 8,2 an.
  • 5. Spülen mit Stadtwasser, Raumtemperatur, 1 Minute.
  • 6. Nachpassivieren mit einem chromfreien Nachpassivierungsmittel auf Basis komplexer Zirkonfluoride (DeoxylyteR 54 NC, Henkel KGaA) 0,25 %-ig in vollentsalztem Wasser, pH 4.0. Temperatur 40 °C, 1 Minute.
  • 7. Spülen mit vollentsalztem Wasser.
  • 8. Trockenblasen mit Preßluft
  • Die flächenbezogene Masse ("Schichtgewicht") wurde durch Ablösen in 5 %-iger Chromsäurelösung bestimmt gemäß DIN 50942. Sie lag im Bereich 2,5 - 4,5 g/m2
    Die phosphatierten Prüfbleche wurden mit einem kathodischen Tauchlack der Firma BASF (FT 85-7042) beschichtet. Die Korrosionsschutzwirkung für elektrolytisch verzinkten Stahl wurde in einem Wechselklimatest nach VDA 621-415 über 5 Runden getestet. Als Ergebnis ist die Lackunterwanderung am Ritz (halbe Ritzbreite) in Tabelle 1 aufgenommen. Tabelle 1 enthält ebenfalls als "K-Werte" die Ergebnisse eines Steinschlagtests nach VW-Norm (je kleiner K, desto besser die Lackhaftung).
    Der Korrosionsschutz für Stahlbleche wurden mit einem Salzsprühtest nach DIN 50021 (1008 Stunden) geprüft. Tabelle 1 enthält die Lackunterwanderung am Ritz (halbe Ritzbreite).
    Figure 00160001

    Claims (9)

    1. Verfahren zum Phosphatieren von Metalloberflächen aus Stahl, verzinktem oder legierungsverzinktem Stahl und/oder aus Aluminium, bei dem man die Metalloberflächen durch Spritzen oder Tauchen für eine Zeit zwischen 3 Sekunden und 8 Minuten mit einer zinkhaltigen Phosphatierlösung mit einer Temperatur zwischen 30 und 70 °C in Berührung bringt, dadurch gekennzeichnet, daß die Phosphatierlösung
      0,2 bis 2 g/l Zinkionen
      3 bis 50 g/l Phosphationen, berechnet als PO4,
      1 bis 70 mg/l Manganionen,
      1 bis 30 mg/l Kupferionen und
      einen oder mehrere Beschleuniger ausgewählt aus
      0,3 bis 4 g/l Chlorationen,
      0,01 bis 0,2 g/l Nitritionen,
      0,05 bis 2 g/l m-Nitrobenzolsulfonationen,
      0,05 bis 2 g/l m-Nitrobenzoationen,
      0,05 bis 2 g/l p-Nitrophenol,
      0,005 bis 0,15 g/l Wasserstoffperoxid in freier oder gebundener Form,
      0,1 bis 10 g/l Hydroxylamin in freier oder gebundener Form,
      0,1 bis 10 g/l eines reduzierenden Zuckers
      enthält.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Phosphatierlösung zusätzlich 1 bis 50 mg/l Nickelionen und/oder 5 bis 100 mg/l Cobaltionen enthält.
    3. Verfahren nach einem oder beiden der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Phosphatierlösung zusätzlich 0,2 bis 1,5 g/l Lithiumionen enthält.
    4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Phosphatierlösung bei Anwendung im Tauchverfahren 5 bis 20 mg/l Kupferionen, bei Anwendung im Spritzverfahren 2 bis 10 mg/l Kupferionen enthält.
    5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Phosphatierlösung zusätzlich Fluorid in Mengen von bis zu 2,5 g/l Gesamtfluorid, davon bis zu 1 g/l freies Fluorid, jeweils gerechnet als F-, enthält.
    6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Phosphatierlösung als Beschleuniger 5 bis 150 mg/lWasserstoffperoxid in freier oder gebundener Form enthält.
    7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Phosphatierlösung als Beschleuniger 0,1 bis 10 g/l Hydroxylamin in freier oder gebundener Form enthält.
    8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Phosphatierlösung zusätzlich insgesamt 0,01 bis 1,5 g/l einer oder mehrerer aliphatischer Hydroxy- oder Aminocarbonsäuren mit 2 bis 6 Kohlenstofatomen enthält.
    9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß nach der Behandlung der Metalloberflächen mit der Phosphatierlösung und vor der Lackierung eine passivierende Nachspülung mit einer wäßrigen Lösung mit einem pH-Wert im Bereich von 3 bis 7 erfolgt, die insgesamt 0,001 bis 10 g/l eines oder mehrerer der folgenden Kationen enthält: Lithiumionen, Kupferionen und/oder Silberionen.
    EP97902356A 1996-02-19 1997-02-10 Zinkphosphatierung mit geringen gehalten an kupfer und mangan Expired - Lifetime EP0889977B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19606017 1996-02-19
    DE19606017A DE19606017A1 (de) 1996-02-19 1996-02-19 Zinkphosphatierung mit geringen Gehalten an Kupfer und Mangan
    PCT/EP1997/000603 WO1997030190A1 (de) 1996-02-19 1997-02-10 Zinkphosphatierung mit geringen gehalten an kupfer und mangan

