EP0520342A1 - Messfahrzeug - Google Patents

Messfahrzeug Download PDF

Info

Publication number
EP0520342A1
EP0520342A1 EP92110434A EP92110434A EP0520342A1 EP 0520342 A1 EP0520342 A1 EP 0520342A1 EP 92110434 A EP92110434 A EP 92110434A EP 92110434 A EP92110434 A EP 92110434A EP 0520342 A1 EP0520342 A1 EP 0520342A1
Authority
EP
European Patent Office
Prior art keywords
measuring
measuring vehicle
frame
track
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92110434A
Other languages
English (en)
French (fr)
Other versions
EP0520342B1 (de
Inventor
Josef Theurer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Franz Plasser Bahnbaumaschinen Industrie GmbH
Original Assignee
Franz Plasser Bahnbaumaschinen Industrie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Franz Plasser Bahnbaumaschinen Industrie GmbH filed Critical Franz Plasser Bahnbaumaschinen Industrie GmbH
Publication of EP0520342A1 publication Critical patent/EP0520342A1/de
Application granted granted Critical
Publication of EP0520342B1 publication Critical patent/EP0520342B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/12Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
    • E01B27/13Packing sleepers, with or without concurrent work on the track
    • E01B27/16Sleeper-tamping machines
    • E01B27/17Sleeper-tamping machines combined with means for lifting, levelling or slewing the track
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2203/00Devices for working the railway-superstructure
    • E01B2203/16Guiding or measuring means, e.g. for alignment, canting, stepwise propagation

Definitions

  • the invention relates to a measuring vehicle for determining the actual track position in relation to the desired track position, with a vehicle frame supported on rail bogies, having a frame plane running parallel to a reference plane formed by the wheel contact points, and with a vehicle frame which can be transported and is independent thereof movable satellite car.
  • Such a measuring vehicle is already known from a brochure "EM SAT Geometerwagen” from Plasser & Theurer. Above the frame level of the machine frame there is a spacious driver's cab and a powerful drive system.
  • the second measuring vehicle referred to as a satellite car, is connected to a laser transmitter for generating a standing chord and can be connected to the machine frame for a joint transfer run below the frame level.
  • US Pat. No. 4,691,565 already discloses a machine for measuring or registering and / or also for correcting the position of a track with a carriage that can be moved on the uncorrected track.
  • This front carriage which is equipped with a laser transmitter and a travel drive, can be moved onto this machine for a joint transfer travel over an end area of a machine designed as a ramp.
  • This machine which is designed as a track measuring car, has a laser receiver arranged in its front end region and various devices for determining and storing the track position correction values.
  • the object of the present invention is to create a measuring vehicle of the type described in the introduction, which can be used in a particularly rational manner with reduced design effort.
  • the measuring vehicle and the satellite car are designed such that their upper contour lines are arranged below a boundary plane, which includes an angle ⁇ of 5 to 10 o with respect to a reference plane formed by the wheel contact points of the rail bogies, whereby the boundary plane with the frame plane in the front end of the measuring vehicle in the working direction forms a cutting line perpendicular to the longitudinal direction of the machine and parallel to the reference plane and runs through the field of view of a driving cabin of a machine that can be coupled to the measuring vehicle.
  • a measuring vehicle of this type with a low overall height and having a satellite car can be coupled in a particularly advantageous manner for a joint transfer to the place of use with a track-laying machine, in particular a tamping machine.
  • the machine assembly can be controlled in a particularly efficient manner from the driver's cabin of the tamping machine without impairing visibility.
  • This combined transfer travel enables a particularly simple construction of the measuring vehicle with an auxiliary motor that is only required for work and with a correspondingly low output, but a sufficiently large overall length of the vehicle frame for a satisfactory driving result during the transfer trip is possible due to the corresponding angular range of the limiting plane.
  • such a measuring vehicle can also be coupled to a tamping machine already in use with a satellite car without any design effort or conversion work.
  • Such a transfer run in a common machine association with a tamping machine enables the track to be measured and tamped in a single track lock, and the logistical effort can also be reduced considerably in comparison to previous separate work assignments.
  • the remotely controllable solution of the towing hook according to claim 4 enables a particularly rapid separation immediately after reaching the track construction site, while avoiding leaving the machine, which endangers safety.
  • the vehicle frame can be positively connected to the axle bearing, so that an influence of the suspension on the measurement result is reliably excluded.
  • Another development of the measuring vehicle according to claim 12 enables a problem-free and quick attachment of the satellite vehicle below the projecting vehicle frame, so that the measuring vehicle can be incorporated into a train set unhindered.
  • the development according to claim 13 enables the transport of the satellite car on the vehicle frame, with the ramp ensuring a rapid transfer of the satellite car from the transfer position to the working position.
  • inventive system according to claim 14 previously performed in two separate operations, namely the track survey and track filling, can be carried out in a single operation to achieve particularly economic and constructive advantages.
