WO2016162423A1 - Verfahren zur nickelfreien phosphatierung von metallischen oberflächen - Google Patents

Verfahren zur nickelfreien phosphatierung von metallischen oberflächen Download PDF

Info

Publication number
WO2016162423A1
WO2016162423A1 PCT/EP2016/057622 EP2016057622W WO2016162423A1 WO 2016162423 A1 WO2016162423 A1 WO 2016162423A1 EP 2016057622 W EP2016057622 W EP 2016057622W WO 2016162423 A1 WO2016162423 A1 WO 2016162423A1
Authority
WO
WIPO (PCT)
Prior art keywords
ions
phosphating
composition
nickel
free
Prior art date
Application number
PCT/EP2016/057622
Other languages
English (en)
French (fr)
Inventor
Olaf Dahlenburg
Frank Hollmann
Lisa SCHMEIER
Original Assignee
Chemetall Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55802343&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016162423(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Chemetall Gmbh filed Critical Chemetall Gmbh
Priority to RU2017138445A priority Critical patent/RU2746373C2/ru
Priority to MX2017012919A priority patent/MX2017012919A/es
Priority to EP16718613.9A priority patent/EP3280831A1/de
Priority to JP2017553120A priority patent/JP6804464B2/ja
Priority to CN201680032979.8A priority patent/CN107735511B/zh
Priority to BR112017021409-1A priority patent/BR112017021409B1/pt
Priority to US15/562,970 priority patent/US10738383B2/en
Priority to KR1020177031822A priority patent/KR20170134613A/ko
Publication of WO2016162423A1 publication Critical patent/WO2016162423A1/de
Priority to ZA2017/07420A priority patent/ZA201707420B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/182Orthophosphates containing manganese cations containing also zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/362Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • C23C22/365Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations containing also zinc and nickel cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/12Electrophoretic coating characterised by the process characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • the present invention relates to a process for essentially nickel-free phosphating of a metallic surface, a corresponding phosphating composition and a correspondingly phosphate-coated metallic surface.
  • phosphate coatings on metallic surfaces are known. Such coatings serve to protect the corrosion of the metallic surfaces and also as adhesion promoters for subsequent paint layers. Such phosphate coatings are mainly used in the automotive industry and the general industry.
  • KTL cathodically deposited electrodeposition paints
  • phosphate coatings are usually applied by means of a nickel-containing phosphating solution.
  • the elementary or as alloying constituent, e.g. Zn / Ni, deposited nickel ensures a suitable conductivity of the coating in the subsequent electrodeposition coating.
  • nickel ions are no longer desirable as part of treatment solutions because of their high toxicity and environmental toxicity, and should therefore be avoided or at least reduced in content as much as possible.
  • the use of nickel-free or low-nickel Phosphatierlositch is known in principle. However, this is limited to certain substrates such as steel.
  • the object of the present invention was therefore to provide a process with which metallic surfaces can be phosphated essentially nickel-free, with respect to their electrochemical properties, comparable or nearly comparable to the metallic surfaces which have been treated with nickel-containing phosphating solutions, and in particular the abovementioned Disadvantages of the prior art can be avoided.
  • a metallic surface In the method according to the invention for substantially nickel-free phosphating of a metallic surface, a metallic surface, optionally after purification and / or activation, is first treated with an acidic aqueous phosphating composition comprising zinc ions, manganese ions and phosphate ions, optionally rinsed and / or dried, and thereafter treated with an aqueous post-rinse composition comprising at least one type of metal ion selected from the group consisting of the ions of molybdenum, copper, silver, gold, palladium, tin, antimony, titanium, zirconium and hafnium and / or at least one polymer selected from the group consisting of the classes of polymers comprising polyamines, polyethyleneamines, polyanilines, polyimines, polyethylenimines, polythiophenes and polypryrenes and mixtures and copolymers thereof, wherein both the phosphating composition and the post-rinse composition are substantially nickel free.
  • aqueous composition refers to a composition which comprises at least some, preferably predominantly water, as the solvent, and may comprise, in addition to dissolved constituents, also dispersed, ie emulsified and / or suspended constituents.
  • phosphate ions are also to be understood as meaning hydrogenphosphate, dihydrogenphosphate and phosphoric acid, and pyrophosphoric acid and polyphosphoric acid as well as all their partially and completely deprotonated forms are to be included in the term "metal ion" in the context of the present invention either a metal cation or a complex cation Metal cation or a complex metal anion understood.
  • composition contains less than 0.3 g / l of nickel ions, it should be considered as "essentially nickel-free" for the purposes of the present invention.
  • the metallic surface is preferably steel, hot-dip galvanizing, electrolytic galvanizing, aluminum or their alloys such as Zn / Fe or Zn / Mg.
  • the hot-dip galvanizing and the electrolytic galvanizing in each case are in particular such on steel.
  • the metallic surface is at least partially galvanized.
  • the inventive method is particularly suitable for multi-metal applications.
  • a metallic surface is to be coated, which is not a fresh hot-dip galvanizing, it is advantageous to clean the metallic surface before the treatment with the phosphating only in an aqueous cleaning composition, in particular to degrease.
  • an acidic, neutral, alkaline or strongly alkaline cleaning composition it is possible in particular to use an acidic, neutral, alkaline or strongly alkaline cleaning composition, but optionally also an acidic or neutral pickling composition.
  • the aqueous cleaning composition may optionally contain, in addition to at least one surfactant, a scaffold and / or other additives such as complexing agents.
  • the use of an activating cleaner is also possible.
  • After cleaning / pickling then takes place advantageously at least rinsing of the metallic surface with water, wherein the water optionally also dissolved in water additive such.
  • a nitrite or surfactant may be added.
  • the activation composition serves to deposit a plurality of ultrafine phosphate particles as seed crystals on the metallic surface. These help in the subsequent process step, in contact with the phosphating - preferably without interim rinsing - form a particular crystalline phosphate layer with the highest possible number of densely arranged fine phosphate crystals or a substantially closed phosphate layer.
  • acidic or alkaline compositions based on titanium phosphate or zinc phosphate may be considered as activating compositions.
  • activating agents in particular titanium phosphate or zinc phosphate, in the cleaning composition, ie to carry out purification and activation in one step.
  • the acidic aqueous phosphating composition includes zinc ions, manganese ions, and phosphate ions.
  • the phosphating composition may be obtained from a concentrate by dilution with a suitable solvent, preferably with water, by a factor of between 1 and 100, preferably between 5 and 50, and if necessary adding a pH modifying substance.
  • a suitable solvent preferably with water
  • the phosphating composition preferably comprises the following components in the following preferred and particularly preferred concentration ranges:
  • a concentration in the range from 0.3 to 2.5 g / l has already been found to be advantageous with regard to the free fluoride, a concentration in the range from 10 to 250 mg / l.
  • the complex fluoride is preferably tetrafluoroborate (BF " ) and / or hexafluorosilicate (SiF 6 2 ⁇ ).
  • a content of complex fluoride and single fluoride, for example sodium fluoride, in the phosphating composition advantageous.
  • Al 3+ is a bad poison in phosphating systems and can be removed from the system by complexation with fluoride, eg as cryolite.
  • Complex fluorides are added to the bath as a "fluoride buffer", as otherwise the fluoride content quickly falls off and coating no longer takes place.Fluoride thus promotes the formation of the phosphate layer and thus indirectly also improves paint adhesion and corrosion protection.Complex fluoride also helps on galvanized material, errors In particular, in the treatment of aluminum, it is furthermore advantageous if the phosphating composition has a content of Fe (III), in which case a Fe (III) content in the range from 0.001 to 0.2 g / l, particularly preferably from 0.005 to 0.1 g / l and most preferably from 0.01 to 0.05 g / l.
  • the phosphating composition preferably contains at least one Accelerator selected from the group consisting of the following compounds in the following preferred and particularly preferred concentration ranges:
  • a concentration in the range of 0.1 to 3.0 g / l has already been found to be advantageous with respect to the H2O2, a concentration in the range from 5 to 200 mg / l.
  • the at least one accelerator is H2O2.
  • the phosphating composition preferably contains less than 1 g / l, more preferably less than 0.5 g / l, more preferably less than 0.1 g / l and most preferably less than 0.01 g / l of nitrate.
  • the nitrate in the phosphating composition causes an additional acceleration of the layer formation reaction, which leads to lower coating weights but, above all, reduces the incorporation of manganese into the crystal.
  • the manganese content of the phosphate coating is too low, this is at the expense of its alkali resistance.
  • Alkali resistance in turn plays a crucial role in subsequent cathodic electrodeposition.
  • an electrolytic splitting of water occurs at the substrate surface: Hydroxide ions are formed. This causes the pH at the interface of the substrate to increase. It is true that only then can the electrocoating be agglomerated and separated. However, the increased pH can also damage the crystalline phosphate layer.
  • the phosphating composition preferably has a temperature in the range of 30 to 55 ° C.
  • the phosphating composition can be characterized by the following preferred and particularly preferred parameter ranges:
  • FS stands for free acid
  • FS (verd.) For free acid (diluted)
  • GSF for total acid according to Fischer
  • GS for total acid
  • S value for acid value
  • a suitable vessel for example a 300 ml Erlenmeyer flask. If the phosphating composition contains complex fluorides, 2-3 g of potassium chloride are added to the sample. Then, using a pH meter and an electrode, it is titrated with 0.1 M NaOH to a pH of 3.6. The amount of 0.1 M NaOH consumed in ml per 10 ml of the phosphating composition gives the value of the free acid (FS) in points. Free acid (diluted) (FS (dil.)):
  • the dilute phosphating composition is titrated to pH 8.9 after addition of potassium oxalate solution using a pH meter and electrode with 0.1 M NaOH.
  • the consumption of 0.1 M NaOH in ml per 10 ml of the diluted phosphating composition hereby gives the total Fischer acid (GSF) in points. If this value is multiplied by 0.71, the total content of phosphate ions is calculated as P2O 5 (see W. Rausch: "The Phosphatization of Metals.” Eugen G. Leuze-Verlag 2005, 3rd edition, pp. 332 ff) ,
  • the total acid (GS) is the sum of the divalent cations present as well as free and bound phosphoric acids (the latter being phosphates). It is determined by the consumption of 0.1 M NaOH using a pH meter and an electrode. For this purpose, 10 ml of the phosphating composition are pipetted into a suitable vessel, for example a 300 ml Erlenmeyer flask and diluted with 25 ml of deionized water. It is then titrated with 0.1 M NaOH to a pH of 9. The consumption in ml per 10 ml of the diluted phosphating composition corresponds to the total acid score (GS).
  • S value stands for the ratio FS: GSF and is obtained by dividing the value of the free acid (FS) by the value of the total acid according to Fischer (GSF).
  • a temperature of the phosphating of less than 45 ° C, preferably in the range between 35 and 45 ° C leads to further improved corrosion and paint adhesion values.
  • the phosphating composition is essentially nickel free. It preferably contains less than 0.1 g / l and more preferably less than 0.01 g / l of nickel ions.
  • the treatment of the metallic surface with the phosphating composition is preferably carried out for 30 to 480, particularly preferably for 60 to 300 and very particularly preferably for 90 to 240 seconds, preferably by means of dipping or spraying.
  • the following preferred and particularly preferred zinc phosphate layer weights are obtained on the metallic surface (determined by X-ray fluorescence analysis (RFA)):
  • the metallic surface is rinsed after treatment with the phosphating composition, more preferably rinsed with demineralized water or city water.
  • the metallic surface is dried prior to treatment with the post-rinse composition.
  • the post-rinse composition can be obtained from a concentrate by dilution with a suitable solvent, preferably with water, by a factor of between 1 and 1000, preferably between 5 and 500, and if necessary adding a pH-modifying substance.
  • the post-rinse composition contains at least one kind of metal ion selected from the group consisting of the ions of the following metals in the following preferred, most preferred and most preferred concentration ranges (all calculated as corresponding metal):
  • the metal ions contained in the rinsing solution separate either in the form of a salt which preferably contains the corresponding metal cation (eg molybdenum or tin) in at least two oxidation states - in particular in the form of an oxide hydroxide, a hydroxide, a spinel or a defect spinel - or elementally on the surface to be treated (eg copper, silver, gold or palladium).
  • a salt which preferably contains the corresponding metal cation (eg molybdenum or tin) in at least two oxidation states - in particular in the form of an oxide hydroxide, a hydroxide, a spinel or a defect spinel - or elementally on the surface to be treated (eg copper, silver, gold or palladium).
  • the metal ions are molybdenum ions. These are preferred as molybdate, more preferably as Ammonium heptamolybdate and more preferably added as ammonium heptamolybdate x 7 H 2 O the Nach Hugheszusammen experience.
  • the molybdenum ions can also be added as Nathummolybdat.
  • molybdenum ions may also be added to the post-rinse composition in the form of at least one molybdenum cation-containing salt, such as molybdenum chloride, and then oxidized to molybdate by a suitable oxidizing agent, for example by the accelerators described above.
  • a suitable oxidizing agent for example by the accelerators described above.
  • the post-rinse composition itself contains a corresponding oxidizing agent. More preferably, the post-rinse composition contains molybdenum ions in combination with copper ions, tin ions or zirconium ions.
  • a polymer or copolymer in particular selected from the group consisting of the polymer classes of polyamines, polyethyleneamines, polyanilines, polyimines, polyethyleneimines, polythiophenes and polypryrenes and mixtures and copolymers thereof and polyacrylic acid, wherein the content molybdenum ions and zirconium ions are each in the range of 10 to 500 mg / l (calculated as metal).
  • the content of molybdenum ions is preferably in the range from 20 to 225 mg / l, particularly preferably from 50 to 225 mg / l and very particularly preferably from 100 to 225 mg / l and the content of zirconium ions in the range from 50 to 300 mg / l. l, more preferably from 50 to 150 mg / l.
  • the metal ions are copper ions.
  • the rinsing solution then contains these in a concentration of 100 to 500 mg / l, more preferably from 150 to 225 mg / l.
  • the rinse-off composition according to the invention comprises at least one polymer selected from the group consisting of the polymer classes of the polyamines, polyethyleneamines, polyanilines, polyimines, polyethyleneimines, polythiophenes and polypryrenes and also their mixtures and copolymers.
  • the at least one polymer is preferably in a concentration in the range of 0.1 to 5 g / l, more preferably from 0.1 to 3 g / l, more preferably from 0.3 to 2 g / l and particularly preferably in the range from 0.5 to 1.5 g / l (calculated as pure polymer).
  • the polymers used are preferably cationic polymers, in particular polyamines, polyethyleneamines, polyimines and / or polyethyleneimines. Particular preference is given to using a polyamine and / or polyimine, very particularly preferably a polyamine.
  • the rinse-off composition according to the invention comprises at least one kind of metal ion selected from the group consisting of the ions of molybdenum, copper, silver, gold, palladium, tin, antimony, titanium, zirconium and hafnium and at least one polymer selected from the group consisting of the polymer classes of the polyamines, polyethyleneamines, polyanilines, polyimines, polyethylenimines, polythiophenes and polypryrenes and their mixtures and copolymers, in each case in the following preferred, particularly preferred and very particularly preferred concentration ranges (polymer calculated as pure polymer and metal ions calculated as the corresponding metal).
  • metal ion selected from the group consisting of the ions of molybdenum, copper, silver, gold, palladium, tin, antimony, titanium, zirconium and hafnium
  • polymer selected from the group consisting of the polymer classes of the polyamines, polyethyleneamines, polyanilines, polyimines, polye
  • the at least one polymer is a cationic polymer, in particular a polyamine and / or polyimine, and the metal ions are copper ions, molybdenum ions and / or zirconium ions, in each case in the following preferred, particularly preferred and very particular preferred concentration ranges (polymer calculated as pure polymer and metal ions calculated as the corresponding metal).
  • the post-rinse composition comprises, in particular, when the metallic surface is aluminum or an aluminum alloy, preferably additionally 20 to 500 mg / l, more preferably 50 to 300 mg / l and particularly preferably 50 to 150 mg / l of Ti, Zr and / or Hf in complexed form (calculated as metal). These are preferably fluoro complexes.
  • the post-rinse composition preferably comprises 10 to 500 mg / l, more preferably 15 to 100 mg / l, and most preferably 15 to 50 mg / l of free fluoride.
  • the post-rinse composition contains Zr in complexed form (calculated as metal) and at least one kind of metal ions selected from the group consisting of the ions of molybdenum, copper, silver, gold, palladium, tin and antimony, preferably molybdenum.
