EP3280830A1 - Verfahren zur gezielten einstellung der elektrischen leitfähigkeit von konversionsbeschichtungen - Google Patents

Verfahren zur gezielten einstellung der elektrischen leitfähigkeit von konversionsbeschichtungen

Info

Publication number
EP3280830A1
EP3280830A1 EP16717585.0A EP16717585A EP3280830A1 EP 3280830 A1 EP3280830 A1 EP 3280830A1 EP 16717585 A EP16717585 A EP 16717585A EP 3280830 A1 EP3280830 A1 EP 3280830A1
Authority
EP
European Patent Office
Prior art keywords
aqueous composition
ions
metallic surface
conversion
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16717585.0A
Other languages
English (en)
French (fr)
Other versions
EP3280830B1 (de
Inventor
Olaf Dahlenburg
Frank Hollmann
Michael DRÖGE
Thomas Kolberg
Lisa SCHMEIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemetall GmbH
Original Assignee
Chemetall GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55802343&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3280830(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Chemetall GmbH filed Critical Chemetall GmbH
Publication of EP3280830A1 publication Critical patent/EP3280830A1/de
Application granted granted Critical
Publication of EP3280830B1 publication Critical patent/EP3280830B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/182Orthophosphates containing manganese cations containing also zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/362Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • C23C22/365Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations containing also zinc and nickel cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/12Electrophoretic coating characterised by the process characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • the present invention relates to a method for the specific adjustment of the electrical conductivity of a conversion coating on a metallic surface by means of an aqueous composition and to a corresponding aqueous composition and a corresponding conversion coating.
  • Conversion coatings on metallic surfaces are known from the prior art. Such coatings serve to protect the corrosion of the metallic surfaces and also as adhesion promoters for subsequent paint layers.
  • lacquer layers are mainly cathodically deposited electrodeposition paints (KTL). Since during the deposition of KTL a current must flow between the metallic surface and the treatment bath, it is important to set a defined electrical conductivity of the conversion coating in order to ensure an efficient and homogeneous deposition.
  • KTL cathodically deposited electrodeposition paints
  • conversion coatings are usually applied by means of a nickel-containing phosphating solution.
  • the nickel ions thus incorporated into the conversion coating or the elementally deposited nickel provide for a suitable conductivity of the coating in the subsequent electrodeposition coating.
  • nickel ions are no longer desirable as part of treatment solutions because of their high toxicity and environmental toxicity, and should therefore be avoided or at least reduced in content as much as possible.
  • nickel-free or nickel-poor systems are thin-film coatings which are, for example, thin coatings of zirconium oxide and optionally at least one organosiloxane and / or at least one organic polymer. Again, however, the targeted adjustment of the electrical conductivity for subsequent electrocoating is still unsatisfactory. Thus, in many cases more or less pronounced inhomogeneities of the deposited cathods can not be avoided (so-called mapping). Moreover, in the case of the abovementioned nickel-poor or nickel-free systems, unfavorable KTL deposition conditions can lead to poor corrosion and lacquer adhesion values due to a not optimally adjusted electrical conductivity of the conversion coating.
  • the object of the present invention was therefore to provide a method by means of which the electrical conductivity of a conversion coating on a metallic surface can be adjusted in a targeted manner and in which, in particular, the disadvantages known from the prior art are avoided.
  • a metallic surface or a conversion-coated metallic surface is treated with an aqueous composition according to the invention which comprises at least one type of metal ion selected from the group consisting of the ions of molybdenum, copper, silver, gold , Palladium, tin and antimony and / or at least one electrically conductive polymer selected from the group consisting of the polymer classes of the polyamines, polyanilines, polyimines, polythiophenes and polypryrenes.
  • metal ion is meant either a metal cation, a complex metal cation or a complex metal anion.
  • an “aqueous composition” is meant a composition which contains predominantly, ie, more than 50% by weight, water as the solvent, and may comprise, in addition to dissolved constituents, also dispersed, ie emulsified and / or suspended constituents.
  • an uncoated metallic surface on the other hand, an already conversion-coated metallic surface can be treated by the method according to the invention.
  • the aqueous composition may on the one hand itself be a treatment solution for producing a conversion coating (so-called one-pot process), but on the other hand may also be used as a rinsing solution for the treatment of an already generated conversion coating.
  • an aqueous composition according to the invention as a treatment solution for producing a conversion coating and then a second composition according to the invention - same or different composition - as rinsing solution for the treatment of the conversion coating thus produced.
  • the aqueous composition according to the invention comprises at least one kind of metal ion selected from the group consisting of the ions of the following metals in the following preferred, particularly preferred and most preferred concentration ranges (all calculated as corresponding metal): Mo 1 to 1000 mg / l 10 to 500 mg / l 20 to 225 mg / l
  • the metal ions contained in the aqueous composition are deposited either in the form of a salt which preferably contains the corresponding metal cation (eg molybdenum or tin) in at least two oxidation states - in particular in the form of an oxide hydroxide, a hydroxide, a spinel or a defect spinel - or elemental on the surface to be treated (eg copper, silver, gold or palladium).
  • a salt which preferably contains the corresponding metal cation (eg molybdenum or tin) in at least two oxidation states - in particular in the form of an oxide hydroxide, a hydroxide, a spinel or a defect spinel - or elemental on the surface to be treated (eg copper, silver, gold or palladium).
  • the metal ions are molybdenum ions. These are preferably added as molybdate, more preferably as ammonium heptamolybdate and more preferably as ammonium heptamolybdate x 7 H 2 O of the aqueous composition.
  • molybdenum ions can also be added to the aqueous composition, for example in the form of at least one salt containing molybdenum cations, such as molybdenum chloride, and then oxidized to molybdate by a suitable oxidizing agent, for example by the accelerators described below.
  • a suitable oxidizing agent for example by the accelerators described below.
  • the aqueous composition contains molybdenum ions in combination with copper ions, tin ions or zirconium ions.
  • a polymer or copolymer in particular selected from the group consisting of the polymer classes of polyamines, polyanilines, polyimines, polythiophenes and polypryrenes and mixtures and copolymers thereof and polyacrylic acid, wherein the content of molybdenum ions and Zirconium each in the range of 10 to 500 mg / l (calculated as metal) is.
  • the content of molybdenum ions is preferably in the range from 20 to 225 mg / l, particularly preferably from 50 to 225 mg / l and very particularly preferably from 100 to 225 mg / l and the content of zirconium ions in the range from 30 to 300 mg / l, more preferably from 50 to 200 mg / l.
  • the metal ions are copper ions.
  • the rinsing solution then contains these in a concentration of 5 to 225 mg / l, more preferably from 150 to 225 mg / l.
  • the aqueous composition according to the invention contains at least one electrically conductive polymer selected from the group consisting of the polymer classes of the polyamines, polyanilines, polyimines, polythiophenes and polypryoles. Preference is given to using a polyamine and / or polyimine, more preferably a polyamine.
  • the polyamine is preferably a polyethyleneamine, the polyimine is a polyethylenimine.
  • the at least one electrically conductive polymer is preferably in a concentration in the range from 0.1 to 5.0 g / l, more preferably from 0.2 to 3.0 g / l and particularly preferably in the range from 0.5 to 1 , 5 g / l (calculated as pure polymer).
  • electrically conductive polymers cationic polymers such as e.g. Polyamines or polyethyleneimines used.
  • the aqueous composition according to the invention comprises at least one kind of metal ions selected from the group consisting of the ions of molybdenum, copper, silver, gold, palladium, tin and antimony and at least one electrically conductive polymer selected from the group consisting of the polymer classes Polyamines, polyanilines, polyimines, polythiophenes and polypryrenes.
  • aqueous compositions according to the invention which are less than 1.5 g / l, more preferably less than 1 g / l, more preferably less than 0.5 g / l, more preferably less than 0.1 g / l, and most preferably less than 0.01 g / l nickel ions. If a treatment solution or aqueous composition according to the invention contains less than 0.01 g / l of nickel ions, it should be considered at least essentially nickel-free.
  • Suitable conversion coatings which are produced or treated by means of the aqueous composition according to the invention, are, in particular, phosphate coatings and thin-film coatings.
  • the thin-film coatings are, for example, thin coatings of zirconium oxide and optionally at least one organosiloxane and / or at least one organic polymer.
  • Such conversion coatings are applied by means of a corresponding phosphating solution or conversion / passivating solution.
  • phosphating solutions and conversion / passivating solutions which are aqueous compositions according to the invention.
  • the aqueous compositions according to the invention are therefore themselves treatment solutions for producing a conversion coating, and the phosphating solutions and conversion / passivation solutions described below always have the features of the aqueous composition according to the invention described above.
  • the phosphating solution may be an aqueous zinc phosphate solution or an aqueous alkali metal phosphate solution.
  • zinc phosphate solution preferably comprises the following components in the following preferred and particularly preferred concentration ranges:
  • a concentration in the range from 0.3 to 2.5 g / l has already been found to be advantageous with regard to the free fluoride, a concentration in the range from 10 to 250 mg / l.
  • the complex fluoride is preferably tetrafluoroborate (BF " ) and / or hexafluorosilicate (SiF 6 2 ⁇ ).
  • the complex fluoride is a combination of tetrafluoroborate (BF “ ) and hexafluorosilicate (SiF 6 2 ⁇ ), the concentration of tetrafluoroborate (BF “ ) being in the range up to 3 g / l, preferably from 0, 2 to 2 g / l, and the concentration of hexafluorosilicate (SiF 6 2 ⁇ ) in the range to 3 g / l, preferably from 0.2 to 2 g / l, is.
  • the complex fluoride is hexafluorosilicate (SiF 6 2 ⁇ ) having a concentration in the range from 0.2 to 3 g / l, preferably from 0.5 to 2 g / l.
  • the complex fluoride is tetrafluoroborate (BF " ) having a concentration in the range from 0.2 to 3 g / l, preferably from 0.5 to 2 g / l.
  • the phosphating solution preferably contains at least one accelerator selected from the group consisting of the following compounds in the following preferred and particularly preferred concentration ranges:
  • a concentration in the range of 0.1 to 3.0 g / l has already been found to be advantageous with respect to the H2O2, a concentration in the range from 5 to 200 mg / l.
  • FS stands for free acid
  • FS (verd.) For free acid (diluted)
  • GSF for total acid according to Fischer
  • GS for total acid
  • S value for acid value
  • a suitable vessel for example a 300 ml Erlenmeyer flask. contains the phosphating solution complex fluoride, 2-3 g of potassium chloride are added to the sample. Then, using a pH meter and an electrode, it is titrated with 0.1 M NaOH to a pH of 3.6. The consumed amount of 0.1 M NaOH in ml per 10 ml of the phosphating solution gives the value of the free acid (FS) in points.
  • a suitable vessel for example a 300 ml Erlenmeyer flask. contains the phosphating solution complex fluoride, 2-3 g of potassium chloride are added to the sample. Then, using a pH meter and an electrode, it is titrated with 0.1 M NaOH to a pH of 3.6. The consumed amount of 0.1 M NaOH in ml per 10 ml of the phosphating solution gives the value of the free acid (FS) in points.
  • FS free acid
  • the free acid (diluted) 10 ml of the phosphating solution are pipetted into a suitable vessel, for example into a 300 ml Erlenmeyer flask. Subsequently, 150 ml of deionized water are added. Using a pH meter and an electrode, titrate with 0.1 M NaOH to a pH of 4.7. The consumed amount of 0.1 M NaOH in ml per 10 ml of the diluted phosphating solution gives the value of the free acid (diluted) (FS (dil.)) In points. About the difference to the free acid (FS) the content of complex fluoride can be determined. If this difference is multiplied by a factor of 0.36, the content of complex fluoride is SiF 6 2 ⁇ in g / l.
  • the dilute phosphating solution is titrated to pH 8.9 after addition of potassium oxalate solution using a pH meter and electrode with 0.1 M NaOH.
  • the consumption of 0.1 M NaOH in ml per 10 ml of the dilute phosphating gives in this case the total Fischer acid (GSF) in points. If this value is multiplied by 0.71, the total content of phosphate ions is calculated as P2O 5 (see W. Rausch: "The Phosphatization of Metals.” Eugen G. Leuze- Verlag 2005, 3rd edition, pp. 332 ff) , Total Acid (GS):
  • the total acid (GS) is the sum of the divalent cations present as well as free and bound phosphoric acids (the latter being phosphates). It is determined by the consumption of 0.1 M NaOH using a pH meter and an electrode. For this purpose, 10 ml of the phosphating solution are pipetted into a suitable vessel, for example a 300 ml Erlenmeyer flask and diluted with 25 ml of deionized water. It is then treated with 0.1 M NaOH to a pH of 9 titrated. The consumption in ml per 10 ml of the diluted Phosphatierlosung corresponds to the total acid score (GS).
  • S value stands for the ratio FS: GSF and is obtained by dividing the value of the free acid (FS) by the value of the total acid according to Fischer (GSF).
  • the conversion / passivation solution is aqueous and always comprises 10 to 500 mg / l, preferably 30 to 300 mg / l and particularly preferably 50 to 200 mg / l of Ti, Zr and / or Hf in complexed form (calculated as metal). These are preferably fluoro complexes.
  • the conversion / passivation solution always comprises 10 to 500 mg / l, preferably 15 to 100 mg / l and particularly preferably 15 to 50 mg / l of free fluoride.
  • It preferably contains 10 to 500 mg / l, more preferably 30 to 300 mg / l and particularly preferably 50 to 200 mg / l of Zr in complexed form (calculated as metal).
  • it additionally contains at least one organosilane and / or at least one hydrolysis product thereof and / or at least one condensation product thereof in a concentration range from 5 to 200 mg / l, more preferably from 10 to 100 mg / l and particularly preferably from 20 to 80 mg / l (calculated as Si).
  • the at least one organosilane preferably has at least one amino group. Particularly preferably it is one which can be hydrolyzed to an aminopropylsilanol and / or to 2-aminoethyl-3-amino-propyl-silanol and / or a bis (trimethoxysilylpropyl) amine.
  • the conversion / passivation solution may also contain the following components in the following concentration ranges and preferred concentration ranges: Zn 0 to 5 g / l 0.05 to 2 g / l
  • the aqueous composition according to the invention can, as stated, not only be a treatment solution for producing a conversion coating but also a rinsing solution for the treatment of an already conversion-coated metallic surface.
  • such a rinse solution contains, in addition to water, at least one kind of metal ion selected from the group consisting of the ions of the following metals in the following preferred, particularly preferred and most preferred concentration ranges (all calculated as corresponding metal):
  • the metal ions are molybdenum ions. These are preferably added as molybdate, more preferably as ammonium heptamolybdate and particularly preferably as ammonium heptamolybdate x 7 H 2 O to the rinsing solution.
  • molybdenum ions can also be added to the post-rinse solution, for example in the form of at least one salt containing molybdenum cations such as molybdenum chloride, and then oxidized to molybdate by a suitable oxidizing agent, for example by the accelerators described above. More preferably, the rinsing solution contains molybdenum ions in combination with copper ions, tin ions or zirconium ions.
  • a polymer or copolymer in particular selected from the group consisting of the polymer classes of polyamines, polyanilines, polyimines, polythiophenes and polypryrenes, and mixtures and copolymers thereof and polyacrylic acid, the content of molybdenum ions and zirconium ions each in the range of 10 to 500 mg / l (calculated as metal).
  • the content of molybdenum ions is preferably in the range from 20 to 225 mg / l, particularly preferably from 50 to 225 mg / l and very particularly preferably from 100 to 225 mg / l and the content of zirconium ions in the range from 30 to 300 mg / l. l, more preferably from 50 to 200 mg / l.
  • the metal ions are copper ions.
  • the rinsing solution then contains these in a concentration of 5 to 225 mg / l, more preferably from 150 to 225 mg / l.
  • the rinsing solution contains at least one electrically conductive polymer selected from the group consisting of the polymer classes of polyamines, polyanilines, polyimines, polythiophenes and polypryoles. Preference is given to using a polyamine and / or polyimine, more preferably a polyamine.
  • the polyamine is preferably a polyethyleneamine, the polyimine is a polyethylenimine.
  • the at least one electrically conductive polymer is preferably in a concentration in the range from 0.1 to 5.0 g / l, more preferably from 0.2 to 3.0 g / l and particularly preferably in the range from 0.5 to 1 , 5 g / l (calculated as pure polymer).
  • Cationic polymers such as polyamines or polyethyleneimines are preferably used as electrically conductive polymers.
  • the rinsing solution contains at least one type of metal ion selected from the group consisting of the ions of molybdenum, copper, silver, gold, palladium, tin and antimony and at least one electrically conductive polymer selected from the group consisting of the polymer classes of polyamines, Polyanilines, polyimines, polythiophenes and polypryrenes.
