EP0616034B1 - Plasmide pour la production de la protéine CRM et de la toxine de la diphthérie - Google Patents

Plasmide pour la production de la protéine CRM et de la toxine de la diphthérie Download PDF

Info

Publication number
EP0616034B1
EP0616034B1 EP94101770A EP94101770A EP0616034B1 EP 0616034 B1 EP0616034 B1 EP 0616034B1 EP 94101770 A EP94101770 A EP 94101770A EP 94101770 A EP94101770 A EP 94101770A EP 0616034 B1 EP0616034 B1 EP 0616034B1
Authority
EP
European Patent Office
Prior art keywords
plasmid
crm197
diphtheria toxin
protein
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94101770A
Other languages
German (de)
English (en)
Other versions
EP0616034A3 (en
EP0616034A2 (fr
Inventor
Benjamin J. Metcalf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth Holdings LLC
Original Assignee
Wyeth Holdings LLC
Wyeth LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wyeth Holdings LLC, Wyeth LLC filed Critical Wyeth Holdings LLC
Publication of EP0616034A2 publication Critical patent/EP0616034A2/fr
Publication of EP0616034A3 publication Critical patent/EP0616034A3/en
Application granted granted Critical
Publication of EP0616034B1 publication Critical patent/EP0616034B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)

Definitions

  • the present invention relates to a method of producing diphteria toxin or CRM protein that is cross reactive with diphteria toxin, a plasmid for expressing diphteria toxin or CRM protein that is cross reactive with diphteria toxin in a host, and a microorganism of the species Corynebacterium diphteria strain C7 that is transformed with such a plasmid.
  • the CRM197 protein is a nontoxic form of diphtheria toxin but is immunologically indistinguishable from the diphtheria toxin.
  • CRM197 is produced by C. diphtheriae infected by the nontoxigenic phage ⁇ 197 tox- created by nitrosoguanidine mutagenesis of the toxigenic corynephage ⁇ (Uchida, T. et al . 1971, Nature New Biology 233 :8-11).
  • the CRM197 protein has the same molecular weight as the diphtheria toxin but differs therefrom by a single base change (guanine to adenine) in the structural gene.
  • the CRM197 protein is a safe and effective T-cell dependent carrier for saccharides and is currently being used in the Haemophilus influenzae type b oligosacharide CRM197 conjugate vaccine (HibTiterTM; Lederle Kir Biologicals, Rochester, N.Y.).
  • the invention pertains to a novel method and plasmid system for manipulating and introducing the gene encoding for CRM197, diphtheria toxin and other CRM proteins derived from the diphtheria toxin gene, as well as, to microorganisms transformed by these means.
  • a particularly preferred DNA plasmid, designated pPX 3511, that combines the gene for CRM197 from the nontoxigenic betaphage and the plasmid pNG2-22 is described.
  • the novel plasmid system is capable of transforming strains of Corynebacterium diphtheriae into strains which are capable of expressing high levels of the CRM197 protein without the use of multiple lysogens.
  • the invention provides an elegant means for increasing protein expression of CRM197, diphtheria toxin, and other CRM proteins derived from the diphtheria toxin gene. Gene expression can also be manipulated by increasing the promoter strength or by removing the promoter from iron regulation.
  • the plasmid system can be used to express other proteins as genetic fusions with CRM197, diphtheria toxin or other CRM proteins derived from the diphtheria toxin gene.
  • the regulatory and processing sequence from CRM197, diphtheria toxin or other CRM proteins derived from the diphtheria gene can be used to express foreign proteins in Corynebacterium spp .
  • the invention pertains to a novel method and plasmid system for producing diphtheria toxin, CRM197 and other CRM proteins derived from the diphtheria toxin gene in quantities that are sufficient for use in vaccines or other use requiring adequate workable quantities of these proteins.
  • the plasmid system provides an efficient means for introducing and increasing the copy number of the diphtheria toxin gene or CRM gene in Corynbacterium spp .
  • the plasmid has its own independent episome with its own replication functions, thus enabling the plasmid to introduce extra copies of diphtheria toxin or CRM gene into host strains which are not capable of such integration or which have not been previously infected by phage ⁇ 197 tox- .
  • the levels of CRM197 protein produced by Corynebacterium spp . harboring the plasmid of this invention are comparable, if not better, than yields of CRM197 protein expressed by multiple lysogens of C. diphtheriae that have been infected with the corynephage ⁇ 197 tox- .
  • High level production plasmids of this invention comprise a gene encoding diphtheria toxin or CRM protein including its promoter and regulatory signal sequence; a Corynebacterium origin of replication such that the resultant plasmid can be introduced into Corynebacterium spp. ; and a selectable marker that is optionally linked to a multiple cloning site.
  • This plasmid is used to transform microorganisms of the species Corynebacterium , and particularly Corynebacterium diphtheriae , under conditions sufficient to facilitate expression of the diphtheria toxin or CRM gene. Suitable growth conditions are readily apparent to one skilled in the art depending upon the host organism. For instance, for optimal CRM197, diphtheria toxin or other CRM protein production from Corynebacterium spp ., it is necessary to maintain the microorganism in a low iron or deferated medium.
  • the plasmid contains a gene encoding the diphtheria toxin or CRM protein that is derived from the diphtheria toxin gene.
  • CRM proteins i.e., Cross-Reacting Materials that are immunologically cross reactive with the diphtheria toxin, that can be used in the plasmid constructs of this invention include but are not limited to CRM197, CRM45, CRM30, CRM228 and CRM176.
  • the gene encoding the CRM197 protein is derived from diphtheria toxin (DT), the sequence of which was reported by Greenfield et al . (Greenfield, L. et al ., 1983, Proc. Natl. Acad. Sci. USA , 80 : 6853-6857).
  • the difference between the DT gene and the CRM197 gene is a single base change in the structural gene.
  • the nucleotide sequences for some of the CRM genes have been reported by Uchida, T. et al . ( J. Biol. Chem. , 248 :3838-3844, 1975).
  • the entire CRM gene, including its regulatory signal sequence, can be produced by polymerase chain reaction (PCR).
  • PCR polymerase chain reaction
  • Other amplification techniques or synthetic techniques can be used to generate the CRM197 gene or other CRM genes.
  • the regulatory signal sequence on the gene encoding diphtheria toxin and CRM protein allows the protein to be secreted into the media.
  • the secreted protein can be recovered from the media and purified using known techniques, such as salt precipitation and column chromatography.