  • a post-rinse composition comprising Ti, Zr and / or Hf in complexed form preferably additionally contains at least one organosilane and / or at least one hydrolysis product thereof, ie an organosilanol, and / or at least one condensation product thereof, ie an organosiloxane / polyorganosiloxane, within a concentration range of 5 to 200 mg / l, more preferably from 10 to 100 mg / l, and particularly preferably from 20 to 80 mg / l (calculated as Si).
  • the at least one organosilane preferably has at least one amino group on. Particularly preferably it is one which can be hydrolyzed to an aminopropylsilanol and / or to 2-aminoethyl-3-amino-propyl-silanol and / or a bis (trimethoxysilylpropyl) amine.
  • the pH of the post-rinse composition is preferably in the acidic range, more preferably in the range of 3 to 5, particularly preferably in the range of 3.5 to 5.
  • the pH is preferably 3.5 to 4.5, and more preferably 3.5 to 4.0.
  • the post-rinse composition is essentially nickel free. It preferably contains less than 0.1 g / l and more preferably less than 0.01 g / l of nickel ions.
  • the post-rinse composition preferably has a temperature in the range of 15 to 40 ° C.
  • the treatment of the metallic surface with the post-rinse composition is preferably carried out for 10 to 180, particularly preferably for 20 to 150 and very particularly preferably for 30 to 120 seconds, preferably by means of dipping or spraying.
  • the invention further relates to a phosphate-coated metallic surface, which is obtainable by the method according to the invention.
  • the electrical conductivity of the phosphate-coated metal surface can be adjusted in a targeted manner by producing defined pores in the phosphate layer.
  • the conductivity may be either greater than, equal to, or smaller than that of a corresponding metal surface provided with a nickel-containing phosphate coating.
  • the adjusted by the inventive method electrical conductivity of the phosphate-coated metal surface can be influenced by the variation of the concentration of a given metal ion or polymer in the rinse.
  • On the phosphate-coated - as well as the Nachêtzusammen GmbH treated - metallic surface can then cathodically deposited an electrodeposition paint and a paint system can be applied.
  • the metallic surface is first rinsed after the treatment with the Nach Whyzusammen GmbH, preferably with deionized water, and optionally dried.
  • a test plate of electrolytically galvanized steel (ZE) was prepared by means of a 1.3 g / l Zn, 1 g / l Mn, 13 g / l PO 4 3 " (calculated as P 2 O 5 ), 3 g / l NO 3 " and also 1 g / l nickel containing, 53 ° C hot Phosphatierlosung coated. No rinsing was done. Subsequently, the current density i in A / cm 2 was compared with the vs. a voltage applied to silver / silver chloride (Ag / AgCl) electrode E is measured in V (see FIG. 1: ZE_Variation1 1_2: curve 3).
  • the measurement was carried out by means of so-called linear sweep voltammetry (potential range: -1, 1 to -0.2 V ref ; scan rate: 1 mV / s).
  • the measured current density i is dependent on the electrical conductivity of the conversion coating. The higher the measured current density i, the higher the electrical conductivity of the conversion coating.
  • a direct measurement of the electrical conductivity in S / cm, as is possible in liquid media, can not be carried out in conversion coatings.
  • the current density i measured in the case of a nickel-containing conversion coating always serves as a reference point for statements about the electrical conductivity of a given conversion coating.
  • a test plate according to Comparative Example 1 was obtained by means of a nickel-free, 1.3 g / l Zn, 1 g / l Mn, 16 g / l PO 4 3 " (calculated as P 2 O 5 ) and 2 g / l NO 3 " , Coated 53 ° C warm Phosphatierlosung without rinsing and then the current density i over the voltage E according to Comparative Example 1 measured (see Fig. 1. ZE_Variation1_1: curve 1, ZE_Variation1_3: curve 2).
  • a test plate according to Comparative Example 1 was coated by means of a nickel-free phosphating solution according to Comparative Example 2. Subsequently, the thus coated test plate was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) with a pH of about 4. The current density i across the voltage E was measured according to Comparative Example 1 (see FIG. 2. ZE_Variation6_1: curve 1; ZE_Variation6_2: curve 2). Comparing with Comparative Example 1 (FIG. 2: ZE_Variation1 1_2: curve 3). As can be seen from FIG.
  • a test plate according to Comparative Example 1 was coated by means of a nickel-free phosphating solution according to Comparative Example 2. Subsequently, the test plate coated in this way was treated with a rinsing solution containing about 220 mg / l copper ions and having a pH of about 4. The current density i across the voltage E was measured according to Comparative Example 1 (see FIG. 3. ZE_Variation2_1: curve 1; ZE_Variation2_2: curve 2). Compared again with Comparative Example 1 (FIG. 3: ZE_Variation1 1_2: curve 3).
  • the resting potential of the nickel-free system when using a rinsing solution containing copper ions corresponds to that of the nickel-containing system (Comparative Example 1).
  • the conductivity of this nickel-free system is slightly increased over that of the nickel-containing system.
  • a test plate according to Comparative Example 1 was coated by means of a nickel-free phosphating solution according to Comparative Example 2. Subsequently, the thus coated test plate was treated with a rinsing solution, which was about 1 g / l (calculated on the pure polymer) electrically conductive polyamine (Lupamin® 9030, manufacturer BASF) contained a pH of about 4 had.
  • the current density i across the voltage E was measured according to Comparative Example 1 (see FIG. 4. ZE_Variation3_1: curve 1; ZE_Variation3_2: curve 2). Comparison is made with Comparative Example 1 (FIG. 4: ZE_Variation1 1_2: curve 3).
  • the quiescent potential of the nickel-free system when using an after-rinsing solution containing an electrically conductive polymer corresponds to that of the nickel-containing system (Comparative Example 1).
  • the electrical conductivity of the nickel-free system is somewhat reduced compared to the nickel-containing system.
  • a test plate of hot-dip galvanized steel (EA) was coated by means of a 1 g / l nickel-containing phosphating solution according to Comparative Example 1. Subsequently, the thus-coated test plate was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) with a pH of about 4, and then the current density i in A / cm 2 was compared with the voltage. a voltage applied to silver / silver chloride (Ag / AgCl) electrode E was measured in V (see FIG. 5: EA 173: curve 1). The measurement was carried out by means of so-called linear sweep voltammetry. Comparative Example 5
  • a test plate according to Comparative Example 4 was coated by means of a nickel-free and nitrate-free, 1, 2 g / l Zn, 1 g / l Mn and 16 g / l PO 3 " (calculated as P2O 5 ) containing 35 ° C warm phosphating without rinsing and then the current density i is measured via the voltage E according to Comparative Example 3 (see Fig. 5.
  • EA 167 2 curve 2).
  • a test plate according to Comparative Example 4 was coated by means of a nickel-free phosphating solution according to Comparative Example 2. Subsequently, the thus coated test plate was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) and 220 mg / l molybdenum ions with a pH of about 4. The current density i over the voltage E was measured according to Comparative Example 1 (see Fig. 6. EA 178: curve 3, EA 178 2: curve 2). Comparison is made with Comparative Example 3 (FIG. 6: EA 173: curve 1).
  • FIG. 6 corresponds to the rest potential of the nickel-free system in the use of a ZrF 6 2 ⁇ and molybdenum ion-containing rinsing solution (Example 3) that of the nickel-containing system (Comparative Example 4).
  • Test plates according to Comparative Examples 1 to 3 (VB1 to VB3) and Examples 1 and 2 (B1 and B2) were coated after phosphating with a cathodic electrodeposition paint and a standard autobillack construction (filler, basecoat, clearcoat) and then a cross-cut test according to DIN EN ISO 2409 subjected. In each case, 3 panels were tested before and after exposure to condensation for 240 hours (DIN EN ISO 6270-2 CH). The corresponding results can be found in Table 1. A grating cut result of 0 is the best, and one of 5 the worst value. Values of 0 and 1 are comparable good values.
  • Tab. 1 reveals the poor results of VB2 and in particular VB3 in each case after loading, while B1 (copper ions) and B2 (electrically conductive polyamine) give good - VB1 (nickel-containing phosphating) at least comparable results.
  • a test plate of hot-dip galvanized steel (EA) was prepared by means of a 1, 1 g / l Zn, 1 g / l Mn, 13.5 g / l PO 4 3 " (calculated as P 2 O 5 ), 3 g / l NO 3 " And also 1 g / l nickel-containing, 53 ° C warm Phosphatierlosung nitritbeuggt (about 90 mg / l nitrite) coated. Subsequently, the thus coated test plate was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) with a pH of about 4.
  • a test panel according to Comparative Example 6 was prepared by means of a nickel-free, 1, 1 g / l Zn, 1 g / l Mn, 17 g / l PO 4 3 " (calculated as P 2 O 5 ) and 0.5 g / l NO 3 " containing 35 ° C warm Phosphatierlosung nitrite accelerated (about 90 mg / l nitrite) coated. Subsequently, the thus coated test plate was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) and 220 mg / l molybdenum ions with a pH of about 4.
  • a test plate according to Comparative Example 6 was obtained by means of a nickel- and nitrate-free, 1, 1 g / l Zn, 1 g / l Mn and 17 g / l PO 4 3 " (calculated as P2O 5 ), 35 ° C warm Phosphatierates nitrite-accelerated (about 90 mg / l nitrite) coated. Subsequently, the thus coated test plate was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) and 220 mg / l molybdenum ions with a pH of about 4. Comparative Example 8
  • a test panel according to Comparative Example 6 was prepared by means of a nickel-free, 1, 1 g / l Zn, 1 g / l Mn, 17 g / l PO 4 3 " (calculated as P 2 O 5 ) and 0.5 g / l NO 3 " containing 35 ° C warm phosphating accelerated peroxide (about 80 mg / l H2O2) coated. Subsequently, the thus coated test plate was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) and 220 mg / l molybdenum ions with a pH of about 4.
  • a test plate according to Comparative Example 6 was peroxide-accelerated by means of a nickel-free and nitrate-free, 1.3 g / l Zn, 1 g / l Mn and 17 g / l PO 4 3 (calculated as P2O 5 ) containing 35 ° C phosphating solution ( 80 mg / l H2O2), followed by the test plate coated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) and 220 mg / l molybdenum ions with a pH of about 4 treated.
  • Test plates according to Comparative Examples 6 to 8 (VB6 to VB8) and Examples 4 and 5 (B4 and B5) were coated after phosphating with a cathodic electrodeposition paint and a standard autobillack construction (filler, basecoat, clearcoat) and then a cross-cut test according to DIN EN ISO 2409 subjected. In each case, 3 panels were tested before and after exposure to condensation for 240 hours (DIN EN ISO 6270-2 CH). The corresponding results can be found in Tab. 2.
  • Table 2 Table 2
  • Table 2 shows the poor results of VB7 (nitrite accelerated) and VB8 (peroxide accelerated) compared to VB6, while B4 (nitrite accelerated) and B5 (peroxide accelerated) give good - VB6 (nickel phosphating) comparable results.
  • a test plate of hot-dip galvanized steel (EA) was prepared by means of a 1, 1 g / l Zn, 1 g / l Mn, 13.5 g / l PO 4 3 " (calculated as P 2 O 5 ), 3 g / l NO 3 " And also 1 g / l nickel-containing, 53 ° C warm Phosphatierlosung nitritbeuggt (about 90 mg / l nitrite) coated. Subsequently, the thus coated test plate was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) with a pH of about 4.
  • a test plate according to Comparative Example 9 was peroxide-accelerated by means of a nickel-free and nitrate-free, 1 g / l Zn, 1 g / l Mn and 17 g / l PO 4 3 (calculated as P2O 5 ), 35 ° C phosphating solution ( 80 mg / l H2O2), followed by the test plate coated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) and 220 mg / l molybdenum ions with a pH of about 4 treated.
  • a test plate of bare steel was prepared by means of a 1, 1 g / l Zn, 1 g / l Mn, 13.5 g / l PO 4 3 " (calculated as P 2 O 5 ), 3 g / l NO 3 " and 1 g / l nickel, 53 ° C hot Phosphatierlosung nitritbeuggt (about 90 mg / l nitrite) coated. Subsequently, the thus coated test plate was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) with a pH of about 4.
  • a test plate according to Comparative Example 10 was peroxide-accelerated by means of a nickel-free and nitrate-free, 1 g / l Zn, 1 g / l Mn and 17 g / l PO 4 3 (calculated as P2O 5 ), 35 ° C phosphating solution ( 80 mg / l H2O2), followed by the test plate coated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) and 220 mg / l molybdenum ions with a pH of about 4 treated.
  • a test plate of electrolytically galvanized steel (ZE) was prepared by means of a 1, 1 g / l Zn, 1 g / l Mn, 13.5 g / l PO 4 3 " (calculated as P 2 O 5 ), 3 g / l NO 3 " and also 1 g / l nickel, 53 ° C warm Phosphatierlosung nitritbeuggt (about 90 mg / l nitrite) coated. Subsequently, the thus coated test plate was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) with a pH of about 4.
  • a test plate according to Comparative Example 1 1 was peroxide-accelerated by means of a nickel- and nitrate-free, 1, 1 g / l Zn, 1 g / l Mn and 17 g / l PO 4 3 " (calculated as P2O 5 ) containing 35 ° C warm Phosphatierlosung 80 mg / l H2O2) and the test plate thus coated was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) and 220 mg / l molybdenum ions with a pH of ca. 4 treated.
  • Test plates according to Comparative Examples 9 to 1 1 (VB9 to VB1 1) and Examples 6 to 8 (B6 to B8) were coated after phosphating with a cathodic electrodeposition paint and a standard autobillack construction (filler, basecoat, clearcoat) and that at VB6 to VB8 , B4 and B5 previously described cross-hatch test.
  • the results are summarized in Tab. 3.
  • said test plates were subjected to a VDA test (VDA 621-415), wherein the paint infiltration (U) was determined in mm and the paint peeling after rockfall (DIN EN ISO 20567-1, Verf. C) was determined.
  • a result of 0 is the best, one of 5 is the worst value after the fall of the stone.
  • a value up to 1, 5 is to be regarded as a good value.
  • the results are also summarized in Tab. 3.
  • Table 3 shows the good results which can be achieved with the nickel-free process according to the invention both on hot-dip galvanized steel (B6) and on bare steel (B7) and on electrolytically galvanized steel (B8). These are comparable to the nickel-containing process (compare B6 with VB9, B7 with VB10 and B8 with VB1 1).
  • a test plate of hot-dip galvanized steel (EA) was prepared by means of a 1, 1 g / l Zn, 1 g / l Mn, 13.5 g / l PO 4 3 " (calculated as P 2 O 5 ), 3 g / l NO 3 " And also 1 g / l nickel-containing, 53 ° C warm Phosphatierlosung nitritbeuggt (about 90 mg / l nitrite) coated. Subsequently, the thus coated test plate was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) with a pH of about 4.
  • a test plate according to Comparative Example 12 was by means of a nickel and nitrate-free, 1 g / l Zn, 1 g / l Mn and 17 g / l PO 4 3 " (calculated as P2O 5 ), 35 ° C warm phosphating peroxidized accelerated (about 80 mg / l H2O2) the so-coated test plate was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) and 220 mg / l molybdenum ions with a pH of about 4.
  • test plate according to Comparative Example 12 was peroxide-accelerated by means of a nickel- and nitrate-free, 1, 2 g / l Zn, 1 g / l Mn and 13 g / l PO 3 " (calculated as P2O 5 ) containing 45 ° C phosphating (approx Subsequently, the test plate thus coated was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) and 220 mg / l molybdenum ions with a pH of about 4 ,
  • test plate made of bare steel was nitrite-accelerated by means of a phosphating solution according to Comparative Example 12 (about 90 mg / l nitrite). Subsequently, the thus coated test plate was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) with a pH of about 4.
  • test plate according to Comparative Example 13 was peroxide-accelerated by means of a phosphating solution according to Example 9 (about 80 mg / l H2O2) coated. Subsequently, the thus coated test plate was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) and 220 mg / l molybdenum ions with a pH of about 4.
  • test plate according to Comparative Example 13 was peroxide-accelerated by means of a phosphating solution according to Example 10 (about 50 mg / l H2O2) coated. Subsequently, the thus coated test plate was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) and 220 mg / l molybdenum ions with a pH of about 4. Comparative Example 14
  • test plate of AA6014 S was coated with nitrite (about 90 mg / l nitrite) by means of a phosphating solution according to comparative example 12. Subsequently, the thus coated test plate was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) with a pH of about 4.
  • test plate according to Comparative Example 14 was peroxide-accelerated by means of a phosphating solution according to Example 9 (about 80 mg / l H2O2) coated. Subsequently, the thus coated test plate was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) and 220 mg / l molybdenum ions with a pH of about 4.
  • test plate according to Comparative Example 14 was peroxide-accelerated by means of a phosphating solution according to Example 10 (about 50 mg / l H2O2) coated. Subsequently, the thus coated test plate was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) and 220 mg / l molybdenum ions with a pH of about 4.
  • Test plates according to Comparative Examples 12 to 14 (VB12 to VB14) and Examples 9 to 14 (B9 to B14) were coated after phosphating with a cathodic electrodeposition paint and a standard auto paint finish (filler, basecoat, clearcoat).
  • a hot dip galvanized steel (EA) test panel was heated to 35 ° C. using a nickel and nitrate-free, 1.1 g / l Zn, 1 g / l Mn and 17 g / l PO 4 3 (calculated as P2O 5 ) 80 mg / l H2O2), the acid value of the phosphatizing solution was adjusted to 0.07, and the test plate thus coated was treated with about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) and 220 Mg / l rinsing solution containing molybdenum ions with a pH of about 4 treated.
  • EA hot dip galvanized steel
  • a test plate of hot-dip galvanized steel was by means of a 35 ° C phosphatizing solution containing nickel and nitrate, 1, 1 g / l Zn, 1 g / l Mn and 17 g / l PO 3 " (calculated as P2O 5 ) 80 mg / l H2O2), the acid value of the phosphating solution was adjusted to 0.05, and the test plate thus coated was then treated with about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr). and rinsing solution containing 220 mg / 1 molybdenum ions having a pH of about 4 treated.
  • Test panels according to Examples 15 and 16 were coated after phosphating with a cathodic electrodeposition paint and a standard autobillack construction (filler, basecoat, clearcoat) and then - as described above - a cross-cut test before and after loading for 240 hours with condensed water subjected.
  • the results are summarized in Tab. 6.
  • Tab. 6 shows that the grating cut results can be significantly improved after loading with condensed water by lowering the acid value (B16).