  • the rinsing solution preferably additionally comprises 10 to 500 mg / l, more preferably 30 to 300 mg / l and particularly preferably 50 to 200 mg / l of Ti, Zr and / or Hf in complexed form (calculated as metal). These are preferably fluoro complexes.
  • the rinsing solution preferably comprises 10 to 500 mg / l, more preferably 15 to 100 mg / l and particularly preferably 15 to 50 mg / l of free fluoride.
  • the rinsing solution contains Zr in complexed form (calculated as metal) and at least one kind of metal ions selected from the group consisting of the ions of molybdenum, copper, silver, gold, palladium, tin and antimony, preferably of molybdenum.
  • a rinsing solution comprising Ti, Zr and / or Hf in complexed form preferably additionally contains at least one organosilane and / or at least one hydrolysis product thereof and / or at least one condensation product thereof in a concentration range from 5 to 200 mg / l, more preferably from 10 to 100 mg / l and more preferably from 20 to 80 mg / l (calculated as Si).
  • the at least one organosilane preferably has at least one amino group. Particularly preferably it is one which can be hydrolyzed to an aminopropylsilanol and / or to 2-aminoethyl-3-amino-propyl-silanol and / or a bis (trimethoxysilylpropyl) amine.
  • the pH of the rinsing solution is preferably in the acidic range, more preferably in the range of 3 to 5, particularly preferably in the range of 3.5 to 5.
  • a metallic surface is first treated with an at least largely nickel-free zinc phosphate solution, thus forming an at least largely nickel-free phosphate coating on the metallic surface.
  • the thus coated metallic surface is treated with a rinsing solution according to the invention and thus obtain an at least largely nickel-free phosphate coating having a defined electrical conductivity.
  • an electrocoating lacquer is deposited cathodically on the metallic surface coated in this way.
  • a metallic surface is first treated with a conversion / passivating solution containing 10 to 500 mg / l Zr in complexed form (calculated as metal) and optionally at least one organosilane and / or at least one hydrolysis product thereof and / or at least one condensation product thereof in a concentration range of 5 to 200 mg / l (calculated as Si), and thus forming a corresponding thin film coating on the metallic surface.
  • a conversion / passivating solution containing 10 to 500 mg / l Zr in complexed form (calculated as metal) and optionally at least one organosilane and / or at least one hydrolysis product thereof and / or at least one condensation product thereof in a concentration range of 5 to 200 mg / l (calculated as Si), and thus forming a corresponding thin film coating on the metallic surface.
  • the thus coated metallic surface is treated with a rinsing solution according to the invention and in this way a thin-film coating having a defined electrical conductivity is
  • a metallic surface is first treated with a conversion / passivation solution according to the invention which contains 10 to 500 mg / l Zr in complexed form (calculated as metal) and optionally at least one organosilane and / or at least one hydrolysis product thereof and / or at least one condensation product thereof in a concentration range of 5 to 200 mg / l (calculated as Si), and thus forming a corresponding thin film coating having a defined electrical conductivity on the metallic surface.
  • an electrodeposition coating is cathodically deposited on the thus coated metallic surface.
  • the electrical conductivity of a conversion coating can be adjusted specifically. In this case, the conductivity can either be greater than, equal to or less than that of a corresponding nickel-containing conversion coating.
  • the electrical conductivity of a conversion coating set with the method according to the invention can be influenced by varying the concentration of a given metal ion or electrically conductive polymer.
  • the present invention also relates to a concentrate which gives an aqueous composition according to the invention by diluting with water by a factor between 1 and 100, preferably between 5 and 50, and if necessary adding a pH-modifying substance.
  • the present invention also relates to a conversion-coated metallic surface obtainable by the process according to the invention.
  • a test plate made of electrolytically galvanized steel (ZE) was coated by means of a 1 g / l nickel-containing phosphating solution. No rinsing was done. Subsequently, the current density i in A / cm 2 was compared with the vs. a voltage applied to silver / silver chloride (Ag / AgCl) electrode E is measured in V (see FIG. 1: ZE_Variation1 1_2: curve 3). The measurement was carried out by means of so-called linear sweep voltammetry (potential range: -1, 1 to -0.2 V ref , scan rate: 1 mV / s).
  • the measured current density i is dependent on the electrical conductivity of the conversion coating.
  • a direct measurement of the electrical conductivity in pS / cm, as is possible in liquid media, can not be carried out in the case of conversion coatings.
  • the current density i measured in the case of a nickel-containing conversion coating always serves as a reference point for statements about the electrical conductivity of a given conversion coating.
  • a test plate according to Comparative Example 1 was coated by means of a nickel-free phosphating without rinsing and then the current density i over the voltage E according to Comparative Example 1 measured (see Fig. 1. ZE_Variation1_1: curve 1, ZE_Variation1_3: curve 2).
  • a test panel according to Comparative Example 1 was nickel-free Phosphating coated. Subsequently, the thus coated test plate was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) with a pH of about 4. The current density i across the voltage E was measured according to Comparative Example 1 (see FIG. 2. ZE_Variation6_1: curve 1; ZE_Variation6_2: curve 2). Compared with Comparative Example 1 (Fig. 2: ZE_Variation1 1_2: curve 3).
  • a test plate according to Comparative Example 1 was coated by means of a nickel-free phosphating solution. Subsequently, the test plate coated in this way was treated with a rinsing solution containing about 220 mg / l copper ions and having a pH of about 4. The current density i across the voltage E was measured according to Comparative Example 1 (see FIG. 3. ZE_Variation2_1: curve 1; ZE_Variation2_2: curve 2). Compared again with Comparative Example 1 (FIG. 3: ZE_Variation1 1_2: curve 3). As can be seen from FIG.
  • Example 3 the resting potential of the nickel-free system when using a rinsing solution containing copper ions (Example 1) corresponds to that of the nickel-containing system (Comparative Example 1).
  • the conductivity of this nickel-free system is slightly increased over that of the nickel-containing system.
  • a test plate according to Comparative Example 1 was coated by means of a nickel-free phosphating solution. Subsequently, the test plate thus coated was treated with a rinsing solution which contained about 1 g / l (calculated on the pure polymer) of electrically conductive polyamine (Lupamin® 9030, manufacturer BASF) and had a pH of about 4.
  • the current density i across the voltage E was measured according to Comparative Example 1 (see FIG. 4.
  • FIG. 4 FIG. ZE_Variation1 1_2: curve 3).
  • the quiescent potential of the nickel-free system when using an after-rinsing solution containing an electrically conductive polymer corresponds to that of the nickel-containing system (Comparative Example 1).
  • the electrical conductivity of the nickel-free system is somewhat reduced compared to the nickel-containing system.
  • a hot dip galvanized steel (EA) test plate was coated with a phosphating solution containing 1 g / l nickel. Subsequently, the thus-coated test plate was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) with a pH of about 4, and then the current density i in A / cm 2 was compared with the voltage. a voltage applied to silver / silver chloride (Ag / AgCl) electrode E was measured in V (see FIG. 5: EA 173: curve 1). The measurement was carried out by means of so-called linear sweep voltammetry. Comparative Example 4
  • a test plate according to Comparative Example 3 was coated by means of a nickel-free phosphating without rinsing and then the current density i over the voltage E according to Comparative Example 3 measured (see Fig. 5.
  • the resting potential of the nickel-free system (Comparative Example 4) is shifted to the right compared to that of the nickel-containing system (Comparative Example 3).
  • the electrical conductivity is significantly lower in the case of the nickel-containing system, which is attributable to the passivation by means of the rinsing solution containing ZrF 6 2 ⁇ .
  • a test panel according to Comparative Example 3 was coated by means of a nickel-free phosphating solution. Subsequently, the thus coated test plate was treated with a rinsing solution containing about 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) and 220 mg / l molybdenum ions with a pH of about 4. The current density i over the voltage E was measured according to Comparative Example 1 (see Fig. 6. EA 178: curve 3, EA 178 2: curve 2). Comparison is made with Comparative Example 3 (FIG. 6: EA 173: curve 1).
  • FIG. 6 corresponds to the rest potential of the nickel-free system in the use of a ZrF 6 2 ⁇ and molybdenum ion-containing rinsing solution (Example 3) that of the nickel-containing system (Comparative Example 3).
  • the addition of molybdenum ions (Example 3) to the post-rinse solution containing ZrF 6 2 (Comparative Example 3) markedly increased the conductivity at the substrate surface.
  • Hot-dip galvanized (HDG) or electrolytically galvanized (EG) steel test panels were sprayed with an aqueous cleaning solution containing a surfactant and having a pH of 10.8 for 180 seconds at 60 ° C.
  • the cleaning solution was then rinsed off the test panels by first spraying it with city water for 30 seconds and then with deionized water for 20 seconds.
  • the cleaned test plates were then immersed for 175 seconds in a conversion / passivation solution containing 40 mg / l of Si, 140 mg / l of Zr, 2 mg / l of Cu and 30 mg / l of free fluoride and having a pH of 4, 8 and a temperature of 30 ° C had.
  • the aqueous conversion / passivating solution was then rinsed off the test panels by immersing them in dionized water for 50 seconds and then spraying with deionized water for 30 seconds.
  • the pretreated test plates were then cathodically dip coated either with a first special KTL lacquer (KTL 1) or with a second special KTL lacquer (KTL 2).
  • Hot-dip galvanized (HDG) or electrolytically galvanized (EG) steel test plates were treated according to Comparative Example 5 with the difference that the aqueous conversion / passivating solution additionally contained 100 mg / l Mo (calculated as metal) added in the form of ammonium heptamolybdate.
  • test panels according to Comparative Example 5 (VB5) and Examples 4 to 6 (B4 to B6) were then subjected to a paint adhesion test of the automobile manufacturer PSA (Cataplasmatest).
  • This method describes a short electrochemical test carried out on defined, damaged, coated steel sheets.
  • the principle of an electrostatic holding test is used to test how well the coating of the test sheet resists the process of corrosive infiltration.
  • the cell is filled with approx. 400 ml of 0.1 M sodium sulfate solution. Thereafter, the terminals are connected as follows: green blue terminal on working electrode (sheet), orange-red terminal on counter electrode (electrode with parallel bars), white terminal on reference electrode (in Haber- Lugginkapillare).
  • the cathodic polarization is then started via the control software (control unit with software) and a current of 20 mA is set on the test plate over a period of 24 hours. During this time, the measuring cell is tempered with the aid of the thermostat to 40 ° C +/- 0.5 degrees. During the 24-hour loading period, hydrogen develops at the cathode (test plate) and oxygen at the counter electrode.
  • the sheet is immediately removed to avoid secondary corrosion, rinsed with deionised water and dried in air. With the help of a blunt knife, the detached lacquer layer is removed. Other detached lacquer areas can be removed with a strong textile adhesive tape (e.g., Tesaband 4657 gray). Thereafter, the exposed area is evaluated ruler, possibly magnifying glass).
  • a strong textile adhesive tape e.g., Tesaband 4657 gray
  • the width of the detached surface is determined at an interval of 5 mm with an accuracy of 0.5 mm.
  • the average width of the softening is calculated according to the following equations:
  • n number of individual values
  • w width of the scribe in mm
  • d mean width of the delamination, infiltration width in mm
  • Tab. 2 reveals the poor results of VB2 and in particular VB3 in each case after loading, while B1 (copper ions) and B2 (electrically conductive polyamine) give good - VB1 (nickel - containing phosphating) comparable results.
  • a test plate according to Comparative Example 1 was coated by means of a nickel-free phosphating solution. Subsequently, the thus coated test plate was treated with a rinsing solution which about 1 g / l (calculated on the pure polymer) electrically conductive polyimine having a number average molecular weight of 5000 g / mol (Lupasol® G 100, manufacturer BASF) and a pH Value of about 4 had.
  • a rinsing solution which about 1 g / l (calculated on the pure polymer) electrically conductive polyimine having a number average molecular weight of 5000 g / mol (Lupasol® G 100, manufacturer BASF) and a pH Value of about 4 had.
  • a test plate according to Comparative Example 1 was coated by means of a nickel-free phosphating solution.
  • the thus coated test plate was then treated with a rinsing solution containing 130 mg / l ZrF 6 2 ⁇ (calculated as Zr) and 20 mg / l molybdenum ions, which additionally contained 1.2 g / l (calculated on the pure polymer) of polyacrylic acid with a number average Molecular weight of 60,000 g / mol and had a pH of about 4.
  • a hot dip galvanized steel (EA) test plate was coated with a nickel-free phosphating solution. Subsequently, the thus coated test plate was treated with a rinsing solution which about 1 g / l (calculated on the pure polymer) electrically conductive polyimine having a number average molecular weight of 5000 g / mol (Lupasol® G 100, manufacturer BASF) and a pH Value of about 4 had.
  • a hot dip galvanized steel (EA) test plate was coated with a nickel-free phosphating solution.
  • the thus coated test plate was then treated with a rinsing solution containing 130 mg / l ZrF 6 2 ⁇ (calculated as Zr) and 20 mg / l molybdenum ions, which additionally contained 1.2 g / l (calculated on the pure polymer) of polyacrylic acid with a number average Molecular weight of 60,000 g / mol and had a pH of about 4.
  • Comparative Example 9 corresponds to Comparative Example 1 with the difference that a steel test plate is used. Comparative Example 9
  • a steel test plate was coated with a nickel-free phosphating solution. Subsequently, the test plate thus coated was treated with a rinsing solution containing 230 mg / l copper ions and having a pH of about 4.
  • a test plate of electrolytically galvanized steel (ZE) was coated by means of a nickel-free phosphating solution containing 1 g / l BF " and 0.2 g / l SiF 6 2.” Subsequently, the thus coated test plate was treated with a 160 mg / l ZrF 6 2 ⁇ (calculated as Zr) and rinsing solution containing 240 mg / l molybdenum ions treated with a pH of about 4.
  • the phosphating solution 1 g / l BF " and 0.2 g / l SiF 6 2 ⁇ contains and after phosphating with a with a 120 mg / l ZrF 6 2 ⁇ (calculated as Zr) rinsing solution is treated with a pH of about 4.
  • a hot dip galvanized steel (EA) test plate was coated with a nickel-free phosphating solution containing 1 g / L BF " and 0.2 g / L SiF 6" 2. Then, the thus-coated test plate was treated with 160 mg / L ZrF 6 O 2 (calculated as Zr) and rinsing solution containing 240 mg / l molybdenum ions having a pH of about 4 treated.
  • a test plate of electrolytically galvanized steel (ZE) was coated by means of a nickel-free phosphating solution containing 1 g / l of SiF 6 2 ⁇ . Subsequently, the thus coated test plate was treated with a 160 mg / l ZrF 6 2 ⁇ (calculated as Zr) and 240 mg / l molybdenum ions rinsing solution having a pH of about 4.
  • the phosphating 1 g / l SiF 6 2 ⁇ contains and after phosphating with a with about 120 mg / l ZrF 6 2 ⁇ calculated ( as Zr) containing rinsing solution with a pH of about 4 is treated.
  • Example 15 Corresponds to Comparative Example 2 with the difference that a test plate made of hot-dip galvanized steel (EA) is used and the phosphating solution contains 1 g / l SiF 6 2 ⁇ .
  • EA hot-dip galvanized steel
  • a test plate of hot-dip galvanized steel (EA) was coated by means of a nickel-free phosphating solution containing 1 g / l of SiF 6 2 ⁇ . Subsequently, the thus coated test plate was treated with a 160 mg / l ZrF 6 2 ⁇ (calculated as Zr) and 240 mg / l molybdenum ions rinsing solution having a pH of about 4.
  • Test plates according to Comparative Examples 1, 2, 6 and 7 (VB1, VB2, VB6 and VB7) and Examples 7 to 10 (B7 to B10) were KTL-coated.
  • Four programs were used, which differed in terms of (a) the ramp duration - ie the time until reaching the maximum voltage -, (b) the maximum voltage and / or (c) the duration of application of the maximum voltage:
  • the layer thickness of the deposited KTL coating measured in each case by means of a Fischer DUALSCOPE, can be taken from Table 3.
  • Test plates according to Comparative Examples 8 to 17 (VB8 to VB17) and Examples 1 to 15 (B1 1 to B15) were subjected to X-ray fluorescence analysis (RFA).
  • Tab. 4 shows the specific content of copper or zirconium and molybdenum (calculated in each case as metal) in the surface. Subsequently, the said test plates were KTL-coated.
  • the following programs were used with regard to (a) the ramp duration, ie the time until the maximum voltage was reached, (b) the maximum voltage and / or (c) the duration of the contact the maximum voltage differ:
  • VB8, VB9, B1 1 (a) 30 sec. (B) 250 V (c) 240 sec.
  • B15 - 10 10 21, 7 Tab. 3 shows in each case a clear decrease in the layer thickness of the KTL lacquer in the case of nickel-free phosphating in comparison to nickel-containing phosphating (VB2 vs. VB1, VB7 vs. VB6).
  • the layer thickness obtained with nickel-free phosphating can be increased again (B7 and B8 vs. VB2, B9 and B10 vs. VB6) - in the case of B7 and B9 even beyond the level of nickel-containing phosphating.
  • zirconium-containing and molybdenum-containing rinsing solutions (after nickel-free phosphating) according to the invention results in the incorporation of molybdenum into the surface of the test plates, which again brings the KTL deposition (approximately) to the level of nickel-containing phosphating (B12 vs. VB10; vs VB12, B14 vs. VB14, B15 vs. VB16).

