EP0717787B1 - Nickelfreies phosphatierverfahren - Google Patents

Nickelfreies phosphatierverfahren Download PDF

Info

Publication number
EP0717787B1
EP0717787B1 EP94925483A EP94925483A EP0717787B1 EP 0717787 B1 EP0717787 B1 EP 0717787B1 EP 94925483 A EP94925483 A EP 94925483A EP 94925483 A EP94925483 A EP 94925483A EP 0717787 B1 EP0717787 B1 EP 0717787B1
Authority
EP
European Patent Office
Prior art keywords
phosphating
hydroxylamine
free
phosphating solution
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94925483A
Other languages
English (en)
French (fr)
Other versions
EP0717787A1 (de
Inventor
Wolf-Achim Roland
Karl-Heinz Gottwald
Karl Dieter Brands
Jan-Willem Brouwer
Bernd Mayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4330104A external-priority patent/DE4330104A1/de
Priority claimed from DE19934341041 external-priority patent/DE4341041A1/de
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0717787A1 publication Critical patent/EP0717787A1/de
Application granted granted Critical
Publication of EP0717787B1 publication Critical patent/EP0717787B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/44Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • C23C22/13Orthophosphates containing zinc cations containing also nitrate or nitrite anions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/182Orthophosphates containing manganese cations containing also zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/42Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also phosphates

Definitions

  • the invention relates to methods for phosphating metal surfaces with aqueous, acid phosphating solutions, the zinc, manganese and phosphate ions and hydroxylamine in free or bound form and / or m-nitrobenzenesulfonic acid or contain their water-soluble salts, and their Application as pretreatment of the metal surfaces for a subsequent Painting, especially an electro dip painting.
  • the procedure is applicable for the treatment of surfaces made of steel, galvanized or galvanized alloy Steel, aluminum, aluminized or alloy aluminized Steel, in particular for the treatment of galvanized on one or both sides, preferably electrolytically galvanized steel.
  • the phosphating of metals pursues the goal on the metal surface to produce firmly grown metal phosphate layers that are in themselves improve the corrosion resistance and in connection with paints and other organic coatings to significantly increase the Paint adhesion and resistance to infiltration when exposed to corrosion contribute.
  • Such phosphating processes have long been known.
  • For pretreatment before painting is particularly suitable for low-zinc phosphating processes, where the phosphating solutions are comparatively low levels of zinc ions of e.g. B. 0.5 to 2 g / l.
  • An essential parameter in these low-zinc phosphating baths is the weight ratio of phosphate ions to zinc ions, which is usually is in the range> 8 and can take values up to 30.
  • the high content of nickel ions in the phosphating solutions of the trication processes and of nickel and nickel compounds in the phosphate layers formed however, has disadvantages in that nickel and nickel compounds from the point of view of environmental protection and workplace hygiene as be critically classified.
  • low-zinc phosphating processes have been becoming increasingly common described without sharing from nickel to high-quality phosphate layers similar to that lead nickel-containing processes.
  • nitrite and Nitrates are increasingly raised concerns about possible formation of nitrous gases.
  • DE-A-39 20 296 describes a phosphating process which dispenses with nickel and uses magnesium ions in addition to zinc and manganese ions.
  • the phosphating baths described here contain from 0.2 to 10 g / l nitrate ions other oxidizing agents acting as accelerators, selected from nitrite, chlorate or an organic oxidizing agent.
  • EP-A-60 716 discloses low zinc phosphating baths which are considered essential Cations contain zinc and manganese and that as an optional ingredient May contain nickel.
  • the necessary accelerator is preferred selected from nitrite, m-nitrobenzenesulfonate or hydrogen peroxide.
  • EP-A-228 151 also describes phosphating baths which are essential Cations contain zinc and manganese.
  • the phosphating accelerator is selected from nitrite, nitrate, hydrogen peroxide, m-nitrobenzenesulfonate, m-nitrobenzoate or p-nitrophenol.
  • the nitrate content to 5 to about 15 g / l and an optional nickel content specified between 0.4 and 4 g / l.
  • the exemplary embodiments contain this all nickel and nitrate.
  • the main focus of this application is due to the fact that chlorate-free phosphating processes are provided will.
  • EP-A-544 650 teaches something similar.
  • the phosphating process disclosed in WO-A-86/04931 works without nitrates.
  • the accelerator system is based on a combination of 0.5 - 1 g / l Bromate and 0.2-0.5 g / l m-nitrobenzenesulfonate.
  • the phosphating solutions preferably contain in addition to zinc, at least 2 of these optional metals.
  • EP-A-36689 teaches the use of preferably 0.03-0.2% by weight of nitrobenzenesulfonate in Combination with preferably 0.1-0.5% by weight chlorate in phosphating baths, whose manganese content is 5-33% by weight of the zinc content.
  • DE-A-40 13 483 discloses phosphating processes with which similarly good ones Corrosion protection properties as achieved with the trication process can. These processes do without nickel and use instead Copper in low concentrations, 0.001 to 0.03 g / l.
  • Oxygen and / or other equivalent functions serve in the trivalent stage Oxidizing agent. As such are nitrite, chlorate, bromate, peroxy compounds and organic nitro compounds, such as nitrobenzenesulfonate, specified.
  • German patent application with the file number P 42 10 513.7 modifies this process in that as a modifying agent for the Morphology of the phosphate crystals formed hydroxylamine, its salts or complexes are added in an amount of 0.5 to 5 g / l hydroxylamine.
  • EP-A-321 059 teaches zinc phosphating baths which contain 0.1 to 2.0 g / l zinc and an accelerator also 0.01 to 20 g / l tungsten in the form of a soluble tungsten compound, preferably alkali metal or ammonium tungstate or silicotungstate, alkaline earth metal silicotungstate or boro- or silicotungstic acid.
  • the accelerator is selected from nitrite, m-nitrobenzenesulfonate or hydrogen peroxide.
  • nickel in quantities of 0.1 - 4 g / l and nitrate in quantities 0.1 - 15 g / l.
  • DE-C-27 39 006 describes a phosphating process for surfaces Zinc or zinc alloys that are free of nitrate and ammonium ions.
  • an essential content of zinc in amounts between 0.1 and 5 g / l are 1 to 10 parts by weight of nickel and / or cobalt per part by weight of zinc required.
  • Hydrogen peroxide is used as an accelerator. From the From the point of view of workplace hygiene and environmental protection, cobalt is not one Alternative to nickel.
  • the object of the invention is to provide phosphating baths positions that are free from environmental and workplace hygiene Reasonably questionable nickel or the similarly questionable cobalt, no Contain nitrite and at the same time a greatly reduced nitrate content have and are preferably free of nitrate. Furthermore, the Phosphating baths should be free of copper, the dosage of which according to DE-A-40 13 483 effective concentration range of 1 - 30 ppm is problematic.
  • phosphating baths are free of nickel, copper, nitrite and oxo anions Halogens mean that these elements or ions not deliberately added to the phosphating baths. However, it is in the Practice does not rule out that such components are beyond what is to be treated Material, the preparation water or the ambient air in traces in the Phosphating baths are entered. In particular, it cannot be ruled out that in the phosphating of coated with zinc-nickel alloys Steel nickel ions are introduced into the phosphating solution. However, the expectation is placed on the phosphating baths according to the invention that that under technical conditions the nickel concentration in the Baths is below 0.01 g / l, in particular below 0.0001 g / l.
  • baths Preferably no nitrate is added to the baths.
  • the baths contain the nitrate content of the locally available drinking water (according to Drinking water regulation in Germany maximum 50 mg / l) or by evaporation have higher nitrate levels due to The invention
  • baths should have a maximum nitrate content of 0.5 g / l and preferably contain less than 0.1 g / l nitrate.
  • Hydroxylamine can be used as a free base, as a hydroxylamine complex or in the form of Hydroxylammonium salts are used. If you add free hydroxylamine Phosphating bath or a phosphating bath concentrate too, it is due of the acidic character of these solutions largely as a hydroxylammonium cation available.
  • Sulfates and the phosphates are particularly suitable. In the case of the phosphates the acidic salts are preferred because of their better solubility.
  • Hydroxylamine or its compounds in the phosphating bath in such Amounts added that the calculated concentration of free hydroxylamine is between 0.1 and 5 g / l, in particular between 0.4 and 2 g / l. It has proven to be beneficial to choose the hydroxylamine concentration so that the ratio of the sum of the concentrations of zinc and manganese for the concentration of the hydroxylamine, in each case in g / l, 1.0 to 6.0, preferably Is 2.0 to 4.0.
  • the inventive Phosphating baths containing hydroxylamine or hydroxylamine compounds the presence of soluble compounds of hexavalent tungsten Advantages in terms of corrosion resistance and paint adhesion, although with the Phosphating method according to the invention, in contrast to the teaching of EP-A-321 059, without the accelerators nitrite or hydrogen peroxide can be.
  • Phosphating solutions are used that additionally 20 to 800 mg / l, preferably 50 to 600 mg / l tungsten in the form of water-soluble tungstates, Silicotungstates and / or borotungstates contain.
  • the mentioned anions in the form of their acids and / or their ammonium, Alkali metal and / or alkaline earth metal salts are used.
  • m-Nitrobenzenesulfonate can be used as a free acid or in the form of water-soluble Salts are used.
  • Such salts become "water-soluble” referred to, which dissolve in the phosphating baths so far that the required concentrations of 0.2 to 2 g / l m-nitrobenzenesulfonate can be achieved.
  • the alkali metal salts are particularly suitable for this the sodium salts.
  • the phosphating baths preferably contain 0.4 to 1 g / l m-nitrobenzenesulfonate.
  • a ratio of 1:10 to 10: 1 between the more reductive Hydroxylamine and the more oxidative m-nitrobenzenesulfonate can lead to special advantages with regard to layer formation, in particular regarding the shape of the crystals formed.
  • the phosphating baths contain either hydroxylamine or m-nitrobenzenesulfonic acid.
  • the weight ratio of phosphate ions to zinc ions in the phosphating baths can fluctuate within wide limits, provided it is in the range between 3.7 and 30 lies. A weight ratio between 10 and 20 is particularly preferred.
  • Those skilled in the art are further parameters for controlling phosphating baths the free acid and total acid contents are known. The one in this Font used determination method of this parameter is in the example part specified. Free acid values between 0.3 and 1.5 points for partial phosphating, with band phosphating up to 2.5 points and the total acidity between about 15 and about 25 points are in the usual technical range Range and are suitable in the context of this invention.
  • the manganese content of the phosphating bath should be between 0.3 and 4 g / l, since the lower the manganese content, the positive influence on the corrosion behavior the phosphate layers no longer exist and at higher ones Manganese content no further positive effect occurs. Keep between 0.3 and 2 g / l and in particular between 0.5 and 1.5 g / l are preferred.
  • the zinc content is set in phosphating baths, which only act as accelerators Contain hydroxylamine, according to EP-A-315 059 preferably to values between 0.45 and 1.1 g / l, for phosphating baths, which only accelerate m-nitrobenzenesulfonate contain, preferably to values between 0.6 and 1.4 g / l a.
  • the current zinc content of the worker Bath increases up to 2 g / l. It is important to ensure that the manganese content is at least 50% of the zinc content, otherwise it is insufficient Corrosion protection properties result.
  • the Zinc and manganese ions are introduced into the phosphating baths basically irrelevant. In order to meet the conditions according to the invention, however, are the nitrites, nitrates, and salts with oxo anions of halogens these cations cannot be used. It is particularly useful as Zinc and / or manganese source to use the oxides and / or carbonates. In addition to the divalent cations mentioned, they contain phosphating baths usually sodium, potassium and / or ammonium ions to adjust the parameters free acid and total acid are used. Ammonium ions can also be formed by degradation of the hydroxylamine.
  • iron goes in the form of iron (II) ions in solution. Since the phosphating baths according to the invention do not contain substances that are strong compared to iron (II) have an oxidizing effect, the divalent iron mainly goes off in succession Air oxidation into the trivalent state, so that it is called ferric phosphate can fail. Therefore, in the phosphating baths according to the invention Build up iron (II) levels that are well above the levels which contain baths containing oxidizing agents. With that in mind Iron (II) concentrations up to 50 ppm normal, with short-term in the production process Values up to 500 ppm can also occur. For the invention Phosphating processes are such iron (II) concentrations not harmful.
  • the phosphating baths can be used in hard water also the hardness cations Mg (II) and Ca (II) in a total concentration up to 7 mmol / l.
  • the method according to the invention is suitable for phosphating surfaces made of steel, galvanized or alloy galvanized steel, aluminum, aluminized or alloy aluminized steel.
  • Baths containing hydroxylamine are especially designed for the treatment of galvanized on one or both sides, preferably electrolytically galvanized steel.
  • the materials mentioned can - as is increasingly common in automotive engineering will also exist side by side.
  • the procedure is for the application suitable in immersion, spray or spray / immersion processes. It can be used in particular in the automotive industry, where treatment times between 1 and 8 minutes are common. Use in tape phosphating in the steel mill, with treatment times between 5 and 12 seconds, is also possible.
  • Suitable bath temperatures are also common in the prior art between 30 and 70 ° C, the temperature range between 40 and 60 ° C is preferred.
  • the phosphating process according to the invention is used to produce a sliding layer for forming and in particular for treating the metal surfaces mentioned before painting, for example before a cathodic one Electro-dip coating thought as it is common in automotive engineering.
  • the phosphating process is part of the technically usual pretreatment chain to see. In this chain, phosphating is common the steps cleaning / degreasing, rinsing and activating upstream, the activation usually with titanium phosphate-containing Activating agents are carried out.
  • the phosphating according to the invention can if necessary after an intermediate rinse, a passivating after-treatment consequences. Chromic acid-containing ones are used for such a passivating aftertreatment Treatment baths widely used.
  • the mass per unit area (“layer weight”) was determined by dissolving in 5% chromic acid solution in accordance with DIN 50942, Table 6. Corrosion tests were carried out according to the VDA alternating climate test 621-415 with KTL primer (KTL-light gray from BASF, FT 85- 7042); partly also with a complete paint structure (top coat: alpine white, VW).
  • KTL primer KTL-light gray from BASF, FT 85- 7042
  • top coat alpine white, VW.
  • Layer weights were determined by dissolving in 5% chromic acid solution. Corrosion tests were carried out according to the VDA alternating climate test 621-415 both with KTL primer (ED 12 MB from PPG) and with a complete paint system (KTL as above, filler: 1-component high-solid PU filler gray, top coat: DB 744 metallic basecoat and clearcoat). The paint infiltration (mm) was evaluated after every 10 week test cycles. In addition, a shot put test was carried out according to the Mercedes-Benz standard analogous to DIN 53 230 (6 bar corresponding to 250 km / h), evaluation at substrate temperature -20 ° C. The damage area was assessed in mm 2 (Mercedes-Benz standard: max.

