EP1114202A1 - Verfahren zur phosphatierung, nachspülung und kathodischer elektrotauchlackierung - Google Patents

Verfahren zur phosphatierung, nachspülung und kathodischer elektrotauchlackierung

Info

Publication number
EP1114202A1
EP1114202A1 EP99939400A EP99939400A EP1114202A1 EP 1114202 A1 EP1114202 A1 EP 1114202A1 EP 99939400 A EP99939400 A EP 99939400A EP 99939400 A EP99939400 A EP 99939400A EP 1114202 A1 EP1114202 A1 EP 1114202A1
Authority
EP
European Patent Office
Prior art keywords
ions
phosphating
rinsing
process step
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99939400A
Other languages
English (en)
French (fr)
Inventor
Jan-Willem Brouwer
Winfried Wichelhaus
Helmut Endres
Peter Kuhm
Bernd Schenzle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1114202A1 publication Critical patent/EP1114202A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/182Orthophosphates containing manganese cations containing also zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • the invention relates to a section of a sequence of processes as is customary for coating metal surfaces, in particular in vehicle construction: phosphating followed by rinsing and cathodic electrocoating. It solves the problem that low-lead or lead-free cathodically depositable electrodeposition paints on a phosphate layer, which was produced with a low-nickel phosphating solution, often have significantly poorer corrosion protection and paint adhesion properties than either lead-containing cathodically depositable electrodeposition paints or lead-free cathodically depositable electrodeposition paints with a phosphate layer a nickel-rich phosphating solution.
  • the method can be used to treat surfaces made of steel, galvanized or alloy-galvanized steel, aluminum, aluminized or alloy-aluminized steel.
  • the phosphating of metals pursues the goal of producing firmly adhered metal phosphate layers that already improve the corrosion resistance and in conjunction with paints and other organic coatings contribute to a significant increase in paint adhesion and resistance to infiltration when exposed to corrosion.
  • Such phosphating processes have long been known.
  • the low-zinc phosphating processes, in which the phosphating solutions are comparatively suitable, are particularly suitable for pretreatment before painting low levels of zinc ions of e.g. B. 0.3 to 3 g / 1 and in particular 0.5 to 2 g / 1.
  • DE-A-39 20 296 describes a phosphating process which dispenses with nickel and uses magnesium ions in addition to zinc and manganese ions.
  • the phosphating baths described here contain, in addition to 0.2 to 10 g / l nitrate ions, further oxidizing agents which act as accelerators, selected from nitrite, chlorate or an organic oxidizing agent.
  • EP-A-60 716 discloses low-zinc phosphating baths which contain zinc and manganese as essential cations and which can contain nickel as an optional component.
  • the necessary accelerators are preferably selected from nitrite, m-nitrobenzenesulfonate or hydrogen peroxide.
  • EP-A-228 151 also describes phosphating baths which contain zinc and manganese as essential cations.
  • the phosphating accelerator is selected from nitrite, nitrate, hydrogen peroxide, m-nitrobenzoate or p-nitrophenol.
  • DE-A-43 41 041 describes a process for phosphating metal surfaces with aqueous, acidic phosphating solutions which contain zinc, manganese and phosphate ions and, as accelerators, m-nitrobenzosulfonic acid or its water-soluble salts, the metal surfaces being in contact with a phosphating solution brings, which is free of nickel, cobalt, copper, nitrite and oxo anions of halogens and the
  • the phosphate layer on the metal surfaces is not completely closed. Rather, there remain more or less large "pores", the area of which in the The order of magnitude is 0.5 to 2% of the phosphated area and must be closed in the course of a so-called post-rinsing ("post-passivation”) in order not to leave a point of attack for corrosive influences on the metal surfaces. Post-passivation further improves the adhesion of a subsequently applied lacquer.
  • a rinse solution which contains Al, Zr and fluoride ions, the solution being a mixture of complex fluorides or can also be regarded as a solution of aluminum hexafluorozirconate.
  • the total amount of these 3 ions is in the range of 0.1 to 2.0 g / l.
  • DE-A-21 00 497 relates to a process for the electrophoretic application of paints to iron-containing surfaces, the object being to apply white or other light colors to the iron-containing surfaces without discoloration.
  • This object is achieved in that the surfaces, which may have been phosphated beforehand, are rinsed with copper-containing solutions. Copper concentrations between 0.1 and 10 g / l are proposed for this rinse solution.
  • DE-A-34 00 339 also describes a copper-containing rinse solution for phosphated metal surfaces, with copper contents between 0.01 and 10 g / l being used.
  • Nickel-free phosphating processes combined with a chrome-free rinse do not yet reliably meet the requirements for paint adhesion and corrosion protection on all body materials used in the automotive industry. This is especially true if you have a cathodically depositable after phosphating and rinsing Applies electrodeposition paint on the metal surface, which contains no lead-containing compounds for reasons of workplace hygiene and environmental protection.
  • DE-A-195 11 573 describes a process for phosphating with a phosphating solution which is free from nitrite and nickel, and in which after the phosphating with an aqueous solution having a pH in the range from 3 to 7, which is rinsed 0.001 to 10 g / l of one or more of the following cations contains: lithium ions, copper ions and / or silver ions.
  • the German patent application DE 197 05 701.2 extends this to low-nickel phosphating solutions.
  • Alloys consisting of at least 50% by weight of iron, zinc or aluminum, comprising the process steps
  • process step a) is phosphated with a zinc-containing acid phosphating solution which has a pH in the range from 2.5 to 3.6 and which
  • aqueous solution with a pH in the range from 3 to 7, which contains 0.001 to 10 g / l of one or more of the following cations: lithium ions, copper ions and / or silver ions
  • the lead content of the dip lacquer bath should not be above about 150 mg of lead per liter of bath liquid. In particular, the lead content should not be more than about 0.01% by weight, based on the dry substance of the electrocoat material.
  • Electrodeposition lacquers which can be deposited cathodically and to which no lead compounds have been added are preferably used in the context of the present invention.
  • layer-forming phosphating for process step a) is generally known in the technical field concerned. It means that a crystalline metal phosphate layer is deposited on the substrate, into which divalent metal ions from the phosphating solution are incorporated. In the layer-forming phosphating of iron or zinc-containing surfaces metal ions from the metal surface are also incorporated into the phosphate layer. A distinction is made between so-called “non-layer-forming phosphating”. Here, the metal surface is treated with a phosphating solution that does not contain any divalent metal ions that are built into the thin, generally non-crystalline, phosphate and oxide layer that forms.
  • the phosphating solution used in process step a) preferably contains no copper ions. In practical operation, however, it cannot be ruled out that such ions may accidentally get into the phosphating bath. Preferably, however, no copper ions are intentionally added to the phosphating bath, so that the phosphating solution can be expected to contain no more than about 1 mg / l copper ions.
  • a phosphating solution which does not contain more than 50 mg / l of nickel ions is used in process step a).
  • nickel ions there is no need to add nickel ions to the phosphating solution. This is preferred for reasons of workplace hygiene and environmental protection.
  • the containers for the phosphating solutions usually consist of nickel-containing stainless steel, it cannot be ruled out that nickel ions can get into the phosphating bath from the surface of the container.
  • the resulting nickel content of the phosphating solution is usually less than 10 mg / l. Accordingly, it is preferred in the sequence of processes according to the invention to work with a low-nickel, preferably nickel-free phosphating solution which, however, should at least not contain more than about 10 mg / l of nickel ions.
  • the nickel concentration is preferably below 1 mg / l.
  • the phosphating solution used in process step a) of the process sequence according to the invention preferably contains one or more further metal ions whose positive effect on the corrosion protection of zinc phosphate layers is known in the prior art.
  • the phosphating solution can contain one or more of the following cations:
  • the presence of manganese and / or lithium is particularly preferred.
  • the possibility of the presence of divalent iron depends on the accelerator system described below.
  • the presence of iron (II) in the concentration range mentioned requires an accelerator which has no oxidizing effect on these ions. Hydroxylamine is an example of this.
  • the presence of soluble compounds of hexavalent tungsten in the phosphating bath also has advantages in terms of corrosion resistance and paint adhesion in the process sequence according to the invention.
  • Phosphating solutions which contain 20 to 800 mg / l, preferably 50 to 600 mg / l, of tungsten in the form of water-soluble tungstates, silicotungstates and / or borotungstates can be used in the phosphating processes according to the invention.
  • the anions mentioned can be used in the form of their acids and / or their water-soluble salts, preferably ammonium salts.
  • phosphating baths which are said to be suitable for different substrates, it has become customary to add free and / or complex-bound fluoride in amounts of up to 2.5 g / l of total fluoride, of which up to 800 mg / l of free fluoride.
  • the presence of such amounts of fluoride is also advantageous for the phosphating baths in the context of the invention.
  • the aluminum content of the bath should not exceed 3 mg / l.
  • higher Al contents are tolerated due to the complex formation, provided that the concentration of the non-complexed Al does not exceed 3 mg / l.
  • fluoride-containing baths are therefore advantageous if the surfaces to be phosphated are at least partially made of aluminum or contain aluminum. In these cases, it is favorable not to use fluoride bound to the complex, but only free fluoride, preferably in concentrations in the range from 0.5 to 1.0 g / l.
  • the phosphating baths For the phosphating of zinc surfaces, it is not absolutely necessary that the phosphating baths contain so-called accelerators.
  • accelerators are known in the prior art as components of zinc phosphating baths. These are understood to mean substances which chemically bind the hydrogen generated by the acid pickling on the metal surface by reducing them themselves. Oxidizing accelerators also have the effect of oxidizing released iron (II) ions to the trivalent stage by pickling on steel surfaces, so that they can precipitate out as iron (III) phosphate.
  • the accelerators which can be used in the phosphating bath of the sequence of processes according to the invention were listed above.
  • nitrate ions in amounts of up to 10 g / l can be present as co-accelerators, which can have a particularly favorable effect on the phosphating of steel surfaces.