  • the joint work assignment now requires in a particularly economical manner only a one-off track lock, the design of which is considerably simplified as a result of the common transfer travel and the low overall height of the measuring vehicle.
  • This design simplification mainly consists of an auxiliary motor that is only required for low working speeds and a simple work cabin.
  • the logistical effort for an exact timing of the different work processes is also compared to the known ones Solutions significantly simplified.
  • the measurement and darning work is carried out by one and the same company.
  • the refinement according to claim 15 enables exact adjustment of the correction work to be carried out by the tamping machine to the difference values between the actual and the target position of the track, determined immediately beforehand by the measuring vehicle and the satellite car.
  • the measuring vehicle 1 shown in FIG. 1 has a vehicle frame 2 with a frame plane 3, which runs parallel to a reference plane formed by wheel contact points 4 of rail bogies 5. This parallelism relates to the normal case in which the chassis springs of both rail bogies 5 are loaded to the same extent.
  • An internal combustion engine 7 is arranged on the frame level 3 in the area of the rear machine end 6.
  • a driving cabin 9 with a control device 10 is arranged directly upstream of this in the working direction of the measuring vehicle 1, indicated by an arrow 8.
  • the driver's cabin 9 is located in a recess 11 of the vehicle frame 2.
  • the upper contour lines 12 formed by the motor 7 and the driver's cabin 9 are arranged below a boundary plane 13 which is related to the reference plane or the reference plane formed by the wheel contact points 4 of the rail bogies 5.
  • the frame plane 3 includes an angle ⁇ of 5 to 10 o .
  • the boundary plane 13 with the frame plane 3 in the front end of the measuring vehicle 1 in the working direction forms a perpendicular to the machine longitudinal direction and cutting line 14 running parallel to the frame or reference plane.
  • the measuring vehicle 1 can be moved independently with the aid of its own travel drive 52.
  • a measuring carriage 16 which is connected to the vehicle frame 2 by wheel drives and is adjustable in height.
  • a laser receiver 17 with a CCD matrix camera, a bank angle sensor 18 and two video cameras 19 lying opposite one another in the machine transverse direction for video-technical scanning of the rail section located in the region of each flanged wheel 15 are arranged on this.
  • the laser receiver 17 is mounted on the measuring carriage 16 by drives 20 which can be adjusted in height and across. This is also associated with a displacement measuring device 21 with a feeler roller that can be rolled on the rail head.
  • the length of the vehicle frame 2 protruding beyond the front rail running gear 5 is greater than the total length of a satellite car 22. This can be lifted off a track 24 by a device 23 having drives and can be connected to the front end of the vehicle frame 2. As indicated by dash-dotted lines, the satellite car 22 is located during the transfer journey in the section of the vehicle frame 2 that protrudes beyond the front rail running gear 5, so that it can be coupled to another machine unhindered.
  • the satellite car 22 has flanged wheels that can be moved on the track 24, an auxiliary motor 25, a seat 26 and a laser transmitter 27. This is mounted on a transverse adjustment device 28 and can be moved up to 500 mm from the middle of the track.
  • the two rail bogies 5 of the measuring vehicle 1 have, between the axle bearing and the bogie frame, hydraulically actuatable blocking drives 29, by means of which the influence of the bogie suspension can be switched off during the measuring process.
  • a pull hook 30 arranged in the working direction at the rear end of the machine is designed for a remotely controllable solution of a coupling formed with a connected machine.
  • the measuring vehicle 1 is for the transfer run with a tamping machine 32 coupled.
  • a tamping machine 32 coupled to the measuring vehicle 1 .
  • These are only partial Shown and shown in the usual way with tamping units, a track lifting straightening unit, a leveling and straightening reference system 33 and a travel drive 53 is equipped with a driving cabin 34 in its front end region in the working direction.
  • This driving cabin 34 has a viewing area 35, from which the operator has a clear view of the track 24 during the transfer run. This clear view is ensured in spite of the pre-arrangement of the measuring vehicle 1 in that the upper contour lines 12 are arranged below the already precisely defined boundary plane 13.
  • the pulling hook 30 is remotely released and the measuring vehicle 1 together with the satellite car 22 is moved to the track 24 at a distance of one to two hundred meters from the tamping machine 32.
  • the right of way of the measuring vehicle 1 is stopped and the satellite car 22 is released from the device 23 or the vehicle frame 2 and lowered onto the track 24.
  • the satellite car 22 is then moved up to the next fixed track point and positioned in relation to a color marking on the rail. Then the actual distance and the actual height of the track 24 to the track fixed point is measured.
  • the determined data are transmitted to the measuring vehicle 1 by radio. After this measurement at the fixed track point, the satellite car 22 is moved about 5 to 10 m further and parked there.
  • the laser transmitter 27 is set up on the laser receiver 17, which has meanwhile been lowered onto the track 24 with the measuring carriage 16.