Description

Die Erfindung betrifft Verfahren zur Phosphatierung von Metalloberflächen mit wäßrigen, sauren Phosphatierlösungen, die Zink-, Mangan- und Phosphationen sowie Hydroxylamin in freier oder gebundener Form und/oder m-Nitrobenzolsulfonsäure oder deren wasserlösliche Salze enthalten, sowie deren Anwendung als Vorbehandlung der Metalloberflächen für eine anschließende Lackierung, insbesondere eine Elektrotauchlackierung. Das Verfahren ist anwendbar zur Behandlung von Oberflächen aus Stahl, verzinktem oder legierungsverzinktem Stahl, Aluminium, aluminiertem oder legierungsaluminiertem Stahl, insbesondere zur Behandlung von ein- oder beidseitig verzinktem, vorzugsweise elektrolytisch verzinktem Stahl.
Die Phosphatierung von Metallen verfolgt das Ziel, auf der Metalloberfläche festverwachsene Metallphosphatschichten zu erzeugen, die für sich bereits die Korrosionsbeständigkeit verbessern und in Verbindung mit Lacken und anderen organischen Beschichtungen zu einer wesentlichen Erhöhung der Lackhaftung und der Resistenz gegen Unterwanderung bei Korrosionsbeanspruchung beitragen. Solche Phosphatierverfahren sind seit langem bekannt. Für die Vorbehandlung vor der Lackierung eignen sich insbesondere die Niedrig-Zink-Phosphatierverfahren, bei denen die Phosphatierlösungen vergleichsweise geringe Gehalte an Zinkionen von z. B. 0,5 bis 2 g/l aufweisen. Ein wesentlicher Parameter in diesen Niedrig-Zink-Phosphatierbädern ist das Gewichtsverhältnis Phosphationen zu Zinkionen, das üblicherweise im Bereich > 8 liegt und Werte bis zu 30 annehmen kann.
Es hat sich gezeigt, daß durch die Mitverwendung anderer mehrwertiger Kationen in den Zink-Phosphatierbädern Phosphatschichten mit deutlich verbesserten Korrosionsschutz- und Lackhaftungseigenschaften ausgebildet werden können. Beispielsweise finden Niedrig-Zink-Verfahren mit Zusatz von z. B. 0,5 bis 1,5 g/l Manganionen und z. B. 0,3 bis 2,0 g/l Nickelionen als sogenannte Trikation-Verfahren zur Vorbereitung von Metalloberflächen für die Lackierung, beispielsweise für die kathodische Elektrotauchlackierung von Autokarosserien, weite Anwendung.
Der hohe Gehalt an Nickelionen in den Phosphatierlösungen der Trikation-Verfahren und von Nickel und Nickelverbindungen in den gebildeten Phosphatschichten bringt jedoch insofern Nachteile, als Nickel und Nickelverbindungen aus der Sicht des Umweltschutzes und der Arbeitsplatzhygiene als kritisch eingestuft werden. In letzter Zeit werden daher zunehmend Niedrig-Zink-Phosphatierverfahren beschrieben, die ohne eine Mitverwendung von Nickel zu qualitativ ähnlich hochwertigen Phosphatschichten wie die nickelhaltigen Verfahren führen. Auch gegen die Beschleuniger Nitrit und Nitrat werden wegen möglicher Bildung Nitroser Gase zunehmend Bedenken geäußert. Darüber hinaus hat sich gezeigt, daß die Phosphatierung von verzinktem Stahl mit nickelfreien Phosphatierbädern zu unzureichendem Korrosionsschutz und unzureichender Lackhaftung führt, wenn die Phosphatierbäder größere Mengen (> 0,5 g/l) Nitrat enthalten.
Beispielsweise beschreibt die DE-A-39 20 296 ein Phosphatierverfahren, das auf Nickel verzichtet und neben Zink und Manganionen Magnesiumionen verwendet. Die hier beschriebenen Phosphatierbäder enthalten außer 0,2 bis 10 g/l Nitrationen weitere als Beschleuniger wirkende Oxidationsmittel, ausgewählt aus Nitrit, Chlorat oder einem organischen Oxidationsmittel.
EP-A-60 716 offenbart Niedrig-Zink-Phosphatierbäder, die als essentielle Kationen Zink und Mangan enthalten und die als fakultativen Bestandteil Nickel beinhalten können. Der notwendige Beschleuniger wird vorzugsweise ausgewählt aus Nitrit, m-Nitrobenzolsulfonat oder Wasserstoffperoxid. In einem abhängigen Patentanspruch wird die Verwendung von 1 bis 10 g/l Nitrat angegeben; alle Erfindungsbeispiele enthalten 4 g/l Nitrat.
Auch in der EP-A-228 151 werden Phosphatierbäder beschrieben, die als essentielle Kationen Zink und Mangan enthalten. Der Phosphatierbeschleuniger wird ausgewählt aus Nitrit, Nitrat, Wasserstoffperoxid, m-Nitrobenzolsulfonat, m-Nitrobenzoat oder p-Nitrophenol. In abhängigen Ansprüchen wird der Nitratgehalt auf 5 bis etwa 15 g/l sowie ein fakultativer Nickelgehalt zwischen 0,4 und 4 g/l spezifiziert. Die Ausführungsbeispiele hierzu enthalten alle sowohl Nickel als auch Nitrat. Das Schwergewicht dieser Anmeldung liegt darauf, daß chloratfreie Phosphatierverfahren zur Verfügung gestellt werden. Ähnliches lehrt die EP-A-544 650.
Nitratfrei arbeitet das in WO-A-86/04931 offengelegte Phosphatierverfahren. Hier beruht das Beschleunigersystem auf einer Kombination von 0,5 - 1 g/l Bromat und 0,2 - 0,5 g/l m-Nitrobenzolsulfonat. Als essentielles mehrwertiges Kation wird lediglich Zink, als weitere fakultative Kationen Nickel, Mangan oder Kobalt angegeben. Vorzugsweise enthalten die Phosphatierlösungen neben Zink mindestens 2 dieser fakultativen Metalle. EP-A-36689 lehrt die Verwendung von vorzugsweise 0,03 - 0,2 Gew.-% Nitrobenzolsulfonat in Kombination mit vorzugsweise 0,1 - 0,5 Gew.-% Chlorat in Phosphatierbädern, deren Mangangehalt 5-33 Gew.-% des Zinkgehalts beträgt.
WO-A-90/12901 offenbart ein chlorat- und nitritfreies Verfahren zur Herstellung von nickel- und manganhaltigen Zinkphosphatschichten auf Stahl, Zink und/oder deren Legierungen durch Spritzen, Spritztauchen und/oder Tauchen mit einer wäßrigen Lösung enthaltend
  • 0,3 bis 1,5 g/l Zink(II),
  • 0,01 bis 2,0 g/l Mangan(II),
  • 0,01 bis 0,8 g/l Eisen (II),
  • 0,3 bis 2,0 g/l Nickel(II),
  • 10,0 bis 20,0 g/l Phosphat-Ionen,
  • 2,0 bis 10,0 g/l Nitrat-Ionen und
  • 0,1 bis 2,0 g/l eines organischen Oxidationsmittels (beispielsweise m-Nitrobenzolsulfonat),
  •    wobei die wäßrige Lösung einen Gehalt an freier Säure von 0,5 bis 1,8 Punkten und einen Gesamtsäuregehalt von 15 bis 35 Punkten aufweist und Na+ in der zur Einstellung der freien Säure notwendigen Menge vorhanden ist.
    DE-A-40 13 483 macht Phosphatierverfahren bekannt, mit denen ähnlich gute Korrosionsschutzeigenschaften wie mit den Trikation-Verfahren erzielt werden können. Diese Verfahren verzichten auf Nickel und verwenden statt dessen Kupfer in niedrigen Konzentrationen, 0,001 bis 0,03 g/l. Zur Oxidation des bei der Beizreaktion von Stahloberflächen gebildeten zweiwertigen Eisens in die dreiwertige Stufe dienen Sauerstoff und/oder andere gleichwirkende Oxidationsmittel. Als solche werden Nitrit, Chlorat, Bromat, Peroxi-Verbindungen sowie organische Nitroverbindungen, wie Nitrobenzolsulfonat, angegeben. Die deutsche Patentanmeldung mit dem Aktenzeichen P 42 10 513.7 modifiziert diesen Prozeß dadurch, daß als modifizierendes Agens für die Morphologie der gebildeten Phosphatkristalle Hydroxylamin, dessen Salze oder Komplexe in einer Menge von 0,5 bis 5 g/l Hydroxylamin zugegeben werden.