  • the phosphating solution contain as little nitrate as possible.
  • Nitrate concentrations of 0.5 g / l should preferably not be exceeded, since at higher nitrate concentrations there is a risk of so-called "speck formation". This means white, crater-like defects in the phosphate layer.
  • Hydrogen peroxide is preferred for reasons of environmental friendliness, and hydroxylamine is particularly preferred as an accelerator for technical reasons because of the simplified formulation options for redosing solutions. However, using these two accelerators together is not advisable since hydroxylamine is decomposed by hydrogen peroxide. If hydrogen peroxide is used in free or bound form as an accelerator, concentrations of 0.005 to 0.02 g / l hydrogen peroxide are particularly preferred. The hydrogen peroxide can be added as such to the phosphating solution. However, it is also possible to use hydrogen peroxide in bound form in the form of compounds which give hydrogen peroxide in the phosphating bath by hydrolysis reactions.
  • Examples of such compounds are persalts, such as perborates, percarbonates, peroxosulfates or peroxodisulfates.
  • Ionic peroxides such as, for example, alkali metal peroxides can be considered as further sources of hydrogen peroxide.
  • Hydroxylamine can be used as a free base, as a hydroxylamine complex or in the form of hydroxylammonium salts. If free hydroxylamine is added to the phosphating bath or a phosphating bath concentrate, it will largely exist as a hydroxylammonium cation due to the acidic nature of these solutions.
  • Hydroxylammonium salt the sulfates and the phosphates are particularly suitable. In the case of the phosphates, the acid salts are preferred due to the better solubility.
  • Hydroxylamine or its compounds are added to the phosphating bath in amounts such that the calculated concentration of the free hydroxylamine is between 0.1 and 10 g / l, preferably between 0.2 and 6 g / l and in particular between 0.3 and 2 g / l lies.
  • the use of hydroxylamine as an accelerator on iron surfaces leads to particularly favorable spherical and / or columnar phosphate crystals.
  • the post-rinsing to be carried out in process step b) is particularly suitable as post-passivation of such phosphate layers.
  • N-oxides as described in more detail in German patent application DE-A-197 33 978.6, are also suitable as accelerators.
  • N-methylmorpholine-N-oxide is particularly preferred as the organic N-oxide.
  • the N-oxides are preferably used in combination with co-accelerators such as chlorate, hydrogen peroxide, m-nitrobenzenesulfonate or nitroguanidine.
  • Nitroguanidine can also be used as the sole accelerator, as described, for example, in DE-A-196 34 685.
  • lithium-containing phosphating baths the preferred concentrations of lithium ions are in the range from 0.4 to 1 g / l.
  • Phosphating baths particularly preferred, which contain lithium as the only monovalent cation.
  • ammonia is preferably used, so that the lithium-containing phosphating baths can additionally contain ammonium ions in the range from about 0.5 to about 2 g / l.
  • the use of basic sodium compounds such as sodium hydroxide solution is less preferred in this case, since the presence of sodium ions in the lithium-containing phosphating baths worsens the corrosion protection properties of the layers obtained.
  • the free acid is preferably adjusted by adding basic sodium compounds such as sodium carbonate or sodium hydroxide.
  • the manganese content of the phosphating bath should be between 0.2 and 4 g / l, since with lower manganese contents the positive influence on the corrosion behavior of the phosphate layers is no longer given and with higher manganese contents there is no further positive effect. Contents between 0.3 and 2 g / l and in particular between 0.5 and 1.5 g / l are preferred.
  • the zinc content of the phosphating bath is preferably set to values between 0.45 and 2 g / l. As a result of the pickling removal during the phosphating of zinc-containing surfaces, it is possible that the current zinc content of the working bath increases to up to 3 g / l.
  • the form in which the zinc and manganese ions are introduced into the phosphating baths is in principle irrelevant. It is particularly advisable to use the oxides and / or the carbonates as the zinc and / or manganese source.
  • iron dissolves in the form of iron (II) ions. If the phosphating baths do not contain any substances which have a strong oxidizing effect on iron (II), the divalent iron changes to the trivalent state primarily as a result of air oxidation, so that it can precipitate out as iron (III) phosphate. Therefore, iron (II) contents can build up in the phosphating baths, which are significantly higher than the contents containing baths containing oxidizing agents.
  • iron (II) concentrations of up to 50 ppm are normal, although values of up to 500 ppm can also appear briefly in the production process. Such iron (II) concentrations are not detrimental to the phosphating process according to the invention.
  • the weight ratio of phosphate ions to zinc ions in the phosphating baths can vary within a wide range, provided it is in the range between 3.7 and 30. A weight ratio between 7 and 25 is particularly preferred. For this calculation, the total phosphorus content of the phosphating bath is considered to be present in the form of phosphate ions PO ⁇ "
  • Phosphating can be carried out by spraying, immersing or spray-immersing.
  • the exposure times are in the usual range between about 1 and about 4 minutes.
  • the temperature of the phosphating solution is in the range between about 40 and about 60 ° C.
  • An intermediate rinsing with water can take place between the phosphating according to process step a) and the final rinsing according to process step b). However, this is not necessary and it can even be advantageous to dispense with this intermediate rinsing, since a reaction of the rinsing solution with the phosphating solution still adhering to the phosphated surface can then take place, which has a favorable effect on the corrosion protection.
  • the rinse solution used in process step b) preferably has a pH in the range from 3.4 to 6 and a temperature in the range from 20 to 50 ° C.
  • the concentrations of the cations in the aqueous solution used in process step b) are preferably in the following ranges: lithium (l) 0.02 to 2, in particular 0.2 to 1.5 g / l, copper (II) 0.002 to 1 g / l, in particular 0.01 to 0.1 g / l and silver (l) 0.002 to 1 g / l, in particular 0.01 to 0.1 g / l.
  • the metal ions mentioned can be used individually or in a mixture exist together. Rinsing solutions which contain copper (II) are particularly preferred.
  • metal ions mentioned are introduced into the rinse solution is in principle irrelevant as long as it is ensured that the metal compounds are soluble in the concentration ranges of the metal ions mentioned.
  • metal compounds with anions that are known to promote corrosion, such as chloride should be avoided. It is particularly preferred to use the metal ions as nitrates or as carboxylates, in particular as acetates. Phosphates are also suitable as long as they are soluble under the chosen concentration and pH conditions. The same applies to sulfates.
  • the metal ions of lithium, copper and / or silver are used in the rinsing solutions together with 0.1 to 1 g / l of hexafluorotitanate and / or, particularly preferably, hexafluorozirconate ions. It is preferred that the concentrations of the anions mentioned are in the range from 100 to 500 ppm. Suitable sources of the hexafluoro anions mentioned are their acids or their salts which are water-soluble under the concentration and pH conditions mentioned, in particular their alkali metal and / or ammonium salts.
  • the hexafluoro anions at least partially in the form of their acids and to dissolve basic compounds of lithium, copper and / or silver in the acidic solutions.
  • the hydroxides, oxides or carbonates of the metals mentioned come into consideration. This procedure avoids using the metals together with any interfering anions.
  • the pH can be adjusted with ammonia or sodium carbonate.
  • the rinsing solutions can contain the ions of lithium, copper and / or silver together with ions of cerium (III) and / or cerium (IV), the total concentration of the cerium ions being in the range from 0.01 to 1 g / l.
  • the rinse solution can also contain aluminum (III) compounds, the concentration of aluminum being in the range from 0.01 to 1 g / l.
  • the aluminum compounds include, in particular, polyaluminium compounds such as polymer
  • Aluminum hydroxychloride or polymeric aluminum hydroxysulfate into consideration (WO 92/15724), or else complex aluminum-zirconium fluorides, as are known for example from EP-B-410497.
  • the metal surfaces phosphated in process step a) can be brought into contact with the rinse solution by spraying, dipping or splash-dipping in process step b), the exposure time being in the range from 0.5 to 10 minutes and preferably being about 40 to about 120 seconds. Because of the simpler plant technology, it is preferable to spray the rinse solution in process step b) onto the metal surface phosphated in process step a).
  • the pretreated according to the invention can Metal surfaces can be dried. In the interest of a faster production cycle, however, such drying is preferably avoided.
  • the cathodic electrodeposition is now carried out using a cathodically depositable electrodeposition lacquer which is at least low in lead, but preferably lead-free.
  • “Low-lead” is understood here to mean that the electrodeposition paint which can be deposited cathodically contains no more than 0.05% by weight of lead, based on the dry substance of the electrodeposition paint. It preferably contains less than 0.01% by weight, based on dry substance, and preferably no intentionally added lead compounds
  • electrocoat materials are commercially available, examples include: Cathoguard R 310 and Cathoguard R 400 from BASF, Aqua EC 3000 from Herberts and Enviroprime R from PPG.
  • the phosphating bath optionally contained sodium or ammonium ions to adjust the free acid. Temperature: 50 ° C, time: 4 minutes.
  • the free acid score is understood to mean the consumption in ml of 0.1 normal sodium hydroxide solution in order to titrate 10 ml of bath solution up to a pH of 3.6. Similarly, the total acid score indicates consumption in ml up to a pH of 8.2.
  • the corrosion protection test was carried out according to the VDA alternating climate test 621-415. As a result, the paint infiltration at the scratch (U / 2: half scratch width, in mm) is entered in Table 2. In addition, a paint adhesion test was carried out according to the VW stone impact test, which was assessed according to the K value. Higher K values mean poorer, lower K values better paint adhesion. The results are also shown in Table 2.
  • Comparison 1 and comparison 2 show that the sequence of processes: phosphating with a nickel-free phosphating solution, rinsing with a copper-free rinsing solution used in practice and subsequent cathodic electrodeposition with a lead-free cathodically depositable electrodeposition varnish (Comparison 2) gives significantly worse corrosion protection results than in cathodic electrocoating with a lead-containing cathodic electrodeposition paint (comparison 1).
  • Example 1 shows that when the lead-free cathodic electrocoat material is used, after rinsing with a copper-containing rinsing solution (solution 1), significantly better corrosion protection values are obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Paints Or Removers (AREA)