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur gezielten Einstellung der elektrischen Leitfähigkeit einer Konversionsbeschichtung, bei dem eine metallische Oberfläche oder ein konversionsbeschichtete metallische Oberfläche mit einer wässrigen Zusammensetzung behandelt wird, welche mindestens eine Art von Metallionen ausgewählt aus der Gruppe bestehend aus den Ionen von Molybdän, Kupfer, Silber, Gold, Palladium, Zinn und Antimon und/oder mindestens ein elektrisch leitfähiges Polymer ausgewählt aus der Gruppe bestehend aus den Polymerklassen der Polyamine, Polyaniline, Polyimine, Polythiophene und Polypryrole umfasst.

Description

Verfahren zur gezielten Einstellung der elektrischen Leitfähigkeit von
Konversionsbeschichtungen
Die vorliegende Erfindung betrifft ein Verfahren zur gezielten Einstellung der elektrischen Leitfähigkeit einer Konversionsbeschichtung auf einer metallischen Oberfläche mittels einer wässrigen Zusammensetzung sowie eine entsprechende wässrige Zusammensetzung und eine entsprechende Konversionsbeschichtung.
Aus dem Stand der Technik sind Konversionsbeschichtungen auf metallischen Oberflächen bekannt. Solche Beschichtungen dienen dem Korrosionsschutz der metallischen Oberflächen und darüber hinaus auch als Haftvermittler für nachfolgende Lackschichten.
Bei den nachfolgenden Lackschichten handelt es sich vor allem um kathodisch abgeschiedene Elektrotauchlacke (KTL). Da bei der Abscheidung von KTL ein Strom zwischen metallischer Oberfläche und Behandlungsbad fließen muss, ist es wichtig eine definierte elektrische Leitfähigkeit der Konversionsbeschichtung einzustellen, um eine effiziente und homogene Abscheidung zu gewährleisten.
Daher werden Konversionsbeschichtungen üblicherweise mittels einer nickelhaltigen Phosphatierlösung aufgebracht. Die so in die Konversionsbeschichtung eingebauten Nickelionen bzw. das elementar abgeschiedene Nickel sorgen für eine geeignete Leitfähigkeit der Beschichtung bei der anschließenden Elektrotauchlackierung. Nickelionen sind jedoch ob ihrer hohen Toxizität und Umweltschädlichkeit nicht mehr als Bestandteil von Behandlungslösungen erwünscht und sollten daher nach Möglichkeit vermieden oder zumindest in ihrem Gehalt reduziert werden.
Die Verwendung von nickelfreien oder nickelarmen Phosphatierlösungen ist zwar bekannt. Eine gezielte Einstellung der elektrischen Leitfähigkeit entsprechender Phosphatbeschichtungen ist jedoch nach wie vor mit starken Problemen verbunden.
Andere nickelfreie oder nickelarme Systeme stellen Dünnfilmbeschichtungen dar, bei denen es sich etwa um dünne Beschichtungen aus Zirkoniumoxid und gegebenenfalls mindestens einem Organosiloxan und/oder aus mindestens einem organischen Polymer handelt. Auch hier ist jedoch die gezielte Einstellung der elektrischen Leitfähigkeit zwecks nachfolgender Elektrotauchlackierung immer noch unbefriedigend. So lassen sich in vielen Fällen mehr oder weniger ausgeprägte Inhomogenitäten der abgeschiedenen KTL nicht vermeiden (sog. Mapping). Bei den genannten nickelarmen oder nickelfreien Systemen können zudem ungünstige KTL-Abscheidebedingungen aufgrund einer nicht optimal eingestellten elektrischer Leitfähigkeit der Konversionsbeschichtung zu schlechten Korrosionsund Lackhaftungswerten führen.
Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren bereitzustellen, mit dem die elektrische Leitfähigkeit einer Konversionsbeschichtung auf einer metallischen Oberfläche gezielt eingestellt werden kann, und bei dem insbesondere die aus dem Stand der Technik bekannten Nachteile vermieden werden.
Gelöst wird diese Aufgabe durch ein Verfahren nach Anspruch 1 , eine wässrige Zusammensetzung nach Anspruch 13 sowie eine Konversionsbeschichtung nach Anspruch 15.
Bei dem erfindungsgemäßen Verfahren zur gezielten Einstellung der elektrischen Leitfähigkeit einer Konversionsbeschichtung wird eine metallische Oberfläche oder eine konversionsbeschichtete metallische Oberfläche mit einer erfindungsgemäßen wässrigen Zusammensetzung behandelt, welche mindestens eine Art von Metallionen ausgewählt aus der Gruppe bestehend aus den Ionen von Molybdän, Kupfer, Silber, Gold, Palladium, Zinn und Antimon und/oder mindestens ein elektrisch leitfähiges Polymer ausgewählt aus der Gruppe bestehend aus den Polymerklassen der Polyamine, Polyaniline, Polyimine, Polythiophene und Polypryrole umfasst. Unter„Metallion" wird dabei entweder ein Metallkation, ein komplexes Metallkation oder ein komplexes Metallanion verstanden.
Mit einer „wässrigen Zusammensetzung" ist eine Zusammensetzung gemeint, welche zum überwiegenden Teil, d.h. zu mehr als 50 Gew.-%, Wasser als Lösungsmittel enthält. Sie kann neben gelösten Bestandteilen auch dispergierte, d.h. emulgierte und/oder suspendierte Bestandteile umfassen. Einerseits kann eine unbeschichtete metallische Oberfläche, andererseits kann eine bereits konversionsbeschichtete metallische Oberfläche mit dem erfindungsgemäßen Verfahren behandelt werden.
Möglich ist es außerdem, zunächst mit dem erfindungsgemäßen Verfahren eine Konversionsbeschichtung auf einer unbeschichteten metallischen Oberfläche aufzubringen und anschließend die so konversionsbeschichtete metallische Oberfläche nochmals mit dem erfindungsgemäßen Verfahren zu behandeln.
Die wässrige Zusammensetzung kann dementsprechend einerseits selbst eine Behandlungslösung zur Erzeugung einer Konversionsbeschichtung sein (sog. Eintopfverfahren), andererseits aber auch als Nachspüllösung zur Behandlung einer bereits erzeugten Konversionsbeschichtung verwendet werden.
Zudem ist es möglich, zunächst eine erfindungsgemäße wässrige Zusammensetzung als Behandlungslösung zur Erzeugung einer Konversionsbeschichtung und anschließend eine zweite erfindungsgemäße Zusammensetzung - gleicher oder anderer Zusammensetzung - als Nachspüllösung zur Behandlung der so erzeugten Konversionsbeschichtung einzusetzen.
Bei der metallischen Oberfläche handelt es sich vorzugsweise um Stahl, eine Feuerverzinkung, eine elektrolytische Verzinkung, Aluminium oder deren Legierungen wie beispielsweise Zn/Fe oder Zn/Mg. Gemäß einer Ausführungsform enthält die erfindungsgemäße wässrige Zusammensetzung mindestens eine Art Metallionen ausgewählt aus der Gruppe bestehend aus den Ionen der folgenden Metalle in den folgenden bevorzugten, besonders bevorzugten und ganz besonders bevorzugten Konzentrationsbereichen (alle berechnet als entsprechendes Metall): Mo 1 bis 1000 mg/l 10 bis 500 mg/l 20 bis 225 mg/l
Cu 1 bis 1000 mg/l 3 bis 500 mg/l 5 bis 225 mg/l
Ag 1 bis 500 mg/l 5 bis 300 mg/l 20 bis 150 mg/l
Au 1 bis 500 mg/l 10 bis 300 mg/l 20 bis 200 mg/l
Pd 1 bis 200 mg/l 5 bis 100 mg/l 5 bis 100 mg/l
Sn 1 bis 500 mg/l 2 bis 200 mg/l 3 bis 100 mg/l
Sb 1 bis 500 mg/l 2 bis 200 mg/l 3 bis 100 mg/l
Die in der wässrigen Zusammensetzung enthaltenen Metallionen scheiden sich entweder in Form eines Salzes, welches das entsprechende Metallkation (z.B. Molybdän oder Zinn) bevorzugt in mindestens zwei Oxidationsstufen enthält - insbesondere in Form eines Oxid-Hydroxyds, eines Hydroxyds, eines Spinells oder eines Defektspinells - oder elementar auf der zu behandelnden Oberfläche ab (z.B. Kupfer, Silber, Gold oder Palladium).
Vorzugsweise handelt es sich bei den Metallionen um Molybdänionen. Diese werden bevorzugt als Molybdat, weiter bevorzugt als Ammoniumheptamolybdat und besonders bevorzugt als Ammoniumheptamolybdat x 7 H2O der wässrigen Zusammensetzung zugegeben.
Molybdänionen können aber beispielsweise auch in Form mindestens eines Molybdänkationen enthaltenden Salzes wie Molybdänchlorid der wässrigen Zusammensetzung zugesetzt und dann durch ein geeignetes Oxidationsmittel, beispielsweise durch die weiter unten beschriebenen Beschleuniger, zu Molybdat oxidiert werden.
Weiter bevorzugt enthält die wässrige Zusammensetzung Molybdänionen in Kombination mit Kupferionen, Zinnionen oder Zirkoniumionen.
Besonders bevorzugt enthält sie Molybdänionen in Kombination mit Zirkoniumionen sowie gegebenenfalls ein Polymer oder Copolymer, insbesondere ausgewählt aus der Gruppe bestehend aus den Polymerklassen der Polyamine, Polyaniline, Polyimine, Polythiophene und Polypryrole sowie deren Mischungen und Copolymerisaten und Polyacrylsäure, wobei der Gehalt an Molybdänionen und Zirkoniumionen jeweils im Bereich von 10 bis 500 mg/l (berechnet als Metall) liegt.
Bevorzugt liegen der Gehalt an Molybdän ionen dabei im Bereich von 20 bis 225 mg/l, besonders bevorzugt von 50 bis 225 mg/l und ganz besonders bevorzugt von 100 bis 225 mg/l und der Gehalt an Zirkoniumionen im Bereich von 30 bis 300 mg/l, besonders bevorzugt von 50 bis 200 mg/l.
Gemäß einer weiteren bevorzugten Ausführungsform handelt es sich bei den Metallionen um Kupferionen. Vorzugsweise enthält die Nachspüllösung diese dann in einer Konzentration von 5 bis 225 mg/l, weiter bevorzugt von 150 bis 225 mg/l.
Gemäß einer weiteren Ausführungsform enthält die erfindungsgemäße wässrige Zusammensetzung mindestens ein elektrisch leitfähiges Polymer ausgewählt aus der Gruppe bestehend aus den Polymerklassen der Polyamine, Polyaniline, Polyimine, Polythiophene und Polypryrole. Bevorzugt kommt ein Polyamin und/oder Polyimin, besonders bevorzugt ein Polyamin zum Einsatz.
Bei dem Polyamin handelt es sich vorzugsweise um ein Polyethylenamin, bei dem Polyimin um ein Polyethylenimin.
Das mindestens eine elektrisch leitfähige Polymer ist dabei vorzugsweise in einer Konzentration im Bereich von 0,1 bis 5,0 g/l, weiter bevorzugt von 0,2 bis 3,0 g/l und besonders bevorzugt im Bereich von 0,5 bis 1 ,5 g/l (berechnet als reines Polymer) enthalten. Als elektrisch leitfähige Polymere werden bevorzugt kationische Polymere wie z.B. Polyamine oder Polyethylenimine eingesetzt.
Gemäß einer dritten Ausführungsform enthält die erfindungsgemäße wässrige Zusammensetzung mindestens eine Art Metallionen ausgewählt aus der Gruppe bestehend aus den Ionen von Molybdän, Kupfer, Silber, Gold, Palladium, Zinn und Antimon und mindestens ein elektrisch leitfähiges Polymer ausgewählt aus der Gruppe bestehend aus den Polymerklassen der Polyamine, Polyaniline, Polyimine, Polythiophene und Polypryrole.
Vorzugsweise werden im erfindungsgemäßen Verfahren nur Behandlungslösungen sowie erfindungsgemäße wässrige Zusammensetzungen verwendet, welche weniger als 1 ,5 g/l, weiter bevorzugt weniger als 1 g/l, weiter bevorzugt weniger als 0,5 g/l, besonders bevorzugt weniger als 0,1 g/l und ganz besonders bevorzugt weniger als 0,01 g/l Nickelionen enthalten. Enthält eine Behandlungslösung oder erfindungsgemäße wässrige Zusammensetzung weniger als 0,01 g/l Nickelionen soll sie als zumindest im Wesentlichen nickelfrei gelten.
Als Konversionsbeschichtungen, welche mittels der erfindungsgemäßen wässrigen Zusammensetzung erzeugt bzw. mit dieser behandelt werden, kommen vor allem Phosphatbeschichtungen sowie Dünnfilmbeschichtungen in Betracht. Bei den Dünnfilmbeschichtungen handelt es sich etwa um dünne Beschichtungen aus Zirkoniumoxid und gegebenenfalls mindestens einem Organosiloxan und/oder aus mindestens einem organischen Polymer. Solche Konversionsbeschichtungen werden mittels einer entsprechenden Phosphatierlösung bzw. Konversions-/Passivierlösung aufgebracht.
Nachfolgend werden daher zum einen Phosphatierlosungen sowie Konversions-/ Passivierlösungen beschrieben, bei denen es sich um erfindungsgemäße wässrige Zusammensetzungen handelt. In diesem Fall sind die erfindungsgemäßen wässrigen Zusammensetzungen also selbst Behandlungslösungen zur Erzeugung einer Konversionsbeschichtung, und die nachfolgend beschriebenen Phosphatierlosungen sowie Konversions-/Passivierlösungen weisen immer auch die weiter oben beschriebenen Merkmale der erfindungsgemäßen wässrigen Zusammensetzung auf.
Zum anderen gilt die folgende Beschreibung von Phosphatierlosungen sowie Konversions-/ Passivierlösungen aber auch für solche Behandlungslösungen, bei denen es sich nicht um erfindungsgemäße wässrige Zusammensetzungen handelt. In diesem Fall werden die erfindungsgemäßen wässrigen Zusammensetzungen vielmehr als Nachspüllösungen im Anschluss an die Behandlung mit einer solchen Phosphatierlösung oder Konversions-/ Passivierlösung eingesetzt, so dass die nachfolgend beschriebenen Behandlungslösungen nicht notwendigerweise die weiter oben beschriebenen Merkmale der erfindungsgemäßen wässrigen Zusammensetzung aufweisen. i) Phosphatierlösung
Bei der Phosphatierlösung kann es sich um eine wässrige Zinkphosphatlösung oder um eine wässrige Alkalimetallphosphatlösung handeln.
Handelt es sich um eine Zinkphosphatlösung, umfasst diese vorzugsweise die folgenden Komponenten in den folgenden bevorzugten und besonders bevorzugten Konzentrationsbereichen :