  • the satellite car 22 is fixed to a rail of the track by means of a suitable mechanical clamping device, so that it is impossible to move due to passing trains.
  • the measuring vehicle 1 After the laser transmitter 27 has been set up on the receiver 17, the measuring vehicle 1 begins to measure the track section located between the measuring vehicle 1 and the satellite car 22. The height and the direction are measured simultaneously via the CCD matrix camera located in the laser receiver 17. The corresponding actual arrow heights at the predetermined distance are calculated from the increase in the track width of the position of the laser receiver 17 and the adjustment paths, as well as the path covered by the distance measuring device 21. The calculation is only started when the measuring vehicle 1 has arrived at the fixed track point immediately in front of the satellite car 22 and has been stopped precisely in relation to this fixed track point. Only then can the arbitrary position of the chord formed by the laser transmitter 27 be mathematically converted to the theoretical chord on which the target arrow heights are based.
  • the satellite car 22 can again be moved to the next fixed track point with the aid of its own auxiliary motor 25. After calculating the actual arrow heights, they are compared with the stored target arrow heights and the corresponding displacement and height correction values are determined. These correction data are then transmitted with the aid of a radio device 36 to the central control device 37 of the tamping machine 32 and can be processed further by this or by an automatic control computer for a corresponding control of the drives of the track lifting and straightening unit.
  • the laser beam generated by the laser transmitter 27 is not split up, but is directed onto the receiver 17 as a beam with a circular cross section. This offers the advantages of higher intensity when receiving and thus also ensures reliable reception.
  • the possibility of adjusting the laser transmitter 27 with the aid of the transverse adjustment device 28 has the advantage that the arrow 17 is smaller for the receiver 17. The other oblique position of the laser tendon would have to be adjusted in a larger area.
  • the CCD matrix camera of the laser receiver 17 is a YZ adjustment device (transverse adjustment Y, height adjustment Z). Since the active reception area of the camera is too small for the necessary reception area, it must be adjusted accordingly. This is done continuously with a computer and an appropriate adjustment unit.
  • the Z adjustment range is 500 mm, the Y adjustment range 1000 mm.
  • the position of the camera on the adjustment unit is measured using an absolute encoder.
  • the laser point is projected onto the CCD camera via a focusing screen and an optical system and its position is calculated by a computer with a corresponding program and transmitted to a main computer 38 of the measuring vehicle 1.
  • the two video cameras 19 located on the measuring carriage 16 it is possible to use a monitor image generated in the driving cabin 9 to carry out the exact positioning of the measuring vehicle 1 in relation to a corresponding fixed point on the track. This is done by positioning the wheel center of the measuring carriage 16 on a color marking attached to the rail head and web.
  • the measuring axis formed by the flanged wheels 15 is also designed as a telescopic axis so that the track width can be measured.
  • the three-part system 31 is connected to a machine unit by connecting the satellite car 22 to the front machine end of the measuring vehicle 1 through the device 23 and coupling the measuring vehicle 1 itself to the tamping machine 32 by the pull hook 30.
  • the operator can move the system from the driving cabin 34 in the direction of arrow 8 without hindrance.
  • a variant of a further measuring vehicle 39 which can be seen in FIG. 3 has a vehicle frame 42 which is supported on rail undercarriages 40 and has a frame plane 41 running parallel to the track plane.
  • a central control device 43 with a seat 44 is arranged on the rear end of the vehicle frame 42 in the working direction.
  • a parking space for an independently movable satellite car 45 This can be moved on rails 46 running in the longitudinal direction of the machine and connected to the vehicle frame 42 and via a ramp 47 arranged in the front end region of the vehicle frame (see dash-dotted lines).
  • the ramp 47 can be swiveled back into a rest position for the transfer drive and the work deployment by drives, in which it comes to lie approximately parallel to the frame plane 41 directly above the vehicle frame 42.
  • the measuring vehicle 39 can be moved with the aid of a motor 49 and a travel drive 50.
  • a defined according to claim 1 boundary plane 51 closes with the frame plane 41 an angle of 8 o a.