Abstract

Verfahren zur Vorbehandlung von Oberflächen aus Stahl, verzinktem Stahl und/oder Aluminium und/oder deren Legierungen, bei dem man in einem ersten Verfahrensschritt mit einer nickelarmen Zinkphosphatierlösung phosphatiert, in einem zweiten Verfahrensschritt die phosphatierten Oberflächen mit einer wäßrigen Lösung nachspült, die 0,001 bis 10 g/l Lithiumionen, Kupferionen und/oder Silberionen enthält, und in einem dritten Verfahrensschritt einen bleiarmen kathodisch abscheidbaren Elektrotauchlack aufbringt, der nicht mehr als 0,05 Gew.-% Blei bezogen auf die Trockensubstanz des Tauchlacks enthält.

Description

"Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung"
Die Erfindung betrifft einen Ausschnitt aus einer Verfahrensfolge, wie sie zur Beschichtung von Metalloberfiächen insbesondere im Fahrzeugbau üblich ist: Phosphatierung gefolgt von einer Nachspülung und einer kathodischen Elektrotauchlackierung. Sie löst das Problem, daß bleiarme oder bleifreie kathodisch abscheidbare Elektrotauchlacke auf einer Phosphatschicht, die mit einer nickelarmen Phosphatierlösung erzeugt wurde, häufig wesentlich schlechtere Korrosionsschutz- und Lackhaftungseigenschaften aufweisen als entweder bleihaltige kathodisch abscheidbare Elektrotauchlacke oder aber bleifreie kathodisch abscheidbare Elektrotauchlacke auf einer Phosphatschicht, die mit einer nickelreichen Phosphatierlösung erzeugt wurden. Das Verfahren ist anwendbar zur Behandlung von Oberflächen aus Stahl, verzinktem oder legie- rungsverzinktem Stahl, Aluminium, aluminiertem oder legierungsaluminiertem Stahl.
Die Phosphatierung von Metallen verfolgt das Ziel, auf der Metalloberfläche festverwachsene Metallphosphatschichten zu erzeugen, die für sich bereits die Korrosionsbeständigkeit verbessern und in Verbindung mit Lacken und anderen organischen Beschichtungen zu einer wesentlichen Erhöhung der Lackhaftung und der Resistenz gegen Unterwanderung bei Korrosionsbeanspruchung beitragen. Solche Phosphatierverfahren sind seit langem bekannt. Für die Vorbehandlung vor der Lackierung eignen sich insbesondere die Niedrig-Zink- Phosphatierverfahren, bei denen die Phosphatierlösungen vergleichsweise geringe Gehalte an Zinkionen von z. B. 0,3 bis 3 g/1 und insbesondere 0,5 bis 2 g/1 aufweisen.
Es hat sich gezeigt, daß durch die Mitverwendung anderer mehrwertiger Kationen in den Zink-Phosphatierbädern Phosphatschichten mit deutlich verbesserten Korrosionsschutz- und Lackhaftungseigenschaften ausgebildet werden können. Beispielsweise finden Niedrig-Zink-Verfahren mit Zusatz von z. B. 0,5 bis 1 ,5 g/l Manganionen und z. B. 0,3 bis 2,0 g/l Nickelionen als sogenannte Trikation-Verfahren zur Vorbereitung von Metalloberflächen für die Lackierung, beispielsweise für die kathodische Elektrotauchlackierung von Autokarosserien, weite Anwendung. Beispielsweise sei verwiesen auf die EP-B-106 459 und auf die EP-B-228 151
Der hohe Gehalt an Nickelionen in den Phosphatierlösungen der Trikation- Verfahren und von Nickel und Nickelverbindungen in den gebildeten Phosphatschichten bringt jedoch insofern Nachteile, als Nickel und Nickelverbindungen aus der Sicht des Umweltschutzes und der Arbeitsplatzhygiene als kritisch eingestuft werden. In letzter Zeit werden daher zunehmend Niedrig-Zink- Phosphatierverfahren beschrieben, die ohne eine Mitverwendung von Nickel zu qualitativ ähnlich hochwertigen Phosphatschichten wie die nickelhaltigen Verfahren führen.
Beispielsweise beschreibt die DE-A-39 20 296 ein Phosphatierverfahren, das auf Nickel verzichtet und neben Zink und Manganionen Magnesiumionen verwendet. Die hier beschriebenen Phosphatierbäder enthalten außer 0,2 bis 10 g/l Nitrationen weitere als Beschleuniger wirkende Oxidationsmittel, ausgewählt aus Nitrit, Chlorat oder einem organischen Oxidationsmittel. EP-A-60 716 offenbart Niedrig-Zink-Phosphatierbäder, die als essentielle Kationen Zink und Mangan enthalten und die als fakultativen Bestandteil Nickel beinhalten können. Der notwendige Beschleuniger wird vorzugsweise ausgewählt aus Nitrit, m- Nitrobenzolsulfonat oder Wasserstoffperoxid. Auch in der EP-A-228 151 werden Phosphatierbäder beschrieben, die als essentielle Kationen Zink und Mangan enthalten. Der Phosphatierbeschleuniger wird ausgewählt aus Nitrit, Nitrat, Wasserstoffperoxid, m-Nitrobenzoat oder p-Nitrophenol.
Die DE-A-43 41 041 beschreibt ein Verfahren zur Phosphatierung von Metalloberflächen mit wäßrigen, sauren Phosphatierlösungen, die Zink-, Mangan- und Phosphationen und als Beschleuniger m-Nitrobenzosulfonsäure oder deren wasserlösliche Salze enthalten, wobei man die Metalloberflächen mit einer Phosphatierlösung in Berührung bringt, die frei von Nickel, Kobalt, Kupfer, Nitrit und Oxo-Anionen von Halogenen ist und die
0,3 bis 2 g/l Zn(ll)
0,3 bis 4 g/l Mn(ll)
5 bis 40 g/l Phosphationen
0,2 bis 2 g/l m-Nitrobenzolsulfonat und
0,2 bis 2 g/l Nitrationen enthält.
Ein ähnliches Verfahren wird in der DE-A-43 30 104 beschrieben, wobei als Beschleuniger anstelle des Nitrobenzolsulfonats 0,1 bis 5 g Hydroxylamin eingesetzt werden.
In Abhängigkeit von der Zusammensetzung der für die Phosphatierung verwendeten Lösung, dem für das Phosphatierverfahren verwendeten Beschleuniger, dem Verfahren der Aufbringung der Phosphatierlösung auf die Metalloberflächen und/oder auch weiteren Verfahrensparametern ist die Phosphatschicht auf den Metalloberflächen nicht vollständig geschlossen. Es verbleiben vielmehr mehr oder weniger große "Poren", deren Fläche in der Größenordnung von 0,5 bis 2 % der phosphatierten Fläche liegt und die im Zuge einer sogenannten Nachspülung ("Nachpassivierung") geschlossen werden müssen, um korrodierenden Einflüssen auf die Metalloberflächen keinen Angriffspunkt zu lassen. Weiterhin verbessert eine Nachpassivierung die Haftung eines anschließend aufgebrachten Lackes.
Es ist seit langer Zeit bekannt, für diese Zwecke Chromsalze enthaltende Lösungen zu verwenden. Insbesondere wird die Korrosionsbeständigkeit der durch Phosphatierung erzeugten Überzüge durch eine Nachbehandlung der Oberflächen mit Lösungen, die Chrom(VI) enthalten, erheblich verbessert. Die Verbesserung des Korrosionsschutzes resultiert in erster Linie daraus, daß ein Teil des auf der Metalloberfläche abgeschiedenen Phosphats in einen Metall(ll)- Chrom-Spinell umgewandelt wird.
Ein wesentlicher Nachteil der Verwendung von Chromsalze enthaltenden Lösungen besteht darin, daß derartige Lösungen hochtoxisch sind. Außerdem wird verstärkt eine unerwünschte Blasenbildung bei der nachfolgenden Applikation von Lacken oder anderen Überzugsmaterialien beobachtet.
Deswegen wurden zahlreiche weitere Möglichkeiten zur Nachpassivierung phosphatierter Metalloberflächen vorgeschlagen, wie z. B. die Verwendung von Zirkoniumsalzen (NL-PS 71 16 498), Cersalzen (EP-A-492 713), polymeren Aluminiumsalzen (WO 92/15724), Oligo- oder Polyphosphorsäureestern des Inosits in Verbindung mit einem wasserlöslichen Alkali- oder Erdalkalimetallsalz dieser Ester (DE-A-24 03 022) oder auch Fluoriden verschiedener Metalle (DE- A-24 28 065).
Aus der EP-B-410 497 ist eine Nachspüllösung bekannt, die AI-, Zr- und Fluoridionen enthält, wobei die Lösung als Gemisch komplexer Fluoride oder auch als eine Lösung von Aluminium-hexafluorozirkonat aufgefaßt werden kann. Die Gesamtmenge dieser 3 Ionen liegt im Bereich von 0,1 bis 2,0 g/l.
Die DE-A-21 00 497 betrifft ein Verfahren zum elektrophoretischen Aufbringen von Farben auf eisenhaltige Oberflächen, wobei die Aufgabe gelöst werden soll, auf den eisenhaltigen Oberflächen weiße oder sonstige helle Farben ohne Verfärbung aufzubringen. Diese Aufgabe wird dadurch gelöst, daß die Oberflächen, die zuvor phosphatiert sein können, mit kupferhaltigen Lösungen gespült werden. Dabei werden für diese Nachspüllösung Kupferkonzentrationen zwischen 0,1 und 10 g/l vorgeschlagen. Die DE-A-34 00 339 beschreibt ebenfalls eine kupferhaltige Nachspüllösung für phosphatierte Metalloberflächen, wobei mit Kupfergehalten zwischen 0,01 und 10 g/l gearbeitet wird.
Von den vorstehend zitierten Verfahren zur Nachspülung von Phosphatschichten haben sich - außer chromhaltigen Nachspüllösungen - nur solche Verfahren durchgesetzt, bei denen mit Lösungen komplexer Fluoride von Titan und/oder Zirkon gearbeitet wird. Daneben werden organisch-reaktive Nachspüllösungen auf der Basis von aminsubstituierten Polyvinylphenolen eingesetzt. In Verbindung mit einem nickelhaltigen Phosphatierverfahren erfüllen diese chromfreien Nachspüllösungen die hohen Anforderungen, die beispielsweise in der Automobilindustrie an Lackhaftung und Korrosionsschutz gestellt werden. Aus Umwelt- und Arbeitsschutzgründen ist man jedoch bestrebt, Phosphatierprozesse einzuführen, bei denen in allen Behandlungsstufen sowohl auf den Einsatz von Nickel- als auch von Chromverbindungen verzichtet werden kann. Nickelfreie Phosphatierverfahren in Verbindung mit einer chromfreien Nachspülung erreichen derzeit noch nicht auf allen in der Automobilindustrie verwendeten Karosseriematerialien zuverlässig die Anforderungen an Lackhaftung und Korrosionsschutz. Dies gilt insbesondere dann, wenn man nach der Phosphatierung und der Nachspülung einen kathodisch abscheidbaren Elektrotauchlack auf die Metalloberfläche aufbringt, der aus Gründen der Arbeitsplatzhygiene und des Umweltschutzes keine bleihaltigen Verbindungen enthält.