    Publications (2)

    Publication Number Publication Date
    EP0889977A1 EP0889977A1 (de) 1999-01-13
    EP0889977B1 true EP0889977B1 (de) 2000-08-23

    Family

    ID=7785748

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97902356A Expired - Lifetime EP0889977B1 (de) 1996-02-19 1997-02-10 Zinkphosphatierung mit geringen gehalten an kupfer und mangan

    Country Status (20)

    Country Link
    EP (1) EP0889977B1 (de)
    KR (1) KR19990082154A (de)
    CN (1) CN1064415C (de)
    AR (1) AR005908A1 (de)
    AT (1) ATE195769T1 (de)
    AU (1) AU708141B2 (de)
    BR (1) BR9707563A (de)
    CA (1) CA2247141A1 (de)
    CZ (1) CZ262498A3 (de)
    DE (2) DE19606017A1 (de)
    ES (1) ES2149570T3 (de)
    HU (1) HUP9901001A3 (de)
    ID (1) ID15964A (de)
    MX (1) MX9806348A (de)
    PL (1) PL327291A1 (de)
    PT (1) PT889977E (de)
    SK (1) SK112598A3 (de)
    TR (1) TR199801606T2 (de)
    WO (1) WO1997030190A1 (de)
    ZA (1) ZA971375B (de)

    Families Citing this family (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19700326A1 (de) * 1997-01-08 1998-07-09 Henkel Kgaa Stabilisatoren für Hydroxylamin in Kupfer-haltigen Phosphatierlösungen
    US6720032B1 (en) 1997-09-10 2004-04-13 Henkel Kommanditgesellschaft Auf Aktien Pretreatment before painting of composite metal structures containing aluminum portions
    DE19754109A1 (de) * 1997-12-05 1999-06-10 Henkel Kgaa Abwasseraufbereitung bei der Phosphatierung
    KR100784819B1 (ko) * 2007-01-30 2007-12-14 정세근 알루미늄의 표면처리용 조성물
    DE102010001686A1 (de) 2010-02-09 2011-08-11 Henkel AG & Co. KGaA, 40589 Zusammensetzung für die alkalische Passivierung von Zinkoberflächen
    PL2503025T3 (pl) 2011-03-22 2013-12-31 Henkel Ag & Co Kgaa Chroniąca przed korozją, wielostopniowa obróbka metalowych elementów konstrukcyjnych o powierzchniach cynkowych
    DE102016206417A1 (de) * 2016-04-15 2017-10-19 Henkel Ag & Co. Kgaa Fördergestellbehandlung zur unterdrückung anlagenbedingter phosphatüberschleppung in einer prozessfolge zur tauchlackierung
    CN109612978B (zh) * 2018-10-30 2022-02-25 欣旺达电子股份有限公司 锂离子电池电极膜片补锂量检测方法
    CN112816399B (zh) * 2020-12-30 2023-06-20 盛明 车用钢板循环盐雾腐蚀试验用标准样品及其制备方法

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3090709A (en) * 1953-08-10 1963-05-21 Lubrizol Corp Phosphate coating of metals
    IT975560B (it) * 1972-10-20 1974-08-10 Sec Accomandita Semplice Fosfa Procedimento di fosfatazione di su perfici metalliche destinate a ver niciatura particolarmente per elet troforesi e soluzione relativa a tale procedimento
    US3895970A (en) * 1973-06-11 1975-07-22 Pennwalt Corp Sealing rinse for phosphate coatings of metal
    DE4013483A1 (de) * 1990-04-27 1991-10-31 Metallgesellschaft Ag Verfahren zur phosphatierung von metalloberflaechen
    DE4210513A1 (de) * 1992-03-31 1993-10-07 Henkel Kgaa Nickel-freie Phosphatierverfahren
    US5328526A (en) * 1992-04-03 1994-07-12 Nippon Paint Co., Ltd. Method for zinc-phosphating metal surface
    DE4214992A1 (de) * 1992-05-06 1993-11-11 Henkel Kgaa Kupfer enthaltendes, nickelfreies Phosphatierverfahren
    DE4232292A1 (de) * 1992-09-28 1994-03-31 Henkel Kgaa Verfahren zum Phosphatieren von verzinkten Stahloberflächen
    ATE183247T1 (de) * 1992-12-22 1999-08-15 Henkel Corp Im wesentlichen nickelfreier phosphatkonversionsüberzug-zusammensetzung und verfahren
    JPH07278891A (ja) * 1994-04-12 1995-10-24 Nippon Parkerizing Co Ltd 金属材料の塗装前処理方法
    DE59502118D1 (de) * 1994-05-27 1998-06-10 Herberts Gmbh Verfahren zur beschichtung phosphatierter metallsubstrate