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur im Wesentlichen nickelfreien Phosphatierung einer metallischen Oberfläche, bei dem eine metallische Oberfläche, gegebenenfalls nach Reinigung und/oder Aktivierung, zunächst mit einer sauren wässrigen Phosphatierzusammensetzung behandelt wird, welche Zinkionen, Manganionen und Phosphationen umfasst, gegebenenfalls gespült und/oder getrocknet wird, und danach mit einer wässrigen Nachspülzusammensetzung behandelt wird, welche mindestens eine Art von Metallionen ausgewählt aus der Gruppe bestehend aus den Ionen von Molybdän, Kupfer, Silber, Gold, Palladium, Zinn, Antimon, Titan, Zirkonium und Hafnium und/oder mindestens ein Polymer ausgewählt aus der Gruppe bestehend aus den Polymerklassen, der Polyamine, Polyethylenamine, Polyaniline, Polyimine, Polyethylenimine, Polythiophene und Polypryrole sowie deren Mischungen und Copolymerisaten umfasst, wobei sowohl die Phosphatierzusammensetzung als auch die Nachspülzusammensetzung im Wesentlichen nickelfrei sind.

Description

Verfahren zur nickelfreien Phosphatierung von metallischen Oberflächen
Die vorliegende Erfindung betrifft ein Verfahren zur im Wesentlichen nickelfreien Phosphatierung einer metallischen Oberfläche, eine entsprechende Phosphatierzusammensetzung sowie eine entsprechend phosphatbeschichtete metallische Oberfläche.
Aus dem Stand der Technik sind Phosphatbeschichtungen auf metallischen Oberflächen bekannt. Solche Beschichtungen dienen dem Korrosionsschutz der metallischen Oberflächen und darüber hinaus auch als Haftvermittler für nachfolgende Lackschichten. Solche Phosphatbeschichtungen kommen vor allem im Bereich der Automobilindustrie sowie der Allgemeinindustrie zum Einsatz.
Bei den nachfolgenden Lackschichten handelt es sich neben Pulverlacken und Nasslacken vor allem um kathodisch abgeschiedene Elektrotauchlacke (KTL). Da bei der Abscheidung von KTL ein Strom zwischen metallischer Oberfläche und Behandlungsbad fließen muss, ist es wichtig eine definierte elektrische Leitfähigkeit der Phosphatbeschichtung einzustellen, um eine effiziente und homogene Abscheidung zu gewährleisten.
Daher werden Phosphatbeschichtungen üblicherweise mittels einer nickelhaltigen Phosphatierlösung aufgebracht. Das dabei elementar oder als Legierungsbestandteil, z.B. Zn/Ni, abgeschiedene Nickel sorgt für eine geeignete Leitfähigkeit der Beschichtung bei der anschließenden Elektrotauchlackierung.
Nickelionen sind jedoch ob ihrer hohen Toxizität und Umweltschädlichkeit nicht mehr als Bestandteil von Behandlungslösungen erwünscht und sollten daher nach Möglichkeit vermieden oder zumindest in ihrem Gehalt reduziert werden. Die Verwendung von nickelfreien oder nickelarmen Phosphatierlosungen ist zwar prinzipiell bekannt. Diese ist jedoch auf bestimmte Substrate wie Stahl begrenzt.
Bei den genannten nickelarmen oder nickelfreien Systemen können zudem bei gegebenen KTL-Abscheidebedingungen aufgrund einer nicht optimalen Substratoberfläche schlechte Korrosions- und Lackhaftungswerte resultieren.
Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren bereitzustellen, mit dem metallische Oberflächen im Wesentlichen nickelfrei phosphatiert werden können, wobei diese hinsichtlich ihrer elektrochemischen Eigenschaften den metallischen Oberflächen, welche mit nickelhaltigen Phosphatierlösungen behandelt wurden, vergleichbar oder nahezu vergleichbar sind, und insbesondere die vorgenannten Nachteile des Standes der Technik vermieden werden.
Gelöst wird diese Aufgabe durch ein Verfahren nach Anspruch 1 , eine Phosphatierzusammensetzung nach Anspruch 21 und eine phosphatbeschichtete metallische Oberfläche nach Anspruch 23.
Bei dem erfindungsgemäßen Verfahren zur im Wesentlichen nickelfreien Phosphatierung einer metallischen Oberfläche wird eine metallische Oberfläche, gegebenenfalls nach Reinigung und/oder Aktivierung, zunächst mit einer sauren wässrigen Phosphatierzusammensetzung behandelt, welche Zinkionen, Manganionen und Phosphationen umfasst, gegebenenfalls gespült und/oder getrocknet, und danach mit einer wässrigen Nachspülzusammensetzung behandelt, welche mindestens eine Art von Metallionen ausgewählt aus der Gruppe bestehend aus den Ionen von Molybdän, Kupfer, Silber, Gold, Palladium, Zinn, Antimon, Titan, Zirkonium und Hafnium und/oder mindestens ein Polymer ausgewählt aus der Gruppe bestehend aus den Polymerklassen, der Polyamine, Polyethylenamine, Polyaniline, Polyimine, Polyethylenimine, Polythiophene und Polypryrole sowie deren Mischungen und Copolymerisaten umfasst, wobei sowohl die Phosphatierzusammensetzung als auch die Nachspülzusammensetzung im Wesentlichen nickelfrei sind. Definitionen:
Einerseits kann eine unbeschichtete metallische Oberfläche, andererseits kann aber auch eine bereits konversionsbeschichtete metallische Oberfläche mit dem erfindungsgemäßen Verfahren behandelt werden. Wenn im Folgenden von einer „metallischen Oberfläche" die Rede ist, soll daher immer auch eine bereits konversionsbeschichtete metallische Oberfläche mitumfasst sein. Als „wässrige Zusannnnensetzung" wird im Sinne der vorliegenden Erfindung eine solche Zusammensetzung bezeichnet, welche zumindest zum Teil, vorzugsweise zum überwiegenden Teil Wasser als Lösungsmittel enthält. Sie kann neben gelösten Bestandteilen auch dispergierte, d.h. emulgierte und/oder suspendierte Bestandteile umfassen.
Im Sinne der vorliegenden Erfindung ist mit „Phosphationen" auch Hydrogenphosphat, Dihydrogenphosphat und Phosphorsäure gemeint. Zudem sollen Pyrophosphorsäure und Polyphosphorsäure sowie alle ihre teilweise und vollständig deprotonierten Formen mitumfasst sein. Unter „Metallion" wird im Sinne der vorliegenden Erfindung entweder ein Metallkation, ein komplexes Metallkation oder ein komplexes Metallanion verstanden.
Enthält eine Zusammensetzung weniger als 0,3 g/l Nickelionen soll sie im Sinne der vorliegenden Erfindung als„im Wesentlichen nickelfrei" gelten.
Bei der metallischen Oberfläche handelt es sich vorzugsweise um Stahl, eine Feuerverzinkung, eine elektrolytische Verzinkung, Aluminium oder deren Legierungen wie beispielsweise Zn/Fe oder Zn/Mg. Bei der Feuerverzinkung sowie der elektrolytischen Verzinkung handelt es sich jeweils insbesondere um eine solche auf Stahl. Insbesondere ist die metallische Oberfläche zumindest teilweise verzinkt.
Das erfindungsgemäße Verfahren eignet sich in besonderem Maße für Multimetallanwendungen.
Wenn eine metallische Oberfläche beschichtet werden soll, bei der es sich nicht um eine frische Feuerverzinkung handelt, ist es vorteilhaft, die metallische Oberfläche vor der Behandlung mit der Phosphatierzusammensetzung erst in einer wässrigen Reinigungszusammensetzung zu reinigen, insbesondere zu entfetten. Hierzu kann insbesondere eine saure, neutrale, alkalische oder stark alkalische Reinigungszusammensetzung, aber gegebenenfalls auch zusätzlich eine saure oder neutrale Beizzusammensetzung verwendet werden.
Eine alkalische oder stark alkalische Reinigungszusammensetzung hat sich dabei insbesondere als vorteilhaft erwiesen. Die wässrige Reinigungszusammensetzung kann neben mindestens einem Tensid gegebenenfalls auch ein Reinigergerüst und/oder andere Zusätze wie z.B. Komplexbildner enthalten. Auch die Verwendung eines aktivierenden Reinigers ist möglich. Nach dem Reinigen/Beizen findet dann vorteilhafterweise mindestens ein Spülen der metallischen Oberfläche mit Wasser statt, wobei dem Wasser gegebenenfalls auch ein in Wasser gelöster Zusatzstoff wie z. B. ein Nitrit oder Tensid zugesetzt sein kann.
Vor der Behandlung der metallischen Oberfläche mit der Phosphatierzusammensetzung ist es vorteilhaft, die metallische Oberfläche mit einer Aktivierungszusammensetzung zu behandeln. Die Aktivierungszusammensetzung dient dazu, eine Vielzahl von feinsten Phosphatpartikeln als Impfkristalle auf der metallischen Oberfläche abzusetzen. Diese helfen im nachfolgenden Verfahrensschritt, im Kontakt mit der Phosphatierzusammensetzung - vorzugsweise ohne zwischenzeitliche Spülung - eine insbesondere kristalline Phosphatschicht mit einer möglichst hohen Zahl dicht angeordneter feiner Phosphatkristalle oder eine weitgehend geschlossene Phosphatschicht auszubilden.
Als Aktivierungszusammensetzungen kommen dabei insbesondere saure oder alkalische Zusammensetzungen auf Basis von Titanphosphat oder Zinkphosphat in Betracht.
Es kann aber auch von Vorteil sein, Aktivierungsmittel, insbesondere Titanphosphat oder Zinkphosphat, in der Reinigungszusammensetzung zuzugeben, also Reinigung und Aktivierung in einem Schritt durchzuführen.
Die saure wässrige Phosphatierzusammensetzung umfasst Zinkionen, Manganionen sowie Phosphationen.
Die Phosphatierzusammensetzung kann dabei aus einem Konzentrat durch Verdünnen mit einem geeigneten Lösungsmittel, bevorzugt mit Wasser, um einen Faktor zwischen 1 und 100, vorzugsweise zwischen 5 und 50, und erforderlichenfalls Zugabe einer pH-Wert modifizierenden Substanz erhalten werden. Die Phosphatierzusammensetzung umfasst vorzugsweise die folgenden Komponenten in den folgenden bevorzugten und besonders bevorzugten Konzentrationsbereichen :
Figure imgf000007_0001
Hinsichtlich der Manganionen hat sich aber bereits eine Konzentration im Bereich von 0,3 bis 2,5 g/l, hinsichtlich des freien Fluorids eine Konzentration im Bereich von 10 bis 250 mg/l als vorteilhaft herausgestellt.
Bei dem Komplexfluorid handelt es sich bevorzugt um Tetrafluoroborat (BF ") und/oder Hexafluorosilicat (SiF6 2~). Vor allem bei der Behandlung von Aluminium und/oder verzinktem Material ist ein Gehalt an Komplexfluorid sowie Einfachfluorid, beispielsweise Natriumfluorid, in der Phosphatierzusammensetzung von Vorteil.
Al3+ ist in Phosphatiersystemen ein Badgift und kann durch Komplexierung mit Fluorid aus dem System entfernt werden, z.B. als Kryolith. Komplexfluoride werden dem Bad als „Fluoridpuffer" zugesetzt, da ansonsten der Fluoridgehalt schnell abfiele und keine Beschichtung mehr stattfände. Fluorid unterstützt so die Bildung der Phosphatschicht und führt hierdurch indirekt auch zu einer Verbesserung von Lackhaftung sowie Korrosionsschutz. Komplexfluorid hilft zudem auf verzinktem Material, Fehler wie Stippen zu vermeiden. Insbesondere bei der Behandlung von Aluminium ist es weiterhin vorteilhaft, wenn die Phosphatierzusammensetzung einen Gehalt an Fe(lll) aufweist. Bevorzugt wird hierbei ein Fe(lll)-Gehalt im Bereich von 0,001 bis 0,2 g/l, besonders bevorzugt von 0,005 bis 0,1 g/l und ganz besonders bevorzugt von 0,01 bis 0,05 g/l.
Zudem enthält die Phosphatierzusammensetzung vorzugsweise mindestens einen Beschleuniger ausgewählt aus der Gruppe bestehend aus den folgenden Verbindungen in den folgenden bevorzugten und besonders bevorzugten Konzentrationsbereichen :
Figure imgf000008_0001
Hinsichtlich des Nitroguanidins hat sich aber bereits eine Konzentration im Bereich von 0,1 bis 3,0 g/l, hinsichtlich des H2O2 eine Konzentration im Bereich von 5 bis 200 mg/l als vorteilhaft herausgestellt.
Ganz besonders bevorzugt handelt es sich bei dem mindestens einen Beschleuniger um H2O2. Bevorzugt enthält die Phosphatierzusammensetzung jedoch weniger als 1 g/l, weiter bevorzugt weniger als 0,5 g/l, besonders bevorzugt weniger als 0,1 g/l und ganz besonders bevorzugt weniger als 0,01 g/l Nitrat.