Die DE-A-195 11 573 beschreibt ein Verfahren zur Phosphatierung mit einer Phosphatierlösung, die frei ist von Nitrit und Nickel, und bei der man nach der Phosphatierung mit einer wäßrigen Lösung mit einem pH-Wert im Bereich von 3 bis 7 nachspült, die 0,001 bis 10 g/l eines oder mehrerer der folgenden Kationen enthält: Lithiumionen, Kupferionen und/oder Silberionen. Die deutsche Patentanmeldung DE 197 05 701.2 erweitert dies auf nickelarme Phosphatierlösungen. Diese Dokumente enthalten keinen Hinweis darauf, daß durch die Nachspülung die Nachteile ausgeglichen werden können, die eine bleifreie kathodische Elektrotauchlackierung nach einer nickelfreien Phosphatierung mit sich bringt.
Derzeit ist man bemüht, die konventionellen kathodisch abscheidbaren Elektrotauchlacke, die als Katalysator zum Beschleunigen der Vernetzungsreaktion Bleiverbindungen enthalten, durch bleiarme oder bleifreie kathodisch abscheidbare Elektrotauchlacke zu ersetzen. Diese führen zu einem zufriedenstellenden Korrosionsschutz, wenn die Phosphatierung mit einer Phosphatierlösung erfolgt, die entweder mehr als 100 ppm Nickelionen oder mehr als 1 ppm Kupferionen enthält. Verwendet man jedoch aus Gründen des Umweltschutzes und der Arbeitsplatzhygiene Phosphatierlösungen, die weniger als 100 ppm Nickelionen oder als 1 ppm Kupferionen enthalten, zeigen bleiarme oder bleifreie kathodisch abscheidbare Elektrotauchlacke zumindest dann unbefriedigende Korrosionsschutzeigenschaften, wenn nach der Phosphatierung auf eine Nachspülung mit einer chromhaltigen Lösung verzichtet wird. Daher besteht ein Bedarf an einer Verfahrensfoige Phosphatierung / Nachspülung / kathodische Elektrotauchlackierung, bei der auf den Einsatz von Chromverbindungen ganz verzichtet werden kann und bei der man mit Behandlungsbädern arbeitet, die möglichst arm an Nickel und an Blei sein sollen und die nach Möglichkeit auf die Verwendung dieser Metalle ganz verzichten können. Dabei sollen jedoch Korrosionsschutzeigenschaften erzielt werden, die denjenigen nicht nachstehen, die man bei Verwendung einer stark nickelhaltigen Phosphatierlösung und/oder eines bleihaltigen kathodischen Elektrotauchlacks erzielen kann.
Diese Aufgabe wird gelöst durch ein Verfahren zur Vorbehandlung von
Oberflächen aus Stahl, verzinktem Stahl und/oder Aluminium und/oder aus
Legierungen, die zu mindestens 50 Gew.-% aus Eisen, Zink oder Aluminium bestehen, umfassend die Verfahrensschritte
a) schichtbildende Phosphatierung, b) Nachspülung, c) kathodische Elektrotauchlackierung,
dadurch gekennzeichnet, daß man im Verfahrensschritt a) mit einer zinkhaltigen sauren Phosphatierlösung phosphatiert, die einen pH-Wert im Bereich von 2,5 bis 3,6 aufweist und die
0,3 bis 3 g/l Zn(ll),
5 bis 40 g/l Phosphationen, mindestens einen der folgenden Beschleuniger 0,2 bis 2 g/l m-Nitrobenzolsulfonationen, 0,1 bis 10 g/l Hydroxylamin in freier oder gebundener Form, 0,05 bis 2 g/l m-Nitrobenzoationen, 0,05 bis 2 g/l p-Nitrophenol,
1 bis 70 mg/l Wasserstoffperoxid in freier oder gebundener Form, 0,01 bis 0,2 g/l Nitritionen 0,05 bis 4 g/l organische N-Oxide 0,1 bis 3 g/l Nitroguanidin und nicht mehr als 50 mg/l Nickelionen enthält,
im Verfahrensschritt b) mit einer wäßrigen Lösung mit einem pH-Wert im Bereich von 3 bis 7 nachspült, die 0,001 bis 10 g/l eines oder mehrerer der folgenden Kationen enthält: Lithiumionen, Kupferionen und/oder Silberionen
und im Verfahrensschritt c) mit einem kathodisch abscheidbaren Elektrotauchlack lackiert, der nicht mehr als 0,05 Gew.-% Blei bezogen auf die Trockensubstanz des Elektrotauchlacks enthält. Anstatt den maximalen Bleigehalt auf die Trockensubstanz des kathodisch abscheidbaren Elektrotauchlacks zu beziehen, kann man die Obergrenze des Bleigehalts in dem anwendungsfertigen wäßrigen Bad des kathodisch abscheidbaren Elektrotauchlacks angeben. Demnach soll der Bleigehalt des Tauchlackbades nicht oberhalb von etwa 150 mg Blei pro Liter Badflüssigkeit liegen. Insbesondere soll der Bleigehalt nicht mehr als etwa 0,01 Gew.-% bezogen auf die Trockensubstanz des Elektrotauchlacks sein. Vorzugsweise werden im Rahmen der vorliegenden Erfindung kathodisch abscheidbare Elektrotauchlacke eingesetzt, denen keine Bleiverbindungen zugesetzt wurden.
Der Begriff „schichtbildende Phosphatierung" für den Verfahrensschritt a) ist auf dem betroffenen technischen Gebiet allgemein bekannt. Er bedeutet, daß auf dem Substrat eine kristalline Metallphosphatschicht abgeschieden wird, in die zweiwertige Metallionen aus der Phosphatierlösung eingebaut werden. Bei der schichtbildenden Phosphatierung von eisen- oder zinkhaltigen Oberflächen werden auch Metallionen aus der Metalloberfläche in die Phosphatschicht mit eingebaut. Hiervon unterschieden wird die sogenannte „nicht schichtbildende Phosphatierung". Hierbei behandelt man die Metalloberfläche mit einer Phosphatierlösung, die keine zweiwertigen Metallionen enthält, die in die sich ausbildende dünne, in der Regel nicht kristalline Phosphat- und Oxidschicht eingebaut werden.
Die im Verfahrensschritt a) verwendete Phosphatierlösung enthält vorzugsweise keine Kupferionen. Im praktischen Betrieb ist es jedoch nicht auszuschließen, daß solche Ionen zufällig in das Phosphatierbad gelangen. Vorzugsweise werden jedoch dem Phosphatierbad keine Kupferionen absichtlich zugesetzt, so daß erwartet werden kann, daß die Phosphatierlösung nicht mehr als etwa 1 mg/l Kupferionen enthält.
Erfindungsgemäß verwendet man im Verfahrensschritt a) eine Phosphatierlösung, die nicht mehr als 50 mg/l Nickelionen enthält. Man kann jedoch auf den Zusatz von Nickelionen in die Phosphatierlösung völlig verzichten. Dies ist aus Gründen der Arbeitsplatzhygiene und des Umweltschutzes bevorzugt. Da die Behälter für die Phosphatierlösungen jedoch in der Regel aus nickelhaltigem Edelstahl bestehen, ist nicht auszuschließen, daß Nickelionen aus der Behälteroberfläche in das Phosphatierbad gelangen. Die sich hierdurch einstellenden Nickelgehalte der Phosphatierlösung liegen in der Regel unter 10 mg/l. Demgemäß ist es in der erfindungsgemäßen Verfahrensfolge bevorzugt, mit einer möglichst nickelarmen, vorzugsweise nickelfreien Phosphatierlösung zu arbeiten, die jedoch zumindest nicht mehr als etwa 10 mg/l Nickelionen enthalten soll. Vorzugsweise liegt die Nickelkonzentration unterhalb von 1 mg/l. Die im Verfahrensschritt a) der erfindungsgemäßen Verfahrensabfolge eingesetzte Phosphatierlösung enthält vorzugsweise eines oder mehrere weitere Metallionen, deren positive Wirkung auf den Korrosionsschutz von Zinkphosphatschichten im Stand der Technik bekannt ist. Hierbei kann die Phosphatierlösung eines oder mehrere der folgenden Kationen enthalten:
0,2 bis 4 g/l Mangan(ll),
0,2 bis 2,5 g/l Magnesium(ll),
0,2 bis 2,5 g/l Calcium(ll),
0,01 bis 0,5 g/l Eisen(ll),
0,2 bis 1 ,5 g/l Llthium(l),
0,02 bis 0,8 g/l Wolfram(VI),
Dabei ist die Anwesenheit von Mangan und/oder Lithium besonders bevorzugt. Die Möglichkeit der Anwesenheit von zweiwertigem Eisen hängt von dem weiter unten beschriebenen Beschleunigersystem ab. Die Gegenwart von Eisen(ll) im genannten Konzentrationsbereich setzt einen Beschleuniger voraus, der gegenüber diesen Ionen nicht oxidierend wirkt. Hierfür ist insbesondere Hydroxylamin als Beispiel zu nennen.
Ähnlich wie in der EP-A-321 059 beschrieben, bringt auch in der erfindungsgemäßen Verfahrensfolge die Gegenwart löslicher Verbindungen des sechs- wertigen Wolframs im Phosphatierbad Vorteile hinsichtlich Korrosionswiderstand und Lackhaftung. In den erfindungsgemäßen Phosphatierverfahren können Phosphatierlösungen Verwendung finden, die 20 bis 800 mg/l, vorzugsweise 50 bis 600 mg/l, Wolfram in Form wasserlöslicher Wolframate, Silicowolframate und/oder Borowolframate enthalten. Dabei können die genannten Anionen in Form ihrer Säuren und/oder ihrer wasserlöslichen Salze, vorzugsweise Ammoniumsalze, eingesetzt werden. Bei Phosphatierbädem, die für unterschiedliche Substrate geeignet sein sollen, ist es üblich geworden, freies und/oder komplexgebundenes Fluorid in Mengen bis zu 2,5 g/l Gesamtfluorid, davon bis zu 800 mg/l freies Fluorid zuzusetzen. Die Anwesenheit solcher Fluoridmengen ist auch für die Phosphatierbäder im Rahmen der Erfindung von Vorteil. Bei Abwesenheit von Fluorid soll der Aluminiumgehalt des Bades 3 mg/l nicht überschreiten. Bei Gegenwart von Fluorid werden infolge der Komplexbildung höhere AI-Gehalte toleriert, sofern die Konzentration des nicht komplexierten AI 3 mg/l nicht übersteigt. Die Verwendung fluoridhaltiger Bäder ist daher vorteilhaft, wenn die zu phosphatierenden Oberflächen zumindest teilweise aus Aluminium bestehen oder Aluminium enthalten. In diesen Fällen ist es günstig, kein komplexgebundenes, sondern nur freies Fluorid, vorzugsweise in Konzentrationen im Bereich 0,5 bis 1 ,0 g/l, einzusetzen.