  • the satellite car 45 located on the vehicle frame 42, the control device 43 and the seat 44 are located below this delimitation level 51, so that an unimpeded view of the track is provided by a tamping machine connected in the rear end area for the joint transfer run.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Steroid Compounds (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

Ein Meßfahrzeug 1 zur Ermittlung der Gleis-Ist-Lage in bezug auf die Gleis-Soll-Lage weist einen auf Schienenfahrwerken 5 abgestützten Fahrzeugrahmen 2 mit einer parallel zu einer durch die Radaufstandspunkte 4 gebildeten Bezugsebene verlaufenden Rahmenebene 3 auf. Mit dem vorderen Ende des Fahrzeugrahmens 2 ist ein unabhängig verfahrbarer Satellitenwagen 22 für die Überstellfahrt verbindbar. Das Meßfahrzeug 1 und der Satellitenwagen 22 sind derart ausgebildet, daß ihre oberen Umrißlinien 12 unterhalb einer Begrenzungsebene 13 angeordnet sind, die in bezug auf eine durch die Radaufstandspunkte 4 der Schienenfahrwerke 5 gebildete Bezugsebene einen Winkel α von 5 bis 10<o> einschließt. Dabei bildet die Begrenzungsebene 13 mit der Rahmenebene 3 im in Arbeitsrichtung vorderen Ende des Meßfahrzeuges 1 eine senkrecht zur Maschinenlängsrichtung und parallel zur Bezugsebene verlaufende Schnittlinie 14. Durch diese niedrige Bauhöhe besteht die Möglichkeit, das Meßfahrzeug 1 für die Überstellfahrt an eine Stopfmaschine 32 anzukuppeln, von der aus eine freie Sicht auf das Gleis besteht. <IMAGE>

Description

  • Die Erfindung betrifft ein Meßfahrzeug zur Ermittlung der Gleis-Ist-Lage in Bezug auf die Gleis-Soll-Lage, mit einem auf Schienenfahrwerken abgestützten, eine parallel zu einer durch die Radaufstandspunkte gebildeten Bezugsebene verlaufende Rahmenebene aufweisenden Fahrzeugrahmen und mit einem auf diesem transportierbaren und unabhängig verfahrbaren Satellitenwagen.
  • Ein derartiges Meßfahrzeug ist durch einen Prospekt "EM SAT Geometerwagen" der Firma Plasser & Theurer bereits bekannt. Oberhalb der Rahmenebene des Maschinenrahmens ist eine großräumige Fahrkabine sowie ein leistungsfähiger Fahrantrieb angeordnet. Das zweite, als Satellitenwagen bezeichnete Meßfahrzeug ist mit einem Laser-Sender zur Erzeugung einer Standsehne verbunden und für eine gemeinsame Überstellfahrt unterhalb der Rahmenebene mit dem Maschinenrahmen verbindbar.
  • Durch die US-PS 4,691,565 ist bereits eine Maschine zum Messen bzw. Registrieren und/oder auch zur Korrektur der Lage eines Gleises mit einem am unkorrigierten Gleis verfahrbaren Vorwagen bekannt. Dieser mit einem Laser-Sender und einem Fahrantrieb ausgestattete Vorwagen ist für eine gemeinsame Überstellfahrt über einen stirnseitigen, als Rampe ausgebildeten Endbereich einer Maschine auf diese verfahrbar. Diese als Gleismeßwagen ausgebildete Maschine weist einen in ihrem vorderen Endbereich angeordneten Laser-Empfänger sowie verschiedene Einrichtungen zur Ermittlung und Speicherung der Gleislagekorrekturwerte auf.
  • Durch die Zeitschrift "Eisenbahntechnische Rundschau" 39 (1990), Heft 4, Seiten 201-211, wird gemäß Punkt 2.2 darauf hingewiesen, daß den Stopfarbeiten zum Gewinnen der Soll-Daten für die Gleisgeometrie aufwendige Vermessungs- und Auswertearbeiten der Ist-Gleislage vorausgehen. Mit einer Vermessungsmaschine EM-SAT wurden Versuche zur Mechanisierung dieser Arbeiten unternommen. Zwischen einem bei einem Festpunkt aufgestellten Satellitenfahrzeug und einem kontinuierlich auf dieses zufahrenden Meßfahrzeug wird ein Laser-Strahl als Standsehne verwendet. Dabei werden die Pfeilhöhen zu der Laser-Standsehne gemessen, digitalisiert und in einem Computer gespeichert. Über zusätzliche Messungen der seitlichen Abstände zu den Festpunkten lassen sich die Differenzen zur Soll-Lage ermitteln und die auszuführenden Verschiebungen und Hebungen errechnen, die als Eingabedaten für einen Leitcomputer einer Stopfmaschine dienen sollen. Mit einem Geometerwagen GM 80, einer auf der Baustelle in Sende- und Empfangsteil trennbaren, 17 m langen und 30 t schweren Einheit sollen diese Arbeiten schneller, wirtschaftlicher und geschützt vor dem Zugbetrieb auf den benachbarten Betriebsgleisen ausgeführt werden.