  • the multiple cloning site is preferably derived from pUC 18, but multiple cloning sites derived from other sources can be used, for example pBluescript or other synthetic multiple cloning site. Alternatively, the multiple cloning site can be eliminated all together without interfering with the operability of the plasmid. In either instance, a selectable marker is incorporated into the plasmid. Any antibiotic resistance marker can be used as the selectable marker, such as but not limited to ampicillin, erythromycin, chloramphenicol, kanamycin. Susceptability of the corynebacter to the antibiotic of choice is tested first. Chloramphenicol is preferred if the expressed proteins are intended for human use since chloramphenicol has been approved for such purpose by the Food and Drug Administration. Other methods of plasmid selection such as heavy metal resistance or nutritional requirement can be used as alternatives to antibiotic resistance markers.
  • Origins of replication useful in constructing high production plasmids of this invention are those derived from Corynebacterium spp .
  • the origin of replication chosen for pPX 3511 is derived from Corynebacterium diphtheriae . See Example Section. Other corynebacter origins of replication can be used.
  • high level expression of CRM197 protein is achieved using a novel recombinant DNA plasmid, designated pPX 3511, capable of transforming strains of C. diphtheriae C7 into strains which produce high levels of CRM197 protein.
  • Plasmid pPX 3511 shown in Fig. 1, contains the CRM197 gene derived from diphtheria toxin. (Greenfield, L. et al ., 1983, Proc. Natl. Acad. Sci. USA 80 :6853-6857). The remaining portion of the plasmid is derived from parent plasmid pNG2-22, into which the CRM197 gene is inserted.
  • Plasmid pPX 3511 is produced by first amplifying the CRM197 gene from C. diphtheriae by polymerase chain reaction (PCR). The CRM197 gene is then cloned into a C. diphtheriae plasmid containing a selectable marker, such as pNG2 (Schiller, J. et al ., 1980, Antimicrobial Agents and Chemotherapy 18 :814-821) and pNG2-22 (Serwold-Davis, T.M. et al ., 1990, FEM Microbiol. Lett . 66 :119-124). Both of these plasmids enjoy a broad host range and are capable of replicating in low copy number (5-10 copies/cell) in all coryneforms tested thus far.
  • a selectable marker such as pNG2 (Schiller, J. et al ., 1980, Antimicrobial Agents and Chemotherapy 18 :814-821)
  • pNG2-22 Serwold
  • Parent plasmid pNG2 is a naturally occurring C. diphtheriae plasmid that was originally isolated from erythromycin resistant clinical strains.
  • the origin of replication for pNG2 is contained on a 2.6kb EcoRI-ClaI fragment. This origin of replication has been used to create a chloramphenicol resistance vector designated, pNG2-22 (Serwold-Davis et al . Ibid .) and pCM 2.6 (Schmit, 1991, Infect . Immun . 59 :1899-1904).
  • Strain C. diphtheriae C7 is then transformed with the resultant pPX 3511 plasmid by electroporation, thus enabling the bacterium to produce CRM197 without the presence of phage ⁇ 197 tox- .
  • Other transformation techniques can be used such as known physical and chemical means (Serwold-Davis, et al ., Ibid .).
  • This technique of electrotransformation with pPX 3511 is also performed using C. diphtheriae C7 ( ⁇ 197) tox- single lysogen to increase the production level of CRM197 protein.
  • the levels of CRM197 protein expressed by the transformants are compared to expression levels from the single lysogen C. diphtheriae C7( ⁇ 197) tox- ATCC No.
  • the novel plasmid vector is modified to create a series of plasmid vectors with various capabilities.
  • site directed mutagenesis can be used to repair the single base change in CRM197, so that the new plasmid would express diphtheria toxin.
  • Other changes can be made to the cloned CRM197 gene sequence to express other known diphtheria toxin CRM proteins, such as CRM45, CRM30, CRM228 and CRM176 (Uchida, T. et al . 1973, J. Biol. Chem . 248 :3838-3844).
  • diphtheria toxin regulatory or processing sequences of CRM197 or other similarly cloned diphtheria toxin or CRM genes can be used to further increase the production of these proteins.
  • the tox promoter region can be modified to free the promoter from iron regulation.
  • the plasmid vector system can be modified to introduce restriction enzyme cloning sites into the amino terminus of the CRM197 gene or similarly cloned diphtheria toxin or CRM gene. Cloning the DNA sequences from other proteins into the cloning sites would then permit the plasmid vector to co-express other recombinant proteins or antigens as amino terminal fusions with the CRM197 protein or similarly cloned diphtheria toxin or CRM protein, all under the direction of the tox promoter and signal sequence.
  • cloning sites can be inserted into the carboxy terminal portion of the CRM197, diphtheria toxin or similarly cloned CRM to express other proteins as carboxy terminal fusions. Due to the presence of the CRM197 regulatory signal sequence, the resultant fusion protein would be secreted into the culture media. Alternatively, only the regulatory signal sequence of CRM197 need be used as a means for expressing secreted forms of other proteins into culture medium.
  • Suitable proteins and antigens useful in the production plasmid of the invention include particulate antigens, such as those derived from bacteria, viruses, parasites or fungi and microcomponents of cells and soluble antigens, such as proteins, peptides, hormones and glycoproteins.
  • Antigens of particular interest are viral, fungal, parasite or bacterial antigens, allergens, autoimmunity related antigens, or tumor-associated antigens.
  • the antigens can be obtained from natural sources or they can be produced by recombinant DNA technology or by other artificial means.
  • bacterial antigens of interest are those associated with the human bacterial pathogens including, but not limited to for example, typable and nontypable Haemophilus influenzae, Escherichia coli , Neisseria meningitidis , Streptococcus pneumoniae , Streptococcus pyogenes, Branhamella catarrhalis, Vibrio cholerae, Neisseria gonorrhoeae, Bordetella pertussis, Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae and Clostridium tetani .
  • Some specific bacterial antigens include bacterial surface and outer membrane proteins (e.g., from Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae or Branhamella catarrhalis ) and bacterial surface proteins (e.g., the M protein from Streptococcus pyogenes or the 37 kilodalton surface protein from Streptococcus pneumoniae ).
  • bacterial surface and outer membrane proteins e.g., from Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae or Branhamella catarrhalis
  • bacterial surface proteins e.g., the M protein from Streptococcus pyogenes or the 37 kilodalton surface protein from Streptococcus pneumoniae .
  • Viral antigens from pathogenic viruses include but are not limited to, human immunodeficiency virus (types I and II), human T-cell leukemia virus (types I, II and III), respiratory syncytial virus, hepatitis A, hepatitis B, hepatitis C, non-A and non-B hepatitis virus, herpes simplex virus (types I and II), cytomegalovirus, influenza virus, parainfluenza virus, poliovirus, rotavirus, coronavirus, rubella virus, measles virus, varicella, Epstein Barr virus, adenovirus, papilloma virus and yellow fever virus.
  • human immunodeficiency virus types I and II
  • human T-cell leukemia virus types I, II and III
  • respiratory syncytial virus hepatitis A, hepatitis B, hepatitis C, non-A and non-B hepatitis virus
  • herpes simplex virus