Für die Phosphatierung von Zinkoberflächen ist es nicht zwingend erforderlich, daß die Phosphatierbäder sogenannte Beschleuniger enthalten. Für die Phosphatierung von Stahloberflächen ist es jedoch erforderlich, daß die Phosphatierlösung einen oder mehrere Beschleuniger enthält. Solche Beschleuniger sind im Stand der Technik als Komponenten von Zinkphosphatier- bädern geläufig. Hierunter werden Substanzen verstanden, die den durch den Beizangriff der Säure an der Metalloberfläche entstehenden Wasserstoff dadurch chemisch binden, daß sie selbst reduziert werden. Oxidierend wirkende Beschleuniger haben weiterhin den Effekt, durch den Beizangriff auf Stahloberflächen freigesetzte Eisen(ll)-lonen zur dreiwertigen Stufe zu oxidieren, so daß sie als Eisen(lll)-Phosphat ausfallen können. Die im Phosphatierbad der erfindungsgemäßen Verfahrensfolge einsetzbaren Beschleuniger wurden weiter oben aufgeführt. Als Cobeschleuniger können zusätzlich Nitrationen in Mengen bis zu 10 g/l zugegen sein, was sich insbesondere bei der Phosphatierung von Stahloberflächen günstig auswirken kann. Bei der Phosphatierung von verzinktem Stahl ist es jedoch vorzuziehen, daß die Phosphatierlösung möglichst wenig Nitrat enthält. Nitratkonzentrationen von 0,5 g/l sollten vorzugsweise nicht überschritten werden, da bei höheren Nitratkonzentrationen die Gefahr einer sogenannten "Stippenbildung" besteht. Hiermit sind weiße, kraterartige Fehlstellen in der Phosphatschicht gemeint.
Aus Gründen der Umweltfreundlichkeit ist Wasserstoffperoxid, aus den technischen Gründen der vereinfachten Formulierungsmöglichkeiten für Nachdo- sierlösungen ist Hydroxylamin als Beschleuniger besonders bevorzugt. Die gemeinsame Verwendung dieser beiden Beschleuniger ist jedoch nicht ratsam, da Hydroxylamin von Wasserstoffperoxid zersetzt wird. Setzt man Wasserstoffperoxid in freier oder gebundener Form als Beschleuniger ein, so sind Konzentrationen von 0,005 bis 0,02 g/l Wasserstoffperoxid besonders bevorzugt. Dabei kann das Wasserstoffperoxid der Phosphatierlösung als solches zugegeben werden. Es ist jedoch auch möglich, Wasserstoffperoxid in gebundener Form in Form von Verbindungen einzusetzen, die im Phosphatierbad durch Hydrolysereaktionen Wasserstoffperoxid liefern. Beispiele solcher Verbindungen sind Persalze, wie Perborate, Percarbonate, Peroxosulfate oder Peroxodisulfate. Als weitere Quellen für Wasserstoffperoxid kommen ionische Peroxide wie beispielsweise Alkalimetallperoxide in Betracht.
Hydroxylamin kann als freie Base, als Hydroxylaminkomplex oder in Form von Hydroxylammoniumsalzen eingesetzt werden. Fügt man freies Hydroxylamin dem Phosphatierbad oder einem Phosphatierbad-Konzentrat zu, wird es aufgrund des sauren Charakters dieser Lösungen weitgehend als Hydroxylammonium-Kation vorliegen. Bei einer Verwendung als Hydroxylammonium-Salz sind die Sulfate sowie die Phosphate besonders geeignet. Im Falle der Phosphate sind aufgrund der besseren Löslichkeit die sauren Salze bevorzugt. Hydroxylamin oder seine Verbindungen werden dem Phosphatierbad in solchen Mengen zugesetzt, daß die rechnerische Konzentration des freien Hydroxylamins zwischen 0,1 und 10 g/l, vorzugsweise zwischen 0,2 und 6 g/l und insbesondere zwischen 0,3 und 2 g/l liegt. Aus der EP-B-315 059 ist bekannt, daß die Verwendung von Hydroxylamin als Beschleuniger auf Eisenoberflächen zu besonders günstigen kugelartigen und/oder säulenartigen Phosphatkristallen führt. Die im Verfahrensschritt b) auszuführende Nachspülung ist als Nachpassivierung solcher Phosphatschichten besonders geeignet.
Die Wirkung von Hydroxylamin als Beschleuniger kann durch die zusätzliche Verwendung von Chlorat unterstützt werden. Diese Beschleunigerkombination, die auch im Rahmen der erfindungsgemäßen Verfahrenskombination verwendet werden kann, ist beschrieben in der deutschen Patentanmeldung DE-A-197 16 075.1.
Als Beschleuniger kommen weiterhin organische N-Oxide in Betracht, wie sie in der deutschen Patentanmeldung DE-A-197 33 978.6 näher beschrieben sind. Als organisches N-Oxid ist N-Methylmorpholin-N-Oxid besonders bevorzugt. Vorzugsweise setzt man die N-Oxide in Kombination mit Co-Beschleunigern wie beispielsweise Chlorat, Wasserstoffperoxid, m-Nitrobenzolsulfonat oder Nitroguanidin ein. Nitroguanidin kann auch als alleiniger Beschleuniger verwendet werden, wie es beispielsweise in der DE-A-196 34 685 beschrieben ist.
Wählt man lithiumhaltige Phosphatierbäder, so liegen die bevorzugten Konzentrationen an Lithiumionen im Bereich von 0,4 bis 1 g/l. Dabei sind Phosphatierbäder besonders vorzuziehen, die Lithium als einziges einwertiges Kation enthalten. Je nach gewünschtem Verhältnis von Phosphationen zu den zweiwertigen Kationen und den Lithiumionen kann es jedoch erforderlich sein, zum Einstellen der erwünschten freien Säure den Phosphatierbädern weitere basische Substanzen zuzugeben. In diesem Falle setzt man vorzugsweise Ammoniak ein, so daß die lithiumhaltigen Phosphatierbäder zusätzlich Ammoniumionen im Bereich von etwa 0,5 bis etwa 2 g/l enthalten können. Die Verwendung basischer Natriumverbindungen wie beispielsweise Natronlauge ist in diesem Fall weniger bevorzugt, da die Gegenwart von Natriumionen in den lithiumhaltigen Phosphatierbädern die Korrosionsschutzeigeπschaften der erhaltenen Schichten verschlechtert. Bei lithiumfreien Phosphatierbädern stellt man die freie Säure vorzugsweise durch Zugabe basischer Natriumverbindungen wie Natriumcarbonat oder Natriumhydroxid ein.
Besonders gute Korrosionsschutzergebnisse werden mit Phosphatierbädern erhalten, die außer Zink und gegebenenfalls Lithium Mangan(ll) enthalten. Der Mangangehalt des Phosphatierbades soll zwischen 0,2 und 4 g/l liegen, da bei geringeren Mangangehalten der positive Einfluß auf das Korrosionsverhalten der Phosphatschichten nicht mehr gegeben ist und bei höheren Mangangehalten kein weiterer positiver Effekt eintritt. Gehalte zwischen 0,3 und 2 g/l und insbesondere zwischen 0,5 und 1 ,5 g/l sind bevorzugt. Den Zinkgehalt des Phosphatierbades stellt man vorzugsweise auf Werte zwischen 0,45 und 2 g/l ein. Infolge des Beizabtrages bei der Phosphatierung zinkhaltiger Oberflächen ist es jedoch möglich, daß der aktuelle Zinkgehalt des arbeitenden Bades auf bis zu 3 g/l ansteigt. In welcher Form die Zink- und Manganionen in die Phosphatierbäder eingebracht werden, ist prinzipiell ohne Belang. Es bietet sich insbesondere an, als Zink- und/oder Manganquelle die Oxide und/oder die Carbonate zu verwenden. Bei der Anwendung des Phosphatierverfahrens auf Stahloberflächen geht Eisen in Form von Eisen(ll)-lonen in Lösung. Falls die Phosphatierbäder keine Substanzen enthalten, die gegenüber Eisen(ll) stark oxidierend wirken, geht das zweiwertige Eisen vornehmlich in Folge von Luftoxidation in den dreiwertigen Zustand über, so daß es als Eisen(lll)-Phosphat ausfallen kann. Daher können sich in den Phosphatierbädern Eisen(ll)-Gehalte aufbauen, die deutlich über den Gehalten liegen, die Oxidationsmittel-haltige Bäder enthalten. Dies ist beispielsweise in den Hydroxylamin-haltigen Phosphatierbädern der Fall. In diesem Sinne sind Eisen(ll)-Konzentrationen bis zu 50 ppm normal, wobei kurzfristig im Produktionsablauf auch Werte bis zu 500 ppm auftreten können. Für das erfindungsgemäße Phosphatierverfahren sind solche Eisen(ll)- Konzentrationen nicht schädlich.
Das Gewichtsverhältnis Phosphationen zu Zinkionen in den Phosphatierbädern kann in weiten Grenzen schwanken, sofern es im Bereich zwischen 3,7 und 30 liegt. Ein Gewichtsverhältnis zwischen 7 und 25 ist besonders bevorzugt. Für diese Berechnung wird der gesamte Phosphorgehalt des Phosphatierbades als in Form von Phosphationen PO^" vorliegend angesehen. Demnach wird bei der
Berechnung des Mengenverhältnisses die bekannte Tatsache außer acht gelassen, daß bei den pH-Werten der Phosphatierbäder, die üblicherweise im Bereich von etwa 3 bis etwa 3,4 liegen, nur ein sehr geringer Teil des Phosphats tatsächlich in Form der dreifach negativ geladenen Anionen vorliegt. Bei diesen pH-Werten ist vielmehr zu erwarten, daß das Phosphat vornehmlich als einfach negativ geladenes Dihydrogenphosphat-Anion vorliegt, zusammen mit geringeren Mengen an undisoziierter Phosphorsäure und an zweifach negativ geladenen Hydrogenphosphat-Anionen. Als weitere Parameter zur Steuerung von Phosphatierbädern sind dem Fachmann die Gehalte an freier Säure und an Gesamtsäure bekannt. Die in dieser Schrift verwendete Bestimmungsmethode dieser Parameter ist im Beispielteil angegeben. Werte der freien Säure zwischen 0 und 1 ,5 Punkten und der Gesamtsäure zwischen etwa 15 und etwa 30 Punkten liegen im technisch üblichen Bereich und sind im Rahmen dieser Erfindung geeignet.
Die Phosphatierung kann im Spritzen, im Tauchen oder im Spritztauchen erfolgen. Die Einwirkungszeiten liegen dabei im üblichen Bereich zwischen etwa 1 und etwa 4 Minuten. Die Temperatur der Phosphatierlösung liegt im Bereich zwischen etwa 40 und etwa 60 °C. Vor der Phosphatierung sind die im Stand der Technik üblichen Schritte der Reinigung und der Aktivierung, vorzugsweise mit titanphosphathaltigen Aktivierbädern, vorzunehmen.