    Also Published As

    Publication number Publication date
    PT889977E (pt) 2001-01-31
    HUP9901001A3 (en) 2000-04-28
    ID15964A (id) 1997-08-21
    CN1064415C (zh) 2001-04-11
    ZA971375B (en) 1997-08-19
    CA2247141A1 (en) 1997-08-21
    CZ262498A3 (cs) 1999-01-13
    HUP9901001A2 (hu) 1999-07-28
    PL327291A1 (en) 1998-12-07
    TR199801606T2 (xx) 1998-11-23
    AU708141B2 (en) 1999-07-29
    ATE195769T1 (de) 2000-09-15
    CN1211289A (zh) 1999-03-17
    AU1602397A (en) 1997-09-02
    BR9707563A (pt) 1999-07-27
    MX9806348A (es) 1998-10-31
    WO1997030190A1 (de) 1997-08-21
    ES2149570T3 (es) 2000-11-01
    EP0889977A1 (de) 1999-01-13
    SK112598A3 (en) 1999-01-11
    AR005908A1 (es) 1999-07-21
    KR19990082154A (ko) 1999-11-15
    DE59702240D1 (de) 2000-09-28
    DE19606017A1 (de) 1997-08-21

    Similar Documents

    Publication Publication Date Title
    EP0817872B1 (de) Verfahren zur phosphatierung mit metallhaltiger nachspülung
    EP0717787B1 (de) Nickelfreies phosphatierverfahren
    DE19834796A1 (de) Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung
    EP1929070A1 (de) Phosphatierlösung mit wasserstoffperoxid und chelatbildenden carbonsäuren
    EP0922123B1 (de) Wässrige lösung und verfahren zur phosphatierung metallischer oberflächen
    EP0889977B1 (de) Zinkphosphatierung mit geringen gehalten an kupfer und mangan
    DE19705701A1 (de) Verfahren zur Niedrig-Nickel-Phosphatierung mit metallhaltiger Nachspülung
    EP0931179B1 (de) Verfahren zur phosphatierung von stahlband
    EP1060290B1 (de) Wässrige lösung und verfahren zur phosphatierung metallischer oberflächen
    DE19606018A1 (de) Zinkphosphatierung mit geringen Gehalten an Nickel- und/oder Cobalt
    WO2001038605A2 (de) Verfahren zur phosphatierung mit metallhaltiger nachspülung
    WO1999007916A1 (de) Mit n-oxiden beschleunigtes phosphatierverfahren
    DE4330104A1 (de) Nickel- und Kupfer-freies Phosphatierverfahren
    WO1997014821A1 (de) Schichtgewichtssteuerung bei hydroxylamin-beschleunigten phosphatiersystemen
    DE19958192A1 (de) Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung
    DE4341041A1 (de) Nickelfreies Phosphatierverfahren mit m-Nitrobenzolsulfonat
    WO1997016581A2 (de) Nitratarme, manganfreie zinkphosphatierung
    DE19500927A1 (de) Lithiumhaltige Zinkphosphatierlösung
    DE19544614A1 (de) Verfahren zur Phospatierung von Metalloberflächen
    DE19634732A1 (de) Rutheniumhaltige Zinkphosphatierung
    WO2001016397A1 (de) Zinkphosphatierung mit epoxiden
    WO2000068154A1 (de) Verfahren zur nickelarmen zinkphosphatierung mit anschliessender wasserbehandlung
    DE19500562A1 (de) Silberhaltige Zinkphosphatierlösung
    DE19716075A1 (de) Mit Hydroxylamin und Chlorat beschleunigtes Phosphatierverfahren
    DE19750301A1 (de) Mit N-Oxiden und Clorat beschleunigtes Phosphatierverfahren

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19980808

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE DE ES FR GB IT PT SE

    17Q First examination report despatched

    Effective date: 19990212

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE DE ES FR GB IT PT SE

    REF Corresponds to:

    Ref document number: 195769

    Country of ref document: AT

    Date of ref document: 20000915

    Kind code of ref document: T

    REF Corresponds to:

    Ref document number: 59702240

    Country of ref document: DE

    Date of ref document: 20000928

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2149570

    Country of ref document: ES

    Kind code of ref document: T3

    ITF It: translation for a ep patent filed

    Owner name: STUDIO JAUMANN P. & C. S.N.C.

    ET Fr: translation filed
    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20001123

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 20001017

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20020205

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20020206

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20020212

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20020213

    Year of fee payment: 6

    Ref country code: ES

    Payment date: 20020213

    Year of fee payment: 6

    Ref country code: AT

    Payment date: 20020213

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20020227

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20020418

    Year of fee payment: 6

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030210

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030210

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030211

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030211

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030902

    EUG Se: european patent has lapsed
    GBPC Gb: european patent ceased through non-payment of renewal fee
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031031

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20030211

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050210