  • Die Aufgabe der vorliegenden Erfindung liegt nun in der Schaffung eines Meßfahrzeuges der eingangs beschriebenen Art, das bei reduziertem konstruktivem Aufwand in besonders rationeller Weise einsetzbar ist.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das Meßfahrzeug und der Satellitenwagen derart ausgebildet sind, daß ihre oberen Umrißlinien unterhalb einer Begrenzungsebene angeordnet sind, die in Bezug auf eine durch die Radaufstandspunkte der Schienenfahrwerke gebildete Bezugsebene einen Winkel α von 5 bis 10o einschließt, wobei die Begrenzungsebene mit der Rahmenebene im in Arbeitsrichtung vorderen Ende des Meßfahrzeuges eine senkrecht zur Maschinenlängsrichtung und parallel zur Bezugsebene verlaufende Schnittlinie bildet und durch den Sichtbereich einer Fahrkabine einer an das Meßfahrzeug ankuppelbaren Maschine verläuft. Ein derartig mit niedriger Bauhöhe ausgebildetes Meßfahrzeug mit einem Satellitenwagen ist in besonders vorteilhafter Weise für eine gemeinsame Überstellfahrt zur Einsatzstelle mit einer Gleisbaumaschine, insbesondere einer Stopfmaschine, kuppelbar. Dabei ist der Maschinenverband in besonders rationeller Weise ohne Sichtbeeinträchtigung von der Fahrkabine der Stopfmaschine aus steuerbar. Diese kombinierte Überstellfahrt ermöglicht eine konstruktiv besonders einfache Ausbildung des Meßfahrzeuges mit einem lediglich für den Arbeitseinsatz erforderlichen Hilfsmotor mit entsprechend geringer Leistung, wobei jedoch durch den entsprechenden Winkelbereich der Begrenzungsebene eine genügend große Baulänge des Fahrzeugrahmens für ein zufriedenstellendes Fahrergebnis während der Überstellfahrt möglich ist. Außerdem ist ein derartiges Meßfahrzeug mit einem Satellitenwagen ohne konstruktiven Aufwand bzw. Umrüstarbeiten auch an bereits im Einsatz befindliche Stopfmaschinen ankuppelbar. Eine derartige Überstellfahrt in einem gemeinsamen Maschinenverband mit einer Stopfmaschine ermöglicht die Aufmessung und Unterstopfung des Gleises in einer einzigen Gleissperre, wobei auch der logistische Aufwand im Vergleich zu den bisherigen getrennten Arbeitseinsätzen wesentlich reduzierbar ist.
  • Eine vorteilhafte Weiterbildung des Meßfahrzeuges nach Anspruch 2 ermöglicht unter Ausnützung der obgenannten Vorteile einen uneingeschränkten Arbeitseinsatz mit einer komfortablen Fahrkabine. Die Weiterbildung gemäß Anspruch 3 ermöglicht einen raschen Arbeitseinsatz des Satellitenwagens zur Errichtung einer Laser-Bezugslinie auf die am Meßwagen befestigte Kamera.
  • Die fernsteuerbare Lösung des Zughakens gemäß Anspruch 4 ermöglicht - unter Vermeidung eines die Sicherheit gefährdenden Verlassens der Maschine - eine besonders rasche Trennung unmittelbar nach Erreichen der Gleisbaustelle.
  • Durch die Merkmale nach Anspruch 5 ist der Fahrzeugrahmen formschlüssig mit dem Achslager verbindbar, so daß damit ein Einfluß der Fahrwerksfederung auf das Meßergebnis zuverlässig ausgeschlossen wird.
  • In den Ansprüchen 6 bis 9 angeführte Merkmale ermöglichen ein verbessertes Meßergebnis, wobei die für die Meßdurchführung erforderlichen Arbeitsgänge großteils ferngesteuert ausführbar sind.
  • Eine vorteilhafte Weiterbildung nach Anspruch 10 ermöglicht in Verbindung mit der Ermittlung der Differenzwerte zwischen Ist- und Soll-Lage des Gleises eine exakte Bezugnahme des Laser-Senders auf einen Gleisfestpunkt.
  • Durch die Merkmale gemäß Anspruch 11 kommt es in vorteilhafter Weise unter Erzielung genauerer Meßergebnisse zu kleineren Pfeilhöhen.
  • Eine andere Weiterbildung des Meßfahrzeuges nach Anspruch 12 ermöglicht eine problemlose und rasche Befestigung des Satellitenwagens unterhalb des vorragenden Fahrzeugrahmens, so daß das Meßfahrzeug ungehindert in einen Zugverband eingliederbar ist.
  • Die Weiterbildung nach Anspruch 13 ermöglicht den Transport des Satellitenwagens auf dem Fahrzeugrahmen, wobei durch die Rampe eine rasche Überführung des Satellitenwagens von der Überstell- in die Arbeitsposition gewährleistet ist.
  • Mit einer vorteilhaften, erfindungsgemäßen Anlage nach Anspruch 14 sind bisher in zwei getrennten Arbeitsgängen durchgeführte Arbeiten, nämlich die Gleisvermessung und die Gleisunterstopfung, unter Erzielung besonders wirtschaftlicher und konstruktiver Vorteile in einem einzigen Arbeitsgang durchführbar. Der gemeinsame Arbeitseinsatz erfordert nunmehr in besonders wirtschaftlicher Weise lediglich eine einmalige Gleissperre, wobei infolge der gemeinsamen Überstellfahrt sowie der niedrigen Bauhöhe des Meßfahrzeuges dessen konstruktive Ausbildung wesentlich vereinfacht ist. Diese konstruktive Vereinfachung besteht vor allem in einem lediglich für geringe Arbeitsgeschwindigkeiten erforderlichen Hilfsmotor sowie einer einfachen Arbeitskabine. Auch der logistische Aufwand für eine genaue zeitliche Abstimmung der verschiedenen Arbeitsgänge ist im Vergleich zu den bekannten Lösungen wesentlich vereinfacht. Schließlich ist es auch noch zur Vermeidung von Interessenskonflikten von Vorteil, wenn die Meß- und Stopfarbeiten von ein und demselben Unternehmen durchgeführt werden.