Zwischen der Phosphatierung gemäß Verfahrensschritt a) und der Nachspülung gemäß Verfahrensschritt b) kann eine Zwischenspülung mit Wasser erfolgen. Diese ist jedoch nicht erforderlich und es kann sogar Vorteile bieten, auf diese Zwischenspülung zu verzichten, da dann eine Reaktion der Nachspüllösung mit der an der phosphatierten Oberfläche noch anhaftenden Phosphatierlösung erfolgen kann, die sich günstig auf den Korrosionsschutz auswirkt.
Vorzugsweise weist die im Verfahrensschritt b) verwendete Nachspüllösung einen pH-Wert im Bereich von 3,4 bis 6 und eine Temperatur im Bereich von 20 bis 50 °C auf. Die Konzentrationen der Kationen in der im Verfahrensschritt b) eingesetzten wäßrigen Lösung liegen vorzugsweise in folgenden Bereichen: Lithium(l) 0,02 bis 2, insbesondere 0,2 bis 1 ,5 g/l, Kupfer(ll) 0,002 bis 1 g/l, insbesondere 0,01 bis 0,1 g/l und Silber(l) 0,002 bis 1 g/l, insbesondere 0,01 bis 0,1 g/l. Dabei können die genannten Metallionen einzeln oder im Gemisch miteinander vorliegen. Besonders bevorzugt sind Nachspüllösungen, die Kup- fer(ll) enthalten.
In welcher Form die genannten Metallionen in die Nachspüllösung eingebracht werden, ist prinzipiell unerheblich, so lange gewährleistet ist, daß die Metallverbindungen in den genannten Konzentrationsbereichen der Metallionen löslich sind. Jedoch sollten Metallverbindungen mit Anionen vermieden werden, die die Korrosionsneigung bekanntermaßen fördern, wie beispielsweise Chlorid. Besonders bevorzugt ist es, die Metallionen als Nitrate oder als Carboxylate, insbesondere als Acetate einzusetzen. Phosphate sind ebenfalls geeignet, sofern sie unter den gewählten Konzentrations- und pH-Bedingungen löslich sind. Gleiches gilt für Sulfate.
In einer besonderen Ausführungsform setzt man die Metallionen von Lithium, Kupfer und/oder Silber in den Nachspüllösungen zusammen mit 0,1 bis 1 g/l Hexafluorotitanat- und/oder, besonders bevorzugt, Hexafluorozirkonationen ein. Dabei ist es bevorzugt, daß die Konzentrationen der genannten Anionen im Bereich von 100 bis 500 ppm liegen. Als Quelle der genannten Hexafluoro- Anionen kommen deren Säuren oder deren unter den genannten Konzentrations- und pH-Bedingungen wasserlösliche Salze, insbesondere deren Alkalimetall- und/oder Ammoniumsalze in Betracht. Besonders günstig ist es, die Hexafluoro-Anionen zumindest teilweise in Form ihrer Säuren einzusetzen und in den sauren Lösungen basische Verbindungen von Lithium, Kupfer und/oder Silber aufzulösen. Hierfür kommen beispielsweise die Hydroxide, Oxide oder Carbonate der genannten Metalle in Betracht. Durch dieses Vorgehen vermeidet man, die Metalle zusammen mit gegebenenfalls störenden Anionen einzusetzen. Der pH-Wert kann, falls erforderlich, mit Ammoniak oder Natriumcarbonat eingestellt werden. Weiterhin können die Nachspüllösungen die Ionen von Lithium, Kupfer und/oder Silber zusammen mit Ionen von Cer(lll) und/oder Cer(IV) enthalten, wobei die Gesamtkonzentration der Cerionen im Bereich von 0,01 bis 1 g/l liegt.
Weiterhin kann die Nachspüllösung außer den Ionen von Lithium, Kupfer und/oder Silber auch Aluminium(lll)-Verbindungen enthalten, wobei die Konzentration an Aluminium im Bereich von 0,01 bis 1 g/l liegt. Als Aluminiumverbindungen kommen dabei insbesondere einerseits Polyaluminiumverbindungen wie beispielsweise polymeres
Aluminiumhydroxychlorid oder polymeres Aluminiumhydroxysulfat in Betracht (WO 92/15724), oder aber komplexe Aluminium-Zirkon-Fluoride, wie sie beispielsweise aus der EP-B-410497 bekannt sind.
Die im Verfahrensschritt a) phosphatierten Metalloberflächen können im Verfahrensschritt b) mit der Nachspüllösung durch Spritzen, Tauchen oder Spritztauchen in Kontakt gebracht werden, wobei die Einwirkungszeit im Bereich von 0,5 bis 10 Minuten liegen soll und vorzugsweise etwa 40 bis etwa 120 Sekunden beträgt. Aufgrund der einfacheren Anlagentechnik ist es vorzuziehen, die Nachspüllösung im Verfahrensschritt b) auf die im Verfahrensschritt a) phosphatierte Metalloberfläche aufzuspritzen.
Ein Abspülen der Behandlungslösung nach dem Ende der Einwirkungsdauer und vor der nachfolgenden kathodischen Elektrotauchlackierung ist prinzipiell nicht erforderlich. Um eine Verunreinigung des Lackbades zu vermeiden, ist es hierbei vorzuziehen, nach der Nachspülung gemäß Verfahrensschritt b) die Nachspüllösung von den Metalloberflächen abzuspülen, vorzugsweise mit salzarmem oder entsalztem Wasser. Vor dem Einbringen in das Elektrotauchlackbecken können die erfindungsgemäß vorbehandelten Metalloberflächen getrocknet werden. Im Interesse eines rascheren Produktionszyklus unterbleibt jedoch vorzugsweise eine derartige Trocknung.
Im Teilschritt c) erfolgt nun die kathodische Elektrotauchlackierung mit einem kathodisch abscheidbaren Elektrotauchlack, der zumindest bleiarm, vorzugsweise jedoch bleifrei ist. Unter „bleiarm" wird hierbei verstanden, daß der kathodisch abscheidbare Elektrotauchlack nicht mehr als 0,05 Gew.-% Blei bezogen auf die Trockensubstanz des Elektrotauchlacks enthält. Vorzugsweise enthält er weniger als 0,01 Gew.-% Blei bezogen auf Trockensubstanz und vorzugsweise keine absichtlich zugesetzten Bleiverbindungen. Beispiele solcher Elektrotauchlacke sind im Handel erhältlich. Beispielsweise genannt seien: Cathoguard R 310 und CathoguardR 400 der Firma BASF, Aqua EC 3000 der Firma Herberts und EnviroprimeR der Firma PPG.
Ausführungsbeispiele
Die erfindungsgemäße Verfahrensfolge wurde an Stahlblechen, wie sie im Automobilbau Verwendung finden, überprüft. Dabei wurde folgender in der Karosseriefertigung gebräuchlicher Verfahrensgang im Tauchverfahren ausgeführt:
1. Reinigen mit einem alkalischen Reiniger (RidolineR 1559, Henkel KGaA), Ansatz 2 % in Brauchwasser, 55 °C, 4 Minuten.
2. Spülen mit Brauchwasser, Raumtemperatur, 1 Minute. 3. Aktivieren mit einem Titanphosphat-haltigen Aktiviermittel im Tauchen
(FixodineR C 9112, Henkel. KGaA), Ansatz 0,1 % in vollentsalztem Wasser, Raumtemperatur, 1 Minute.
4. Verfahrensschritt a): Phosphatieren mit einem Phosphatierbad folgender Zusammensetzung: (Ansatz in vollentsalztem Wasser)
Zn2+ 1 ,3 g/l
Mn2+ 0,8 g/l
H2PO4 ' 13,8 g/l
SiF6 2" 0,7 g/l
Hydroxylamin 1 ,1 g/l (als freies Amin eingesetzt)
Freie Säure 1 ,1 Punkte
Gesamtsäure 24 Punkte
Außer den genannten Kationen enthielt das Phosphatierbad gegebenenfalls Natrium- oder Ammoniumionen zum Einstellen der freien Säure. Temperatur: 50 °C, Zeit: 4 Minuten.
Unter der Punktzahl der freien Säure wird der Verbrauch in ml an 0,1- normaler Natronlauge verstanden, um 10 ml Badlösung bis zu einem pH- Wert von 3,6 zu titrieren. Analog gibt die Punktzahl der Gesamtsäure den Verbrauch in ml bis zu einem pH-Wert von 8,2 an.
5. Spülen mit Brauchwasser, Raumtemperatur, 1 Minute.
6. Verfahrensschritt b): Nachspülung mit einer Lösung gemäß Tabelle 1 , 40 °C, 1 Minute 7. Spülen mit vollentsalztem Wasser.
8. Trockenblasen mit Preßluft
9. Verfahrensschritt c): Beschichten mit einem kathodischen Elektrotauchlack: Vergleich Pb-haltig: FT 85-7042 (BASF); erfindungsgemäß: Pb-frei: Cathoguard 310 (BASF).
Bei den Nachspüllösungen gemäß Tabelle 1 wurden Cu als Acetat, ZrFg^- als freie Säure eingesetzt. pH-Werte wurden nach oben mit Natriumcarbonat korrigiert.
Die Korrosionsschutzprüfung erfolgte nach dem VDA-Wechselklimatest 621-415. Als Ergebnis ist in Tabelle 2 die Lackunterwanderung am Ritz (U/2: halbe Ritzbreite, in mm) eingetragen. Zusätzlich erfolgte eine Lackhaftungsprüfung nach VW Steinschlagtest, die nach K-Wert beurteilt wurde. Höhere K-Werte bedeuten schlechtere, niedrige K-Werte bessere Lackhaftung. Die Ergebnisse sind ebenfalls in Tabelle 2 enthalten.
Tabelle 1 : Nachspüllösungen (in vollentsalztem Wasser)
Tabelle 2: Korrosionsschutzergebnisse
Vergleich 1 und Vergleich 2 (Tabelle 2) zeigen, daß die Verfahrensfolge: Phosphatierung mit einer nickelfreien Phosphatierlösung, Nachspülung mit einer in der Praxis eingesetzten kupferfreien Nachspüllösung und anschließender kathodischer Elektrotauchlackierung mit einem bleifreien kathodisch abscheidbaren Elektrotauchlack (Vergleich 2) wesentlich schlechtere Korrosionsschutzergebnisse ergibt als bei kathodischer Elektrotauchlackierung mit einem bleihaltigen kathodisch abscheidbaren Elektrotauchlack (Vergleich 1). Beispiel 1 zeigt, daß bei Verwendung des bleifreien kathodischen Elektrotauchlacks nach einer Nachspülung mit einer kupferhaltigen Nachspüllösung (Lösung 1) wesentlich bessere Korrosionsschutzwerte erhalten werden. Sie entsprechen denjenigen, die man mit einer bleihaltigen kathodischen Elektrotauchlackierung nach einer Nachspülung mit einer kupferhaltigen Nachspüllösung (Lösung 1) erhält (Vergleich 3). Während also ein bleifreier kathodischer Elektrotauchlack nach einer nickelfreien Phosphatierung gefolgt von einer kupferfreien Nachspülung deutliche Nachteile im Korrosionsschutz gegenüber einem bleihaltigen Elektrotauchlack zeigt, verschwinden diese Nachteile, wenn man erfindungsgemäß mit einer kupferhaltigen Lösung nach der Phosphatierung nachspült. Das erfindungsgemäße Verfahren erlaubt es demnach, die jeweils toxikologisch und ökologisch vorteilhaften Einzelschritte: nickelarme, vorzugsweise nickelfreie Phosphatierung und bleiarme, vorzugsweise bleifreie kathodische Elektrotauchlackierung ohne technische Nachteile miteinander zu kombinieren.