Insbesondere bei einer verzinkten Oberfläche bewirkt nämlich das Nitrat in der Phosphatierzusammensetzung eine zusätzliche Beschleunigung der Schichtbildungsreaktion, was zu niedrigeren Schichtgewichten führt aber vor allem den Einbau des Mangans in den Kristall verringert. Ist der Mangangehalt der Phosphatbeschichtung jedoch zu gering, geht dies zu Lasten ihrer Alkalibeständigkeit.
Die Alkalibeständigkeit spielt wiederum bei einer nachfolgenden kathodischen Elektrotauchlackabscheidung eine entscheidende Rolle. Hierbei kommt es an der Substratoberfläche zu einer elektrolytischen Spaltung von Wasser: Es bilden sich Hydroxidionen. Dies führt dazu, dass der der pH-Wert an der Grenzfläche des Substrates ansteigt. Zwar kann erst hierdurch der Elektrotauchlack agglomeriert und abgeschieden werden. Allerdings kann der erhöhte pH-Wert auch die kristalline Phosphatschicht schädigen. Die Phosphatierzusannnnensetzung weist vorzugsweise eine Temperatur im Bereich von 30 bis 55 °C auf.
Des Weiteren lässt sich die Phosphatierzusammensetzung durch die folgenden bevorzugten und besonders bevorzugten Parameterbereiche charakterisieren:
Figure imgf000009_0001
Hinsichtlich des FS-Parameters hat sich aber bereits ein Wert im Bereich von 0,2 bis 2,5, hinsichtlich der Temperatur eine solche im Bereich von 30 bis 55 °C als vorteilhaft herausgestellt.
Hierbei steht„FS" für freie Säure,„FS (verd.)" für freie Säure (verdünnt),„GSF" für Gesamtsäure nach Fischer,„GS" für Gesamtsäure und„S-Wert" für Säurewert.
Diese Parameter sind werden dabei folgendermaßen ermittelt:
Freie Säure (FS):
Zur Bestimmung der freien Säure werden 10 ml der Phosphatierzusammensetzung in ein geeignetes Gefäß, beispielsweise einen 300 ml-Erlenmeyerkolben pipettiert. Enthält die Phosphatierzusammensetzung Komplexfluoride, werden der Probe noch 2-3 g Kaliumchlorid zugegeben. Sodann wird unter Verwendung eines pH-Meters und einer Elektrode mit 0,1 M NaOH bis zu einem pH-Wert von 3,6 titriert. Die dabei verbrauchte Menge an 0,1 M NaOH in ml pro 10 ml der Phosphatierzusammensetzung ergibt den Wert der freien Säure (FS) in Punkten. Freie Säure (verdünnt) (FS (verd.)):
Zur Bestimmung der freien Säure (verdünnt) werden 10 ml der Phosphatierzusammensetzung in ein geeignetes Gefäß, beispielsweise in einen 300 ml-Erlenmeyerkolben pipettiert. Anschließend werden 150 ml VE-Wasser zugegeben. Unter Verwendung eines pH-Meters und einer Elektrode wird mit 0,1 M NaOH bis zu einem pH-Wert von 4,7 titriert. Die dabei verbrauchte Menge an 0,1 M NaOH in ml pro 10 ml der verdünnten Phosphatierzusammensetzung ergibt den Wert der freien Säure (verdünnt) (FS (verd.)) in Punkten. Über die Differenz zur freien Säure (FS) kann der Gehalt an Komplexfluorid ermittelt werden. Wenn diese Differenz mit dem Faktor 0,36 multipliziert wird, ergibt sich der Gehalt an Komplexfluorid als SiF6 2~ in g/l.
Gesamtsäure nach Fischer (GSF):
Im Anschluss an die Ermittlung der freien Säure (verdünnt) wird die verdünnte Phosphatierzusammensetzung nach Zusatz von Kaliumoxalatlösung unter Verwendung eines pH-Meters und einer Elektrode mit 0,1 M NaOH bis zu einem pH- Wert von 8,9 titriert. Der Verbrauch an 0,1 M NaOH in ml pro 10 ml der verdünnten Phosphatierzusammensetzung ergibt hierbei die Gesamtsäure nach Fischer (GSF) in Punkten. Wenn dieser Wert mit 0,71 multipliziert wird, ergibt sich der Gesamtgehalt an Phosphationen gerechnet als P2O5 (Siehe W. Rausch: "Die Phosphatierung von Metallen". Eugen G. Leuze-Verlag 2005, 3. Auflage, pp. 332 ff).
Gesamtsäure (GS):
Die Gesamtsäure (GS) ist die Summe aus den enthaltenen zweiwertigen Kationen sowie freien und gebundenen Phosphorsäuren (letztere sind Phosphate). Sie wird durch den Verbrauch an 0,1 M NaOH unter Verwendung eines pH-Meters und einer Elektrode bestimmt. Dazu werden 10 ml der Phosphatierzusammensetzung in ein geeignetes Gefäß, beispielsweise einen 300 ml-Erlenmeyerkolben pipettiert und mit 25 ml VE-Wasser verdünnt. Anschließend wird mit 0,1 M NaOH bis zu einem pH- Wert von 9 titriert. Der Verbrauch in ml pro 10 ml der verdünnten Phosphatierzusammensetzung entspricht hierbei der Punktzahl der Gesamtsäure (GS).
Säurewert (S-Wert):
Der sogenannte Säurewert (S-Wert) steht für das Verhältnis FS : GSF und ergibt sich durch Division des Wertes der freien Säure (FS) durch den Wert der Gesamtsäure nach Fischer (GSF).
Überraschend war die weitere Verbesserung der Lackhaftung, insbesondere auf feuerverzinkten Oberflächen, durch das Einstellen eines Säurewertes im Bereich von 0,03 bis 0,065, insbesondere im Bereich von 0,04 bis 0,06.
Es hat sich überraschenderweise herausgestellt, dass insbesondere im Falle von Stahl oder einer Feuerverzinkung als metallische Oberfläche eine Temperatur der Phosphatierzusammensetzung von weniger als 45 °C, bevorzugt im Bereich zwischen 35 und 45 °C zu weiter verbesserten Korrosions- und Lackhaftungswerten führt.
Die Phosphatierzusammensetzung ist im Wesentlichen nickelfrei. Bevorzugt enthält sie weniger als 0,1 g/l und besonders bevorzugt weniger als 0,01 g/l Nickelionen. Die Behandlung der metallischen Oberfläche mit der Phosphatierzusammensetzung erfolgt bevorzugt für 30 bis 480, besonders bevorzugt für 60 bis 300 und ganz besondere bevorzugt für 90 bis 240 Sekunden, vorzugsweise mittels Tauchen oder Spritzen.
Durch die Behandlung der metallischen Oberfläche mit der Phosphatierzusammensetzung werden je nach behandelter Oberfläche die folgenden bevorzugten und besonders bevorzugten Zinkphosphat-Schichtgewichte auf der metallischen Oberfläche erzielt (ermittelt mit Röntgenfluoreszenzanalyse (RFA)):
Figure imgf000011_0001
Vorzugsweise wird die metallische Oberfläche nach der Behandlung mit der Phosphatierzusammensetzung gespült, weiter bevorzugt mit vollentsalztem Wasser oder Stadtwasser gespült. Gegebenenfalls wird die metallische Oberfläche vor der Behandlung mit der Nachspülzusammensetzung getrocknet.
Gemäß dem erfindungsgemäßen Verfahren wird die bereits mit der Phosphatierzusammensetzung behandelte, also phosphatbeschichtete, metallische Oberfläche noch mit einer wässrigen Nachspülzusammensetzung behandelt.
Die Nachspülzusammensetzung kann dabei aus einem Konzentrat durch Verdünnen mit einem geeigneten Lösungsmittel, bevorzugt mit Wasser, um einen Faktor zwischen 1 und 1000, vorzugsweise zwischen 5 und 500, und erforderlichenfalls Zugabe einer pH-Wert modifizierenden Substanz erhalten werden.
Gemäß einer Ausführungsform enthält die Nachspülzusammensetzung mindestens eine Art Metallionen ausgewählt aus der Gruppe bestehend aus den Ionen der folgenden Metalle in den folgenden bevorzugten, besonders bevorzugten und ganz besonders bevorzugten Konzentrationsbereichen (alle berechnet als entsprechendes Metall):
Figure imgf000012_0001
Die in der Nachspüllösung enthaltenen Metallionen scheiden sich entweder in Form eines Salzes, welches das entsprechende Metallkation (z.B. Molybdän oder Zinn) bevorzugt in mindestens zwei Oxidationsstufen enthält - insbesondere in Form eines Oxid-Hydroxyds, eines Hydroxyds, eines Spinells oder eines Defektspinells - oder elementar auf der zu behandelnden Oberfläche ab (z.B. Kupfer, Silber, Gold oder Palladium).
Gemäß einer bevorzugten Ausführungsform handelt es sich bei den Metallionen um Molybdänionen. Diese werden bevorzugt als Molybdat, weiter bevorzugt als Ammoniumheptamolybdat und besonders bevorzugt als Ammoniumheptamolybdat x 7 H2O der Nachspülzusammensetzung zugegeben. Die Molybdänionen können auch als Nathummolybdat zugesetzt werden.
Molybdänionen können aber beispielsweise auch in Form mindestens eines Molybdänkationen enthaltenden Salzes wie Molybdänchlorid der Nachspülzusammensetzung zugesetzt und dann durch ein geeignetes Oxidationsmittel, beispielsweise durch die weiter oben beschriebenen Beschleuniger, zu Molybdat oxidiert werden. In einem solchen Fall enthält die Nachspülzusammensetzung selbst ein entsprechendes Oxidationsmittel. Weiter bevorzugt enthält die Nachspülzusammensetzung Molybdänionen in Kombination mit Kupferionen, Zinnionen oder Zirkoniumionen.
Besonders bevorzugt enthält sie Molybdänionen in Kombination mit Zirkoniumionen sowie gegebenenfalls ein Polymer oder Copolymer, insbesondere ausgewählt aus der Gruppe bestehend aus den Polymerklassen der Polyamine, Polyethylenamine, Polyaniline, Polyimine, Polyethylenimine, Polythiophene und Polypryrole sowie deren Mischungen und Copolymerisaten und Polyacrylsäure, wobei der Gehalt an Molybdänionen und Zirkoniumionen jeweils im Bereich von 10 bis 500 mg/l (berechnet als Metall) liegt.
Bevorzugt liegen der Gehalt an Molybdänionen dabei im Bereich von 20 bis 225 mg/l, besonders bevorzugt von 50 bis 225 mg/l und ganz besonders bevorzugt von 100 bis 225 mg/l und der Gehalt an Zirkoniumionen im Bereich von 50 bis 300 mg/l, besonders bevorzugt von 50 bis 150 mg/l.
Gemäß einer weiteren bevorzugten Ausführungsform handelt es sich bei den Metallionen um Kupferionen. Vorzugsweise enthält die Nachspüllösung diese dann in einer Konzentration von 100 bis 500 mg/l, weiter bevorzugt von 150 bis 225 mg/l.
Gemäß einer weiteren Ausführungsform enthält die erfindungsgemäße Nachspülzusammensetzung mindestens ein Polymer ausgewählt aus der Gruppe bestehend aus den Polymerklassen der Polyamine, Polyethylenamine, Polyaniline, Polyimine, Polyethylenimine, Polythiophene und Polypryrole sowie deren Mischungen und Copolymerisaten. Das mindestens eine Polymer ist dabei vorzugsweise in einer Konzentration im Bereich von 0,1 bis 5 g/l, weiter bevorzugt von 0,1 bis 3 g/l, weiter bevorzugt von 0,3 bis 2 g/l und besonders bevorzugt im Bereich von 0,5 bis 1 ,5 g/l (berechnet als reines Polymer) enthalten. Als Polymere werden bevorzugt kationische Polymere, insbesondere Polyamine, Polyethylenamine, Polyimine und/oder Polyethylenimine eingesetzt. Besonders bevorzugt kommt ein Polyamin und/oder Polyimin, ganz besonders bevorzugt ein Polyamin zum Einsatz.
Gemäß einer dritten Ausführungsform enthält die erfindungsgemäße Nachspülzusammensetzung mindestens eine Art Metallionen ausgewählt aus der Gruppe bestehend aus den Ionen von Molybdän, Kupfer, Silber, Gold, Palladium, Zinn, Antimon, Titan, Zirkonium und Hafnium und mindestens ein Polymer ausgewählt aus der Gruppe bestehend aus den Polymerklassen der Polyamine, Polyethylenamine, Polyaniline, Polyimine, Polyethylenimine, Polythiophene und Polypryrole sowie deren Mischungen und Copolymerisaten, jeweils in den folgenden bevorzugten, besonders bevorzugten und ganz besonders bevorzugten Konzentrationsbereichen (Polymer berechnet als reines Polymer und Metallionen berechnet als entsprechendes Metall).
Mo 1 bis 1000 mg/l 10 bis 500 mg/l 20 bis 225 mg/l
Cu 1 bis 1000 mg/l 100 bis 500 mg/l 150 bis 225 mg/l
Ag 1 bis 500 mg/l 5 bis 300 mg/l 20 bis 150 mg/l
Au 1 bis 500 mg/l 10 bis 300 mg/l 20 bis 200 mg/l
Pd 1 bis 200 mg/l 5 bis 100 mg/l 15 bis 60 mg/l
Sn 1 bis 500 mg/l 2 bis 200 mg/l 3 bis 100 mg/l
Sb 1 bis 500 mg/l 2 bis 200 mg/l 3 bis 100 mg/l
Ti 20 bis 500 mg/l 50 bis 300 mg/l 50 bis 150 mg/l
Zr 20 bis 500 mg/l 50 bis 300 mg/l 50 bis 150 mg/l
Hf 20 bis 500 mg/l 50 bis 300 mg/l 50 bis 150 mg/l