    Die Verwendung von Hydroxylamin und/oder seinen Verbindungen zum Beeinflussen der Form der Phosphatkristalle ist aus einer Reihe von Offenlegungsschriften bekannt. Die EP-A-315 059 gibt als besonderen Effekt der Verwendung von Hydroxylamin in Phosphatierbädern die Tatsache an, daß auf Stahl auch dann noch die Phosphatkristalle in einer erwünschten säulen- oder knollenartigen Form entstehen, wenn die Zinkkonzentration im Phosphatierbad den für Niedrig-Zink-Verfahren üblichen Bereich übersteigt. Hierdurch wird es möglich, die Phosphatierbäder mit Zinkkonzentrationen bis zu 2 g/l und mit Gewichtsverhältnissen Phosphat zu Zink bis hinab zu 3,7 zu betreiben. Über vorteilhafte Kationenkombinationen dieser Phosphatierbäder werden keine näheren Aussagen gemacht, in den Patentbeispielen wird jedoch in allen Fällen Nickel eingesetzt. Ebenfalls werden in den Patentbeispielen Nitrate und Salpetersäure verwendet, auch wenn in der Beschreibung von der Anwesenheit von Nitrat in größeren Mengen abgeraten wird.
    EP-A-321 059 lehrt Zink-Phosphatierbäder, die neben 0,1 bis 2,0 g/l Zink und einem Beschleuniger außerdem 0,01 bis 20 g/l Wolfram in Form einer löslichen Wolframverbindung, vorzugsweise Alkalimetall- oder Ammoniumwolframat oder -silicowolframat, Erdalkalimetallsilicowolframat oder Boro- oder Silicowolframsäure. Der Beschleuniger ist ausgewählt aus Nitrit, m-Nitrobenzolsulfonat oder Wasserstoffperoxid. Als fakultative Bestandteile werden unter anderem Nickel in Mengen von 0,1 - 4 g/l und Nitrat in Mengen von 0,1 - 15 g/l angegeben.
    DE-C-27 39 006 beschreibt ein Phosphatierverfahren für Oberflächen aus Zink oder Zinklegierungen, das frei von Nitrat und Ammoniumionen ist. Neben einem essentiellen Gehalt an Zink in Mengen zwischen 0,1 und 5 g/l sind 1 bis 10 Gewichtsteile Nickel und/oder Kobalt pro Gewichtsteil Zink erforderlich. Als Beschleuniger wird Wasserstoffperoxid verwendet. Aus der Sicht der Arbeitsplatzhygiene und des Umweltschutzes stellt Kobalt keine Alternative zu Nickel dar.
    Die Erfindung stellt sich die Aufgabe, Phosphatierbäder zur Verfügung zu stellen, die frei sind von dem aus Umwelt- und arbeitsplatzhygienischen Gründen bedenklichen Nickel oder dem ähnlich bedenklichen Kobalt, kein Nitrit enthalten und gleichzeitig einen stark verminderten Nitratgehalt aufweisen und vorzugsweise frei sind von Nitrat. Desweiteren sollen die Phosphatierbäder frei von Kupfer sein, dessen Dosierung im laut DE-A-40 13 483 wirksamen Konzentrationsbereich von 1 - 30 ppm problematisch ist.
    Diese Aufgabe wird gelöst durch ein Verfahren zur Phosphatierung von Metalloberflächen mit wäßrigen, sauren Phosphatierlösungen, die Zink-, Mangan- und Phosphationen und als Beschleuniger Hydroxylamin oder eine Hydroxylaminverbindung und/oder m-Nitrobenzosulfonsäure oder deren wassserlösliche Salze enthalten, dadurch gekennzeichnet, daß man die Metalloberflächen mit einer Phosphatierlösung in Berührung bringt, die frei von Nickel, Kobalt, Kupfer, Nitrit und Oxo-Anionen von Halogenen in dem Sinne ist, daß diese Elemente beziehungsweise Ionen dem Bad nicht bewußt zugesetzt werden und die Nickelkonzentration unter 0,01 g/l liegt und die
  • 0,3 bis 2 g/l Zn(II)
  • 0,3 bis 4 g/l Mn(II)
  • 5 bis 40 g/l Phosphationen
  • 0,1 bis 5 g/l Hydroxylamin in freier oder gebundener Form und/oder
  • 0,2 bis 2 g/l m-Nitrobenzolsulfonat
  • und höchstens 0,5 g/l Nitrationen
  • enthält, wobei der Mn-Gehalt mindestens 50 % des Zn-Gehalts beträgt.
    Daß die Phosphatierbäder frei von Nickel, Kupfer, Nitrit und Oxo-Anionen von Halogenen sein sollen, bedeutet dabei, daß diese Elemente bzw. Ionen den Phosphatierbädern nicht bewußt zugesetzt werden. Es ist jedoch in der Praxis nicht auszuschließen, daß solche Bestandteile über das zu behandelnde Material, das Ansatzwasser oder die Umgebungsluft in Spuren in die Phosphatierbäder eingetragen werden. Insbesondere ist es nicht auszuschließen, daß bei der Phosphatierung von mit Zink-Nickel-Legierungen beschichtetem Stahl Nickelionen in die Phosphatierlösung eingetragen werden. Jedoch wird an die erfindungsgemäßen Phosphatierbäder die Erwartung gestellt, daß unter technischen Bedingungen die Nickelkonzentration in den Bädern unter 0,01 g/l, insbesondere unter 0,0001 g/l liegt. Vorzugsweise wird den Bädern kein Nitrat zugesetzt. Es ist jedoch nicht auszuschließen, daß die Bäder den Nitratgehalt des lokal verfügbaren Trinkwassers (gemäß Trinkwasserverordnung in Deutschland maximal 50 mg/l) oder durch Verdunstung bedingte höhere Nitratgehalte aufweisen. Die erfindungsgemäßen Bäder sollen jedoch einen maximalen Nitratgehalt von 0,5 g/l aufweisen und enthalten vorzugsweise weniger als 0,1 g/l Nitrat.
    Hydroxylamin kann als freie Base, als Hydroxylaminkomplex oder in Form von Hydroxylammoniumsalzen eingesetzt werden. Fügt man freies Hydroxylamin dem Phosphatierbad oder einem Phosphatierbad-Konzentrat zu, wird es aufgrund des sauren Charkters dieser Lösungen weitgehend als Hydroxylammonium-Kation vorliegen. Bei einer Verwendung als Hydroxylammonium-Salz sind die Sulfate sowie die Phosphate besonders geeignet. Im Falle der Phosphate sind aufgrund der besseren Löslichkeit die sauren Salze bevorzugt. Hydroxylamin oder seine Verbindungen werden dem Phosphatierbad in solchen Mengen zugesetzt, daß die rechnerische Konzentration des freien Hydroxylamins zwischen 0,1 und 5 g/l, insbesondere zwischen 0,4 und 2 g/l liegt. Es hat sich als günstig erwiesen, die Hydroxylaminkonzentration so zu wählen, daß das Verhältnis der Summe der Konzentrationen von Zink und Mangan zur Konzentration des Hydroxylamins, jeweils in g/l, 1,0 bis 6,0, vorzugsweise 2,0 bis 4,0 beträgt.
    Ähnlich wie in der EP-A-321 059 beschrieben bringt auch in den erfindungsgemäßen, Hydroxylamin oder Hydroxylaminverbindungen enthaltenden Phosphatierbädern die Gegenwart löslicher Verbindungen des sechswertigen Wolframs Vorteile hinsichtlich Korrosionswiderstand und Lackhaftung, obwohl bei den erfindungsgemäßen Phosphatierverfahren, im Gegensatz zur Lehre der EP-A-321 059, auf die Beschleuniger Nitrit oder Wasserstoffperoxid verzichtet werden kann. In den erfindungsgemäßen Phosphatierverfahren können Phosphatierlösungen Verwendung finden, die zusätzlich 20 bis 800 mg/l, vorzugsweise 50 bis 600 mg/l Wolfram in Form wasserlöslicher Wolframate, Silicowolframate und/oder Borowolframate enthalten. Dabei können die genannten Anionen in Form ihrer Säuren und/ oder ihrer Ammonium-, Alkalimetall- und/oder Erdalkalimetallsalze eingesetzt werden.
    m-Nitrobenzolsulfonat kann als freie Säure oder in Form wasserlöslicher Salze eingesetzt werden. Als "wasserlöslich" werden hierbei solche Salze bezeichnet, die sich in den Phosphatierbädern soweit auflösen, daß die erforderlichen Konzentrationen von 0,2 bis 2 g/l m-Nitrobenzolsulfonat erreicht werden. Hierfür kommen besonders die Alkalimetallsalze, vorzugsweise die Natriumsalze, in Betracht. Bevorzugterweise enthalten die Phosphatierbäder 0,4 bis 1 g/l m-Nitrobenzolsulfonat.