  • Several specific viral antigens of these pathogenic viruses include the F protein (especially antigens containing the F peptide 283-315, described in WO89/02935 entitled "Respiratory Syncytial Virus: Vaccines and Diagnostic Assays" by Paradiso, P. et al .) and the N and G proteins of respiratory syncytial virus (RSV), VP4 (previously known as VP3), VP6 and VP7 polypeptides of rotavirus, envelope glycoproteins of human immunodeficiency virus, the surface and the presurface antigens of hepatitis B and herpes glycoproteins B and D.
  • F protein especially antigens containing the F peptide 283-315, described in WO89/02935 entitled "Respiratory Syncytial Virus: Vaccines and Diagnostic Assays" by Paradiso, P. et al .
  • RSV respiratory syncytial virus
  • VP4 previously known as
  • Fungal antigens can be those derived from fungi including but are not limited to Candida spp . (especially albicans ), Cryptococcus spp . (especially neoformans ), Blastomyces spp. (e.g., dermatitidis ), Histoplasma spp. (especially capsulatum ), Coccidroides spp. (especially immitis ), Paracoccidroides spp. (especially brasiliensis ) and Aspergillus spp .
  • Examples of parasite antigens include but are not limited to Plasmodium spp ., Eimeria spp ., Schistosoma spp ., Trypanosoma spp ., Babesia spp ., Leishmania spp ., Cryptosporidia spp., Toxoplasma spp. and Pneumocystis spp .
  • E. coli DH5 ⁇ (BRL, Gaithersburg, MD) is used for all cloning procedures. Strains of nontoxigenic, nonlysogenic C. diphtheriae C7(-) tox- nontoxigenic, single lysogen C. diphtheriae C7( ⁇ 197) tox- ATCC No. 5328 are used as both plasmid hosts and controls in CRM197 protein expression studies. The nontoxigenic, double lysogen C. diphtheriae C7( ⁇ 197) tox- ATCC No. 39255 is used as a control in CRM197 protein expression experiments.
  • E. coli DH5 ⁇ is routinely grown on super optimal broth (SOB) agar medium and in SOB liquid at 37°C (Sambrook, J. et al ., 1989, Molecular Cloning: A Laboratory Manual , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY).
  • C. diphtheriae C7 strains are routinely cultured on SOC agar (Sambrook, J. et al ., Ibid .) and liquid.
  • ET osmotic agar medium (Best, G.R. and M.L. Britz, 1986, Appl. Microbiol. Biotech. , 23 :288-293) is used when plating electroporated cells.
  • Deferated CY medium (Rappuoli, R.
  • Chloramphenicol is added at 34 ⁇ g/ml for E. coli DH5 ⁇ and 2 ⁇ g/ml for C. diphtheriae C7 strains containing plasmid pPX 3511.
  • the CRM197 gene is cloned by PCR (polymerase chain reaction) amplification of the gene sequence from C. diphtheriae C7 ( ⁇ 197) tox- single lysogen DNA using oligonucleotide primers based on the published sequence of diphtheria toxin (Greenfield, L. et al ., 1983, Proc. Natl. Acad. Sci. USA 80 :6853-6857).
  • the primers are designed so that one primer would create a SalI/HincII restriction site at the beginning of the functional gene and the other would make a XbaI site after the gene stop codon of the structural gene.
  • These or similar primers are used to amplify and clone the CRM197 gene, the diphtheria toxin gene or any CRM gene similar to the diphtheria toxin gene encoded by the corynephage ⁇ .
  • the CRM197 PCR products are digested with HincII and XbaI and ligated into SmaI/Xbal digested pNG2-22, a broad host range chloramphenicol resistance vector with the ability to replicate in both Escherichia coli and Corynebacterium spp.
  • the ligation is used to transform E. coli DH5 ⁇ and recombinant colonies are screened by restriction analysis for the presence of the CRM197 gene.
  • One isolate, pPX 3511 is sequenced using overlapping primers to check for any changes to the CRM197 gene.
  • the oligonucleotide primers used in PCR and sequencing are synthesized on an Applied Biosystems 380B DNA synthesizer.
  • PCR is performed with a Perkin-Elmer Cetus DNA Thermal Cycler. Sequencing is performed using an Applied Biosystems Sequencer 373A. The resulting plasmid (pPX 3511) is transferred by electroporation into the nontoxigenic, non-lysogenic strain C. diphtheriae C7(-) tox- and the nontoxigenic strain C. diphtheriae C7 ( ⁇ 197 ) tox- , ATCC No. 5328.
  • C. diphtheriae C7 is transformed with plasmid pPX 3511 DNA by electroporation using a protocol developed for the transformation of Corynebacterium glutamicum and Brevibacterium lactofermentum (Hayes, J.A. and M.L. Britz, 1989, FEMS Microbiol. Lett . 61 :329-334), except that SOC medium supplemented with 0.2% Tween-80 is used.
  • a BTX Transfector 100 with Power Plus and Optimizor Graphic Pulse Analyzer and 1mm gap cuvettes are used for electroporation.
  • the presence of plasmid pPX 3511 in the transformed C. diphtheriae C7 strains is checked by plasmid rescue and restriction analysis.
  • Comparison of CRM197 production is made by growing strains of C. diphtheriae C7 under similar conditions and comparing the amount of CRM197 in the culture supernatant.
  • Strains containing pPX 3511 are grown both with and without antibiotic selection (2 ⁇ g/ml chloramphenicol). After incubation, the cultures are then centrifuged to remove the cells and 20 ⁇ l of the culture supernatants are run on a 12% SDS-PAGE gel.
  • the gel is coomassie stained and quantitative comparison is made using a Bio-Rad Model 1650 Transmittance/Reflectance Scanning Densitometer with a Hoefer Scientific GS 370 Analysis Package.
  • a comparison of the antigenic properties of the recombinant CRM197 protein and the lysogenic ⁇ 197 tox- CRM197 protein is made by immunoblotting the gel and probing with monoclonal antibodies to CRM197.
  • CRM197 produced by pPX 3511 is antigenically identical to CRM197 produced by lysogenic strains.
  • the stability of plasmid pPX 3511 is studied by using the maintenance of chloramphenicol resistance as an indicator of plasmid retention without antibiotic selection.
  • Cultures of C. diphtheriae C7 ( ⁇ 197) tox- pPX 3511 are grown in SOC broth supplemented with 0.1% Tween-80 to prevent cell clumping for 18 hours (14-17 generations) at 37°C.
  • the cultures are then plated on SOC agar for colony counts and diluted 1/10 for the next generation.
  • the SOC agar plates are replica-plated onto SOC agar 2 ⁇ g/mL chloramphenicol and the percent of colonies maintaining chloramphenicol resistance is calculated. This process is repeated out to 60 generations.
  • diphtheriae C7 strains expressed as times greater than the single lysogen ( ⁇ 197) tox- Times greater than Single lysogen ( ⁇ 197) tox- Double lysogen ( ⁇ 197) tox- 2.2 pPX 3511(-) tox- no, Cm2 2.8 pPX 3511(-) tox- , Cm2 1.9 pPX 3511 ( ⁇ 197) tox- no, Cm2 2.0 pPX 3511 ( ⁇ 197) tox- , Cm2 2.4
  • Plasmid pPX 3511 was deposited under the terms of the Budapest Treaty with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Maryland 20852 on February 12, 1993 and has been assigned ATCC Accession Number 75415. All restrictions upon the availability to the public of the deposited material will be irrevocably removed upon granting of a patent on this application. The deposit will be maintained in a public depository for a period of at least 30 years from the date of deposit or for the enforceable life of the patent or for the period of five years after the date of the most recent request for the furnishing of a sample of the biological material, whichever is longer. The deposit will be replaced if it should become nonviable or nonreplicable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Claims (8)