Polymer 0,1 g /l bis 3 g/l 0,3 g/l bis 2 g/l 0,5 bis 1 ,5 g/l Gemäß einer bevorzugten Ausführungsform handelt es sich bei dem mindestens einen Polymer um ein kationisches Polymer, insbesondere um ein Polyamin und/oder Polyimin, und bei den Metallionen um Kupferionen, Molybdänionen und/oder Zirkoniumionen, jeweils in den folgenden bevorzugten, besonders bevorzugten und ganz besonders bevorzugten Konzentrationsbereichen (Polymer berechnet als reines Polymer und Metallionen berechnet als entsprechendes Metall).
Figure imgf000015_0001
Die Nachspülzusammensetzung umfasst - insbesondere, wenn es sich bei der metallischen Oberfläche um Aluminium oder eine Aluminiumlegierung handelt - vorzugsweise zusätzlich 20 bis 500 mg/l, weiter bevorzugt 50 bis 300 mg/l und besonders bevorzugt 50 bis 150 mg/l Ti, Zr und/oder Hf in komplexierter Form (berechnet als Metall). Dabei handelt es sich bevorzugt um Fluorokomplexe. Zudem umfasst die Nachspülzusammensetzung vorzugsweise 10 bis 500 mg/l, weiter bevorzugt 15 bis 100 mg/l und besonders bevorzugt 15 bis 50 mg/l freies Fluorid. Besonders bevorzugt enthält die Nachspülzusammensetzung Zr in komplexierter Form (berechnet als Metall) und mindestens eine Art Metallionen ausgewählt aus der Gruppe bestehend aus den Ionen von Molybdän, Kupfer, Silber, Gold, Palladium, Zinn und Antimon, vorzugsweise von Molybdän.
Eine Ti, Zr und/oder Hf in komplexierter Form umfassende Nachspülzusammensetzung, enthält vorzugsweise zusätzlich mindestens ein Organosilan und/oder mindestens ein Hydrolyseprodukt davon, also ein Organosilanol, und/oder mindestens ein Kondensationsprodukt davon, also ein Organosiloxan/Polyorganosiloxan, in einem Konzentrationsbereich von 5 bis 200 mg/l, weiter bevorzugt von 10 bis 100 mg/l und besonders bevorzugt von 20 bis 80 mg/l (berechnet als Si).
Das mindestens eine Organosilan weist bevorzugt mindestens eine Aminogruppe auf. Besonders bevorzugt handelt es sich um ein solches, welches sich zu einem Aminopropylsilanol und/oder zu 2-Aminoethyl-3-amino-propyl-silanol hydrolysieren lässt und/oder um ein Bis(Trimethoxysilylpropyl)Amin.
Der pH-Wert der Nachspülzusammensetzung liegt vorzugsweise im sauren Bereich, weiter bevorzugt im Bereich von 3 bis 5, besonders bevorzugt im Bereich von 3,5 bis 5.
Überraschenderweise wurde gefunden, dass das Senken des pH-Wert die Abscheidung von Molybdän ionen auf der phosphatbeschichteten metallischen Oberfläche fördert. Bei einer Molybdänionen enthaltenden Nachspüllösung beträgt der pH-Wert daher bevorzugt 3,5 bis 4,5 und besonders bevorzugt 3,5 bis 4,0.
Die Nachspülzusammensetzung ist im Wesentlichen nickelfrei. Bevorzugt enthält sie weniger als 0,1 g/l und besonders bevorzugt weniger als 0,01 g/l Nickelionen.
Die Nachspülzusammensetzung weist vorzugsweise eine Temperatur im Bereich von 15 bis 40 °C auf. Die Behandlung der metallischen Oberfläche mit der Nachspülzusammensetzung erfolgt bevorzugt für 10 bis 180, besonders bevorzugt für 20 bis 150 und ganz besondere bevorzugt für 30 bis 120 Sekunden, vorzugsweise mittels Tauchen oder Spritzen.
Die Erfindung betrifft des Weiteren eine phosphatbeschichtete metallische Oberfläche, welche mit dem erfindungsgemäßen Verfahren erhältlich ist. Durch das erfindungsgemäße Verfahren lässt sich die elektrische Leitfähigkeit der phosphatbeschichteten Metalloberfläche gezielt einstellen, indem definierte Poren in der Phosphatschicht erzeugt werden. Dabei kann die Leitfähigkeit entweder größer, gleich groß oder kleiner als die einer entsprechenden mit einer nickelhaltigen Phosphatbeschichtung versehenen Metalloberfläche sein. Die mit dem erfindungsgemäßen Verfahren eingestellte elektrische Leitfähigkeit der phosphatbeschichteten Metalloberfläche lässt sich dabei über die Variation der Konzentration eines gegebenen Metallions bzw. Polymers in der Nachspüllösung beeinflussen. Auf der phosphatbeschichteten - sowie mit der Nachspülzusammensetzung behandelten - metallischen Oberfläche kann dann kathodisch ein Elektrotauchlack abgeschieden sowie ein Lackaufbau aufgebracht werden.
Gegebenenfalls wird die metallische Oberfläche dabei nach der Behandlung mit der Nachspülzusammensetzung zunächst gespült, bevorzugt mit vollentsalztem Wasser, und gegebenenfalls getrocknet.
Im Folgenden soll die vorliegende Erfindung durch nicht einschränkend zu verstehende Ausführungsbeispiele und Vergleichsbeispiele erläutert werden.
Vergleichsbeispiel 1
Eine Testplatte aus elektrolytisch verzinktem Stahl (ZE) wurde mittels einer 1 ,3 g/l Zn, 1 g/l Mn, 13 g/l PO4 3" (berechnet als P2O5), 3 g/l NO3 " und zudem 1 g/l Nickel enthaltenden, 53 °C warmen Phosphatierlosung beschichtet. Es wurde keine Nachspülung vorgenommen. Anschließend wurde die Stromdichte i in A/cm2 über die vs. eine Silber/Silberchlorid (Ag/AgCI)-Elektrode angelegte Spannung E in V gemessen (siehe Fig. 1 : ZE_Variation1 1_2: Kurve 3). Die Messung erfolgte mittels sog. Linear-Sweep-Voltametrie (Potentialbereich: -1 ,1 bis -0,2 Vref; Scanrate: 1 mV/s). In allen Beispielen und Vergleichsbeispielen ist die gemessene Stromdichte i abhängig von der elektrischen Leitfähigkeit der Konversionsbeschichtung. Es gilt: Je höher die gemessene Stromdichte i, desto höher ist auch die elektrische Leitfähigkeit der Konversionsbeschichtung. Eine unmittelbare Messung der elektrischen Leitfähigkeit in S/cm, wie sie in flüssigen Medien möglich ist, kann bei Konversionsbeschichtungen nicht durchgeführt werden.
Vorliegend dient daher stets die bei einer nickelhaltigen Konversionsbeschichtung gemessene Stromdichte i als Bezugspunkt für Aussagen über die elektrische Leitfähigkeit einer gegebenen Konversionsbeschichtung.
Die Angabe„1 E" in den Figuren 1 bis 4 steht stets für„10". Beispielsweise bedeutet „1 E-4" dementsprechend„1 (T ".
Vergleichsbeispiel 2
Eine Testplatte gemäß Vergleichsbeispiel 1 wurde mittels einer nickelfreien, 1 ,3 g/l Zn, 1 g/l Mn, 16 g/l PO4 3" (berechnet als P2O5) und 2 g/l NO3 " enthaltenden, 53 °C warmen Phosphatierlosung ohne Nachspülung beschichtet und anschließend die Stromdichte i über die Spannung E gemäß Vergleichsbeispiel 1 gemessen (siehe Fig. 1. ZE_Variation1_1 : Kurve 1 ; ZE_Variation1_3: Kurve 2).
Wie Fig. 1 zu entnehmen ist, ist das Ruhepotential des nickelfreien Systems (Vergleichsbeispiel 2) gegenüber dem des nickelhaltigen Systems (Vergleichsbeispiel 1 ) nach links verschoben. Auch die elektrische Leitfähigkeit ist niedriger: Die„Arme" der Kurve 1 sowie der Kurve 2 befinden sind jeweils unterhalb der Kurve 3, d.h. zu niedrigeren Stromdichten hin. Vergleichsbeispiel 3
Eine Testplatte gemäß Vergleichsbeispiel 1 wurde mittels einer nickelfreien Phosphatierlösung gemäß Vergleichsbeispiel 2 beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt. Die Stromdichte i über die Spannung E wurde gemäß Vergleichsbeispiel 1 gemessen (siehe Fig. 2. ZE_Variation6_1 : Kurve 1 ; ZE_Variation6_2: Kurve 2). Verglichen wird mit Vergleichsbeispiel 1 (Fig. 2: ZE_Variation1 1_2: Kurve 3) Wie Fig. 2 zu entnehmen ist, ist das Ruhepotential des nickelfreien Systems bei der Verwendung einer ZrF6 2~ enthaltenden Nachspüllösung (Vergleichsbeispiel 3) gegenüber dem des nickelhaltigen Systems (Vergleichsbeispiel 1 ) nach links verschoben. Auch die elektrische Leitfähigkeit ist beim genannten nickelfreien System niedriger (vgl. die Ausführungen zu Vergleichsbeispiel 2). Beispiel 1
Eine Testplatte gemäß Vergleichsbeispiel 1 wurde mittels einer nickelfreien Phosphatierlösung gemäß Vergleichsbeispiel 2 beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 220 mg/l Kupferionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt. Die Stromdichte i über die Spannung E wurde gemäß Vergleichsbeispiel 1 gemessen (siehe Fig. 3. ZE_Variation2_1 : Kurve 1 ; ZE_Variation2_2: Kurve 2). Verglichen wird wieder mit Vergleichsbeispiel 1 (Fig. 3: ZE_Variation1 1_2: Kurve 3).
Wie Fig. 3 zu entnehmen ist, entspricht das Ruhepotential des nickelfreien Systems bei der Verwendung einer Kupferionen enthaltenden Nachspüllösung (Beispiel 1 ) dem des nickelhaltigen Systems (Vergleichsbeispiel 1 ). Die Leitfähigkeit dieses nickelfreien Systems ist gegenüber dem des nickelhaltigen Systems leicht erhöht.
Beispiel 2
Eine Testplatte gemäß Vergleichsbeispiel 1 wurde mittels einer nickelfreien Phosphatierlösung gemäß Vergleichsbeispiel 2 beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer Nachspüllösung behandelt, welche ca. 1 g/l (gerechnet auf das reine Polymer) elektrisch leitfähiges Polyamin (Lupamin® 9030, Hersteller BASF) enthielt einem pH-Wert von ca. 4 aufwies. Die Stromdichte i über die Spannung E wurde gemäß Vergleichsbeispiel 1 gemessen (siehe Fig. 4. ZE_Variation3_1 : Kurve 1 ; ZE_Variation3_2: Kurve 2). Verglichen wird mit Vergleichsbeispiel 1 (Fig. 4: ZE_Variation1 1_2: Kurve 3).
Wie Fig. 4 zu entnehmen ist, entspricht das Ruhepotential des nickelfreien Systems bei der Verwendung einer ein elektrisch leitfähiges Polymer enthaltenden Nachspüllösung (Beispiel 2) dem des nickelhaltigen Systems (Vergleichsbeispiel 1 ). Dabei ist die elektrische Leitfähigkeit des nickelfreien Systems gegenüber dem nickelhaltigen etwas verringert.
Vergleichsbeispiel 4
Eine Testplatte aus feuerverzinktem Stahl (EA) wurde mittels einer 1 g/l Nickel enthaltenden Phosphatierlösung nach Vergleichsbeispiel 1 beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt und danach die Stromdichte i in A/cm2 über die vs. eine Silber/Silberchlorid (Ag/AgCI)-Elektrode angelegte Spannung E in V gemessen (siehe Fig. 5: EA 173: Kurve 1 ). Die Messung erfolgte mittels sog. Linear-Sweep- Voltametrie. Vergleichsbeispiel 5
Eine Testplatte gemäß Vergleichsbeispiel 4 wurde mittels einer nickel- sowie nitratfreien, 1 ,2 g/l Zn, 1 g/l Mn und 16 g/l PO 3" (berechnet als P2O5) enthaltenden, 35 °C warmen Phosphatierlösung ohne Nachspülung beschichtet und anschließend die Stromdichte i über die Spannung E gemäß Vergleichsbeispiel 3 gemessen (siehe Fig. 5. EA 167: Kurve 3; EA 167 2: Kurve 2).
Wie Fig. 5 zu entnehmen ist, ist das Ruhepotential des nickelfreien Systems (Vergleichsbeispiel 5) gegenüber dem des nickelhaltigen Systems (Vergleichsbeispiel 4) nach rechts verschoben. Die elektrische Leitfähigkeit ist beim nickelhaltigen System deutlich niedriger, was auf die Passivierung mittels der ZrF6 2~ enthaltenden Nachspüllösung zurückzuführen ist. Beispiel 3
Eine Testplatte gemäß Vergleichsbeispiel 4 wurde mittels einer nickelfreien Phosphatierlösung gemäß Vergleichsbeispiel 2 beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) und 220 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt. Die Stromdichte i über die Spannung E wurde gemäß Vergleichsbeispiel 1 gemessen (siehe Fig. 6. EA 178: Kurve 3; EA 178 2: Kurve 2). Verglichen wird mit Vergleichsbeispiel 3 (Fig. 6: EA 173: Kurve 1 ).
Wie Fig. 6 zu entnehmen ist, entspricht das Ruhepotential des nickelfreien Systems bei der Verwendung einer ZrF6 2~ und Molybdän ionen enthaltenden Nachspüllösung (Beispiel 3) dem des nickelhaltigen Systems (Vergleichsbeispiel 4). Durch den Zusatz von Molybdänionen (Beispiel 3) zur ZrF6 2~ enthaltenden Nachspüllösung (Vergleichsbeispiel 4) konnte die Leitfähigkeit an der Substratoberfläche deutlich erhöht werden. Testplatten gemäß den Vergleichsbeispielen 1 bis 3 (VB1 bis VB3) sowie den Beispielen 1 und 2 (B1 und B2) wurden nach erfolgter Phosphatierung mit einem kathodischen Elektrotauchlack sowie einem Standardautomobillackaufbau (Füller, Basislack, Klarlack) beschichtet und anschließend einem Gitterschnitttest nach DIN EN ISO 2409 unterzogen. Getestet wurden jeweils 3 Bleche vor und nach Belastung für 240 Stunden mit Kondenswasser (DIN EN ISO 6270-2 CH). Die entsprechenden Ergebnisse finden sich in Tab. 1. Ein Gitterschnittergebnis von 0 ist hierbei der beste, ein solches von 5 der schlechteste Wert. Werte von 0 und 1 sind dabei vergleichbar gute Werte.