Hinsichtlich der Manganionen hat sich aber bereits eine Konzentration im Bereich von 0,3 bis 2,5 g/l, hinsichtlich des freien Fluorids eine Konzentration im Bereich von 10 bis 250 mg/l als vorteilhaft herausgestellt.
Bei dem Komplexfiuorid handelt es sich bevorzugt um Tetrafluoroborat (BF ") und/oder Hexafluorosilicat (SiF6 2~).
Gemäß einer besonders bevorzugten Ausführungsform handelt es sich bei dem Komplexfiuorid um eine Kombination von Tetrafluoroborat (BF ") und Hexafluorosilicat (SiF6 2~), wobei die Konzentration an Tetrafluoroborat (BF ") im Bereich bis 3 g/l, bevorzugt von 0,2 bis 2 g/l, und die Konzentration an Hexafluorosilicat (SiF6 2~) im Bereich bis 3 g/l, bevorzugt von 0,2 bis 2 g/l, liegt.
Gemäß einer weiteren besonders bevorzugten Ausführungsform handelt es sich bei dem Komplexfiuorid um Hexafluorosilicat (SiF6 2~) mit einer Konzentration im Bereich von 0,2 bis 3 g/l, bevorzugt von 0,5 bis 2 g/l.
Gemäß einer weiteren besonders bevorzugten Ausführungsform handelt es sich bei dem Komplexfiuorid um Tetrafluoroborat (BF ") mit einer Konzentration im Bereich von 0,2 bis 3 g/l, bevorzugt von 0,5 bis 2 g/l. Zudem enthält die Phosphatierlösung vorzugsweise mindestens einen Beschleuniger ausgewählt aus der Gruppe bestehend aus den folgenden Verbindungen in den folgenden bevorzugten und besonders bevorzugten Konzentrationsbereichen:
Hinsichtlich des Nitroguanidins hat sich aber bereits eine Konzentration im Bereich von 0,1 bis 3,0 g/l, hinsichtlich des H2O2 eine Konzentration im Bereich von 5 bis 200 mg/l als vorteilhaft herausgestellt.
Des Weiteren lässt sie sich durch die folgenden bevorzugten und besonders bevorzugten Parameterbereiche charakterisieren:
Hinsichtlich des FS-Parameters hat sich aber bereits ein Wert im Bereich von 0,2 bis 2,5, hinsichtlich der Temperatur eine solche im Bereich von 30 bis 55 °C als vorteilhaft herausgestellt.
Hierbei steht„FS" für freie Säure,„FS (verd.)" für freie Säure (verdünnt),„GSF" für Gesamtsäure nach Fischer,„GS" für Gesamtsäure und„S-Wert" für Säurewert.
Diese Parameter sind werden dabei folgendermaßen ermittelt:
Freie Säure (FS):
Zur Bestimmung der freien Säure werden 10 ml der Phosphatierlösung in ein geeignetes Gefäß, beispielsweise einen 300 ml-Erlenmeyerkolben pipettiert. Enthält die Phosphatierlösung Komplexfluoride, werden der Probe noch 2-3 g Kaliumchlorid zugegeben. Sodann wird unter Verwendung eines pH-Meters und einer Elektrode mit 0,1 M NaOH bis zu einem pH-Wert von 3,6 titriert. Die dabei verbrauchte Menge an 0, 1 M NaOH in ml pro 1 0 ml der Phosphatierlösung ergibt den Wert der freien Säure (FS) in Punkten.
Freie Säure (verdünnt) (FS (verd.)):
Zur Bestimmung der freien Säure (verdünnt) werden 10 ml der Phosphatierlösung in ein geeignetes Gefäß, beispielsweise in einen 300 ml-Erlenmeyerkolben pipettiert. Anschließend werden 150 ml VE-Wasser zugegeben. Unter Verwendung eines pH- Meters und einer Elektrode wird mit 0,1 M NaOH bis zu einem pH-Wert von 4,7 titriert. Die dabei verbrauchte Menge an 0, 1 M NaOH in ml pro 1 0 ml der verdünnten Phosphatierlösung ergibt den Wert der freien Säure (verdünnt) (FS (verd.)) in Punkten. Über die Differenz zur freien Säure (FS) kann der Gehalt an Komplexfluorid ermittelt werden. Wenn diese Differenz mit dem Faktor 0,36 multipliziert wird, ergibt sich der Gehalt an Komplexfluorid als SiF6 2~ in g/l.
Gesamtsäure nach Fischer (GSF):
Im Anschluss an die Ermittlung der freien Säure (verdünnt) wird die verdünnte Phosphatierlösung nach Zusatz von Kaliumoxalatlösung unter Verwendung eines pH-Meters und einer Elektrode mit 0,1 M NaOH bis zu einem pH-Wert von 8,9 titriert. Der Verbrauch an 0,1 M NaOH in ml pro 10 ml der verdünnten Phosphatierlösung ergibt hierbei die Gesamtsäure nach Fischer (GSF) in Punkten. Wenn dieser Wert mit 0,71 multipliziert wird, ergibt sich der Gesamtgehalt an Phosphationen gerechnet als P2O5 (Siehe W. Rausch: "Die Phosphatierung von Metallen". Eugen G. Leuze- Verlag 2005, 3. Auflage, pp. 332 ff). Gesamtsäure (GS):
Die Gesamtsäure (GS) ist die Summe aus den enthaltenen zweiwertigen Kationen sowie freien und gebundenen Phosphorsäuren (letztere sind Phosphate). Sie wird durch den Verbrauch an 0,1 M NaOH unter Verwendung eines pH-Meters und einer Elektrode bestimmt. Dazu werden 10 ml der Phosphatierlösung in ein geeignetes Gefäß, beispielsweise einen 300 ml-Erlenmeyerkolben pipettiert und mit 25 ml VE- Wasser verdünnt. Anschließend wird mit 0,1 M NaOH bis zu einem pH-Wert von 9 titriert. Der Verbrauch in ml pro 10 ml der verdünnten Phosphatierlosung entspricht hierbei der Punktzahl der Gesamtsäure (GS).
Säurewert (S-Wert):
Der sogenannte Säurewert (S-Wert) steht für das Verhältnis FS : GSF und ergibt sich durch Division des Wertes der freien Säure (FS) durch den Wert der Gesamtsäure nach Fischer (GSF).
//) Kon versions-ZPassivierlösunp
Die Konversions-/Passivierlösung ist wässrig und umfasst stets 10 bis 500 mg/l, bevorzugt 30 bis 300 mg/l und besonders bevorzugt 50 bis 200 mg/l Ti, Zr und/oder Hf in komplexierter Form (berechnet als Metall). Dabei handelt es sich bevorzugt um Fluorokomplexe. Zudem umfasst die Konversions-/Passivierungslösung stets 10 bis 500 mg/l, bevorzugt 15 bis 100 mg/l und besonders bevorzugt 15 bis 50 mg/l freies Fluorid.
Vorzugsweise enthält sie 10 bis 500 mg/l, weiter bevorzugt 30 bis 300 mg/l und besonders bevorzugt 50 bis 200 mg/l Zr in komplexierter Form (berechnet als Metall).
Vorzugsweise enthält sie zusätzlich mindestens ein Organosilan und/oder mindestens ein Hydrolyseprodukt davon und/oder mindestens ein Kondensationsprodukt davon in einem Konzentrationsbereich von 5 bis 200 mg/l, weiter bevorzugt von 10 bis 100 mg/l und besonders bevorzugt von 20 bis 80 mg/l (berechnet als Si).
Das mindestens eine Organosilan weist bevorzugt mindestens eine Aminogruppe auf. Besonders bevorzugt handelt es sich um ein solches, welches sich zu einem Aminopropylsilanol und/oder zu 2-Aminoethyl-3-amino-propyl-silanol hydrolysieren lässt und/oder um ein Bis(Trimethoxysilylpropyl)Amin. Die Konversions-/Passivierlösung kann zudem die folgenden Komponenten in den folgenden Konzentrationsbereichen und bevorzugten Konzentrationsbereichen enthalten: Zn 0 bis 5 g/l 0,05 bis 2 g/l
Mn 0 bis 1 g/l 0,05 bis 1 g/l
Nitrat 0 bis 10 g/l 0,01 bis 5 g/l
/7/J Nachspüllösung
Die erfindungsgemäße wässrige Zusannnnensetzung kann aber wie gesagt nicht nur eine Behandlungslösung zur Erzeugung einer Konversionsbeschichtung sondern auch eine Nachspüllösung zur Behandlung einer bereits konversionsbeschichteten metallischen Oberfläche sein.
Gemäß einer Ausführungsform enthält eine solche Nachspüllösung neben Wasser mindestens eine Art Metallionen ausgewählt aus der Gruppe bestehend aus den Ionen der folgenden Metalle in den folgenden bevorzugten, besonders bevorzugten und ganz besonders bevorzugten Konzentrationsbereichen (alle berechnet als entsprechendes Metall):
Vorzugsweise handelt es sich bei den Metallionen um Molybdänionen. Diese werden bevorzugt als Molybdat, weiter bevorzugt als Ammoniumheptamolybdat und besonders bevorzugt als Ammoniumheptamolybdat x 7 H2O der Nachspüllösung zugegeben.
Molybdänionen können aber beispielsweise auch in Form mindestens eines Molybdänkationen enthaltenden Salzes wie Molybdänchlorid der Nachspüllösung zugesetzt und dann durch ein geeignetes Oxidationsmittel, beispielsweise durch die weiter oben beschriebenen Beschleuniger, zu Molybdat oxidiert werden. Weiter bevorzugt enthält die Nachspüllösung Molybdän ionen in Kombination mit Kupferionen, Zinnionen oder Zirkoniumionen.
Besonders bevorzugt enthält sie Molybdänionen in Kombination mit Zirkoniumionen sowie gegebenenfalls ein Polymer oder Copolymer, insbesondere ausgewählt aus der Gruppe bestehend aus den Polymerklassen der Polyamine, Polyaniline, Polyimine, Polythiophene und Polypryrole sowie deren Mischungen und Copolymerisaten und Polyacrylsäure, wobei der Gehalt an Molybdänionen und Zirkoniumionen jeweils im Bereich von 10 bis 500 mg/l (berechnet als Metall) liegt.
Bevorzugt liegen der Gehalt an Molybdänionen dabei im Bereich von 20 bis 225 mg/l, besonders bevorzugt von 50 bis 225 mg/l und ganz besonders bevorzugt von 100 bis 225 mg/l und der Gehalt an Zirkoniumionen im Bereich von 30 bis 300 mg/l, besonders bevorzugt von 50 bis 200 mg/l.
Gemäß einer weiteren bevorzugten Ausführungsform handelt es sich bei den Metallionen um Kupferionen. Vorzugsweise enthält die Nachspüllösung diese dann in einer Konzentration von 5 bis 225 mg/l, weiter bevorzugt von 150 bis 225 mg/l.
Gemäß einer weiteren Ausführungsform enthält die Nachspüllösung mindestens ein elektrisch leitfähiges Polymer ausgewählt aus der Gruppe bestehend aus den Polymerklassen der Polyamine, Polyaniline, Polyimine, Polythiophene und Polypryrole. Bevorzugt kommt ein Polyamin und/oder Polyimin, besonders bevorzugt ein Polyamin zum Einsatz.
Bei dem Polyamin handelt es sich vorzugsweise um ein Polyethylenamin, bei dem Polyimin um ein Polyethylenimin.
Das mindestens eine elektrisch leitfähige Polymer ist dabei vorzugsweise in einer Konzentration im Bereich von 0,1 bis 5,0 g/l, weiter bevorzugt von 0,2 bis 3,0 g/l und besonders bevorzugt im Bereich von 0,5 bis 1 ,5 g/l (berechnet als reines Polymer) enthalten.
Als elektrisch leitfähige Polymere werden bevorzugt kationische Polymere wie z.B. Polyamine oder Polyethylenimine eingesetzt. Gemäß einer dritten Ausführungsform enthält die Nachspüllösung mindestens eine Art Metallionen ausgewählt aus der Gruppe bestehend aus den Ionen von Molybdän, Kupfer, Silber, Gold, Palladium, Zinn und Antimon und mindestens ein elektrisch leitfähiges Polymer ausgewählt aus der Gruppe bestehend aus den Polymerklassen der Polyamine, Polyaniline, Polyimine, Polythiophene und Polypryrole.
Die Nachspüllösung umfasst vorzugsweise zusätzlich 10 bis 500 mg/l, weiter bevorzugt 30 bis 300 mg/l und besonders bevorzugt 50 bis 200 mg/l Ti, Zr und/oder Hf in komplexierter Form (berechnet als Metall). Dabei handelt es sich bevorzugt um Fluorokomplexe. Zudem umfasst die Nachspüllösung vorzugsweise 10 bis 500 mg/l, weiter bevorzugt 15 bis 100 mg/l und besonders bevorzugt 15 bis 50 mg/l freies Fluorid.
Besonders bevorzugt enthält die Nachspüllösung Zr in komplexierter Form (berechnet als Metall) und mindestens eine Art Metallionen ausgewählt aus der Gruppe bestehend aus den Ionen von Molybdän, Kupfer, Silber, Gold, Palladium, Zinn und Antimon, vorzugsweise von Molybdän.
Eine Ti, Zr und/oder Hf in komplexierter Form umfassende Nachspüllösung, enthält vorzugsweise zusätzlich mindestens ein Organosilan und/oder mindestens ein Hydrolyseprodukt davon und/oder mindestens ein Kondensationsprodukt davon in einem Konzentrationsbereich von 5 bis 200 mg/l, weiter bevorzugt von 10 bis 100 mg/l und besonders bevorzugt von 20 bis 80 mg/l (berechnet als Si).
Das mindestens eine Organosilan weist bevorzugt mindestens eine Aminogruppe auf. Besonders bevorzugt handelt es sich um ein solches, welches sich zu einem Aminopropylsilanol und/oder zu 2-Aminoethyl-3-amino-propyl-silanol hydrolysieren lässt und/oder um ein Bis(Trimethoxysilylpropyl)Amin. Der pH-Wert der Nachspüllösung liegt vorzugsweise im sauren Bereich, weiter bevorzugt im Bereich von 3 bis 5, besonders bevorzugt im Bereich von 3,5 bis 5.
Gemäß einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird eine metallische Oberfläche zunächst mit einer zumindest weitestgehend nickelfreien Zinkphosphatlösung behandelt und so eine zumindest weitestgehend nickelfreie Phosphatbeschichtung auf der metallischen Oberfläche ausgebildet. Nach optionaler Trocknung wird die so beschichtete metallische Oberfläche mit einer erfindungsgemäßen Nachspüllösung behandelt und so eine zumindest weitestgehend nickelfreie Phosphatbeschichtung mit einer definierten elektrischen Leitfähigkeit erhalten. Anschließend - wiederum nach optionaler Trocknung - wird auf der so beschichteten metallischen Oberfläche kathodisch ein Elektrotauchlack abgeschieden.
Gemäß einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird eine metallische Oberfläche zunächst mit einer Konversions- /Passivierlösung behandelt, welche 10 bis 500 mg/l Zr in komplexierter Form (berechnet als Metall) und gegebenenfalls noch mindestens ein Organosilan und/oder mindestens ein Hydrolyseprodukte davon und/oder mindestens ein Kondensationsprodukte davon in einem Konzentrationsbereich von 5 bis 200 mg/l (berechnet als Si) enthält, und so eine entsprechende Dünnfilmbeschichtung auf der metallischen Oberfläche ausgebildet. Nach optionaler Trocknung wird die so beschichtete metallische Oberfläche mit einer erfindungsgemäßen Nachspüllösung behandelt und auf diese Weise eine Dünnfilmbeschichtung mit einer definierten elektrischen Leitfähigkeit erhalten.