    Ein Verhältnis von 1 : 10 bis 10 : 1 zwischen dem eher reduktiv wirkenden Hydroxylamin und dem eher oxidativ wirkenden m-Nitrobenzolsulfonat kann zu besonderen Vorteilen hinsichtlich Schichtausbildung führen, insbesondere hinsichtlich der Form der gebildeten Kristalle. Es ist jedoch auch möglich und zur vereinfachten Badsteuerung vorzuziehen, daß die Phosphatierbäder entweder Hydroxylamin oder m-Nitrobenzolsulfonsäure enthalten.
    Bei Phosphatierbädern, die für unterschiedliche Substrate geeignet sein sollen, ist es üblich, freies und/oder komplexgebundenes Fluorid in Mengen bis zu 2,5 g/l Gesamtfluorid, davon bis zu 800 mg/l freies Fluorid zuzusetzen. Die Anwesenheit solcher Fluoridmengen ist auch für die erfindungsgemäßen Phosphatierbäder von Vorteil. Bei Abwesenheit von Fluorid soll der Aluminiumgehalt des Bades 3 mg/l nicht überschreiten. Bei Gegenwart von Fluorid werden infolge der Komplexbildung höhere Al-Gehalte toleriert, sofern die Konzentration des nicht komplexierten Al 3 mg/l nicht übersteigt.
    Das Gewichtsverhältnis Phosphationen zu Zinkionen in den Phosphatierbädern kann in weiten Grenzen schwanken, sofern es im Bereich zwischen 3,7 und 30 liegt. Ein Gewichtsverhältnis zwischen 10 und 20 ist besonders bevorzugt. Als weitere Parameter zur Steuerung von Phosphatierbädern sind dem Fachmann die Gehalte an freier Säure und an Gesamtsäure bekannt. Die in dieser Schrift verwendete Bestimmungsmethode dieser Parameter ist im Beispielteil angegeben. Werte der freien Säure zwischen 0,3 und 1,5 Punkten bei Teilephosphatierung, bei Bandphosphatierung bis zu 2,5 Punkten und der Gesamtsäure zwischen etwa 15 und etwa 25 Punkten liegen im technisch üblichen Bereich und sind im Rahmen dieser Erfindung geeignet.
    Der Mangangehalt des Phosphatierbades soll zwischen 0,3 und 4 g/l liegen, da bei geringeren Mangangehalten der positive Einfluß auf das Korrosionsverhalten der Phosphatschichten nicht mehr gegeben ist und bei höheren Mangangehalten kein weiterer positiver Effekt eintritt. Gehalte zwischen 0,3 und 2 g/l und insbesondere zwischen 0,5 und 1,5 g/l sind bevorzugt. Den Zinkgehalt stellt man bei Phosphatierbäder, die als Beschleuniger nur Hydroxylamin enthalten, gemäß EP-A-315 059 vorzugsweise auf Werte zwischen 0,45 und 1,1 g/l, bei Phosphatierbäder, die als Beschleuniger nur m-Nitrobenzolsulfonat enthalten, vorzugsweise auf Werte zwischen 0,6 und 1,4 g/l ein. Infolge des Beizabtrages bei der Phosphatierung zinkhaltiger Oberflächen ist es jedoch möglich, daß der aktuelle Zinkgehalt des arbeitenden Bades auf bis zu 2 g/l ansteigt. Dabei ist darauf zu achten, daß der Mangangehalt mindestens 50 % des Zinkgehaltes beträgt, da anderenfalls unzureichende Korrosionsschutzeigenschaften resultieren. In welcher Form die Zink- und Mangan ionen in die Phosphatierbäder eingebracht werden, ist prinzipiell ohne Belang. Um den erfindungsgemäßen Bedingungen zu genügen, sind jedoch die Nitrite, Nitrate, sowie Salze mit Oxo-Anionen von Halogenen dieser Kationen nicht einsetzbar. Es bietet sich insbesondere an, als Zink- und/oder Manganquelle die Oxide und/ oder die Karbonate zu verwenden. Außer den genannten zweiwertigen Kationen enthalten Phosphatierbäder üblicherweise Natrium-, Kalium- und/oder Ammoniumionen, die zum Einstellen der Parameter freie Säure und Gesamtsäure herangezogen werden. Ammoniumionen können auch durch Abbau des Hydroxylamins gebildet werden.
    Bei der Anwendung des Phosphatierverfahrens auf Stahloberflächen geht Eisen in Form von Eisen(II)-Ionen in Lösung. Da die erfindungsgemäßen Phosphatierbäder keine Substanzen enthalten, die gegenüber Eisen(II) stark oxidierend wirken, geht das zweiwertige Eisen vornehmlich in Folge von Luftoxidation in den dreiwertigen Zustand über, so daß es als Eisen(III)-Phosphat ausfallen kann. Daher können sich in den erfindungsgemäßen Phosphatierbädern Eisen(II)-Gehalte aufbauen, die deutlich über den Gehalten liegen, die Oxidationsmittel-haltige Bäder enthalten. In diesem Sinne sind Eisen(II)-Konzentrationen bis zu 50 ppm normal, wobei kurzfristig im Produktionsablauf auch Werte bis zu 500 ppm auftreten können. Für das erfindungsgemäße Phosphatierverfahren sind solche Eisen(II)-Konzentrationen nicht schädlich. Bei Ansatz in hartem Wasser können die Phosphatierbäder weiterhin die Härtebildner-Kationen Mg(II) und Ca(II) in einer Gesamtkonzentration von bis zu 7 mmol/l enthalten.
    Das erfindungsgemäße Verfahren ist geeignet zur Phosphatierung von Oberflächen aus Stahl, verzinktem oder legierungsverzinktem Stahl, Aluminium, aluminiertem oder legierungsaluminiertem Stahl. Hydroxylaminhaltige Bäder sind insbesondere konzipiert zur Behandlung von ein- oder beidseitig verzinktem, vorzugsweise elektrolytisch verzinktem Stahl.
    Die genannten Materialien können - wie es im Automobilbau zunehmend üblich wird - auch nebeneinander vorliegen. Das Verfahren ist für die Anwendung im Tauch-, Spritz- oder Spritz/Tauchverfahren geeignet. Es kann insbesondere im Automobilbau eingesetzt werden, wo Behandlungszeiten zwischen 1 und 8 Minuten üblich sind. Der Einsatz bei der Bandphosphatierung im Stahlwerk, wobei die Behandlungszeiten zwischen 5 und 12 Sekunden liegen, ist jedoch ebenfalls möglich. Wie bei anderen Phosphatierbädern des Standes der Technik ebenfalls üblich, liegen die geeigneten Badtemperaturen zwischen 30 und 70 °C, wobei der Temperaturbereich zwischen 40 und 60 °C bevorzugt wird.
    Das erfindungsgemäße Phosphatierverfahren ist zur Erzeugung einer Gleitschicht für Umformungen und insbesondere zur Behandlung der genannten Metalloberflächen vor einer Lackierung, beispielsweise vor einer kathodischen Elektrotauchlackierung gedacht, wie sie im Automobilbau üblich ist. Das Phosphatierverfahren ist als Teilschritt der technisch üblichen Vorbehandlungskette zu sehen. In dieser Kette sind der Phosphatierung üblicherweise die Schritte Reinigen/Entfetten, Zwischenspülen und Aktivieren vorgeschaltet, wobei die Aktivierung üblicherweise mit Titanphosphat-haltigen Aktiviermitteln erfolgt. Der erfindungsgemäßen Phosphatierung kann, gegebenenfalls nach einer Zwischenspülung, eine passivierende Nachbehandlung folgen. Für eine solche passivierende Nachbehandlung sind Chromsäure-haltige Behandlungsbäder weit verbreitet. Aus Gründen des Arbeits- und Umweltschutzes sowie aus Entsorgungsgründen besteht jedoch die Tendenz, diese chromhaltigen Passivierbäder durch chromfreie Behandlungsbäder zu ersetzen. Hierfür sind rein anorganische Badlösungen, insbesondere auf der Basis von Zirkonverbindungen, oder auch organisch-reaktive Badlösungen, beispielsweise auf Basis von Polyvinylphenolen, bekannt. Zwischen dieser Nachpassivierung und der sich üblicherweise anschließenden Elektrotauchlackierung wird in der Regel eine Zwischenspülung mit vollentsalztem Wasser durchgeführt.
    Ausführungsbeispiele 1 bis 7 - Vergleichsbeispiele 1 und 2