  1. Procédé de production de toxine diphtérique ou de protéine CRM qui réagit en réaction croisée avec la toxine diphtérique, ledit procédé comprenant : la transformation d'un micro-organisme de l'espèce Corynebacterium diphteria souche C7 avec un plasmide contenant a) un gène codant une toxine diphtérique ou une protéine CRM ; b) une origine de réplication de Corynebacterium ; et c) un marqueur sélectionnable, et l'expression de ladite toxine ou protéine dans des conditions suffisantes pour l'expression du gène par le micro-organisme.
  2. Procédé selon la revendication 1, dans lequel le procédé de transformation est mis en oeuvre par électroporation.
  3. Procédé selon la revendication 1, dans lequel le gène de CRM est choisi dans l'ensemble consistant en CRM197, CRM45, CRM30, CRM228 et CRM176.
  4. Procédé selon la revendication 1, dans lequel l'origine de réplication est dérivée du plasmide pNG2 de Corynebacterium.
  5. Plasmide pour l'expression de toxine diphtérique ou de protéine CRM qui réagit en réaction croisée avec la toxine diphtérique chez un hôte, comprenant :
    a) un gène codant une toxine diphtérique ou une protéine CRM ;
    b) une origine de réplication de Corynebacterium ; et
    c) un marqueur sélectionnable éventuellement lié à un site de clonage multiple.
  6. Plasmide de la revendication 5, dans lequel le gène codant la protéine est lié de façon opérationnelle à une séquence nucléotidique codant une ou plusieurs protéines, peptides ou épitopes de ceux-ci.
  7. Plasmide pPX 3511, No. d'accès ATCC No. 75415.
  8. Micro-organisme de l'espèce Corynebacterium diphteria souche C7 qui est transformé par le plasmide selon la revendication 5.
EP94101770A 1993-03-05 1994-02-07 Plasmide pour la production de la protéine CRM et de la toxine de la diphthérie Expired - Lifetime EP0616034B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US2728393A 1993-03-05 1993-03-05
US27283 1993-03-05