Anschließend - wiederum nach optionaler Trocknung - wird auf der so beschichteten metallischen Oberfläche kathodisch ein Elektrotauchlack abgeschieden. Gemäß einer dritten bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird eine metallische Oberfläche zunächst mit einer erfindungsgemäßen Konversions-/ Passivierlösung behandelt, welche 10 bis 500 mg/l Zr in komplexierter Form (berechnet als Metall) und gegebenenfalls noch mindestens ein Organosilan und/oder mindestens ein Hydrolyseprodukte davon und/oder mindestens ein Kondensationsprodukte davon in einem Konzentrationsbereich von 5 bis 200 mg/l (berechnet als Si) enthält, und so eine entsprechende Dünnfilmbeschichtung mit einer definierten elektrischen Leitfähigkeit auf der metallischen Oberfläche ausgebildet.
Nach optionaler Trocknung wird auf der so beschichteten metallischen Oberfläche kathodisch ein Elektrotauchlack abgeschieden. Durch das erfindungsgemäße Verfahren lässt sich die elektrische Leitfähigkeit einer Konversionsbeschichtung gezielt einstellen. Dabei kann die Leitfähigkeit entweder größer, gleich groß oder kleiner als die einer entsprechenden nickelhaltigen Konversionsbeschichtung sein. Die mit dem erfindungsgemäßen Verfahren eingestellte elektrische Leitfähigkeit einer Konversionsbeschichtung lässt sich über die Variation der Konzentration eines gegebenen Metallions bzw. elektrisch leitfähigen Polymers beeinflussen.
Die vorliegende Erfindung betrifft zudem ein Konzentrat, welches durch Verdünnen mit Wasser um einen Faktor zwischen 1 und 100, vorzugsweise zwischen 5 und 50, und erforderlichenfalls Zugabe einer pH-Wert modifizierenden Substanz eine erfindungsgemäße wässrige Zusammensetzung ergibt.
Schließlich betrifft die vorliegende Erfindung noch eine konversionsbeschichtete metallische Oberfläche, welche durch das erfindungsgemäße Verfahren erhältlich ist.
Im Folgenden soll die vorliegende Erfindung durch nicht einschränkend zu verstehende Ausführungsbeispiele und Vergleichsbeispiele erläutert werden.
Vergleichsbeispiel 1
Eine Testplatte aus elektrolytisch verzinktem Stahl (ZE) wurde mittels einer 1 g/l Nickel enthaltenden Phosphatierlösung beschichtet. Es wurde keine Nachspülung vorgenommen. Anschließend wurde die Stromdichte i in A/cm2 über die vs. eine Silber/Silberchlorid (Ag/AgCI)-Elektrode angelegte Spannung E in V gemessen (siehe Fig. 1 : ZE_Variation1 1_2: Kurve 3). Die Messung erfolgte mittels sog. Linear- Sweep-Voltametrie (Potentialbereich: -1 ,1 bis -0,2 Vref; Scanrate: 1 mV/s).
In allen Beispielen und Vergleichsbeispielen ist die gemessene Stromdichte i abhängig von der elektrischen Leitfähigkeit der Konversionsbeschichtung. Es gilt: Je höher die gemessene Stromdichte i, desto höher ist auch die elektrische Leitfähigkeit der Konversionsbeschichtung. Eine unmittelbare Messung der elektrischen Leitfähigkeit in pS/cm, wie sie in flüssigen Medien möglich ist, kann bei Konversionsbeschichtungen nicht durchgeführt werden.
Vorliegend dient daher stets die bei einer nickelhaltigen Konversionsbeschichtung gemessene Stromdichte i als Bezugspunkt für Aussagen über die elektrische Leitfähigkeit einer gegebenen Konversionsbeschichtung.
Die Angabe„1 E" in den Figuren 1 bis 4 steht stets für„10". Beispielsweise bedeutet „1 E-4" dementsprechend„10^".
Vergleichsbeispiel 2
Eine Testplatte gemäß Vergleichsbeispiel 1 wurde mittels einer nickelfreien Phosphatierlösung ohne Nachspülung beschichtet und anschließend die Stromdichte i über die Spannung E gemäß Vergleichsbeispiel 1 gemessen (siehe Fig. 1. ZE_Variation1_1 : Kurve 1 ; ZE_Variation1_3: Kurve 2).
Wie Fig. 1 zu entnehmen ist, ist das Ruhepotential des nickelfreien Systems (Vergleichsbeispiel 2) gegenüber dem des nickelhaltigen Systems (Vergleichsbeispiel 1 ) nach links verschoben. Auch die elektrische Leitfähigkeit ist niedriger: Die„Arme" der Kurve 1 sowie der Kurve 2 befinden sind jeweils unterhalb der Kurve 3, d.h. zu niedrigeren Stromdichten hin.
Vergleichsbeispiel 3
Eine Testplatte gemäß Vergleichsbeispiel 1 wurde mittels einer nickelfreien Phosphatierlösung beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt. Die Stromdichte i über die Spannung E wurde gemäß Vergleichsbeispiel 1 gemessen (siehe Fig. 2. ZE_Variation6_1 : Kurve 1 ; ZE_Variation6_2: Kurve 2). Verglichen wird mit Vergleichsbeispiel 1 (Fig. 2: ZE_Variation1 1_2: Kurve 3).
Wie Fig. 2 zu entnehmen ist, ist das Ruhepotential des nickelfreien Systems bei der Verwendung einer ZrF6 2~ enthaltenden Nachspüllösung (Vergleichsbeispiel 3) gegenüber dem des nickelhaltigen Systems (Vergleichsbeispiel 1 ) nach links verschoben. Auch die elektrische Leitfähigkeit ist beim genannten nickelfreien System niedriger (vgl. die Ausführungen zu Vergleichsbeispiel 2).
Beispiel 1
Eine Testplatte gemäß Vergleichsbeispiel 1 wurde mittels einer nickelfreien Phosphatierlösung beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 220 mg/l Kupferionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt. Die Stromdichte i über die Spannung E wurde gemäß Vergleichsbeispiel 1 gemessen (siehe Fig. 3. ZE_Variation2_1 : Kurve 1 ; ZE_Variation2_2: Kurve 2). Verglichen wird wieder mit Vergleichsbeispiel 1 (Fig. 3: ZE_Variation1 1_2: Kurve 3). Wie Fig. 3 zu entnehmen ist, entspricht das Ruhepotential des nickelfreien Systems bei der Verwendung einer Kupferionen enthaltenden Nachspüllösung (Beispiel 1 ) dem des nickelhaltigen Systems (Vergleichsbeispiel 1 ). Die Leitfähigkeit dieses nickelfreien Systems ist gegenüber dem des nickelhaltigen Systems leicht erhöht.
Beispiel 2
Eine Testplatte gemäß Vergleichsbeispiel 1 wurde mittels einer nickelfreien Phosphatierlösung beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer Nachspüllösung behandelt, welche ca. 1 g/l (gerechnet auf das reine Polymer) elektrisch leitfähiges Polyamin (Lupamin® 9030, Hersteller BASF) enthielt und einen pH-Wert von ca. 4 aufwies. Die Stromdichte i über die Spannung E wurde gemäß Vergleichsbeispiel 1 gemessen (siehe Fig. 4. ZE_Variation3_1 : Kurve 1 ; ZE_Variation3_2: Kurve 2). Verglichen wird mit Vergleichsbeispiel 1 (Fig. 4: ZE_Variation1 1_2: Kurve 3).
Wie Fig. 4 zu entnehmen ist, entspricht das Ruhepotential des nickelfreien Systems bei der Verwendung einer ein elektrisch leitfähiges Polymer enthaltenden Nachspüllösung (Beispiel 2) dem des nickelhaltigen Systems (Vergleichsbeispiel 1 ). Dabei ist die elektrische Leitfähigkeit des nickelfreien Systems gegenüber dem nickelhaltigen etwas verringert.
Vergleichsbeispiel 3
Eine Testplatte aus feuerverzinktem Stahl (EA) wurde mittels einer 1 g/l Nickel enthaltenden Phosphatierlösung beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt und danach die Stromdichte i in A/cm2 über die vs. eine Silber/Silberchlorid (Ag/AgCI)-Elektrode angelegte Spannung E in V gemessen (siehe Fig. 5: EA 173: Kurve 1 ). Die Messung erfolgte mittels sog. Linear-Sweep-Voltametrie. Vergleichsbeispiel 4
Eine Testplatte gemäß Vergleichsbeispiel 3 wurde mittels einer nickelfreien Phosphatierlösung ohne Nachspülung beschichtet und anschließend die Stromdichte i über die Spannung E gemäß Vergleichsbeispiel 3 gemessen (siehe Fig. 5. EA 167: Kurve 3; EA 167 2: Kurve 2). Wie Fig. 5 zu entnehmen ist, ist das Ruhepotential des nickelfreien Systems (Vergleichsbeispiel 4) gegenüber dem des nickelhaltigen Systems (Vergleichsbeispiel 3) nach rechts verschoben. Die elektrische Leitfähigkeit ist beim nickelhaltigen System deutlich niedriger, was auf die Passivierung mittels der ZrF6 2~ enthaltenden Nachspüllösung zurückzuführen ist. Beispiel 3
Eine Testplatte gemäß Vergleichsbeispiel 3 wurde mittels einer nickelfreien Phosphatierlösung beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) und 220 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt. Die Stromdichte i über die Spannung E wurde gemäß Vergleichsbeispiel 1 gemessen (siehe Fig. 6. EA 178: Kurve 3; EA 178 2: Kurve 2). Verglichen wird mit Vergleichsbeispiel 3 (Fig. 6: EA 173: Kurve 1 ).
Wie Fig. 6 zu entnehmen ist, entspricht das Ruhepotential des nickelfreien Systems bei der Verwendung einer ZrF6 2~ und Molybdän ionen enthaltenden Nachspüllösung (Beispiel 3) dem des nickelhaltigen Systems (Vergleichsbeispiel 3). Durch den Zusatz von Molybdänionen (Beispiel 3) zur ZrF6 2~ enthaltenden Nachspüllösung (Vergleichsbeispiel 3) konnte die Leitfähigkeit an der Substratoberfläche deutlich erhöht werden.
Vergleichsbeispiel 5
Feuerverzinkte (HDG) oder elektrolytisch verzinkte (EG) Testplatten aus Stahl wurden mit einer wässrigen Reinigungslösung, welche ein Tensid enthielt und einen pH-Wert von 10,8 aufwies, für 180 s bei 60 °C besprüht. Die Reinigungslösung wurde anschließend von den Testplatten abgespült, indem diese zunächst für 30 s mit Stadtwasser und dann für 20 s mit deionisiertem Wasser besprüht wurden. Die gereinigten Testplatten wurden sodann für 175 s in eine Konversions- /Passivierlösung getaucht, welche 40 mg/l Si, 140 mg/l Zr, 2 mg/l Cu und 30 mg/l freies Fluorid enthielt und einen pH-Wert von 4,8 sowie eine Temperatur von 30 °C aufwies. Die wässrige Konversions-/Passivierlösung wurde anschließend von den Testplatten abgespült, indem diese für 50 s in dionisiertes Wasser getaucht und danach für 30 s mit deionisiertem Wasser besprüht wurden. Die so vorbehandelten Testplatten wurden dann entweder mit einem ersten speziellen KTL-Lack (KTL 1 ) oder mit einem zweiten speziellen KTL-Lack (KTL 2) kathodisch tauchlackiert.
Beispiel 4
Feuerverzinkte (HDG) oder elektrolytisch verzinkte (EG) Testplatten aus Stahl wurden gemäß Vergleichsbeispiel 5 behandelt mit dem Unterschied, dass die wässrige Konversions-/Passivierlösung anschließend von den Testplatten abgespült wurde, indem diese für 50 s in eine wässrige Lösung mit 100 mg/l Mo (berechnet als Metall), welches in Form von Ammoniumheptamolybdat zugesetzt wurde, (Nachspüllösung) getaucht und danach für 30 s mit deionisiertem Wasser besprüht wurden. Beispiel 5
Feuerverzinkte (HDG) oder elektrolytisch verzinkte (EG) Testplatten aus Stahl wurden gemäß Vergleichsbeispiel 5 behandelt mit dem Unterschied, dass die wässrige Konversions-/Passivierlösung anschließend von den Testplatten abgespült wurde, indem diese für 50 s in eine wässrige Lösung mit 200 mg/l Mo (berechnet als Metall), welches in Form von Ammoniumheptamolybdat zugesetzt wurde, (Nachspüllösung) getaucht und danach für 30 s mit deionisiertem Wasser besprüht wurden.
Beispiel 6
Feuerverzinkte (HDG) oder elektrolytisch verzinkte (EG) Testplatten aus Stahl wurden gemäß Vergleichsbeispiel 5 behandelt mit dem Unterschied, dass die wässrige Konversions-/ Passivierlösung zusätzlich 100 mg/l Mo (berechnet als Metall) enthielt, welches in Form von Ammoniumheptamolybdat zugesetzt wurde.
Die Testplatten gemäß Vergleichsbeispiel 5 (VB5) und den Beispielen 4 bis 6 (B4 bis B6) wurden anschließend einem Lackhaftungstest des Automobilherstellers PSA unterzogen (Cataplasmatest).
Die erhaltenen Gitterschnitt- und Lackverlustergebnisse sind Tab. 1 zu entnehmen. Bei den Gitterschnittergebnissen steht 1 für den besten und 6 für den schlechtesten Wert. Bei den Lackverlustergebnissen bedeutet 100 % vollständigen Lackverlust. Die Testplatten gemäß Vergleichsbeispiel 5 (VB5) und den Beispielen 4 bis 6 (B4 bis B6) wurden zudem mittels der Methode der sog. kathodischen Polarisation untersucht.
Diese Methode beschreibt einen elektrochemischen Kurzzeittest, der an definiert verletzten, beschichteten Stahlblechen durchgeführt wird. Nach dem Prinzip eines elektrostatischen Halteversuchs wird geprüft, wie gut die Beschichtung des Prüfblechs dem Vorgang der korrosiven Unterwanderung widersteht.
Das geritzte Prüfblech (Ritzstichel für 0,5 mm Ritzbreite, z.B. Prüfspitze nach Clemen (R=1 mm); Schablone zum Anritzen) wird in die Messzelle eingebaut (Galvanostat als Stromquelle (20 mA im Regelbereich); Thermostat mit Anschlüssen zur Temperaturregelung 40 °C +/- 0,5 °C; Elektrolysezelle Glas mit Temperiermantel, komplett mit Referenzelektrode; Gegenelektrode, Dichtring und Oliven). Dabei ist darauf zu achten, dass die beiden Elektrodenstäbe parallel zum Ritz liegen.
Nach dem Einrasten des Deckels wird die Zelle mit ca. 400 ml_ 0,1 m Na- sulfatlösung gefüllt. Danach werden die Klemmen wie folgt angeschlossen: Grün- blaue Klemme an Arbeitselektrode (Blech), orange-rote Klemme an Gegenelektrode (Elektrode mit Parallelstäben), weiße Klemme an Referenzelektrode (in Haber- Lugginkapillare).