    Die erfindungsgemäßen Phosphatierverfahren unter Verwendung von Hydroxylaminverbindungen sowie Vergleichsverfahren wurden an Stahlblechen (St 1405) und an beidseitig elektrolytisch verzinkten Stahlblechen (ZE), wie sie im Automobilbau Verwendung finden, überprüft. Dabei wurde folgender in der Karosseriefertigung gebräuchlicher Verfahrensgang (im Tauch- bzw. Spritzverfahren) ausgeführt:
  • 1. Für Tauchverfahren: Reinigen mit einem alkalischen Reiniger (RidolineR C 1250 I, Henkel KGaA), Ansatz 2 % in Stadtwasser, 55 °C, 4 Minuten. Für Spritzverfahren: Reinigen mit einem alkalischen Reiniger (RidolineR C1206, Henkel KGaA), Ansatz 0,5 % in Stadtwasser, 55 °C, 2 Minuten.
  • 2. Spülen mit Stadtwasser im Spritzen oder Tauchen, Raumtemperatur, 1 Minute.
  • 3. Aktivieren mit einem Titanphosphat-haltigen Aktiviermittel im Tauchen (FixodineR 9112, Henkel KGaA), Ansatz 0,3 % in vollentsalztem Wasser, Raumtemperatur, 1 Minute.
  • 4. Phosphatieren mit Phosphatierbädern gemäß Tabelle 1. Außer den in Tabelle 1 genannten Kationen enthielten die Phosphatierbäder lediglich Natriumionen zum Einstellen der freien Säure. Die Bäder enthielten kein Nitrit und keine Oxo-Anionen von Halogenen.
    Unter der Punktzahl der freien Säure wird der Verbrauch in ml an 0,1-normaler Natronlauge verstanden, um 10 ml Badlösung bis zu einem pH-Wert von 3,6 zu titrieren. Analog gibt die Punktzahl der Gesamtsäure den Verbrauch in ml bis zu einem pH-Wert von 8,2 an.
  • 5. Spülen mit Stadtwasser im Spritzen oder Tauchen, Raumtemperatur, 1 Minute.
  • 6. Nachpassivieren mit einem chromathaltigen Nachpassiviermittel im Spritzen oder Tauchen (DeoxylyteR 41, Henkel KGaA,) Ansatz 0,14 % in vollentsalztem Wasser, 40 °C, 1 Minute
  • 7. Spülen mit vollentsalztem Wasser im Spritzen oder Tauchen.
  • 8. Trockenblasen mit Preßluft
  • Die flächenbezogene Masse ("Schichtgewicht") wurde durch Ablösen in 5 %-iger Chromsäurelösung bestimmt gemäß DIN 50942, Tabelle 6. Korrosionprüfungen erfolgten nach dem VDA-Wechselklimatest 621-415 mit KTL-Grundierung (KTL-hellgrau der Firma BASF, FT 85-7042); teilweise auch mit einem kompletten Lackaufbau (Decklack: alpinweiß, VW). Bewertet wurden nach jeweils 10 einwöchigen Prüfzyklen die Lackunterwanderung (mm) gemäß DIN 53167 und die Steinschlag-Kennwerte nach VW-Prüfvorschrift (K-Werte: bester Wert K = 1, schlechtester Wert K = 10). Die Ergebnisse sind in Tabelle 2 enthalten.
    Figure 00140001
    Figure 00150001
    Beispiel 8, Vergleichsbeispiele 3 und 4 Vefahrensgang (Tauchverfahren)
  • 1. Reinigen mit einem alkalischen Reiniger (RidolineR C 1250 I, Henkel KGaA), Ansatz 2 % in Stadtwasser, 55 °C, 4 Minuten.
  • 2. Spülen mit Stadtwasser, Raumtemperatur, 1 Minute.
  • 3. Aktivieren mit einem Titanphosphat-haltigen flüssigen Aktiviermittel (FixodineR L, Henkel KGaA), Ansatz 1 % in vollentsalztem Wasser, Raumtemperatur, 1 Minute.
  • 4. Phosphatieren mit Phosphatierbädern gemäß Tabelle 3, 53 °C, 3 Minuten. Außer den in Tabelle 3 genannten Kationen enthielten die Phosphatierbäder lediglich Natriumionen zum Einstellen der freien Säure. Das Bad des Beispiels 8 enthielt kein Nitrit oder Nitrat und keine Oxo-Anionen von Halogenen.
  • 5. Spülen mit Stadtwasser, Raumtemperatur, 1 Minute.
  • 6. Nachpassivieren mit einem chromfreien Nachpassiviermittel auf Basis Zirkonfluorid (DeoxylyteR 54 NC, Henkel KGaA,) Ansatz 0,25 % in vollentsalztem Wasser, 40 °C, 1 Minute
  • 7. Spülen mit vollentsalztem Wasser
  • 8. Trockenblasen mit Preßluft
  • (Materialien und Definition von freier Säure und Gesamtsäure wie Beispiele 1 bis 7).
    Schichtgewichte wurden durch Ablösen in 5 %-iger Chromsäurelösung bestimmt. Korrosionprüfungen erfolgten nach dem VDA-Wechselklimatest 621-415 sowohl nur mit KTL-Grundierung (ED 12 MB der Firma PPG) als auch mit einem kompletten Lackaufbau (KTL wie vorstehend, Füller: 1-Komponenten Highsolid PU-Füller grau, Decklack: DB 744 metallic Basecoat und Clearcoat). Bewertet wurde nach jeweils 10 einwöchigen Prüfzyklen die Lackunterwanderung (mm). Weiterhin erfolgte eine Kugelstoßprüfung nach Mercedes-Benz Norm analog DIN 53 230 (6 bar entsprechend 250 km/h), Auswertung bei Substrattemperatur -20 °C. Bewertet wurde die Schadensfläche in mm2 (Mercedes-Benz Norm: max. 5) und der Rostgrad (bester Wert = 0, schlechtester Wert = 5, Mercedes-Benz Norm: max. 2). Die Ergebnisse sind in Tabelle 4 enthalten.
    Phosphatierbäder
    Parameter Beispiel 8 Vergleich 3 Vergleich 4
    Zn(II) (g/l) 1,0 1,0 1,0
    Mn(II) (g/l) 0,8 1,0 0,8
    Ni(II) (g/l) - 0,9 0,8
    PO4 3- (g/l) 14,5 14,6 13,5
    Gesamt-F- (g/l) 0,8 0,8 0,8
    Freie Säure (Punkte) 1,0 1,0 1,0
    Gesamtsäure (Punkte) 22 23 24,0
    Hydroxylammoniumsulfat (g/l) 2 - 2
    Nitrit (mg/l) - 100 -
    Nitrat (g/l) - 2 2
    Figure 00180001
    Ausführungsbeispiele 9 bis 12 - Vergleichsbeispiele 5 bis 7
    Die erfindungsgemäßen Phosphatierverfahren unter Verwendung von m-Nitrobenzolsulfonat sowie Vergleichsverfahren wurden an Stahlblechen und an beidseitig elektrolytisch verzinkten Stahlblechen (ZE), wie sie im Automobilbau Verwendung finden, überprüft. Dabei wurde folgender in der Karosseriefertigung gebräuchlicher Verfahrensgang im Tauchverfahren ausgeführt:
  • 1. Reinigen mit einem alkalischen Reiniger (RidolineR 1558, Henkel KGaA), Ansatz 2 % in Stadtwasser, 55 °C, 5 Minuten.
  • 2. Spülen mit Stadtwasser, Raumtemperatur, 1 Minute.
  • 3. Aktivieren mit einem flüssigen Titanphosphat-haltigen Aktiviermittel im Tauchen (FixodineR L, Henkel KGaA), Ansatz 0,5 % in vollentsalztem Wasser, Raumtemperatur, 1 Minute.
  • 4. Phosphatieren mit Phosphatierbädern gemäß Tabelle 5 (Ansatz in vollentsalztem Wasser, wenn nicht anders vermerkt). Außer den in Tabelle 1 genannten Kationen enthielten die Phosphatierbäder lediglich Natriumionen zum Einstellen der freien Säure. Die Bäder enthielten kein Nitrit und keine Oxo-Anionen von Halogenen.
    Unter der Punktzahl der freien Säure wird der Verbrauch in ml an 0,1-normaler Natronlauge verstanden, um 10 ml Badlösung bis zu einem pH-Wert von 3,6 zu titrieren. Analog gibt die Punktzahl der Gesamtsäure den Verbrauch in ml bis zu einem pH-Wert von 8,5 an.
  • 5. Spülen mit Stadtwasser, Raumtemperatur, 1 Minute.
  • 6. Nachpassivieren mit einem chromathaltigen Nachpassiviermittel (DeoxylyteR 41, Henkel KGaA,) Ansatz 0,1 % in vollentsalztem Wasser, 40 °C, 1 Minute
  • 7. Spülen mit vollentsalztem Wasser.
  • 8. Trockenblasen mit Preßluft.
  • Die flächenbezogene Masse ("Schichtgewicht") wurde durch Ablösen in 5 %-iger Chromsäurelösung bestimmt gemäß DIN 50942. Korrosionprüfungen erfolgten nach dem VDA-Wechselklimatest 621-415 mit KTL-Grundierung (KTL-hellgrau der Firma BASF, FT 85-7042). Bewertet wurden nach jeweils 10 einwöchigen Prüfzyklen die Lackunterwanderung (mm) gemäß DIN 53167 und die Steinschlag-Kennwerte nach VW-Prüfvorschrift VW-P3.17.1 (K-Werte: bester Wert K = 1, schlechtester Wert K = 10). Die Ergebnisse sind in Tabelle 5 enthalten.
    Figure 00210001
    Figure 00220001