Publications (3)

Publication Number Publication Date
EP0616034A2 EP0616034A2 (fr) 1994-09-21
EP0616034A3 EP0616034A3 (en) 1996-10-16
EP0616034B1 true EP0616034B1 (fr) 2004-10-20

Family

ID=21836767

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94101770A Expired - Lifetime EP0616034B1 (fr) 1993-03-05 1994-02-07 Plasmide pour la production de la protéine CRM et de la toxine de la diphthérie

Country Status (21)

Country Link
US (1) US5614382A (fr)
EP (1) EP0616034B1 (fr)
JP (1) JP4144813B2 (fr)
KR (1) KR100316004B1 (fr)
CN (1) CN1100757A (fr)
AT (1) ATE280235T1 (fr)
AU (1) AU686126B2 (fr)
BR (1) BR1100634A (fr)
CA (1) CA2116914C (fr)
CZ (1) CZ39394A3 (fr)
DE (1) DE69434079T2 (fr)
DK (1) DK0616034T3 (fr)
ES (1) ES2231770T3 (fr)
FI (1) FI112090B (fr)
HU (1) HUT71320A (fr)
IL (1) IL108822A (fr)
NO (1) NO313758B1 (fr)
NZ (1) NZ260027A (fr)
PT (1) PT616034E (fr)
SK (1) SK24094A3 (fr)
ZA (1) ZA941548B (fr)