Claims

Patentansprüche
1. Verfahren zur Vorbehandlung von Oberflächen aus Stahl, verzinktem Stahl und/oder Aluminium und/oder aus Legierungen, die zu mindestens 50 Gew.- % aus Eisen, Zink oder Aluminium bestehen, umfassend die Verfahrensschritte
a) schichtbildende Phosphatierung, b) Nachspülung, c) kathodische Elektrotauchlackierung,
dadurch gekennzeichnet, daß man im Verfahrensschritt a) mit einer zinkhaltigen sauren Phosphatierlösung phosphatiert, die einen pH-Wert im Bereich von 2,5 bis 3,6 aufweist und die
0,3 bis 3 g/l Zn(ll),
5 bis 40 g/l Phosphationen, mindestens einen der folgenden Beschleuniger
0,2 bis 2 g/l m-Nitrobenzolsulfonationen,
0,1 bis 10 g/l Hydroxylamin in freier oder gebundener Form,
0,05 bis 2 g/l m-Nitrobenzoationen,
0,05 bis 2 g/l p-Nitrophenol,
1 bis 70 mg/l Wasserstoffperoxid in freier oder gebundener Form,
0,01 bis 0,2 g/l Nitritionen
0,05 bis 4 g/l organische N-Oxide
0,1 bis 3 g/l Nitroguanidin und nicht mehr als 50 mg/l Nickelionen enthält,
im Verfahrensschritt b) mit einer wäßrigen Lösung mit einem pH-Wert im Bereich von 3 bis 7 nachspült, die 0,001 bis 10 g/l eines oder mehrerer der folgenden Kationen enthält: Lithiumionen, Kupferionen und/oder Silberionen
und im Verfahrensschritt c) mit einem kathodisch abscheidbaren Elektrotauchlack lackiert, der nicht mehr als 0,05 Gew.-% Blei bezogen auf die Trockensubstanz des Elektrotauchlacks enthält.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß man im Verfahrensschritt a) mit einer Phosphatierlösung phosphatiert, die nicht mehr als 1 mg/l Kupferionen enthält.
3. Verfahren nach einem oder beiden der Ansprüche 1 und 2, dadurch gekennzeichnet, daß man im Verfahrensschritt a) mit einer Phosphatierlösung phosphatiert, die nicht mehr als 10 mg/I Nickelionen enthält.
4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man im Verfahrensschritt a) mit einer Phosphatierlösung phosphatiert, die zusätzlich eines oder mehrere der folgenden Kationen enthält:
0,2 bis 4 g/l Mangan(ll), 0,2 bis 2,5 g/l Magnesium(ll), 0,2 bis 2,5 g/l Calcium(ll), 0,01 bis 0,5 g/l Eisen(ll), 0,2 bis 1 ,5 g/l Lithium(l), 0,02 bis 0,8 g/l Wolf ram(VI),
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man im Verfahrensschritt b) mit einer wäßrigen Lösung nachspült, die 0,001 bis 10 g/l Kupferionen enthält und einen pH- Wert im Bereich von 3,4 bis 6 aufweist.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß man im Verfahrensschritt b) mit einer wäßrigen Lösung nachspült, die 0,01 bis 0,1 g/l Kupferionen enthält
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man im Verfahrensschritt b) mit einer wäßrigen Lösung nachspült, die eine Temperatur im Bereich von 20 bis 50 °C aufweist.
8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß man im Verfahrensschritt b) mit einer wäßrigen Lösung nachspült, die zusätzlich 0,1 bis 1 g/l Hexafluorotitanat- und/oder Hexafluorozirkonationen enthält.
9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Nachspüllösung im Verfahrensschritt b) auf die im Verfahrensschritt a) phosphatierte Metalloberfläche aufgespritzt wird.
10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß man die Nachspüllösung im Verfahrensschritt b) für eine Zeitdauer im Bereich von 0,5 bis 10 Minuten auf die im Verfahrensschritt a) phosphatierte Metalloberfläche einwirken läßt.
11. Verfahren nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß zwischen den Verfahrensschritten a) und b) keine Zwischenspülung mit Wasser erfolgt.
2. Verfahren nach einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß man im Verfahrensschritt c) mit einem kathodisch abscheidbaren Elektrotauchlack lackiert, der nicht mehr als 0,01 Gew.-% Blei bezogen auf die Trockensubstanz des Tauchlacks enthält.
EP99939400A 1998-08-01 1999-07-23 Verfahren zur phosphatierung, nachspülung und kathodischer elektrotauchlackierung Withdrawn EP1114202A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19834796 1998-08-01
DE19834796A DE19834796A1 (de) 1998-08-01 1998-08-01 Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung
PCT/EP1999/005273 WO2000008231A1 (de) 1998-08-01 1999-07-23 Verfahren zur phosphatierung, nachspülung und kathodischer elektrotauchlackierung

Publications (1)

Publication Number Publication Date
EP1114202A1 true EP1114202A1 (de) 2001-07-11

Family

ID=7876147

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99939400A Withdrawn EP1114202A1 (de) 1998-08-01 1999-07-23 Verfahren zur phosphatierung, nachspülung und kathodischer elektrotauchlackierung

Country Status (14)