    Claims (16)

    1. Verfahren zur Phosphatierung von Metalloberflächen mit wäßrigen. sauren Phosphatierlösungen, die Zink-, Mangan- und Phosphationen und als Beschleuniger Hydroxylamin oder eine Hydroxylaminverbindung und/oder m-Nitrobenzosulfonsäure oder deren wasserlösliche Salze enthalten, dadurch gekennzeichnet, daß man die Metalloberflächen mit einer Phosphatierlösung in Berührung bringt, die frei von Nickel, Kobalt, Kupfer, Nitrit und Oxo-Anionen von Halogenen in dem Sinne ist, daß diese Elemente beziehungsweise Ionen dem Bad nicht bewußt zugesetzt werden und die Nickelkonzentration unter 0,01 g/l liegt, und die
      0,3 bis 2 g/l Zn(II)
      0,3 bis 4 g/l Mn(II)
      5 bis 40 g/l Phosphationen
      0,1 bis 5 g/l Hydroxylamin in freier oder gebundener Form und/oder
      0,2 bis 2 g/l m-Nitrobenzolsulfonat
      und höchstens 0,5 g/l Nitrationen
      enthält, wobei der Mn-Gehalt mindestens 50 % des Zn-Gehalts beträgt.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Phosphatierlösung weniger als 0,1 g/l Nitrat enthält.
    3. Verfahren nach einem oder beiden der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Phosphatierlösung zusätzlich Fluorid in freier und/oder komplex gebundener Form in Mengen bis zu 2,5 g/l Gesamtfluorid, davon bis zu 800 mg/l freies Fluorid enthält.
    4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Phosphatierlösung ein Gewichtsverhältnis Phosphationen zu Zinkionen zwischen 3,7 und 30, vorzugsweise zwischen 10 und 20 aufweist.
    5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Phosphatierlösung einen Mn(II)-Gehalt zwischen 0,3 und 2 g/l, vorzugsweise zwischen 0,5 und 1,5 g/l aufweist.
    6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Phosphatierlösung m-Nitrobenzolsulfonat als freie Säure oder als wasserlösliches Salz, insbesondere als Natriumsalz, enthält und die Konzentration an m-Nitrobenzolsulfonat vorzugsweise 0,4 bis 1 g/l beträgt.
    7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Wert der Gesamtsäure zwischen 15 und 25 Punkten und der Wert der freien Säure bei Teilephosphatierung zwischen 0,3 und 1,5 Punkte, bei Bandphosphatierung zwischen 0,3 und 2,5 Punkten betragen.
    8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Phosphatierlösung Hydroxylamin in freier oder in komplex gebundener Form oder in Form seiner Salze, insbesondere in Form der Sulfate oder der Phosphate enthält.
    9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Phosphatierlösung einen Gehalt an Hydroxylamin in freier Form, in Form von Salzen oder in komplex gebundener Form zwischen 0,4 und 2 g/l, berechnet als Hydroxylamin, aufweist.
    10. Verfahren nach einem oder beiden der Ansprüche 8 und 9, dadurch gekennzeichnet, daß das Verhältnis der Summe der Konzentrationen von Zink und Mangan zur Konzentration des Hydroxylamins, jeweils in g/l, 1,0 bis 6,0, vorzugsweise 2,0 bis 4,0 beträgt.
    11. Verfahren nach einem oder mehreren der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß die Phosphatierlösung zusätzlich 20 bis 800 mg/l, vorzugsweise 50 bis 600 mg/l Wolfram in Form wasserlöslicher Wolframate, Silicowolframate und/oder Borowolframate in Form ihrer Säuren und/oder ihrer Ammonium-, Alkalimetall- und/oder Erdalkalimetallsalze enthält.
    12. Verfahren nach einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Phosphatierlösung entweder Hydroxylamin oder m-Nitrobenzolsulfonsäure enthält.
    13. Verfahren nach einem oder mehreren der Ansprüche 1 bis 12 zur Behandlung von Oberflächen aus Stahl, verzinktem oder legierungsverzinktem Stahl, Aluminium, aluminiertem oder legierungsaluminiertem Stahl.
    14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß man die Metalloberfläche mit der Phosphatierlösung durch Spritzen, Tauchen oder Spritztauchen für Behandlungszeiten zwischen 5 Sekunden und 8 Minuten in Kontakt bringt.
    15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die Temperatur der Phosphatierlösung zwischen 30 und 70 °C, beträgt.
    16. Verfahren nach Anspruch 15 zur Behandlung von Metalloberflächen vor einer Lackierung, insbesondere vor einer kathodischen Elektrotauchlackierung.
    EP94925483A 1993-09-06 1994-08-29 Nickelfreies phosphatierverfahren Expired - Lifetime EP0717787B1 (de)