Families Citing this family (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0830146B1 (fr) * 1995-04-14 2010-03-10 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES Techniques de declenchement d'une tolerance immunitaire a l'aide d'immunotoxine
US7517527B2 (en) 1995-10-30 2009-04-14 The United States Of America As Represented By The Department Of Health And Human Services Immunotoxin with in vivo T cell suppressant activity and methods of use
US7288254B2 (en) 1995-10-30 2007-10-30 The United States Of America As Represented By The Secretary, Department Of Health And Human Services, Nih Use of immunotoxins to induce immune tolerance to pancreatic islet transplantation
US7696338B2 (en) 1995-10-30 2010-04-13 The United States Of America As Represented By The Department Of Health And Human Services Immunotoxin fusion proteins and means for expression thereof
US7125553B1 (en) 1996-04-15 2006-10-24 The United States of America as represented by the Department of Health and Human Services c/o Centers for Disease Control and Prevention Methods of inducing immune tolerance using immunotoxins
CA2283497A1 (fr) * 1997-03-05 1998-09-11 David M. Neville Nouveaux vecteurs et procedes d'expression utiles pour produire des proteines mutantes
ATE433998T1 (de) 1997-03-05 2009-07-15 Us Health Divalent anti-t-zellen immuntoxinen und deren verwendung
US6676943B1 (en) * 1997-04-24 2004-01-13 Regents Of The University Of Minnesota Human complement C3-degrading protein from Streptococcus pneumoniae
CN1086945C (zh) * 1997-06-03 2002-07-03 胡章英 白喉口服液
GB9923060D0 (en) * 1999-09-29 1999-12-01 Chiron Spa Vaccine
MX339524B (es) 2001-10-11 2016-05-30 Wyeth Corp Composiciones inmunogenicas novedosas para la prevencion y tratamiento de enfermedad meningococica.
GB0211118D0 (en) * 2002-05-15 2002-06-26 Polonelli Luciano Vaccines
AU2003257003A1 (en) * 2002-07-30 2004-02-16 Baxter Healthcare S.A. Chimeric multivalent polysaccharide conjugate vaccines
US7785608B2 (en) * 2002-08-30 2010-08-31 Wyeth Holdings Corporation Immunogenic compositions for the prevention and treatment of meningococcal disease
US7301554B2 (en) * 2002-09-20 2007-11-27 Ricoh Company, Ltd. Light scanning device, scanning line adjusting method, scanning line adjusting control method, image forming apparatus, and image forming method
MY144231A (en) 2003-12-17 2011-08-15 Wyeth Corp Aß IMMUNOGENIC PEPTIDE CARRIER CONJUGATES AND METHODS OF PRODUCING SAME
SG182163A1 (en) 2003-12-17 2012-07-30 Wyeth Corp Immunogenic peptide carrier conjugates and methods of producing same
GB0505996D0 (en) 2005-03-23 2005-04-27 Glaxosmithkline Biolog Sa Fermentation process
IL308456A (en) 2005-04-08 2024-01-01 Wyeth Llc A multivalent pneumomuroral protein-polysaccharide conjugate preparation
US7709001B2 (en) 2005-04-08 2010-05-04 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
TW200806315A (en) 2006-04-26 2008-02-01 Wyeth Corp Novel formulations which stabilize and inhibit precipitation of immunogenic compositions
US8808707B1 (en) 2006-05-08 2014-08-19 Wyeth Llc Pneumococcal dosing regimen
CN101460180B (zh) * 2006-05-31 2012-06-27 西尔维奥·布齐 与白喉毒素免疫相关的蛋白质分子的药物应用
AR064642A1 (es) 2006-12-22 2009-04-15 Wyeth Corp Polinucleotido vector que lo comprende celula recombinante que comprende el vector polipeptido , anticuerpo , composicion que comprende el polinucleotido , vector , celula recombinante polipeptido o anticuerpo , uso de la composicion y metodo para preparar la composicion misma y preparar una composi
CN101265288B (zh) * 2007-03-13 2012-03-21 齐鲁制药有限公司 Crm197突变体的纯化方法
CN102413838A (zh) 2009-04-30 2012-04-11 科勒制药集团有限公司 肺炎球菌疫苗及其用途
JP5395264B2 (ja) 2009-06-22 2014-01-22 ワイス・エルエルシー 黄色ブドウ球菌(staphylococcusaureus)抗原の免疫原性組成物
EP3461496B1 (fr) 2009-06-22 2023-08-23 Wyeth LLC Compositions et procédés d'élaboration de compositions immunogènes conjuguées à polysaccharides capsulaires de sérotypes 5 et 8 de staphylococcus aureus
IT1398927B1 (it) 2009-06-25 2013-03-28 Consorzio Interuniversitario Per Lo Sviluppo Dei Sistemi A Grande Interfase Csgi Espressione batterica di un gene artificiale per la produzione di crm197 e derivati.
AU2010201410B2 (en) * 2010-03-30 2015-04-30 Pelican Technology Holdings, Inc. High level expression of recombinant CRM197
WO2011126811A2 (fr) 2010-03-30 2011-10-13 Pfenex Inc. Expression de protéines de toxines recombinantes en forte quantité
EP3170508B1 (fr) 2010-06-04 2019-11-13 Wyeth LLC Formulations vaccinales
CA2800774A1 (fr) 2010-06-07 2011-12-15 Pfizer Vaccines Llc Vaccin peptidique ige ch3
AU2011294776B2 (en) 2010-08-23 2016-02-04 Wyeth Llc Stable formulations of Neisseria meningitidis rLP2086 antigens
CA2809758C (fr) 2010-09-10 2021-07-13 Wyeth Llc Variants non-lipidiques des antigenes orf 2086 de neisseria meningitidis
CN105693865B (zh) 2011-06-01 2020-07-17 厦门大学 包含白喉毒素无毒突变体crm197或其片段的融合蛋白
SA115360586B1 (ar) 2012-03-09 2017-04-12 فايزر انك تركيبات لعلاج الالتهاب السحائي البكتيري وطرق لتحضيرها
EP4043029A1 (fr) 2012-03-09 2022-08-17 Pfizer Inc. Compositions de neisseria meningitidis et procédés associés
US9169304B2 (en) 2012-05-01 2015-10-27 Pfenex Inc. Process for purifying recombinant Plasmodium falciparum circumsporozoite protein
KR102057217B1 (ko) 2012-06-20 2020-01-22 에스케이바이오사이언스 주식회사 다가 폐렴구균 다당류-단백질 접합체 조성물
CA2879272A1 (fr) 2012-07-16 2014-01-23 Robert G.K. DONALD Saccharides et leurs utilisations
CN102766647A (zh) * 2012-07-25 2012-11-07 天津康希诺生物技术有限公司 在白喉杆菌中稳定复制的表达载体及含该载体的白喉杆菌
MX363511B (es) 2012-08-16 2019-03-26 Pfizer Proceso de glucoconjugación y composiciones.
KR20150073943A (ko) 2012-10-03 2015-07-01 글락소스미스클라인 바이오로지칼즈 에스.에이. 면역원성 조성물
KR20140075196A (ko) 2012-12-11 2014-06-19 에스케이케미칼주식회사 다가 폐렴구균 다당류-단백질 접합체 조성물
KR20140075201A (ko) 2012-12-11 2014-06-19 에스케이케미칼주식회사 다가 폐렴구균 다당류-단백질 접합체 조성물
PT2935299T (pt) 2012-12-20 2019-11-19 Pfizer Processo de glicoconjugação
AU2014203977B2 (en) 2013-01-04 2016-11-17 Obi Pharma, Inc. Vaccines with higher carbohydrate antigen density and novel saponin adjuvant
ES2685894T3 (es) 2013-03-08 2018-10-15 Pfizer Inc. Polipéptidos de fusión inmunogénicos
US9707153B2 (en) 2013-04-24 2017-07-18 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
CN104140972B (zh) * 2013-05-07 2018-01-23 上海惠盾生物技术有限公司 白喉毒素突变体crm197的制备方法
EP3038979B1 (fr) 2013-08-26 2019-04-17 Corning Incorporated Procédé de recuisson localisée d'un verre renforcé
MX369534B (es) 2013-09-08 2019-11-11 Pfizer Composiciones de neisseria meningitidis y sus metodos.
US11708411B2 (en) 2013-12-20 2023-07-25 Wake Forest University Health Sciences Methods and compositions for increasing protective antibody levels induced by pneumococcal polysaccharide vaccines
PL3583947T3 (pl) 2014-01-21 2024-04-02 Pfizer Inc. Polisacharydy otoczkowe streptococcus pneumoniae i ich koniugaty
KR102157200B1 (ko) 2014-01-21 2020-09-21 화이자 인코포레이티드 접합된 캡슐 사카라이드 항원을 포함하는 면역원성 조성물 및 그의 용도
AU2015208820B2 (en) 2014-01-21 2020-05-14 Pfizer Inc. Streptococcus pneumoniae capsular polysaccharides and conjugates thereof
US11160855B2 (en) 2014-01-21 2021-11-02 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
JP2017510290A (ja) 2014-01-31 2017-04-13 フィナ バイオソリューションズ リミテッド ライアビリティ カンパニー Crm197および関連タンパク質の発現および精製
EP3104886B1 (fr) 2014-02-14 2018-10-17 Pfizer Inc Conjugués immunogènes de glycoprotéine
US9815886B2 (en) 2014-10-28 2017-11-14 Adma Biologics, Inc. Compositions and methods for the treatment of immunodeficiency
US10280409B2 (en) 2014-11-20 2019-05-07 Biological E Limited Codon optimized polynucleotide for high level expression of CRM197
PL3244917T3 (pl) 2015-01-15 2023-07-17 Pfizer Inc. Kompozycje immunogenne do zastosowania w szczepionkach przeciwko pneumokokom
RU2723045C2 (ru) 2015-02-19 2020-06-08 Пфайзер Инк. Композиции neisseria meningitidis и способы их получения