Country Link
US (1) US6447662B1 (de)
EP (1) EP1114202A1 (de)
JP (1) JP2004500479A (de)
KR (1) KR20010072179A (de)
CN (1) CN1311827A (de)
AU (1) AU5371499A (de)
BR (1) BR9912841A (de)
CA (1) CA2339234A1 (de)
CZ (1) CZ2001409A3 (de)
DE (1) DE19834796A1 (de)
PL (1) PL345590A1 (de)
SK (1) SK1552001A3 (de)
TR (1) TR200100243T2 (de)
WO (1) WO2000008231A1 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19958192A1 (de) * 1999-12-02 2001-06-07 Henkel Kgaa Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung
DE10056628B4 (de) * 2000-11-15 2004-07-22 Henkel Kgaa Fraktionierte Regenerierung eines mit Nickelionen beladenen schwach sauren Ionenaustauschers
CA2494559C (en) * 2002-07-10 2011-09-20 Chemetall Gmbh Method for coating metallic surfaces
DE102004007361B4 (de) * 2003-02-24 2005-10-06 Innovent E.V. Verfahren zur Modifizierung von verzinkten Stahloberflächen und Schwarzstahloberflächen
DE10323305B4 (de) * 2003-05-23 2006-03-30 Chemetall Gmbh Verfahren zur Beschichtung von metallischen Oberflächen mit einer Wasserstoffperoxid enthaltenden Phosphatierungslösung, Phosphatierlösung und Verwendung der behandelten Gegenstände
KR101043076B1 (ko) * 2003-11-24 2011-06-21 주식회사 포스코 아연계 전기도금강판의 인산염 피막 형성용 조성물 및이를 이용한 인산염 처리방법
WO2008118127A1 (en) 2006-07-21 2008-10-02 American Superconductor Corporation Low resistance splice for high temperature superconductor wires
WO2009017535A2 (en) * 2007-06-07 2009-02-05 Henkel Ag & Co. Kgaa High manganese cobalt-modified zinc phosphate conversion coating
US8282801B2 (en) * 2008-12-18 2012-10-09 Ppg Industries Ohio, Inc. Methods for passivating a metal substrate and related coated metal substrates
DE102010001686A1 (de) 2010-02-09 2011-08-11 Henkel AG & Co. KGaA, 40589 Zusammensetzung für die alkalische Passivierung von Zinkoberflächen
JP5861249B2 (ja) * 2010-09-15 2016-02-16 Jfeスチール株式会社 容器用鋼板の製造方法
CN102114463B (zh) * 2011-03-02 2013-08-07 康海燕 一种减少氧化物涂层氚滞留的方法
EP2503025B1 (de) 2011-03-22 2013-07-03 Henkel AG & Co. KGaA Mehrstufige korrosionsschützende Behandlung metallischer Bauteile, die zumindest teilweise Oberflächen von Zink oder Zinklegierungen aufweisen
JP6129180B2 (ja) * 2012-08-08 2017-05-17 日本パーカライジング株式会社 金属表面処理液、金属基材の表面処理方法及びそれにより得られた金属基材
MY169256A (en) 2012-08-29 2019-03-19 Ppg Ind Ohio Inc Zirconium pretreatment compositions containing lithium, associated methods for treating metal substrates, and related coated metal substrates
CA2883180C (en) 2012-08-29 2017-12-05 Ppg Industries Ohio, Inc. Zirconium pretreatment compositions containing molybdenum, associated methods for treating metal substrates, and related coated metal substrates
CN107735511B (zh) * 2015-04-07 2022-05-10 凯密特尔有限责任公司 无镍磷化金属表面的方法
DE102016206418A1 (de) * 2016-04-15 2017-10-19 Henkel Ag & Co. Kgaa Unterdrückung anlagenbedingter phosphatüberschleppung in einer prozessfolge zur tauchlackierung
DE102016206417A1 (de) * 2016-04-15 2017-10-19 Henkel Ag & Co. Kgaa Fördergestellbehandlung zur unterdrückung anlagenbedingter phosphatüberschleppung in einer prozessfolge zur tauchlackierung
EP3504356A1 (de) 2016-08-24 2019-07-03 PPG Industries Ohio, Inc. Alkalische zusammensetzung zur behandlung von metallsubstraten
CN106424673B (zh) * 2016-10-19 2018-10-26 云南驰宏资源综合利用有限公司 一种减缓铅锭表面氧化腐蚀的方法
CN108342723B (zh) * 2018-03-19 2020-02-07 常州市春雷浩宇环保科技有限公司 一种适用于锌系磷化液的无渣促进剂

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA950402A (en) 1970-01-06 1974-07-02 Amchem Products Process for applying a white paint electrophoretically
US3695942A (en) 1970-12-02 1972-10-03 Amchem Prod Zirconium rinse for phosphate coated metal surfaces
JPS535622B2 (de) 1973-02-12 1978-03-01
US3895970A (en) 1973-06-11 1975-07-22 Pennwalt Corp Sealing rinse for phosphate coatings of metal
JPS57152472A (en) 1981-03-16 1982-09-20 Nippon Paint Co Ltd Phosphating method for metallic surface for cation type electrodeposition painting
JPS5935681A (ja) 1982-08-24 1984-02-27 Nippon Paint Co Ltd カチオン型電着塗装用金属表面のリン酸塩処理方法
DE3400339A1 (de) 1984-01-07 1985-08-29 Gerhard Collardin GmbH, 5000 Köln Verfahren zur nachpassivierung von phosphatierten metalloberflaechen unter verwendung von nickel- und/oder kupfer-kationen enthaltenden loesungen
ATE99002T1 (de) 1985-08-27 1994-01-15 Nippon Paint Co Ltd Saure, waessrige phosphatueberzugsloesungen fuer ein verfahren zum phosphatbeschichten metallischer oberflaeche.
US4865653A (en) 1987-10-30 1989-09-12 Henkel Corporation Zinc phosphate coating process
CA1333683C (en) 1987-12-18 1994-12-27 Masahiro Jo Process for phosphating metal surfaces
SU1740028A1 (ru) 1988-02-25 1992-06-15 Предприятие П/Я А-7896 Способ управлени процессом выщелачивани полидисперсных материалов в вертикальном аппарате
DE3920296A1 (de) 1989-06-21 1991-01-10 Henkel Kgaa Verfahren zur herstellung von mangan- und magnesiumhaltigen zinkphosphatueberzuegen
DE3924984A1 (de) 1989-07-28 1991-01-31 Metallgesellschaft Ag Verfahren zur passivierenden nachspuelung von phosphatschichten
WO1992000087A1 (en) 1990-07-02 1992-01-09 National Jewish Center For Immunology And Respiratory Medicine Process for obtaining pure peptide transfer factor, transfer factor thus obtained and uses thereof
DE4041091A1 (de) 1990-12-21 1992-06-25 Metallgesellschaft Ag Verfahren zur nachspuelung von konversionsschichten
WO1995003648A1 (de) 1993-07-19 1995-02-02 Melcher Ag Ladungspumpe
DE4330002C1 (de) * 1993-09-04 1995-03-23 Herberts Gmbh Verfahren zur Lackierung von metallischen Substraten und Anwendung des Verfahrens
DE4330104A1 (de) 1993-09-06 1995-03-09 Henkel Kgaa Nickel- und Kupfer-freies Phosphatierverfahren
DE4341041A1 (de) 1993-12-02 1995-06-08 Henkel Kgaa Nickelfreies Phosphatierverfahren mit m-Nitrobenzolsulfonat
ATE162233T1 (de) 1993-09-06 1998-01-15 Henkel Kgaa Nickelfreies phosphatierverfahren
DE4434593A1 (de) * 1994-09-28 1996-04-04 Herberts Gmbh Verfahren zur Herstellung einer korrosionsschützenden, gut haftenden Lackierung und die dabei erhaltenen Werkstücke
DE19511573A1 (de) 1995-03-29 1996-10-02 Henkel Kgaa Verfahren zur Phosphatierung mit metallhaltiger Nachspülung
DE19634685A1 (de) 1996-08-28 1998-03-05 Metallgesellschaft Ag Wässrige Lösung und Verfahren zur Phosphatierung metallischer Oberflächen
DE19705701A1 (de) * 1997-02-14 1998-08-20 Henkel Kgaa Verfahren zur Niedrig-Nickel-Phosphatierung mit metallhaltiger Nachspülung
DE19733978A1 (de) 1997-08-06 1999-02-11 Henkel Kgaa Mit N-Oxiden beschleunigtes Phosphatierverfahren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0008231A1 *

Also Published As

Publication number Publication date
CA2339234A1 (en) 2000-02-17
JP2004500479A (ja) 2004-01-08
DE19834796A1 (de) 2000-02-03
SK1552001A3 (en) 2001-10-08
CZ2001409A3 (cs) 2001-08-15
US6447662B1 (en) 2002-09-10
CN1311827A (zh) 2001-09-05
KR20010072179A (ko) 2001-07-31
PL345590A1 (en) 2001-12-17
TR200100243T2 (tr) 2001-05-21
BR9912841A (pt) 2001-05-02
WO2000008231A1 (de) 2000-02-17
AU5371499A (en) 2000-02-28

Similar Documents

Publication Publication Date Title
EP0817872B1 (de) Verfahren zur phosphatierung mit metallhaltiger nachspülung
EP1114202A1 (de) Verfahren zur phosphatierung, nachspülung und kathodischer elektrotauchlackierung
EP0717787B1 (de) Nickelfreies phosphatierverfahren
WO2012000894A1 (de) Verfahren zur selektiven phosphatierung einer verbundmetallkonstruktion
DE19705701A1 (de) Verfahren zur Niedrig-Nickel-Phosphatierung mit metallhaltiger Nachspülung
EP0931179B1 (de) Verfahren zur phosphatierung von stahlband
EP0486576B1 (de) Verfahren zur herstellung von manganhaltigen zinkphosphatschichten auf verzinktem stahl
EP0889977B1 (de) Zinkphosphatierung mit geringen gehalten an kupfer und mangan
WO2001038605A2 (de) Verfahren zur phosphatierung mit metallhaltiger nachspülung
WO2001040546A1 (de) Verfahren zur phosphatierung, nachspülung und kathodischer elektrotauchlackierung
DE19606018A1 (de) Zinkphosphatierung mit geringen Gehalten an Nickel- und/oder Cobalt
DE4330104A1 (de) Nickel- und Kupfer-freies Phosphatierverfahren
EP1019564A1 (de) Verfahren zur phosphatierung von stahlband
WO1997014821A1 (de) Schichtgewichtssteuerung bei hydroxylamin-beschleunigten phosphatiersystemen
DE4341041A1 (de) Nickelfreies Phosphatierverfahren mit m-Nitrobenzolsulfonat
WO1999045171A1 (de) Schichtgewichtsteuerung bei bandphosphatierung
WO1997016581A2 (de) Nitratarme, manganfreie zinkphosphatierung
WO1996022406A1 (de) Lithiumhaltige zinkphosphatierlösung
WO2001016397A1 (de) Zinkphosphatierung mit epoxiden
DE19723350A1 (de) Nachspülung von Phosphatschichten mit rutheniumhaltigen Lösungen
WO1998009000A1 (de) Rutheniumhaltige zinkphosphatierung
WO1998048076A1 (de) Mit hydroxylamin und chlorat beschleunigtes phosphatierverfahren
DE19750301A1 (de) Mit N-Oxiden und Clorat beschleunigtes Phosphatierverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060228