  • Schließlich ist durch die Weiterbildung nach Anspruch 15 eine exakte Abstimmung der durch die Stopfmaschine durchzuführenden Korrekturarbeiten auf die unmittelbar zuvor durch das Meßfahrzeug und den Satellitenwagen ermittelten Differenzwerte zwischen Ist- und Soll-Lage des Gleises möglich.
  • Im folgenden wird die Erfindung anhand in der Zeichnung dargestellter Ausführungsbeispiele näher beschrieben.
  • Es zeigen:
    • Fig. 1 eine Seitenansicht eines an eine nur teilweise dargestellte Stopfmaschine angekuppelten Meßfahrzeuges mit einem auf diesem abstützbaren Satellitenwagen,
    • Fig. 2 eine Teildraufsicht auf das Meßfahrzeug und
    • Fig. 3 eine schematische Darstellung eines weiteren Ausführungsbeispieles eines Meßfahrzeuges.
  • Das in Fig. 1 ersichtliche Meßfahrzeug 1 weist einen Fahrzeugrahmen 2 mit einer Rahmenebene 3 auf, die parallel zu einer durch Radaufstandspunkte 4 von Schienenfahrwerken 5 gebildeten Bezugsebene parallel verläuft. Diese Parallelität bezieht sich auf den Normalfall, bei dem die Fahrwerksfederungen beider Schienenfahrwerke 5 im gleichen Ausmaß belastet sind. Auf der Rahmenebene 3 ist im Bereich des hinteren Maschinenendes 6 ein Verbrennungsmotor 7 angeordnet. Diesem ist in der- durch einen Pfeil 8 angedeuteten - Arbeitsrichtung des Meßfahrzeuges 1 eine Fahrkabine 9 mit einer Steuereinrichtung 10 unmittelbar vorgeordnet. Die Fahrkabine 9 befindet sich in einer Ausnehmung 11 des Fahrzeugrahmens 2. Die oberen, durch den Motor 7 und die Fahrkabine 9 gebildeten Umrißlinien 12 sind unterhalb einer Begrenzungsebene 13 angeordnet, die in Bezug auf die durch die Radaufstandspunkte 4 der Schienenfahrwerke 5 gebildete Bezugsebene bzw. die Rahmenebene 3 einen Winkel α von 5 bis 10o einschließt. Dabei bildet die Begrenzungsebene 13 mit der Rahmenebene 3 im in Arbeitsrichtung vorderen Ende des Meßfahrzeuges 1 eine senkrecht zur Maschinenlängsrichtung und parallel zur Rahmen- bzw. Bezugsebene verlaufende Schnittlinie 14. Das Meßfahrzeug 1 ist mit Hilfe eines eigenen Fahrantriebes 52 unabhängig verfahrbar.
  • Unterhalb der Rahmenebene 3 und unmittelbar vor dem vorderen Schienenfahrwerk 5 ist ein durch Antriebe höhenverstellbar mit dem Fahrzeugrahmen 2 verbundener, Spurkranzräder 15 aufweisender Meßwagen 16 angeordnet. Auf diesem sind ein Laser-Empfänger 17 mit einer CCD-Matrix-Kamera, ein Querneigungsmesser 18 sowie zwei in Maschinenquerrichtung einander gegenüberliegende Video-Kameras 19 zur videotechnischen Abtastung des im Bereich jedes Spurkranzrades 15 befindlichen Schienenabschnittes angeordnet. Der Laser-Empfänger 17 ist durch Antriebe 20 höhen- und querverstellbar am Meßwagen 16 gelagert. Diesem ist außerdem noch eine Wegmeßeinrichtung 21 mit einer auf dem Schienenkopf abrollbaren Tastrolle zugeordnet.
  • Die Länge des über das vordere Schienenfahrwerk 5 vorragenden Fahrzeugrahmens 2 ist größer als die Gesamtlänge eines Satellitenwagens 22 ausgebildet. Dieser ist durch eine Antriebe aufweisende Vorrichtung 23 von einem Gleis 24 abheb- und mit dem vorderen Ende des Fahrzeugrahmens 2 verbindbar. Wie mit strichpunktierten Linien angedeutet, befindet sich der Satellitenwagen 22 während der Überstellfahrt im über das vordere Schienenfahrwerk 5 vortagenden Abschnitt des Fahrzeugrahmens 2, so daß dieser ungehindert an eine weitere Maschine ankuppelbar ist.