Anschließend wird die kathodische Polarisation über die Steuerungssoftware (Steuergerät mit Software) gestartet und ein Strom von 20 mA über einen Zeitraum von 24 Stunden am Prüfblech eingestellt. Während dieser Zeit wird die Messzelle mit Hilfe des Thermostaten auf 40 °C +/- 0,5 Grad temperiert. In der 24-stündigen Belastungsdauer entwickelt sich an der Kathode (Prüfblech) Wasserstoff und an der Gegenelektrode Sauerstoff.
Nach der Messung wird das Blech zur Vermeidung von Sekundärkorrosion sofort ausgebaut, mit VE-Wasser abgespült und an der Luft getrocknet. Mit Hilfe eines stumpfen Messers wird die abgelöste Lackschicht abgetragen. Weitere abgelöste Lackbereiche können mit einem starken Textilklebeband (z.B. Tesaband 4657 grau) entfernt werden. Danach wird die freigelegte Fläche ausgewertet Lineal, ggf. Lupe).
Dazu wird jeweils im Abstand von 5 mm die Breite der abgelösten Fläche mit einer Genauigkeit von 0,5 mm ermittelt. Die gemittelte Breite der Enthärtung wird nach folgenden Gleichungen berechnet:
Gleichung 1 :
Gleichung 2:
d = (di - w) / 2 di : Mittelwert der Enthaftungsbreite in mm
ai, 32, 33'. Einzelwerte der Enthaftungsbreite in mm
n: Anzahl der Einzelwerte
w: Breite des Anritzes in mm d: mittlere Breite der Enthaftung, Unterwanderungsbreite in mm
Die Angabe des Ergebnisses erfolgt in mm und wird auf eine Kommastelle gerundet. Die Standardabweichung der Messungen liegt unter 20 %. Die so ermittelten Delaminationswerte werden ebenfalls in Tab. 1 gezeigt. Testplatten gemäß den Vergleichsbeispielen 1 bis 3 (VB1 bis VB3) sowie den Beispielen 1 und 2 (B1 und B2) wurden KTL-beschichtet und anschließend einem Gitterschnitttest nach DIN EN ISO 2409 unterzogen. Getestet wurden jeweils 3 Bleche vor und nach Belastung für 240 Stunden mit Kondenswasser (DIN EN ISO 6270-2 CH). Die entsprechenden Ergebnisse finden sich in Tab. 2. Ein Gitterschnittergebnis von 0 ist hierbei der beste, ein solches von 5 der schlechteste Wert.
Tabelle 1:
(Vgl.-) Testplatte KTL-Lack Gitterschnitt Lackverlust Delamination Bsp. (1-6) (mm)
(%)
6 50
KTL 1 11,9
6 50
HDG
2 0
KTL2 8,9
2 0
VB5
6 50
KTL 1 8,5
6 50
EG
2 0
KTL 2 6,3
2 0
3 1
KTL 1 2,9
2 1
HDG
2 0
KTL 2 2,8
2 0
B4
2 1
KTL 1 1,9
4 1
EG
2 0
KTL 2 2,4
1 0
5 1
KTL 1 3,3
5 1
HDG
3 0
KTL 2 2,6
2 0
B5
2 1
KTL 1 2,1
2 1
EG
2 0
KTL 2 1,7
2 0
2 1
KTL 1 2,8
2 0
HDG
2 0
KTL 2 2,2
2 0
B6
1 1
KTL 1 1,4
2 0
EG
2 0
KTL 2 1,6
1 0 Tabelle 2:
Wie Tab. 1 zu entnehmen ist, führt der Einsatz von Mo sowohl in der Konversions-/ Passivierlosung als auch in der Nachspüllösung vor allem in Verbindung mit dem KTL 1 -Lack zum Vorteil einer verbesserten Lackhaftung (niedrigere Gitterschnitt- sowie Lackverlustswerte bei B4 bis B6 im Vergleich zu VB5). Zudem ist Tab. 1 zu entnehmen, dass Mo sowohl in der Konversions-/ Passivierlosung als auch in der Nachspüllösung zu einer deutlich verringerten Delamination führt (B4 bis B6 im Vergleich zu VB5). Zurückzuführen ist dieser positive Effekt auf die Tatsache, dass der Einsatz von Mo zu einer erhöhten Leitfähigkeit der Oberfläche führt und somit einen Angriff auf die Konversionsschicht während der stromflussabhängigen kathodischen Tauchlackierung weitestgehend unterbindet.
Tab. 2 lässt die schlechten Ergebnisse von VB2 und insbesondere VB3 jeweils nach Belastung erkennen, während B1 (Kupferionen) und B2 (elektr. leitfähiges Polyamin) gute - VB1 (nickelhaltige Phosphatierung) vergleichbare - Resultate liefern.
Beispiel 7
Eine Testplatte gemäß Vergleichsbeispiel 1 wurde mittels einer nickelfreien Phosphatierlösung beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer Nachspüllösung behandelt, welche ca. 1 g/l (gerechnet auf das reine Polymer) elektrisch leitfähiges Polyimin mit einem zahlenmittleren Molekulargewicht von 5000 g/mol (Lupasol® G 100, Hersteller BASF) enthielt und einen pH-Wert von ca. 4 aufwies. Beispiel 8
Eine Testplatte gemäß Vergleichsbeispiel 1 wurde mittels einer nickelfreien Phosphatierlösung beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer 130 mg/l ZrF6 2~ (berechnet als Zr) und 20 mg/l Molybdänionen enthaltenden Nachspüllösung behandelt, welche zusätzlich 1 ,2 g/l (gerechnet auf das reine Polymer) Polyacrylsäure mit einem zahlenmittleren Molekulargewicht von 60.000 g/mol enthielt und einen pH-Wert von ca. 4 aufwies.
Vergleichsbeispiel 6
Entspricht Vergleichsbeispiel 1 mit dem Unterschied, dass eine Testplatte aus feuerverzinktem Stahl (EA) verwendet wird.
Vergleichsbeispiel 7
Entspricht Vergleichsbeispiel 2 mit dem Unterschied, dass eine Testplatte aus feuerverzinktem Stahl (EA) verwendet wird.
Beispiel 9
Eine Testplatte aus feuerverzinktem Stahl (EA) wurde mittels einer nickelfreien Phosphatierlösung beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer Nachspüllösung behandelt, welche ca. 1 g/l (gerechnet auf das reine Polymer) elektrisch leitfähiges Polyimin mit einem zahlenmittleren Molekulargewicht von 5000 g/mol (Lupasol® G 100, Hersteller BASF) enthielt und einen pH-Wert von ca. 4 aufwies.
Beispiel 10
Eine Testplatte aus feuerverzinktem Stahl (EA) wurde mittels einer nickelfreien Phosphatierlösung beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer 130 mg/l ZrF6 2~ (berechnet als Zr) und 20 mg/l Molybdänionen enthaltenden Nachspüllösung behandelt, welche zusätzlich 1 ,2 g/l (gerechnet auf das reine Polymer) Polyacrylsäure mit einem zahlenmittleren Molekulargewicht von 60.000 g/mol enthielt und einen pH-Wert von ca. 4 aufwies.
Vergleichsbeispiel 8
Entspricht Vergleichsbeispiel 1 mit dem Unterschied, dass eine Testplatte aus Stahl verwendet wird. Vergleichsbeispiel 9
Entspricht Vergleichsbeispiel 2 mit dem Unterschied, dass eine Testplatte aus Stahl verwendet wird.
Beispiel 11
Eine Testplatte aus Stahl wurde mittels einer nickelfreien Phosphatierlösung beschichtet. Anschließend wurde die so beschichtete Testplatte mit einer 230 mg/l Kupferionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Vergleichsbeispiel 10
Entspricht Vergleichsbeispiel 1 mit dem Unterschied, dass die Phosphatierlösung 1 g/l BF " und 0,2 g/l SiF6 2~ enthält und nach der Phosphatierung mit einer mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt wird.
Vergleichsbeispiel 11
Entspricht Vergleichsbeispiel 2 mit dem Unterschied, dass die Phosphatierlösung 1 g/l BF4 " und 0,2 g/l SiF6 2" enthält.
Beispiel 12
Eine Testplatte aus elektrolytisch verzinktem Stahl (ZE) wurde mittels einer nickelfreien Phosphatierlösung beschichtet, welche 1 g/l BF " und 0,2 g/l SiF6 2~ enthielt. Anschließend wurde die so beschichtete Testplatte mit einer 160 mg/l ZrF6 2~ (berechnet als Zr) und 240 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Vergleichsbeispiel 12
Entspricht Vergleichsbeispiel 1 mit dem Unterschied, dass eine Testplatte aus feuerverzinktem Stahl (EA) verwendet wird, die Phosphatierlösung 1 g/l BF " und 0,2 g/l SiF6 2~ enthält und nach der Phosphatierung mit einer mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt wird.
Vergleichsbeispiel 13
Entspricht Vergleichsbeispiel 2 mit dem Unterschied, dass eine Testplatte aus feuerverzinktem Stahl (EA) verwendet wird und die Phosphatierlösung 1 g/l BF " und 0,2 g/l SiF6 2" enthält.
Beispiel 13
Eine Testplatte feuerverzinktem Stahl (EA) wurde mittels einer nickelfreien Phosphatierlösung beschichtet, welche 1 g/l BF " und 0,2 g/l SiF6 2~ enthielt. Anschließend wurde die so beschichtete Testplatte mit einer 160 mg/l ZrF6 2~ (berechnet als Zr) und 240 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Vergleichsbeispiel 14
Entspricht Vergleichsbeispiel 1 mit dem Unterschied, dass die Phosphatierlösung 1 g/l SiF6 2~ enthält und nach der Phosphatierung mit einer mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt wird.
Vergleichsbeispiel 15
Entspricht Vergleichsbeispiel 2 mit dem Unterschied, dass die Phosphatierlösung 1 g/l SiF6 2" enthält.
Beispiel 14
Eine Testplatte aus elektrolytisch verzinktem Stahl (ZE) wurde mittels einer nickelfreien Phosphatierlösung beschichtet, welche 1 g/l SiF6 2~ enthielt. Anschließend wurde die so beschichtete Testplatte mit einer 160 mg/l ZrF6 2~ (berechnet als Zr) und 240 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Vergleichsbeispiel 16
Entspricht Vergleichsbeispiel 1 mit dem Unterschied, dass eine Testplatte aus feuerverzinktem Stahl (EA) verwendet wird, die Phosphatierlösung 1 g/l SiF6 2~ enthält und nach der Phosphatierung mit einer mit einer ca. 120 mg/l ZrF6 2~ (berechnet als Zr) enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt wird.
Vergleichsbeispiel 17
Entspricht Vergleichsbeispiel 2 mit dem Unterschied, dass eine Testplatte aus feuerverzinktem Stahl (EA) verwendet wird und die Phosphatierlösung 1 g/l SiF6 2~ enthält. Beispiel 15
Eine Testplatte aus feuerverzinktem Stahl (EA) wurde mittels einer nickelfreien Phosphatierlösung beschichtet, welche 1 g/l SiF6 2~ enthielt. Anschließend wurde die so beschichtete Testplatte mit einer 160 mg/l ZrF6 2~ (berechnet als Zr) und 240 mg/l Molybdänionen enthaltenden Nachspüllösung mit einem pH-Wert von ca. 4 behandelt.
Testplatten gemäß den Vergleichsbeispielen 1 , 2, 6 und 7 (VB1 , VB2, VB6 und VB7) sowie den Beispielen 7 bis 10 (B7 bis B10) wurden KTL-beschichtet. Dabei wurden vier Programme verwendet, welche sich hinsichtlich (a) der Rampendauer - also der Zeit bis zum Erreichen der maximalen Spannung -, (b) der maximalen Spannung und/oder (c) der Dauer des Anliegens der maximalen Spannung unterschieden:
Programm 1 (a) 30 Sek. (b) 240 V (c) 150 Sek.
Programm 2 (a) 30 Sek. (b) 220 V (c) 150 Sek.
Programm 3 (a) 3 Sek. (b) 240 V (c) 150 Sek.
Programm 4 (a) 3 Sek. (b) 220 V (c) 150 Sek.
Die jeweils mittels eines Fischer DUALSCOPE gemessene Schichtdicke des abgeschiedenen KTL-Lackes ist Tab. 3 zu entnehmen.
Testplatten gemäß den Vergleichsbeispielen 8 bis 17 (VB8 bis VB17) sowie den Beispielen 1 1 bis 15 (B1 1 bis B15) wurden einer Röntgenfluoreszenzanalyse (RFA) unterzogen. Tab. 4 zeigt den jeweils bestimmten Gehalt an Kupfer bzw. Zirkonium und Molybdän (jeweils berechnet als Metall) in der Oberfläche. Anschließend wurden die genannten Testplatten KTL-beschichtet. Dabei wurden die folgenden Programme verwendet, welche sich je nach (Vergleichs-)Beispiel hinsichtlich (a) der Rampendauer - also der Zeit bis zum Erreichen der maximalen Spannung -, (b) der maximalen Spannung und/oder (c) der Dauer des Anliegens der maximalen Spannung unterschieden:
VB8, VB9, B1 1 : (a) 30 Sek. (b) 250 V (c) 240 Sek.
VB10, VB1 1 , VB14, VB15, B12, B14: (a) 30 Sek. (b) 260 V (c) 300 Sek.
VB12; VB13, VB16; VB17, B13, B15: (a) 30 Sek. (b) 260 V (c) 280 Sek. Die jeweils mittels eines Fischer DUALSCOPE® gemessene Schichtdicke des abgeschiedenen KTL-Lackes ist Tab. 4 zu entnehmen.
Tabelle 3:
(Vergleichs-) Programm 1 : Programm 2: Programm 3: Programm 4: Beispiel Schichtdicke Schichtdicke Schichtdicke Schichtdicke
(pm) (μηη) (μηη) (μηη)
VB1 19,4 17,7 21 ,4 18,4
VB2 16 15 17,4 15,9
B7 20,4 17,8 22,6 19,1
B8 19 17,4 19,8 18
VB6 21 ,5 19,5 21 ,2 19,2
VB7 19,1 17 18,6 17,1
B9 22,8 20 23,5 20,5
B10 20,3 18,7 21 ,6 18,8
Tabelle 4:
(Vergleichs-) Cu-Gehalt Mo-Gehalt Zr-Gehalt KTL-Dicke Beispiel (mg/m2) (mg/m2) (mg/m2) (μηη)
VB8 0 — — 19,5
VB9 0 — — 19,9
B1 1 20 — — 22,9
VB10 — 0 5 19,7
VB1 1 — 0 0 18
B12 — 8 6 19,6
VB12 — 0 7 21 ,6
VB13 — 0 0 20
B13 — 5 6 21 ,7
VB14 — 0 5 19,7
VB15 — 0 0 18
B14 — 9 8 19,1
VB16 — 0 6 22,1
VB17 — 0 0 20
B15 — 10 10 21 ,7 Tab. 3 zeigt jeweils eine deutliche Abnahme der Schichtdicke des KTL-Lackes bei der nickelfreien im Vergleich zur nickelhaltigen Phosphatierung (VB2 vs. VB1 ; VB7 vs. VB6). Durch Verwendung der erfindungsgemäßen Nachspüllösungen lässt sich die bei nickelfreier Phosphatierung erhaltene Schichtdicke jedoch wieder erhöhen (B7 und B8 vs. VB2; B9 und B10 vs. VB6) - im Falle von B7 sowie B9 sogar über das Niveau der nickelhaltigen Phosphatierung hinaus.
Tab. 4 ist zu entnehmen, dass die Verwendung einer erfindungsgemäßen kupferhaltigen Nachspüllösung (bei vorheriger nickelfreier Phosphatierung) zu einem Einbau von Kupfer in die Testplattenoberfläche führt. In der Folge kommt es einer - sogar gegenüber dem nickelhaltigen System - verbesserten KTL-Abscheidung (B1 1 vs. VB8). Der Kupfergehalt der Oberfläche erhöht deren Leitfähigkeit. Hierdurch kommt es zu einer effektiveren KTL-Abscheidung, was sich bei ansonsten gleichen Bedingungen in der höheren Schichtdicke des KTL-Lackes äußert. Durch die Verwendung erfindungsgemäßer zirkon- sowie molybdänhaltiger Nachspüllösungen (nach nickelfreier Phosphatierung) kommt es entsprechend zum Einbau von Molybdän in die Oberfläche der Testplatten, was die KTL-Abscheidung wieder (annähernd) auf das Niveau des nickelhaltigen Phosphatierung bringt (B12 vs. VB10; B13 vs VB12.; B14 vs. VB14; B15 vs. VB16).