Tabelle 1
Figure imgf000022_0001
Tab. 1 lässt die schlechten Ergebnisse von VB2 und insbesondere VB3 jeweils nach Belastung erkennen, während B1 (Kupferionen) und B2 (elektr. leitfähiges Polyamin) gute - VB1 (nickelhaltige Phosphatierung) mindestens vergleichbare - Resultate liefern.
Vergleichsbeispiel 6
Eine Testplatte aus feuerverzinktem Stahl (EA) wurde mittels einer 1 ,1 g/l Zn, 1 g/l Mn, 13,5 g/l PO4 3" (berechnet als P2O5), 3 g/l NO3 " und zudem 1 g/l Nickel enthaltenden, 53 °C warmen Phosphatierlosung nitritbeschleunigt (ca. 90 mg/l Nitrit) beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Vergleichsbeispiel 7
Eine Testplatte gemäß Vergleichsbeispiel 6 wurde mittels einer nickelfreien, 1 ,1 g/l Zn, 1 g/l Mn, 17 g/l PO4 3" (berechnet als P2O5) und 0,5 g/l NO3 " enthaltenden, 35 °C warmen Phosphatierlosung nitritbeschleunigt (ca. 90 mg/l Nitrit) beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) und 220 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Beispiel 4
Eine Testplatte gemäß Vergleichsbeispiel 6 wurde mittels einer nickel- sowie nitratfreien, 1 ,1 g/l Zn, 1 g/l Mn und 17 g/l PO4 3" (berechnet als P2O5) enthaltenden, 35 °C warmen Phosphatierlösung nitritbeschleunigt (ca. 90 mg/l Nitrit) beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) und 220 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt. Vergleichsbeispiel 8
Eine Testplatte gemäß Vergleichsbeispiel 6 wurde mittels einer nickelfreien, 1 ,1 g/l Zn, 1 g/l Mn, 17 g/l PO4 3" (berechnet als P2O5) und 0,5 g/l NO3 " enthaltenden, 35 °C warmen Phosphatierlösung peroxidbeschleunigt (ca. 80 mg/l H2O2) beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) und 220 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Beispiel 5
Eine Testplatte gemäß Vergleichsbeispiel 6 wurde mittels einer nickel- sowie nitratfreien, 1 ,1 g/l Zn, 1 g/l Mn und 17 g/l PO4 3" (berechnet als P2O5) enthaltenden, 35 °C warmen Phosphatierlösung peroxidbeschleunigt (ca. 80 mg/l H2O2) beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) und 220 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Testplatten gemäß den Vergleichsbeispielen 6 bis 8 (VB6 bis VB8) sowie den Beispielen 4 und 5 (B4 und B5) wurden nach erfolgter Phosphatierung mit einem kathodischen Elektrotauchlack sowie einem Standardautomobillackaufbau (Füller, Basislack, Klarlack) beschichtet und anschließend einem Gitterschnitttest nach DIN EN ISO 2409 unterzogen. Getestet wurden jeweils 3 Bleche vor und nach Belastung für 240 Stunden mit Kondenswasser (DIN EN ISO 6270-2 CH). Die entsprechenden Ergebnisse finden sich in Tab. 2. Tabelle 2
Figure imgf000024_0001
Tab. 2 lässt die schlechten Ergebnisse von VB7 (nitritbeschleunigt) sowie VB8 (peroxidbeschleunigt) im Vergleich zu VB6 erkennen, während B4 (nitritbeschleunigt) und B5 (peroxidbeschleunigt) gute - VB6 (nickelhaltige Phosphatierung) vergleichbare - Resultate liefern.
Vergleichsbeispiel 9
Eine Testplatte aus feuerverzinktem Stahl (EA) wurde mittels einer 1 ,1 g/l Zn, 1 g/l Mn, 13,5 g/l PO4 3" (berechnet als P2O5), 3 g/l NO3 " und zudem 1 g/l Nickel enthaltenden, 53 °C warmen Phosphatierlosung nitritbeschleunigt (ca. 90 mg/l Nitrit) beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Beispiel 6
Eine Testplatte gemäß Vergleichsbeispiel 9 wurde mittels einer nickel- sowie nitratfreien, 1 ,1 g/l Zn, 1 g/l Mn und 17 g/l PO4 3" (berechnet als P2O5) enthaltenden, 35 °C warmen Phosphatierlosung peroxidschleunigt (ca. 80 mg/l H2O2) beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) und 220 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Vergleichsbeispiel 10
Eine Testplatte aus blankem Stahl wurde mittels einer 1 ,1 g/l Zn, 1 g/l Mn, 13,5 g/l PO4 3" (berechnet als P2O5), 3 g/l NO3 " und zudem 1 g/l Nickel enthaltenden, 53 °C warmen Phosphatierlosung nitritbeschleunigt (ca. 90 mg/l Nitrit) beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt. Beispiel 7
Eine Testplatte gemäß Vergleichsbeispiel 10 wurde mittels einer nickel- sowie nitratfreien, 1 ,1 g/l Zn, 1 g/l Mn und 17 g/l PO4 3" (berechnet als P2O5) enthaltenden, 35 °C warmen Phosphatierlosung peroxidschleunigt (ca. 80 mg/l H2O2) beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) und 220 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Vergleichsbeispiel 11
Eine Testplatte aus elektrolytisch verzinktem Stahl (ZE) wurde mittels einer 1 ,1 g/l Zn, 1 g/l Mn, 13,5 g/l PO4 3" (berechnet als P2O5), 3 g/l NO3 " und zudem 1 g/l Nickel enthaltenden, 53 °C warmen Phosphatierlosung nitritbeschleunigt (ca. 90 mg/l Nitrit) beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Beispiel 8
Eine Testplatte gemäß Vergleichsbeispiel 1 1 wurde mittels einer nickel- sowie nitratfreien, 1 ,1 g/l Zn, 1 g/l Mn und 17 g/l PO4 3" (berechnet als P2O5) enthaltenden, 35 °C warmen Phosphatierlosung peroxidschleunigt (ca. 80 mg/l H2O2) beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) und 220 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Testplatten gemäß den Vergleichsbeispielen 9 bis 1 1 (VB9 bis VB1 1 ) sowie den Beispielen 6 bis 8 (B6 bis B8) wurden nach erfolgter Phosphatierung mit einem kathodischen Elektrotauchlack sowie einem Standardautomobillackaufbau (Füller, Basislack, Klarlack) beschichtet und dem bei VB6 bis VB8, B4 und B5 weiter oben beschriebenen Gitterschnitttest unterzogen. Die Ergebnisse sind in Tab. 3 zusammengefasst. Zudem wurden besagte Testplatten einem VDA-Test (VDA 621 -415) unterzogen, wobei die Lackunterwanderung (U) in mm festgestellt sowie die Lackablösung nach Steinschlag (DIN EN ISO 20567-1 , Verf. C) bestimmt wurde. Ein Ergebnis von 0 ist hierbei der beste, ein solches von 5 der schlechteste Wert nach erfolgtem Steinschlag. Ein Wert bis 1 ,5 ist dabei als guter Wert zu betrachten. Die Ergebnisse sind ebenfalls in Tab. 3 zusammengefasst.
Tabelle 3
Figure imgf000026_0001
Tab. 3 lassen sich die guten Ergebnisse entnehmen, welche sich mit dem erfindungsgemäßen nickelfreien Verfahren sowohl auf feuerverzinktem Stahl (B6) als auch auf blankem Stahl (B7) als auch auf elektrolytisch verzinktem Stahl (B8) erzielen lassen. Diese sind dem nickelhaltigen Verfahren jeweils vergleichbar (vgl. B6 mit VB9, B7 mit VB10 und B8 mit VB1 1 ).
Vergleichsbeispiel 12
Eine Testplatte aus feuerverzinktem Stahl (EA) wurde mittels einer 1 ,1 g/l Zn, 1 g/l Mn, 13,5 g/l PO4 3" (berechnet als P2O5), 3 g/l NO3 " und zudem 1 g/l Nickel enthaltenden, 53 °C warmen Phosphatierlosung nitritbeschleunigt (ca. 90 mg/l Nitrit) beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Beispiel 9
Eine Testplatte gemäß Vergleichsbeispiel 12 wurde mittels einer nickel- sowie nitratfreien, 1 ,1 g/l Zn, 1 g/l Mn und 17 g/l PO4 3" (berechnet als P2O5) enthaltenden, 35 °C warmen Phosphatierlösung peroxidbeschleunigt (ca. 80 mg/l H2O2) beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) und 220 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Beispiel 10
Eine Testplatte gemäß Vergleichsbeispiel 12 wurde mittels einer nickel- sowie nitratfreien, 1 ,2 g/l Zn, 1 g/l Mn und 13 g/l PO 3" (berechnet als P2O5) enthaltenden, 45 °C warmen Phosphatierlösung peroxidbeschleunigt (ca. 50 mg/l H2O2) beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) und 220 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Vergleichsbeispiel 13
Eine Testplatte aus blankem Stahl wurde mittels einer Phosphatierlösung gemäß Vergleichsbeispiel 12 nitritbeschleunigt (ca. 90 mg/l Nitrit) beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Beispiel 11
Eine Testplatte gemäß Vergleichsbeispiel 13 wurde mittels einer Phosphatierlösung gemäß Beispiel 9 peroxidbeschleunigt (ca. 80 mg/l H2O2) beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) und 220 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Beispiel 12
Eine Testplatte gemäß Vergleichsbeispiel 13 wurde mittels einer Phosphatierlösung gemäß Beispiel 10 peroxidbeschleunigt (ca. 50 mg/l H2O2) beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) und 220 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt. Vergleichsbeispiel 14
Eine Testplatte aus AA6014 S wurde mittels einer Phosphatierlösung gemäß Vergleichsbeispiel 12 nitritbeschleunigt (ca. 90 mg/l Nitrit) beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Beispiel 13
Eine Testplatte gemäß Vergleichsbeispiel 14 wurde mittels einer Phosphatierlösung gemäß Beispiel 9 peroxidbeschleunigt (ca. 80 mg/l H2O2) beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) und 220 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Beispiel 14
Eine Testplatte gemäß Vergleichsbeispiel 14 wurde mittels einer Phosphatierlösung gemäß Beispiel 10 peroxidbeschleunigt (ca. 50 mg/l H2O2) beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) und 220 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Testplatten gemäß den Vergleichsbeispielen 12 bis 14 (VB12 bis VB14) sowie den Beispielen 9 bis 14 (B9 bis B14) wurden nach erfolgter Phosphatierung mit einem kathodischen Elektrotauchlack sowie einem Standardautomobillackaufbau (Füller, Basislack, Klarlack) beschichtet.
Die Testplatten der Vergleichsbeispiele 12 und 13 (VB12 und VB13) sowie der Beispiele 9 bis 12 (B9 bis B12) wurden dem weiter oben beschriebenen VDA-Test unterzogen. Die Ergebnisse sind in Tab. 4 zusammengefasst. Die Testplatten des Vergleichsbeispiels 14 (VB14) sowie der Beispiele 13 und 14 (B13 und B14) wurden hingegen einem 240-stündigen CASS-Test nach DIN EN ISO 9227 unterzogen. Die Ergebnisse sind in Tab. 5 zusammengefasst. Tabelle 4
Figure imgf000029_0001
Beispiel 15
Eine Testplatte aus feuerverzinktem Stahl (EA) wurde mittels einer nickel- sowie nitratfreien, 1 ,1 g/l Zn, 1 g/l Mn und 17 g/l PO4 3" (berechnet als P2O5) enthaltenden, 35 °C warmen Phosphatierlosung peroxidschleunigt (ca. 80 mg/l H2O2) beschichtet. Der Säurewert der Phosphatierlosung war dabei auf 0,07 eingestellt. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) und 220 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Beispiel 16
Eine Testplatte aus feuerverzinktem Stahl (EA) wurde mittels einer nickel- sowie nitratfreien, 1 ,1 g/l Zn, 1 g/l Mn und 17 g/l PO 3" (berechnet als P2O5) enthaltenden, 35 °C warmen Phosphatierlosung peroxidschleunigt (ca. 80 mg/l H2O2) beschichtet. Der Säurewert der Phosphatierlosung war dabei auf 0,05 eingestellt. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) und 220 mg/1 Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Testplatten gemäß den Beispielen 15 und 16 (B15 und B16) wurden nach erfolgter Phosphatierung mit einem kathodischen Elektrotauchlack sowie einem Standardautomobillackaufbau (Füller, Basislack, Klarlack) beschichtet und anschließend - wie weiter oben beschrieben - einem Gitterschnitttest vor und nach Belastung für 240 Stunden mit Kondenswasser unterzogen. Die Ergebnisse sind in Tab. 6 zusammengefasst.
Figure imgf000030_0001
Tab. 6 lässt sich entnehmen, dass sich die Gitterschnittergebnisse nach Belastung mit Kondenswasser durch das Senken des Säurewertes (B16) deutlich verbessern lassen.