    Applications Claiming Priority (5)

    Application Number Priority Date Filing Date Title
    DE4330104 1993-09-06
    DE4330104A DE4330104A1 (de) 1993-09-06 1993-09-06 Nickel- und Kupfer-freies Phosphatierverfahren
    DE19934341041 DE4341041A1 (de) 1993-12-02 1993-12-02 Nickelfreies Phosphatierverfahren mit m-Nitrobenzolsulfonat
    DE4341041 1993-12-02
    PCT/EP1994/002848 WO1995007370A1 (de) 1993-09-06 1994-08-29 Nickelfreies phosphatierverfahren

    Publications (2)

    Publication Number Publication Date
    EP0717787A1 EP0717787A1 (de) 1996-06-26
    EP0717787B1 true EP0717787B1 (de) 1998-01-14

    Family

    ID=25929280

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP94925483A Expired - Lifetime EP0717787B1 (de) 1993-09-06 1994-08-29 Nickelfreies phosphatierverfahren

    Country Status (13)

    Country Link
    US (1) US5792283A (de)
    EP (1) EP0717787B1 (de)
    JP (1) JP3348856B2 (de)
    KR (1) KR100327287B1 (de)
    CN (1) CN1041001C (de)
    AT (1) ATE162233T1 (de)
    AU (1) AU678284B2 (de)
    BR (1) BR9407485A (de)
    CA (1) CA2171180A1 (de)
    CZ (1) CZ286514B6 (de)
    DE (1) DE59405046D1 (de)
    ES (1) ES2111949T3 (de)
    WO (1) WO1995007370A1 (de)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN103184444A (zh) * 2013-03-29 2013-07-03 柳州煜华科技有限公司 一种适用于金属紧固件的磷化液

    Families Citing this family (18)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5653790A (en) * 1994-11-23 1997-08-05 Ppg Industries, Inc. Zinc phosphate tungsten-containing coating compositions using accelerators
    DE19511573A1 (de) * 1995-03-29 1996-10-02 Henkel Kgaa Verfahren zur Phosphatierung mit metallhaltiger Nachspülung
    DE19639596A1 (de) * 1996-09-26 1998-04-02 Henkel Kgaa Verfahren zur Phosphatierung von Stahlband
    DE19756735A1 (de) * 1997-12-19 1999-06-24 Henkel Kgaa Phosphatierung von einseitig verzinktem Stahlband
    DE19808440C2 (de) * 1998-02-27 2000-08-24 Metallgesellschaft Ag Wässrige Lösung und Verfahren zur Phosphatierung metallischer Oberflächen sowie eine Verwendung der Lösung und des Verfahrens
    DE19808755A1 (de) * 1998-03-02 1999-09-09 Henkel Kgaa Schichtgewichtsteuerung bei Bandphosphatierung
    DE19834796A1 (de) 1998-08-01 2000-02-03 Henkel Kgaa Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung
    AU2348500A (en) * 1998-12-23 2000-07-31 Henkel Corporation Composition and process for heavy zinc phosphating
    JP2001342575A (ja) * 2000-05-31 2001-12-14 Nippon Dacro Shamrock Co Ltd 水性金属表面処理剤
    DE10110833B4 (de) * 2001-03-06 2005-03-24 Chemetall Gmbh Verfahren zum Aufbringen eines Phosphatüberzuges und Verwendung der derart phosphatierten Metallteile
    DE10155666A1 (de) * 2001-11-13 2003-05-22 Henkel Kgaa Mit Hydroxylamin und organischen Stickstoffverbindungen beschleunigtes Phosphatierverfahren
    KR100554740B1 (ko) * 2001-12-17 2006-02-24 주식회사 포스코 인산피막이 형성된 전기아연 도금강판 제조방법
    US20080314479A1 (en) * 2007-06-07 2008-12-25 Henkel Ag & Co. Kgaa High manganese cobalt-modified zinc phosphate conversion coating
    DE102010001686A1 (de) 2010-02-09 2011-08-11 Henkel AG & Co. KGaA, 40589 Zusammensetzung für die alkalische Passivierung von Zinkoberflächen
    PL2503025T3 (pl) 2011-03-22 2013-12-31 Henkel Ag & Co Kgaa Chroniąca przed korozją, wielostopniowa obróbka metalowych elementów konstrukcyjnych o powierzchniach cynkowych
    CN102703889B (zh) * 2012-05-28 2014-06-04 武汉永正科技发展有限公司 低温单组份锌系磷化液及其制备方法
    CN104651820A (zh) * 2015-02-16 2015-05-27 天津大学 一种碳钢超声磷化液及制备方法以及采用磷化液对碳钢磷化的方法
    WO2016162423A1 (de) * 2015-04-07 2016-10-13 Chemetall Gmbh Verfahren zur nickelfreien phosphatierung von metallischen oberflächen