  • Der Satellitenwagen 22 weist auf dem Gleis 24 verfahrbare Spurkranzräder, einen Hilfsmotor 25, eine Sitzgelegenheit 26 und einen Laser-Sender 27 auf. Dieser ist auf einer Querverstelleinrichtung 28 gelagert und jeweils bis zu 500 mm von der Gleismitte querverschiebbar.
  • Die beiden Schienenfahrwerke 5 des Meßfahrzeuges 1 weisen zwischen Achslager und Fahrwerkrahmen befindliche, hydraulisch beaufschlagbare Blockierantriebe 29 auf, durch die der Einfluß der Fahrwerksfederung während des Meßvorganges ausschaltbar ist. Ein in Arbeitsrichtung am hinteren Maschinenende angeordneter Zughaken 30 ist für eine fernsteuerbare Lösung einer mit einer angeschlossenen Maschine gebildeten Kupplung ausgebildet.
  • Zur Bildung einer Anlage 31 zur Vermessung der Gleis-Ist-Lage sowie einer Gleislagekorrektur mit Hilfe der durch die Vermessung ermittelten Differenzwerte zwischen Ist- und Soll-Lage und einer Unterstopfung des in seiner Gleislage korrigierten Gleises ist das Meßfahrzeug 1 für die Überstellfahrt mit einer Stopfmaschine 32 gekuppelt. Diese nur teilweise dargestellte und in üblicher Weise mit Stopfaggregaten, einem Gleishebe-Richtaggregat, einem Nivellier- und Richt-Bezugsystem 33 und einem Fahrantrieb 53 ausgestattete Stopfmaschine 32 ist in ihrem in Arbeitsrichtung vorderen Endbereich mit einer Fahrkabine 34 ausgestattet. Diese Fahrkabine 34 weist einen Sichtbereich 35 auf, von dem aus die Bedienungsperson während der Überstellfahrt freie Sicht auf das Gleis 24 hat. Diese freie Sicht ist trotz der Vorordnung des Meßfahrzeuges 1 dadurch gesichert, daß die oberen Umrißlinien 12 unterhalb der bereits genau definierten Begrenzungsebene 13 angeordnet sind.
  • Unmittelbar vor dem Arbeitseinsatz der Anlage 31 wird der Zughaken 30 ferngesteuert gelöst und das Meßfahrzeug 1 mitsamt dem Satellitenwagen 22 ein- bis zweihundert Meter von der Stopfmaschine 32 distanziert auf dem Gleis 24 vorgefahren. Sobald der zu vermessende Gleisabschnitt erreicht ist, wird die Vorfahrt des Meßfahrzeuges 1 gestoppt und der Satellitenwagen 22 von der Vorrichtung 23 bzw. dem Fahrzeugrahmen 2 gelöst und auf das Gleis 24 abgesenkt. Anschließend wird der Satellitenwagen 22 bis zum nächsten Gleisfestpunkt vorgefahren und in Bezug auf eine auf der Schiene befindliche Farbmarkierung positioniert. Anschließend wird der Ist-Abstand und die Ist-Höhe des Gleises 24 zum Gleisfestpunkt vermessen. Die ermittelten Daten werden per Funk an das Meßfahrzeug 1 übertragen. Nach dieser Einmessung beim Gleisfestpunkt wird der Satellitenwagen 22 noch etwa 5 bis 10 m weiter vorgefahren und dort abgestellt. Der Laser-Sender 27 wird auf den Laser-Empfänger 17, der inzwischen mit dem Meßwagen 16 auf das Gleis 24 abgesenkt wurde, eingerichtet. Über eine geeignete mechanische Klemmvorrichtung wird dabei der Satellitenwagen 22 an einer Schiene des Gleises fixiert, so daß ein Verrücken durch vorüberfahrende Züge ausgeschlossen ist. Während der Messung besteht Funkverbindung über entsprechende Mobil-Funkgeräte zwischen den Bedienungspersonen des Stallitenwagens 22 des Meßfahrzeuges 1 und der Besatzung der Stopfmaschine 32.
  • Nachdem der Laser-Sender 27 auf den Empfänger 17 eingerichtet ist, beginnt das Meßfahrzeug 1 mit der Aufmessung des zwischen dem Meßfahrzeug 1 und dem Satellitenwagen 22 befindlichen Gleisabschnittes. Über die im Laser-Empfänger 17 befindliche CCD-Matrix-Kamera wird die Höhe und die Richtung gleichzeitig vermessen. Aus der Überhöhung der Spurweite der Position des Laser-Empfängers 17 und der Verstellwege sowie des zurückgelegten, durch die Wegmeßeinrichtung 21 gemessenen Weges werden die entsprechenden Ist-Pfeilhöhen im vorgegebenen Abstand errechnet. Die Berechnung wird erst dann gestartet, wenn das Meßfahrzeug 1 am unmittelbar vor dem Satellitenwagen 22 befindlichen Gleisfestpunkt angekommen und genau in Bezug auf diesen Gleisfestpunkt gestoppt wurde. Erst dann kann die beliebige Lage der durch den Laser-Sender 27 gebildeten Sehne rechnerisch auf die den Soll-Pfeilhöhen zugrundeliegende theoretische Sehne umgerechnet werden.