Claims

Ansprüche . Verfahren zur gezielten Einstellung der elektrischen Leitfähigkeit einer Konversionsbeschichtung dadurch gekennzeichnet, dass eine metallische Oberfläche oder ein konversionsbeschichtete metallische Oberfläche mit einer wässrigen Zusammensetzung behandelt wird, welche mindestens eine Art von
Metallionen ausgewählt aus der Gruppe bestehend aus den Ionen von Molybdän, Kupfer, Silber, Gold, Palladium, Zinn und Antimon und/oder mindestens ein elektrisch leitfähiges Polymer ausgewählt aus der Gruppe bestehend aus den Polymerklassen der Polyamine, Polyaniline, Polyimine, Polythiophene und Polypryrole umfasst.
2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die metallische Oberfläche zunächst mit einer zumindest weitestgehend nickelfreien Zinkphosphatlösung behandelt und so eine zumindest weitestgehend nickelfreie Phosphatbeschichtung auf der metallischen Oberfläche ausgebildet wird, und dass die so beschichtete metallische Oberfläche nach optionaler
Trocknung mit der wässrigen Zusammensetzung als Nachspüllösung behandelt wird.
3. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die metallische Oberfläche zunächst mit einer Konversions-/Passivierlösung behandelt wird, welche 10 bis 500 mg/l Zr in komplexierter Form (berechnet als Metall) und gegebenenfalls noch mindestens ein Organosilan und/oder mindestens ein Hydrolyseprodukt davon und/oder mindestens ein Kondensationsprodukt davon in einem Konzentrationsbereich von 5 bis 200 mg/l (berechnet als Si) enthält, und so eine entsprechende Dünnfilmbeschichtung auf der metallischen Oberfläche ausgebildet wird, und dass die so beschichtete metallische Oberfläche nach optionaler Trocknung mit der wässrigen Zusammensetzung als Nachspüllösung behandelt wird.
4. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass es sich bei der wässrigen Zusammensetzung um eine Konversions-/ Passivierlösung handelt, welche 10 bis 500 mg/l Zr in komplexierter Form (berechnet als Metall) und gegebenenfalls noch mindestens ein Organosilan und/oder mindestens ein Hydrolyseprodukt davon und/oder mindestens ein Kondensationsprodukt davon in einem Konzentrationsbereich von 5 bis 200 mg/l (berechnet als Si) enthält.
5. Verfahren nach Anspruch 3 oder 4 dadurch gekennzeichnet, dass es sich das Organosilan um ein solches, welches sich zu einem Aminopropylsilanol und/oder zu 2-Aminoethyl-3-amino-propyl-silanol hydrolysieren lässt und/oder um ein Bis(Trimethoxysilylpropyl)Amin.
6. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die wassrigen Zusammensetzung Molybdän ionen umfasst.
7. Verfahren nach Anspruch 6 dadurch gekennzeichnet, dass die wässrigen Zusammensetzung Molybdänionen und Zirkoniumionen umfasst.
8. Verfahren nach Anspruch 7 dadurch gekennzeichnet, dass die wässrigen Zusammensetzung 20 bis 225 mg/l an Molybdänionen und 50 bis 200 mg/l an Zirkoniumionen umfasst.
9. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die wässrige Zusammensetzung ein Polyamin und/oder Polyimin umfasst.
10. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass es sich bei der wässrigen Zusammensetzung um eine
Nachspüllösung handelt und der pH-Wert der wässrigen Zusammensetzung 3,5 bis 5 beträgt.
1 1 . Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die wässrigen Zusammensetzung Kupferionen umfasst.
12. Verfahren nach Anspruch 1 1 dadurch gekennzeichnet, dass die wässrigen Zusammensetzung 150 bis 225 mg/l an Kupferionen umfasst.
13. Wässrige Zusammensetzung zur gezielten Einstellung der elektrischen Leitfähigkeit einer Konversionsbeschichtung nach einem der vorhergehenden Ansprüche.
14. Konzentrat, aus dem durch Verdünnen mit einem geeigneten Lösungsmittel um einen Faktor zwischen 1 und 100 und erforderlichenfalls Zugabe einer pH- Wert modifizierenden Substanz eine wässrige Zusammensetzung nach
Anspruch 13 erhältlich ist.
15. Konversionsbeschichtete metallische Oberfläche, dadurch gekennzeichnet, dass sie durch ein Verfahren nach einem der Ansprüche 1 bis 12 erhältlich ist.
EP16717585.0A 2015-04-07 2016-04-07 Verfahren zur gezielten einstellung der elektrischen leitfähigkeit von konversionsbeschichtungen Active EP3280830B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015206145 2015-04-07
PCT/EP2016/057620 WO2016162422A1 (de) 2015-04-07 2016-04-07 Verfahren zur gezielten einstellung der elektrischen leitfähigkeit von konversionsbeschichtungen