    Family Cites Families (16)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS5339945A (en) * 1976-09-25 1978-04-12 Nippon Packaging Kk Surface treatment of zinc or zinc alloy
    GB2072225B (en) * 1980-03-21 1983-11-02 Pyrene Chemical Services Ltd Process and composition for coating metal surfaces
    JPS57152472A (en) * 1981-03-16 1982-09-20 Nippon Paint Co Ltd Phosphating method for metallic surface for cation type electrodeposition painting
    ES8606528A1 (es) * 1985-02-22 1986-04-01 Henkel Iberica Procedimiento para el fosfatado de superficies metalicas, especialmente ferreas
    ATE160592T1 (de) * 1985-08-27 1997-12-15 Henkel Corp Verfahren zur phosphatierung von metalloberflächen
    US4865653A (en) * 1987-10-30 1989-09-12 Henkel Corporation Zinc phosphate coating process
    NL8703050A (nl) * 1987-12-16 1989-07-17 Johannes Schuitemaker Invoermechanisme voor een opraapwagen.
    AU610313B2 (en) * 1987-12-18 1991-05-16 Nippon Paint Co., Ltd. Process for phosphating metal surfaces
    JP2636919B2 (ja) * 1989-01-26 1997-08-06 日本パーカライジング株式会社 鉄鋼の冷間塑性加工用潤滑処理方法
    US5232523A (en) * 1989-03-02 1993-08-03 Nippon Paint Co., Ltd. Phosphate coatings for metal surfaces
    DE3913089A1 (de) * 1989-04-21 1990-10-25 Henkel Kgaa Chlorat- und nitritfreies verfahren zur herstellung von nickel- und manganhaltigen zinkphosphatschichten
    JPH0696773B2 (ja) * 1989-06-15 1994-11-30 日本ペイント株式会社 金属表面のリン酸亜鉛皮膜形成方法
    DE3920296A1 (de) * 1989-06-21 1991-01-10 Henkel Kgaa Verfahren zur herstellung von mangan- und magnesiumhaltigen zinkphosphatueberzuegen
    DE4013483A1 (de) * 1990-04-27 1991-10-31 Metallgesellschaft Ag Verfahren zur phosphatierung von metalloberflaechen
    US5268041A (en) * 1990-04-27 1993-12-07 Metallgesellschaft Ag Process for phosphating metal surfaces
    DE4210513A1 (de) * 1992-03-31 1993-10-07 Henkel Kgaa Nickel-freie Phosphatierverfahren

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN103184444A (zh) * 2013-03-29 2013-07-03 柳州煜华科技有限公司 一种适用于金属紧固件的磷化液
    CN103184444B (zh) * 2013-03-29 2016-08-03 柳州煜华科技有限公司 一种适用于金属紧固件的磷化液

    Also Published As

    Publication number Publication date
    AU678284B2 (en) 1997-05-22
    CZ286514B6 (cs) 2000-05-17
    JP3348856B2 (ja) 2002-11-20
    ES2111949T3 (es) 1998-03-16
    CN1129961A (zh) 1996-08-28
    ATE162233T1 (de) 1998-01-15
    JPH09502224A (ja) 1997-03-04
    KR960705076A (ko) 1996-10-09
    EP0717787A1 (de) 1996-06-26
    BR9407485A (pt) 1996-06-25
    WO1995007370A1 (de) 1995-03-16
    CZ67396A3 (en) 1996-12-11
    KR100327287B1 (ko) 2002-11-22
    AU7537394A (en) 1995-03-27
    US5792283A (en) 1998-08-11
    CA2171180A1 (en) 1995-03-16
    DE59405046D1 (de) 1998-02-19
    CN1041001C (zh) 1998-12-02

    Similar Documents

    Publication Publication Date Title
    EP0717787B1 (de) Nickelfreies phosphatierverfahren
    EP0817872B1 (de) Verfahren zur phosphatierung mit metallhaltiger nachspülung
    EP1114202A1 (de) Verfahren zur phosphatierung, nachspülung und kathodischer elektrotauchlackierung
    DE3920296A1 (de) Verfahren zur herstellung von mangan- und magnesiumhaltigen zinkphosphatueberzuegen
    EP0931179B1 (de) Verfahren zur phosphatierung von stahlband
    DE19705701A1 (de) Verfahren zur Niedrig-Nickel-Phosphatierung mit metallhaltiger Nachspülung
    EP0889977B1 (de) Zinkphosphatierung mit geringen gehalten an kupfer und mangan
    EP1005578B1 (de) Mit n-oxiden beschleunigtes phosphatierverfahren
    DE4330104A1 (de) Nickel- und Kupfer-freies Phosphatierverfahren
    DE4341041A1 (de) Nickelfreies Phosphatierverfahren mit m-Nitrobenzolsulfonat
    EP1090160B1 (de) Schichtgewichtsteuerung bei bandphosphatierung
    DE19606018A1 (de) Zinkphosphatierung mit geringen Gehalten an Nickel- und/oder Cobalt
    WO1999014397A1 (de) Verfahren zur phosphatierung von stahlband
    WO1997014821A1 (de) Schichtgewichtssteuerung bei hydroxylamin-beschleunigten phosphatiersystemen
    EP0866888B1 (de) Verfahren zur phosphatierung von metalloberflächen
    DE19958192A1 (de) Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung
    WO1997016581A2 (de) Nitratarme, manganfreie zinkphosphatierung
    DE19500927A1 (de) Lithiumhaltige Zinkphosphatierlösung
    WO1998009000A1 (de) Rutheniumhaltige zinkphosphatierung
    DE10310680A1 (de) Verfahren zur Phosphatierung mit einer Kombination von Beschleunigern
    DE19940619A1 (de) Zinkphosphatierung mit Epoxiden
    DE19939519A1 (de) Beschleuniger für die Phosphatierung von Metalloberflächen
    DE19716075A1 (de) Mit Hydroxylamin und Chlorat beschleunigtes Phosphatierverfahren
    DE19750301A1 (de) Mit N-Oxiden und Clorat beschleunigtes Phosphatierverfahren

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19960226

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE DE ES FR GB IT NL PT SE

    17Q First examination report despatched

    Effective date: 19960712

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE DE ES FR GB IT NL PT SE

    REF Corresponds to:

    Ref document number: 162233

    Country of ref document: AT

    Date of ref document: 19980115

    Kind code of ref document: T

    ET Fr: translation filed
    REF Corresponds to:

    Ref document number: 59405046

    Country of ref document: DE

    Date of ref document: 19980219

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2111949

    Country of ref document: ES

    Kind code of ref document: T3

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19980225

    ITF It: translation for a ep patent filed

    Owner name: STUDIO JAUMANN P. & C. S.N.C.

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 19980211

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20010807

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20010813

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20010814

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20010830

    Year of fee payment: 8

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20020826

    Year of fee payment: 9

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020829

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020830

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20021018

    Year of fee payment: 9

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030301

    EUG Se: european patent has lapsed
    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20030301

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030830

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030831

    BERE Be: lapsed

    Owner name: *HENKEL K.G.A.A.

    Effective date: 20030831

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20030830

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050829

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20130821

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20130808

    Year of fee payment: 20

    Ref country code: GB

    Payment date: 20130828

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59405046

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20140828

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20140830

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20140828