Claims

Ansprüche
1 . Verfahren zur im Wesentlichen nickelfreien Phosphatierung einer metallischen Oberfläche dadurch gekennzeichnet, dass eine metallische Oberfläche, gegebenenfalls nach Reinigung und/oder Aktivierung, zunächst mit einer sauren wässrigen Phosphatierzusammensetzung behandelt wird, welche Zinkionen, Manganionen und Phosphationen umfasst, gegebenenfalls gespült und/oder getrocknet wird, und danach mit einer wässrigen Nachspülzusammensetzung behandelt wird, welche mindestens eine Art von Metallionen ausgewählt aus der Gruppe bestehend aus den Ionen von Molybdän, Kupfer, Silber, Gold, Palladium, Zinn, Antimon, Titan, Zirkonium und Hafnium und/oder mindestens ein Polymer ausgewählt aus der Gruppe bestehend aus den Polymerklassen, der Polyamine, Polyethylenamine, Polyaniline, Polyimine, Polyethylenimine, Polythiophene und Polypryrole sowie deren Mischungen und Copolymerisaten umfasst, wobei sowohl die Phosphatierzusammensetzung als auch die Nachspülzusammensetzung im Wesentlichen nickelfrei sind.
2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die metallische Oberfläche zumindest teilweise verzinkt ist.
3. Verfahren nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass die Phosphatierzusammensetzung 0,3 bis 3,0 g/l an Zinkionen, 0,3 bis 2,0 g/l an Manganionen sowie 8 bis 25 g/l an Phosphationen (berechnet als P2O5) umfasst.
4. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die Phosphatierzusammensetzung 30 bis 250 mg/l an freiem Fluorid umfasst.
5. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die Phosphatierzusammensetzung 0,5 bis 3 g/l an Komplexfluorid umfasst.
6. Verfahren nach Anspruch 5 dadurch gekennzeichnet, dass es sich bei dem Komplexfluorid um Tetrafluoroborat (BF ") und/oder Hexafluorosilicat (SiF6 2~) handelt.
7. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die Phosphatierzusammensetzung einen Gehalt an Fe(lll) aufweist.
8. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die Phosphatierzusammensetzung mindestens einen Beschleuniger ausgewählt aus der Gruppe bestehend aus Nitroguanidin, H2O2, Nitrit und Hydroxylamin enthält.
9. Verfahren nach Anspruch 8 dadurch gekennzeichnet, dass es sich bei dem mindestens einen Beschleuniger um H2O2 handelt.
10. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die Phosphatierzusammensetzung weniger als 1 g/l, bevorzugt weniger als 0,5 g/l Nitrat enthält.
1 1. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die Phosphatierzusammensetzung eine Freie Säure im Bereich von 0,3 bis 2,0, eine Freie Säure (verdünnt) im Bereich von 0,5 bis 8, eine Gesamtsäure nach Fischer im Bereich von 12 bis 28, eine Gesamtsäure im Bereich von 12 bis 45 und einen Säurewert im Bereich von 0,01 bis 0,2 aufweist.
12. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die Phosphatierzusammensetzung einen Säurewert im Bereich von 0,03 bis 0,065 aufweist.
13. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die Phosphatierzusammensetzung eine Temperatur im Bereich von 30 bis 50 °C, bevorzugt im Bereich zwischen 35 und 45 °C aufweist.
14. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die Nachspülzusammensetzung Molybdänionen umfasst.
15. Verfahren nach Anspruch 14 dadurch gekennzeichnet, dass die Nachspülzusammensetzung Molybdänionen und Zirkoniumionen umfasst.
16. Verfahren nach Anspruch 15 dadurch gekennzeichnet, dass die Nachspülzusammensetzung 20 bis 225 mg/l an Molybdänionen und 50 bis 300 mg/l an Zirkoniumionen umfasst.
17. Verfahren nach einem der Ansprüche 14 bis 16 dadurch gekennzeichnet, dass der pH-Wert der Nachspülzusammensetzung 3,5 bis 4,5, bevorzugt 3,5 bis 4,0 beträgt.
18. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die Nachspülzusammensetzung Kupferionen umfasst.
19. Verfahren nach Anspruch 18 dadurch gekennzeichnet, dass die Nachspülzusammensetzung 100 bis 500 mg/l an Kupferionen umfasst.
20. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die Nachspülzusammensetzung ein Polyamin und/oder Polyimin umfasst.
21 . Saure wässrige Phosphatierzusammensetzung zur im Wesentlichen nickelfreien Phosphatierung einer metallischen Oberfläche nach einem der vorhergehenden Ansprüche.
22. Konzentrat, aus dem durch Verdünnen mit einem geeigneten Lösungsmittel um einen Faktor zwischen 1 und 100 und erforderlichenfalls Zugabe einer pH- Wert modifizierenden Substanz eine Phosphatierzusammensetzung nach Anspruch 21 erhältlich ist.
23. Phosphatbeschichtete metallische Oberfläche, dadurch gekennzeichnet, dass sie durch ein Verfahren nach einem der Ansprüche 1 bis 20 erhältlich ist.
PCT/EP2016/057622 2015-04-07 2016-04-07 Verfahren zur nickelfreien phosphatierung von metallischen oberflächen WO2016162423A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
RU2017138445A RU2746373C2 (ru) 2015-04-07 2016-04-07 Способ безникелевого фосфатирования металлических поверхностей
MX2017012919A MX2017012919A (es) 2015-04-07 2016-04-07 Metodo para el fosfatado libre de niquel en superficies de metal.
EP16718613.9A EP3280831A1 (de) 2015-04-07 2016-04-07 Verfahren zur nickelfreien phosphatierung von metallischen oberflächen
JP2017553120A JP6804464B2 (ja) 2015-04-07 2016-04-07 ニッケルを用いないで金属表面をリン酸塩処理するための方法
CN201680032979.8A CN107735511B (zh) 2015-04-07 2016-04-07 无镍磷化金属表面的方法
BR112017021409-1A BR112017021409B1 (pt) 2015-04-07 2016-04-07 Método para fosfatação de uma superfície metálica, e, superfície metálica revestida com fosfato
US15/562,970 US10738383B2 (en) 2015-04-07 2016-04-07 Method for nickel-free phosphating metal surfaces
KR1020177031822A KR20170134613A (ko) 2015-04-07 2016-04-07 금속 표면을 니켈-무함유 인산염처리하는 방법
ZA2017/07420A ZA201707420B (en) 2015-04-07 2017-11-01 Method for nickel-free phosphating metal surfaces

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015206145 2015-04-07
DE102015206145.0 2015-04-07

Publications (1)

Publication Number Publication Date
WO2016162423A1 true WO2016162423A1 (de) 2016-10-13

Family

ID=55802343

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/EP2016/057620 WO2016162422A1 (de) 2015-04-07 2016-04-07 Verfahren zur gezielten einstellung der elektrischen leitfähigkeit von konversionsbeschichtungen
PCT/EP2016/057622 WO2016162423A1 (de) 2015-04-07 2016-04-07 Verfahren zur nickelfreien phosphatierung von metallischen oberflächen
PCT/EP2017/050993 WO2017174222A1 (de) 2015-04-07 2017-01-18 Verbessertes verfahren zur nickelfreien phosphatierung von metallischen oberflächen