MY182282A (en) 2015-05-04 2021-01-18 Pfizer Group b streptococcus polysaccharide-protein conjugates, methods for producing conjugates, immunogenic compositions comprising conjugates, and uses thereof
RS61440B1 (sr) 2015-06-23 2021-03-31 Biological E Ltd Multivalentna pneumokokna konjugatna vakcina
KR102225282B1 (ko) 2015-07-21 2021-03-10 화이자 인코포레이티드 접합된 캡슐형 사카라이드 항원을 포함하는 면역원성 조성물, 그를 포함하는 키트 및 그의 용도
CA3005524C (fr) 2015-11-20 2023-10-10 Pfizer Inc. Compositions immunogenes destinees a etre utilisees dans des vaccins pneumococciques
US11203626B2 (en) 2016-03-10 2021-12-21 The Johns Hopkins University Methods of producing aggregate-free monomeric diphtheria toxin fusion proteins and therapeutic uses
US11965009B2 (en) 2016-03-10 2024-04-23 The Johns Hopkins University Methods of producing aggregate-free monomeric diphtheria toxin fusion proteins and therapeutic uses
CN118599011A (zh) 2016-03-10 2024-09-06 约翰·霍普金斯大学 产生不含聚集物的单体白喉毒素融合蛋白的方法和治疗用途
EP3269385A1 (fr) 2016-07-12 2018-01-17 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Composition de conjugués de polysaccharide-protéine pneumococcique
WO2017220753A1 (fr) 2016-06-22 2017-12-28 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Composition de conjugué polysaccharide pneumococcique-protéine
CA3031797A1 (fr) 2016-08-05 2018-02-08 Sanofi Pasteur, Inc. Composition d'un conjugue polysaccharide-proteine pneumococcique multivalent
TWI789357B (zh) 2016-08-05 2023-01-11 南韓商Sk生物科技股份有限公司 多價肺炎球菌多醣-蛋白質共軛物組成物(二)
BR112019006278A2 (pt) 2016-09-30 2019-07-02 Biological E Ltd composições de vacina pneumocócica multivalente que compreendem conjugados de polissacarídeo-proteína
US10751402B2 (en) 2016-11-09 2020-08-25 Pfizer Inc. Immunogenic compositions and uses thereof
US11951165B2 (en) 2016-12-30 2024-04-09 Vaxcyte, Inc. Conjugated vaccine carrier proteins
CN118662649A (zh) 2016-12-30 2024-09-20 Vaxcyte公司 具有非天然氨基酸的多肽-抗原缀合物
KR102459629B1 (ko) 2017-01-20 2022-10-28 화이자 인코포레이티드 폐렴구균 백신에 사용하기 위한 면역원성 조성물
MX2019009011A (es) 2017-01-31 2019-09-26 Pfizer Composiciones de neisseria meningitidis y metodos respectivos.
WO2018144438A1 (fr) 2017-01-31 2018-08-09 Merck Sharp & Dohme Corp. Procédés de production de conjugués protéine-polysaccharide capsulaire à partir du sérotype 19f de streptococcus pneumoniae
KR101908590B1 (ko) 2017-02-01 2018-10-16 (주)포바이오코리아 Crm197의 용해성 단백질 발현 및 정제 방법
CA3052621A1 (fr) 2017-02-03 2018-08-09 Schadeck, Eva Barbara Compositions de conjugue saccharide d'haemophilus influenzae-excipient et leurs utilisations
US10259865B2 (en) 2017-03-15 2019-04-16 Adma Biologics, Inc. Anti-pneumococcal hyperimmune globulin for the treatment and prevention of pneumococcal infection
UA127497C2 (uk) * 2017-04-22 2023-09-13 Байолоджикал Е Лімітед СПОСІБ ВЕЛИКОМАСШТАБНОГО ВИРОБНИЦТВА CRM<sub>197</sub>
KR20200051004A (ko) 2017-09-07 2020-05-12 머크 샤프 앤드 돔 코포레이션 폐렴구균 폴리사카라이드 및 면역원성 폴리사카라이드-담체 단백질 접합체에서의 그의 용도
CN111683678B (zh) 2017-12-06 2024-01-26 默沙东有限责任公司 包含肺炎链球菌多糖蛋白缀合物的组合物及其使用方法
KR102475419B1 (ko) * 2018-07-16 2022-12-07 주식회사 유바이오로직스 Crm197을 고농도로 발현하는 코리네박테리움 균주
US11260119B2 (en) 2018-08-24 2022-03-01 Pfizer Inc. Escherichia coli compositions and methods thereof
MX2021003358A (es) 2018-09-23 2021-05-27 Biological E Ltd Polisacaridos capsulares purificados de streptococcus pneumoniae.
CN109100517A (zh) * 2018-10-08 2018-12-28 武汉生命科技股份有限公司 一种用于检测白喉抗体的抗原蛋白、试剂盒及制备方法
CA3120922A1 (fr) 2018-12-12 2020-06-18 Pfizer Inc. Conjugues polysaccharide-proteine immunogenes a heteroantigenes multiples et leurs utilisations
SG11202106541WA (en) 2018-12-19 2021-07-29 Merck Sharp & Dohme Compositions comprising streptococcus pneumoniae polysaccharide-protein conjugates and methods of use thereof
JP7239509B6 (ja) 2019-02-22 2023-03-28 ファイザー・インク 細菌多糖類を精製するための方法
US20220184199A1 (en) 2019-04-10 2022-06-16 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens, kits comprising the same and uses thereof
EP4003410A1 (fr) 2019-07-31 2022-06-01 Sanofi Pasteur, Inc. Compositions de conjugués de polysaccharide-protéine pneumococcique multivalents leurs méthodes d'utilisation
EP4051696A1 (fr) 2019-11-01 2022-09-07 Pfizer Inc. Compositions d'escherichia coli et méthodes associées
JP2021132644A (ja) 2020-02-21 2021-09-13 ファイザー・インク 糖の精製
CA3173729A1 (fr) 2020-02-23 2021-08-26 Pfizer Inc. Compositions d'escherichia coli et methodes associees
EP3900739A1 (fr) 2020-04-21 2021-10-27 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Conjugués saccharides synthétiques de streptococcus pneumoniae à une protéine de membrane conservée
EP3919076A1 (fr) 2020-06-02 2021-12-08 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Vaccins synthétiques d'oligosaccharide contre le streptococcus pneumoniae avec des formulations d'adjuvant de microparticules
WO2022043855A1 (fr) 2020-08-26 2022-03-03 Pfizer Inc. Conjugués polysaccharide-protéine de streptococcus du groupe b, procédés de production de conjugués, compositions immunogènes comprenant les conjugués et leurs utilisations
AU2021342797B2 (en) 2020-09-17 2024-02-08 Janssen Pharmaceuticals, Inc. Multivalent vaccine compositions and uses thereof
CA3199094A1 (fr) 2020-10-22 2022-04-28 Pfizer Inc. Procedes de purification de polysaccharides bacteriens
PE20231934A1 (es) 2020-10-27 2023-12-01 Pfizer Composiciones de escherichia coli y metodos de las mismas
CN116744965A (zh) 2020-11-04 2023-09-12 辉瑞大药厂 用于肺炎球菌疫苗的免疫原性组合物
EP4243863A2 (fr) 2020-11-10 2023-09-20 Pfizer Inc. Compositions immunogènes comprenant des antigènes saccharidiques capsulaires conjugués et leurs utilisations
US20220202923A1 (en) 2020-12-23 2022-06-30 Pfizer Inc. E. coli fimh mutants and uses thereof
KR20220102871A (ko) 2021-01-14 2022-07-21 (주)셀트리온 다가 폐렴구균 다당류-단백질 접합체를 포함하는 면역원성 조성물
TW202245835A (zh) 2021-02-04 2022-12-01 美商默沙東有限責任公司 用於肺炎球菌結合物疫苗之奈米乳化液佐劑組合物
WO2022234416A1 (fr) 2021-05-03 2022-11-10 Pfizer Inc. Vaccination contre des infections à pneumocoque et à covid-19
EP4333879A1 (fr) 2021-05-03 2024-03-13 Pfizer Inc. Vaccination contre des infections bactériennes et à betacoronavirus
MX2023013434A (es) 2021-05-28 2023-12-12 Pfizer Composiciones inmunogenas que comprenden antigenos de sacarido capsular conjugados y sus usos.
EP4346893A2 (fr) 2021-05-28 2024-04-10 Pfizer Inc. Compositions immunogènes comprenant des antigènes saccharidiques capsulaires conjugués et leurs utilisations
CN118510548A (zh) 2022-01-13 2024-08-16 辉瑞公司 包含缀合的荚膜糖抗原的免疫原性组合物及其用途
WO2023161817A1 (fr) 2022-02-25 2023-08-31 Pfizer Inc. Procédés d'incorporation de groupes azido dans des polysaccharides capsulaires bactériens
WO2023218322A1 (fr) 2022-05-11 2023-11-16 Pfizer Inc. Procédé de production de formulations de vaccin avec des conservateurs
WO2024084397A1 (fr) 2022-10-19 2024-04-25 Pfizer Inc. Vaccination contre infections à pneumocoques et à covid-19
WO2024089001A1 (fr) 2022-10-24 2024-05-02 Idorsia Pharmaceuticals Ltd Vaccin contre klebsiella pneumoniae
WO2024110827A1 (fr) 2022-11-21 2024-05-30 Pfizer Inc. Procédés de préparation d'antigènes saccharidiques capsulaires conjugués et leurs utilisations
WO2024110839A2 (fr) 2022-11-22 2024-05-30 Pfizer Inc. Compositions immunogènes comprenant des antigènes saccharidiques capsulaires conjugués et leurs utilisations
WO2024116096A1 (fr) 2022-12-01 2024-06-06 Pfizer Inc. Formulations de vaccin pneumococcique conjugué
WO2024121280A1 (fr) 2022-12-08 2024-06-13 Idorsia Pharmaceuticals Ltd Vaccin contre klebsiella pneumoniae
WO2024166008A1 (fr) 2023-02-10 2024-08-15 Pfizer Inc. Compositions immunogènes comprenant des antigènes saccharidiques capsulaires conjugués et leurs utilisations
WO2024201324A2 (fr) 2023-03-30 2024-10-03 Pfizer Inc. Compositions immunogènes comprenant des antigènes saccharidiques capsulaires conjugués et utilisations associées