Publications (2)

Publication Number Publication Date
EP3280830A1 true EP3280830A1 (de) 2018-02-14
EP3280830B1 EP3280830B1 (de) 2021-03-31

Family

ID=55802343

Family Applications (3)

Application Number Title Priority Date Filing Date
EP16718613.9A Pending EP3280831A1 (de) 2015-04-07 2016-04-07 Verfahren zur nickelfreien phosphatierung von metallischen oberflächen
EP16717585.0A Active EP3280830B1 (de) 2015-04-07 2016-04-07 Verfahren zur gezielten einstellung der elektrischen leitfähigkeit von konversionsbeschichtungen
EP17703041.8A Pending EP3440235A1 (de) 2015-04-07 2017-01-18 Verbessertes verfahren zur nickelfreien phosphatierung von metallischen oberflächen

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP16718613.9A Pending EP3280831A1 (de) 2015-04-07 2016-04-07 Verfahren zur nickelfreien phosphatierung von metallischen oberflächen

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP17703041.8A Pending EP3440235A1 (de) 2015-04-07 2017-01-18 Verbessertes verfahren zur nickelfreien phosphatierung von metallischen oberflächen

Country Status (12)

Country Link
US (2) US10738383B2 (de)
EP (3) EP3280831A1 (de)
JP (3) JP6810704B2 (de)
KR (3) KR20170133480A (de)
CN (3) CN107735511B (de)
BR (2) BR112017021409B1 (de)
DE (2) DE102016205814A1 (de)
ES (1) ES2873381T3 (de)
MX (3) MX2017012919A (de)
RU (3) RU2721971C2 (de)
WO (3) WO2016162422A1 (de)
ZA (2) ZA201707384B (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6810704B2 (ja) 2015-04-07 2021-01-06 ケメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング 化成コーティングの導電性を厳密に調節するための方法
US11072861B2 (en) * 2015-09-29 2021-07-27 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
US11124880B2 (en) 2016-04-07 2021-09-21 Chemetall Gmbh Method for nickel-free phosphating metal surfaces
HUE047403T2 (hu) 2017-04-21 2020-04-28 Henkel Ag & Co Kgaa Lerakódásmentes foszfátbevonat-képzési módszer fémalkatrész sorozatokhoz
EP3392376A1 (de) 2017-04-21 2018-10-24 Henkel AG & Co. KGaA Verfahren zur schichtbildenden zinkphosphatierung von metallischen bauteilen in serie
KR20200045487A (ko) 2017-08-31 2020-05-04 케메탈 게엠베하 금속 표면을 니켈-무함유 인산염처리하는 개선된 방법
CN109183015B (zh) * 2018-08-03 2020-09-15 广州正利金属表面处理剂有限公司 一种无镍皮膜剂及其制备方法
EP3864189A1 (de) * 2018-10-08 2021-08-18 Chemetall GmbH Verfahren zur ni-freien phosphatierung von metalloberflächen und zusammensetzung zur verwendung in solch einem verfahren
US20210340676A1 (en) * 2018-10-08 2021-11-04 Chemetall Gmbh Method for ni-free phosphatizing of metal surfaces and composition for use in such a method
WO2020156913A1 (de) * 2019-01-29 2020-08-06 Chemetall Gmbh Alternative zusammensetzung und alternatives verfahren zur effektiven phosphatierung von metallischen oberflächen
JP2021066916A (ja) * 2019-10-21 2021-04-30 日本パーカライジング株式会社 金属材料の処理剤及び塗膜を有する金属材料
CN110699681B (zh) * 2019-10-24 2021-12-14 河南北方红阳机电有限公司 一种高强度钢和硬铝合金组合体喷淋磷化工艺
EP4073288A1 (de) * 2019-12-11 2022-10-19 Salzgitter Flachstahl GmbH Blech mit haftvermittlerbeschichtung als halbzeug zur fertigung von metall-thermoplastverbundbauteilen und verfahren zur herstellung eines solchen bleches
JP7453599B2 (ja) 2021-03-29 2024-03-21 日本製鉄株式会社 表面処理鋼板

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819423A (en) * 1972-06-15 1974-06-25 Chemfil Miles Chem & Filter Co Final rinse step in phosphating of metals
ES2036023T3 (es) * 1988-11-25 1993-05-01 Metallgesellschaft Aktiengesellschaft Procedimiento para la aplicacion de recubrimiento de fosfato.
JPH03268939A (ja) * 1990-03-19 1991-11-29 Sumitomo Metal Ind Ltd 電着塗装性と耐食性に優れた有機複合被覆鋼板
DE59405046D1 (de) * 1993-09-06 1998-02-19 Henkel Kgaa Nickelfreies phosphatierverfahren
JPH07278891A (ja) * 1994-04-12 1995-10-24 Nippon Parkerizing Co Ltd 金属材料の塗装前処理方法
ATE165874T1 (de) 1994-05-27 1998-05-15 Herberts & Co Gmbh Verfahren zur beschichtung phosphatierter metallsubstrate
JP3088623B2 (ja) * 1994-11-08 2000-09-18 日本ペイント株式会社 金属表面のリン酸亜鉛皮膜形成方法
JPH08158061A (ja) * 1994-12-06 1996-06-18 Nippon Parkerizing Co Ltd 金属材料用りん酸亜鉛系化成処理液
DE19511573A1 (de) * 1995-03-29 1996-10-02 Henkel Kgaa Verfahren zur Phosphatierung mit metallhaltiger Nachspülung
DE19834796A1 (de) * 1998-08-01 2000-02-03 Henkel Kgaa Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung
DE19956383A1 (de) * 1999-11-24 2001-05-31 Henkel Kgaa Verfahren zur Phospatierung mit metallhaltiger Nachspülung
DE10110834B4 (de) * 2001-03-06 2005-03-10 Chemetall Gmbh Verfahren zur Beschichtung von metallischen Oberflächen und Verwendung der derart beschichteten Substrate
EP1440110A2 (de) 2001-09-27 2004-07-28 The Board Of Governors For Higher Education State Of Rhode Island And Providence Plantations Leitfähiges polymer zur vorbehandlung von oberflächen aus metallen und nichtmetallen
TW567242B (en) * 2002-03-05 2003-12-21 Nihon Parkerizing Treating liquid for surface treatment of aluminum or magnesium based metal and method of surface treatment
DE10323305B4 (de) * 2003-05-23 2006-03-30 Chemetall Gmbh Verfahren zur Beschichtung von metallischen Oberflächen mit einer Wasserstoffperoxid enthaltenden Phosphatierungslösung, Phosphatierlösung und Verwendung der behandelten Gegenstände
DE10358310A1 (de) * 2003-12-11 2005-07-21 Henkel Kgaa Zweistufige Konversionsbehandlung
US20050176592A1 (en) * 2004-02-11 2005-08-11 Tenaris Ag Method of using intrinsically conductive polymers with inherent lubricating properties, and a composition having an intrinsically conductive polymer, for protecting metal surfaces from galling and corrosion
FR2866029B1 (fr) * 2004-02-11 2006-05-26 Dacral Composition de revetement anti-corrosion en dispersion aqueuse comprenant un titanate et/ou un zirconate organique
ES2748506T3 (es) * 2004-11-10 2020-03-17 Chemetall Gmbh Proceso para producir un recubrimiento de reparación en una superficie metálica recubierta
US20060099332A1 (en) * 2004-11-10 2006-05-11 Mats Eriksson Process for producing a repair coating on a coated metallic surface
DE102005059314B4 (de) * 2005-12-09 2018-11-22 Henkel Ag & Co. Kgaa Saure, chromfreie wässrige Lösung, deren Konzentrat, und ein Verfahren zur Korrosionsschutzbehandlung von Metalloberflächen
JP2007262577A (ja) * 2006-03-01 2007-10-11 Nippon Paint Co Ltd 金属表面処理用組成物、金属表面処理方法、及び金属材料
JP2008174832A (ja) * 2006-12-20 2008-07-31 Nippon Paint Co Ltd カチオン電着塗装用金属表面処理液
US20080314479A1 (en) * 2007-06-07 2008-12-25 Henkel Ag & Co. Kgaa High manganese cobalt-modified zinc phosphate conversion coating
CN104718312B (zh) * 2012-08-29 2017-03-15 Ppg工业俄亥俄公司 含有钼的锆预处理组合物,用于处理金属基材的相关方法和相关的涂覆的金属基材
DE102014007715B4 (de) * 2014-05-28 2018-06-07 Chemetall Gmbh Verfahren zur Herstellung einer Sandwichstruktur, die hiermit hergestellte Sandwichstruktur und ihre Verwendung
JP6810704B2 (ja) 2015-04-07 2021-01-06 ケメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング 化成コーティングの導電性を厳密に調節するための方法

Also Published As

Publication number Publication date
BR112018070593A2 (pt) 2019-02-05
ZA201707384B (en) 2022-06-29
RU2748349C2 (ru) 2021-05-24
JP2018510971A (ja) 2018-04-19
CN107735511B (zh) 2022-05-10
US20180112313A1 (en) 2018-04-26
EP3280831A1 (de) 2018-02-14
RU2017138446A3 (de) 2019-10-17
BR112017021307B1 (pt) 2022-10-11
KR20190002504A (ko) 2019-01-08
BR112017021409A2 (pt) 2018-07-03
US10738383B2 (en) 2020-08-11
CN109312466A (zh) 2019-02-05
KR20170133480A (ko) 2017-12-05
WO2016162422A1 (de) 2016-10-13
ZA201707420B (en) 2019-05-29
RU2017138445A (ru) 2019-05-07
MX2018012228A (es) 2019-02-07
RU2017138446A (ru) 2019-05-07
KR20170134613A (ko) 2017-12-06
US20180112314A1 (en) 2018-04-26
JP6810704B2 (ja) 2021-01-06
US20180334748A9 (en) 2018-11-22
BR112017021409B1 (pt) 2023-02-28
ES2873381T3 (es) 2021-11-03
BR112017021307A2 (pt) 2018-06-26
CN109312466B (zh) 2022-04-19
EP3440235A1 (de) 2019-02-13
WO2016162423A1 (de) 2016-10-13
JP6804464B2 (ja) 2020-12-23
RU2721971C2 (ru) 2020-05-25
JP6986028B2 (ja) 2021-12-22
RU2746373C2 (ru) 2021-04-12
RU2017138445A3 (de) 2019-10-09
CN107683348A (zh) 2018-02-09
EP3280830B1 (de) 2021-03-31
DE102016205815A1 (de) 2016-10-13
MX2017012917A (es) 2018-01-30
RU2018138295A (ru) 2020-05-12
RU2018138295A3 (de) 2020-05-12
WO2017174222A1 (de) 2017-10-12
MX2017012919A (es) 2018-01-15
US11492707B2 (en) 2022-11-08
DE102016205814A1 (de) 2016-10-13
CN107735511A (zh) 2018-02-23
JP2018512511A (ja) 2018-05-17
JP2019510886A (ja) 2019-04-18

Similar Documents

Publication Publication Date Title
EP3280830B1 (de) Verfahren zur gezielten einstellung der elektrischen leitfähigkeit von konversionsbeschichtungen
EP2507408B1 (de) Mehrstufiges vorbehandlungsverfahren für metallische bauteile mit zink- und eisenoberflächen
DE69834548T2 (de) Elektrisches verfahren zur herstellung einer ein mineral enthaltenden beschichtung
DE102008033174B3 (de) Cyanidfreie Elektrolytzusammensetzung zur galvanischen Abscheidung einer Kupferschicht und Verfahren zur Abscheidung einer kupferhaltigen Schicht
EP3676419B1 (de) Verbessertes verfahren zur nickelfreien phosphatierung von metallischen oberflächen
EP3918108B1 (de) Alternative zusammensetzung und alternatives verfahren zur effektiven phosphatierung von metallischen oberflächen
DE4334628C2 (de) Verfahren zum Schutz von metallischen Werkstoffen gegen Korrosion durch Passivierung
EP3428314B1 (de) Zusammensetzung und verfahren zur passivierung verzinkter bauteile
WO2016193004A1 (de) Konditionierung vor einer konversionsbehandlung von metalloberflächen
WO2015090418A1 (de) Verfahren zur beschichtung elektrisch leitfähiger substrate
EP1433879B1 (de) Verfahren zur Beschichtung von Metalloberflächen mit einer Alkaliphosphatierungslösung, wässeriges Konzentrat und Verwendung der derart beschichteten Metalloberflächen
WO2001059180A1 (de) Verfahren zur beschichtung von metalloberflächen, wässeriges konzentrat hierzu und verwendung der beschichteten metallteile
WO2014202294A1 (de) Mehrstufiges verfahren zur elektrotauchlackierung
WO1990015167A1 (de) Verfahren zur erzeugung von manganhaltigen phosphatüberzügen auf metalloberflächen
WO2019115301A1 (de) Anti-korrosionsbeschichtung für metallische substrate
DE3821402A1 (de) Verbesserte elektrogalvanisierte beschichtung fuer stahl
DE102008034757A1 (de) Schichtüberzüge von Polyanilin und Polyanin-Derivaten auf Zinkoberflächen
WO1994007131A1 (de) Badkontrolle kupfer-haltiger metallbehandlungsbäder
WO2016193005A1 (de) Vorspüle enthaltend ein quartäres amin zur konditionierung vor einer konversionsbehandlung
BR112018070593B1 (pt) Método para fosfatização de uma superfície metálica, composição de fosfatização livre de níquel, ácida e aquosa, e, concentrado

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200626

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 13/12 20060101ALI20200904BHEP

Ipc: C23C 22/34 20060101ALI20200904BHEP

Ipc: C25D 5/48 20060101ALI20200904BHEP

Ipc: C25D 13/20 20060101ALI20200904BHEP

Ipc: C23C 22/83 20060101AFI20200904BHEP

Ipc: C23C 22/36 20060101ALI20200904BHEP

Ipc: C23C 22/18 20060101ALI20200904BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201028

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016012707

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 1377017

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2873381

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210731

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210802

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210407

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016012707

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1377017

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230320

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230421

Year of fee payment: 8

Ref country code: FR

Payment date: 20230421

Year of fee payment: 8

Ref country code: ES

Payment date: 20230515

Year of fee payment: 8

Ref country code: DE

Payment date: 20230427

Year of fee payment: 8

Ref country code: CZ

Payment date: 20230406

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230421

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230418

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240319

Year of fee payment: 9