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/057620 WO2016162422A1 (de) 2015-04-07 2016-04-07 Verfahren zur gezielten einstellung der elektrischen leitfähigkeit von konversionsbeschichtungen

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/050993 WO2017174222A1 (de) 2015-04-07 2017-01-18 Verbessertes verfahren zur nickelfreien phosphatierung von metallischen oberflächen

Country Status (12)

Country Link
US (2) US10738383B2 (de)
EP (3) EP3280831A1 (de)
JP (3) JP6810704B2 (de)
KR (3) KR20170133480A (de)
CN (3) CN107735511B (de)
BR (2) BR112017021409B1 (de)
DE (2) DE102016205814A1 (de)
ES (1) ES2873381T3 (de)
MX (3) MX2017012919A (de)
RU (3) RU2721971C2 (de)
WO (3) WO2016162422A1 (de)
ZA (2) ZA201707384B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11492707B2 (en) 2015-04-07 2022-11-08 Chemetall Gmbh Method for specifically adjusting the electrical conductivity of conversion coatings

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11072861B2 (en) * 2015-09-29 2021-07-27 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
US11124880B2 (en) 2016-04-07 2021-09-21 Chemetall Gmbh Method for nickel-free phosphating metal surfaces
HUE047403T2 (hu) 2017-04-21 2020-04-28 Henkel Ag & Co Kgaa Lerakódásmentes foszfátbevonat-képzési módszer fémalkatrész sorozatokhoz
EP3392376A1 (de) 2017-04-21 2018-10-24 Henkel AG & Co. KGaA Verfahren zur schichtbildenden zinkphosphatierung von metallischen bauteilen in serie
KR20200045487A (ko) 2017-08-31 2020-05-04 케메탈 게엠베하 금속 표면을 니켈-무함유 인산염처리하는 개선된 방법
CN109183015B (zh) * 2018-08-03 2020-09-15 广州正利金属表面处理剂有限公司 一种无镍皮膜剂及其制备方法
EP3864189A1 (de) * 2018-10-08 2021-08-18 Chemetall GmbH Verfahren zur ni-freien phosphatierung von metalloberflächen und zusammensetzung zur verwendung in solch einem verfahren
US20210340676A1 (en) * 2018-10-08 2021-11-04 Chemetall Gmbh Method for ni-free phosphatizing of metal surfaces and composition for use in such a method
WO2020156913A1 (de) * 2019-01-29 2020-08-06 Chemetall Gmbh Alternative zusammensetzung und alternatives verfahren zur effektiven phosphatierung von metallischen oberflächen
JP2021066916A (ja) * 2019-10-21 2021-04-30 日本パーカライジング株式会社 金属材料の処理剤及び塗膜を有する金属材料
CN110699681B (zh) * 2019-10-24 2021-12-14 河南北方红阳机电有限公司 一种高强度钢和硬铝合金组合体喷淋磷化工艺
EP4073288A1 (de) * 2019-12-11 2022-10-19 Salzgitter Flachstahl GmbH Blech mit haftvermittlerbeschichtung als halbzeug zur fertigung von metall-thermoplastverbundbauteilen und verfahren zur herstellung eines solchen bleches
JP7453599B2 (ja) 2021-03-29 2024-03-21 日本製鉄株式会社 表面処理鋼板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0531575A1 (de) * 1990-03-19 1993-03-17 Sumitomo Metal Industries, Ltd. Korrosionbeständiges beschichtetes Stahlblech geeignet für Finish-Elektrobeschichtung
WO1995033083A1 (de) * 1994-05-27 1995-12-07 Herberts Gesellschaft mit beschränkter Haftung Verfahren zur beschichtung phosphatierter metallsubstrate
DE19511573A1 (de) * 1995-03-29 1996-10-02 Henkel Kgaa Verfahren zur Phosphatierung mit metallhaltiger Nachspülung
DE19834796A1 (de) * 1998-08-01 2000-02-03 Henkel Kgaa Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung
WO2001038605A2 (de) * 1999-11-24 2001-05-31 Henkel Kommanditgesellschaft Auf Aktien Verfahren zur phosphatierung mit metallhaltiger nachspülung
WO2003027203A2 (en) * 2001-09-27 2003-04-03 The Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations Conducting polymer for pretreatment of metallic and non-metallic surfaces
WO2005061761A1 (de) * 2003-12-11 2005-07-07 Henkel Kommanditgesellschaft Auf Aktien Zweistufige konversionsbehandlung

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819423A (en) * 1972-06-15 1974-06-25 Chemfil Miles Chem & Filter Co Final rinse step in phosphating of metals
ES2036023T3 (es) * 1988-11-25 1993-05-01 Metallgesellschaft Aktiengesellschaft Procedimiento para la aplicacion de recubrimiento de fosfato.
DE59405046D1 (de) * 1993-09-06 1998-02-19 Henkel Kgaa Nickelfreies phosphatierverfahren
JPH07278891A (ja) * 1994-04-12 1995-10-24 Nippon Parkerizing Co Ltd 金属材料の塗装前処理方法
JP3088623B2 (ja) * 1994-11-08 2000-09-18 日本ペイント株式会社 金属表面のリン酸亜鉛皮膜形成方法
JPH08158061A (ja) * 1994-12-06 1996-06-18 Nippon Parkerizing Co Ltd 金属材料用りん酸亜鉛系化成処理液
DE10110834B4 (de) * 2001-03-06 2005-03-10 Chemetall Gmbh Verfahren zur Beschichtung von metallischen Oberflächen und Verwendung der derart beschichteten Substrate
TW567242B (en) * 2002-03-05 2003-12-21 Nihon Parkerizing Treating liquid for surface treatment of aluminum or magnesium based metal and method of surface treatment
DE10323305B4 (de) * 2003-05-23 2006-03-30 Chemetall Gmbh Verfahren zur Beschichtung von metallischen Oberflächen mit einer Wasserstoffperoxid enthaltenden Phosphatierungslösung, Phosphatierlösung und Verwendung der behandelten Gegenstände
US20050176592A1 (en) * 2004-02-11 2005-08-11 Tenaris Ag Method of using intrinsically conductive polymers with inherent lubricating properties, and a composition having an intrinsically conductive polymer, for protecting metal surfaces from galling and corrosion
FR2866029B1 (fr) * 2004-02-11 2006-05-26 Dacral Composition de revetement anti-corrosion en dispersion aqueuse comprenant un titanate et/ou un zirconate organique
ES2748506T3 (es) * 2004-11-10 2020-03-17 Chemetall Gmbh Proceso para producir un recubrimiento de reparación en una superficie metálica recubierta
US20060099332A1 (en) * 2004-11-10 2006-05-11 Mats Eriksson Process for producing a repair coating on a coated metallic surface
DE102005059314B4 (de) * 2005-12-09 2018-11-22 Henkel Ag & Co. Kgaa Saure, chromfreie wässrige Lösung, deren Konzentrat, und ein Verfahren zur Korrosionsschutzbehandlung von Metalloberflächen
JP2007262577A (ja) * 2006-03-01 2007-10-11 Nippon Paint Co Ltd 金属表面処理用組成物、金属表面処理方法、及び金属材料
JP2008174832A (ja) * 2006-12-20 2008-07-31 Nippon Paint Co Ltd カチオン電着塗装用金属表面処理液
US20080314479A1 (en) * 2007-06-07 2008-12-25 Henkel Ag & Co. Kgaa High manganese cobalt-modified zinc phosphate conversion coating
CN104718312B (zh) * 2012-08-29 2017-03-15 Ppg工业俄亥俄公司 含有钼的锆预处理组合物,用于处理金属基材的相关方法和相关的涂覆的金属基材
DE102014007715B4 (de) * 2014-05-28 2018-06-07 Chemetall Gmbh Verfahren zur Herstellung einer Sandwichstruktur, die hiermit hergestellte Sandwichstruktur und ihre Verwendung
JP6810704B2 (ja) 2015-04-07 2021-01-06 ケメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング 化成コーティングの導電性を厳密に調節するための方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0531575A1 (de) * 1990-03-19 1993-03-17 Sumitomo Metal Industries, Ltd. Korrosionbeständiges beschichtetes Stahlblech geeignet für Finish-Elektrobeschichtung
WO1995033083A1 (de) * 1994-05-27 1995-12-07 Herberts Gesellschaft mit beschränkter Haftung Verfahren zur beschichtung phosphatierter metallsubstrate
DE19511573A1 (de) * 1995-03-29 1996-10-02 Henkel Kgaa Verfahren zur Phosphatierung mit metallhaltiger Nachspülung
DE19834796A1 (de) * 1998-08-01 2000-02-03 Henkel Kgaa Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung
WO2001038605A2 (de) * 1999-11-24 2001-05-31 Henkel Kommanditgesellschaft Auf Aktien Verfahren zur phosphatierung mit metallhaltiger nachspülung
WO2003027203A2 (en) * 2001-09-27 2003-04-03 The Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations Conducting polymer for pretreatment of metallic and non-metallic surfaces
WO2005061761A1 (de) * 2003-12-11 2005-07-07 Henkel Kommanditgesellschaft Auf Aktien Zweistufige konversionsbehandlung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11492707B2 (en) 2015-04-07 2022-11-08 Chemetall Gmbh Method for specifically adjusting the electrical conductivity of conversion coatings

Also Published As

Publication number Publication date
BR112018070593A2 (pt) 2019-02-05
ZA201707384B (en) 2022-06-29
RU2748349C2 (ru) 2021-05-24
JP2018510971A (ja) 2018-04-19
CN107735511B (zh) 2022-05-10
US20180112313A1 (en) 2018-04-26
EP3280831A1 (de) 2018-02-14
RU2017138446A3 (de) 2019-10-17
BR112017021307B1 (pt) 2022-10-11
KR20190002504A (ko) 2019-01-08
BR112017021409A2 (pt) 2018-07-03
US10738383B2 (en) 2020-08-11
CN109312466A (zh) 2019-02-05
KR20170133480A (ko) 2017-12-05
WO2016162422A1 (de) 2016-10-13
ZA201707420B (en) 2019-05-29
RU2017138445A (ru) 2019-05-07
MX2018012228A (es) 2019-02-07
RU2017138446A (ru) 2019-05-07
KR20170134613A (ko) 2017-12-06
US20180112314A1 (en) 2018-04-26
JP6810704B2 (ja) 2021-01-06
US20180334748A9 (en) 2018-11-22
BR112017021409B1 (pt) 2023-02-28
ES2873381T3 (es) 2021-11-03
BR112017021307A2 (pt) 2018-06-26
CN109312466B (zh) 2022-04-19
EP3440235A1 (de) 2019-02-13
JP6804464B2 (ja) 2020-12-23
RU2721971C2 (ru) 2020-05-25
JP6986028B2 (ja) 2021-12-22
RU2746373C2 (ru) 2021-04-12
RU2017138445A3 (de) 2019-10-09
CN107683348A (zh) 2018-02-09
EP3280830B1 (de) 2021-03-31
DE102016205815A1 (de) 2016-10-13
MX2017012917A (es) 2018-01-30
RU2018138295A (ru) 2020-05-12
RU2018138295A3 (de) 2020-05-12
EP3280830A1 (de) 2018-02-14
WO2017174222A1 (de) 2017-10-12
MX2017012919A (es) 2018-01-15
US11492707B2 (en) 2022-11-08
DE102016205814A1 (de) 2016-10-13
CN107735511A (zh) 2018-02-23
JP2018512511A (ja) 2018-05-17
JP2019510886A (ja) 2019-04-18

Similar Documents

Publication Publication Date Title
WO2016162423A1 (de) Verfahren zur nickelfreien phosphatierung von metallischen oberflächen
EP2507408B1 (de) Mehrstufiges vorbehandlungsverfahren für metallische bauteile mit zink- und eisenoberflächen
EP2588646B1 (de) Verfahren zur selektiven phosphatierung einer verbundmetallkonstruktion
EP2817434A1 (de) Vorbehandlung von zinkoberflächen vor einer passivierung
EP3755825A1 (de) Verfahren zur selektiven phosphatierung einer verbundmetallkonstruktion
EP2215285A1 (de) Zirconiumphosphatierung von metallischen bauteilen, insbesondere eisen
EP3676419B1 (de) Verbessertes verfahren zur nickelfreien phosphatierung von metallischen oberflächen
DE102009047523A1 (de) Mehrstufiges Vorbehandlungsverfahren für metallische Bauteile mit Zinnoberflächen
EP3918108B1 (de) Alternative zusammensetzung und alternatives verfahren zur effektiven phosphatierung von metallischen oberflächen
WO1994008074A1 (de) Verfahren zum phosphatieren von verzinkten stahloberflächen
WO2016193004A1 (de) Konditionierung vor einer konversionsbehandlung von metalloberflächen
JP2018012857A (ja) 電解処理用金属表面処理剤、電解処理用金属表面処理剤の製造方法、及び、金属材料の表面処理方法
WO1999045171A1 (de) Schichtgewichtsteuerung bei bandphosphatierung
WO2015090418A1 (de) Verfahren zur beschichtung elektrisch leitfähiger substrate
WO2019115301A1 (de) Anti-korrosionsbeschichtung für metallische substrate
WO1990015167A1 (de) Verfahren zur erzeugung von manganhaltigen phosphatüberzügen auf metalloberflächen
EP3303652B1 (de) Vorspüle enthaltend ein quartäres amin zur konditionierung vor einer konversionsbehandlung
DE19723350A1 (de) Nachspülung von Phosphatschichten mit rutheniumhaltigen Lösungen
BR112018070593B1 (pt) Método para fosfatização de uma superfície metálica, composição de fosfatização livre de níquel, ácida e aquosa, e, concentrado

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16718613

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15562970

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016718613

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/012919

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2017553120

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177031822

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017138445

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017021409

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017021409

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171005