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH660375A5 (it) * 1983-02-08 1987-04-15 Sclavo Spa Procedimento per la produzione di proteine correlate alla tossina difterica.
FR2549855B1 (fr) * 1983-07-29 1987-03-27 Grp Genie Genetique Sequence nucleotidique codant pour le peptide signal de la toxine diphterique, vecteur contenant cette sequence nucleotidique, leur application a la transformation de micro-organismes et compositions peptidiques obtenues

Also Published As

Publication number Publication date
FI941050A (fi) 1994-09-06
BR1100634A (pt) 1999-12-07
KR940021731A (ko) 1994-10-19
KR100316004B1 (ko) 2002-02-19
PT616034E (pt) 2005-02-28
JPH06292593A (ja) 1994-10-21
FI941050A0 (fi) 1994-03-04
IL108822A (en) 2004-09-27
SK24094A3 (en) 1995-03-08
JP4144813B2 (ja) 2008-09-03
DE69434079T2 (de) 2005-02-24
HUT71320A (en) 1995-11-28
CN1100757A (zh) 1995-03-29
DE69434079D1 (de) 2004-11-25
US5614382A (en) 1997-03-25
ZA941548B (en) 1994-10-03
DK0616034T3 (da) 2005-02-21
IL108822A0 (en) 1994-06-24
FI112090B (fi) 2003-10-31
CA2116914C (fr) 2005-02-08
AU686126B2 (en) 1998-02-05
AU5759594A (en) 1994-09-08
CZ39394A3 (en) 1995-02-15
NO940774D0 (no) 1994-03-04
EP0616034A3 (en) 1996-10-16
CA2116914A1 (fr) 1994-09-06
EP0616034A2 (fr) 1994-09-21
NO313758B1 (no) 2002-11-25
NO940774L (no) 1994-09-06
NZ260027A (en) 1996-03-26
ES2231770T3 (es) 2005-05-16
ATE280235T1 (de) 2004-11-15
HU9400657D0 (en) 1994-05-30

Similar Documents

Publication Publication Date Title
EP0616034B1 (fr) Plasmide pour la production de la protéine CRM et de la toxine de la diphthérie
EP0544685A1 (fr) Vecteurs
EP1066375A2 (fr) $i(LACTOBACILLUS) HEBERGEANT DES GENES D&#39;AGREGATION CELLULAIRE ET DE FIXATION DE MUCINE, EN TANT QUE VEHICULES D&#39;APPORT DE VACCINS
JPH07502646A (ja) リポタンパク質の分泌シグナルをコード化するdnaを含む細菌発現ベクター
US20230322871A1 (en) Expression of pneumococcal surface protein a (pspa)
US8147841B2 (en) Clostridium toxin, and process for the preparation of immunogenic composition
AU743165B2 (en) Live attenuated bacteria of the species Actinobacillus pleuropneumoniae
CA2359210C (fr) Compartimentage de polypeptides recombinants dans des cellules hotes
EP0742829B1 (fr) Expression de proteines heterologues dans des bacteries attenuees au moyen de promoteurs du gene htra
AU2002301780B2 (en) Clostridium toxin and method for preparing immunogenic compositions
WO1997016207A1 (fr) Systeme d&#39;expression et d&#39;administration de peptide
OA20033A (en) Expression of Pneumococcal Surface Protein A (PSPA).
AU2007201975B2 (en) Clostridium Toxin and Method for Preparing Immunogenic Compositions
EA045199B1 (ru) ЭКСПРЕССИЯ ПНЕВМОКОККОВОГО ПОВЕРХНОСТНОГО БЕЛКА А (PspA)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19970411

17Q First examination report despatched

Effective date: 19990612

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WYETH HOLDINGS CORPORATION

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: PLASMID FOR PRODUCTION OF CRM PROTEIN AND DIPHTHERIA TOXIN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69434079

Country of ref document: DE

Date of ref document: 20041125

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20040404452

Country of ref document: GR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20041222

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2231770

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050721

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: WYETH HOLDINGS CORPORATION

Free format text: WYETH HOLDINGS CORPORATION#FIVE GIRALDA FARMS#MADISON, NJ 07940 (US) -TRANSFER TO- WYETH HOLDINGS CORPORATION#FIVE GIRALDA FARMS#MADISON, NJ 07940 (US)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20090121

Year of fee payment: 16

Ref country code: AT

Payment date: 20090107

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20090109

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20081231

Year of fee payment: 16

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20100809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100809

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120222

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20130128

Year of fee payment: 20

Ref country code: DK

Payment date: 20130128

Year of fee payment: 20

Ref country code: GB

Payment date: 20130125

Year of fee payment: 20

Ref country code: DE

Payment date: 20130228

Year of fee payment: 20

Ref country code: SE

Payment date: 20130207

Year of fee payment: 20

Ref country code: FR

Payment date: 20130218

Year of fee payment: 20

Ref country code: ES

Payment date: 20130221

Year of fee payment: 20

Ref country code: CH

Payment date: 20130129

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130212

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20130305

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69434079

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69434079

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20140207

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20140207

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140206

BE20 Be: patent expired

Owner name: *WYETH HOLDINGS CORP.

Effective date: 20140207

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140206

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140208

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140207

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140208