  • Während dieser Berechnung kann der Satellitenwagen 22 bereits wiederum mit Hilfe des eigenen Hilfsmotors 25 zum nächsten Gleisfestpunkt verfahren werden. Nach der Berechnung der Ist-Pfeilhöhen werden diese mit den gespeicherten Soll-Pfeilhöhen verglichen und die entsprechenden Verschiebe- und Höhenkorrekturwerte ermittelt. Diese Korrekturdaten werden dann mit Hilfe einer Funkteinrichtung 36 an die zentrale Steuereinrichtung 37 der Stopfmaschine 32 übertragen und können von dieser bzw. von einem automatischen Leitcomputer für eine entsprechende Steuerung der Antriebe des Gleishebe- und Richtaggregates weiterverarbeitet werden.
  • Der vom Laser-Sender 27 erzeugte Laserstrahl wird nicht aufgespalten, sondern als im Querschnitt kreisförmiger Strahl auf den Empfänger 17 gerichtet. Dies bringt beim Empfang die Vorteile höherer Intensität und damit wird auch ein sicherer Empfang gewährleistet. Die Verstellmöglichkeit des Laser-Senders 27 mit Hilfe der Querverstelleinrichtung 28 bringt den Vorteil mit sich, daß es damit für den Empfänger 17 zu kleineren Pfeilhöhen kommt. Durch die sonstige Schräglage der Laser-Sehne müßte in einem größeren Bereich verstellt werden.
  • Bei der CCD-Matrix-Kamera des Laser-Empfängers 17 handelt es sich um eine YZ-Verstelleinrichtung (Querverstellung Y, Höhenverstellung Z). Da die aktive Empfangsfläche der Kamera für den notwendigen Empfangsbereich zu klein ist, muß entsprechend nachgestellt werden. Dies erfolgt kontinuierlich mit einem Computer und einer entsprechenden Verstelleinheit. Dabei beträgt der Z-Verstellbereich 500 mm, der Y-Verstellbereich 1000 mm. Die Position der Kamera auf die Verstelleinheit wird über Absolut-Encoder gemessen. Der Laser-Punkt wird über eine Mattscheibe und eine Optik auf die CCD-Kamera projiziert und bezüglich seiner Lage durch einen Computer mit einem entsprechenden Programm errechnet und an einen Haupt-Computer 38 des Meßfahrzeuges 1 übertragen. Mit Hilfe der beiden am Meßwagen 16 befindlichen Videokameras 19 besteht die Möglichkeit, über ein in der Fahrkabine 9 erzeugtes Monitorbild die exakte Positionierung des Meßfahrzeuges 1 in Bezug zu einem entsprechenden Gleisfestpunkt durchzuführen. Dies erfolgt durch eine Positionierung der Radmitte des Meßwagens 16 auf eine am Schienenkopf und -steg angebrachte Farbmarkierung. Die durch die Spurkranzräder 15 gebildete Meßachse wird gleichzeitig als Teleskopachse ausgeführt, damit die Spurweite gemessen werden kann.
  • Nach Beendigung des Arbeitseinsatzes wird die dreiteilige Anlage 31 zu einer Maschineneinheit verbunden, indem der Satellitenwagen 22 durch die Vorrichtung 23 mit dem vorderen Maschinenende des Meßfahrzeuges 1 verbunden und das Meßfahrzeug 1 selbst durch den Zughaken 30 an die Stopfmaschine 32 angekuppelt wird. Infolge der ungehinderten Sicht über das Meßfahrzeug 1 kann die Bedienungsperson die Anlage von der Fahrkabine 34 aus ungehindert in Richtung des Pfeiles 8 verfahren.
  • Eine in Fig. 3 ersichtliche Variante eines weiteren Meßfahrzeuges 39 weist einen auf Schienenfahrwerken 40 abgestützten Fahrzeugrahmen 42 mit einer parallel zur Gleisebene verlaufenden Rahmenebene 41 auf. Auf dem in Arbeitsrichtung hinteren Ende des Fahrzeugrahmens 42 ist eine zentrale Steuereinrichtung 43 mit einer Sitzgelegenheit 44 angeordnet. Unmittelbar davor befindet sich ein Abstellplatz für einen unabhängig verfahrbaren Satellitenwagen 45. Dieser ist auf in Maschinenlängsrichtung verlaufenden und mit dem Fahrzeugrahmen 42 verbundenen Schienen 46 und über eine im vorderen Endbereich des Fahrzeugrahmens angeordnete Rampe 47 auf ein Gleis 48 verfahrbar (siehe strichpunktierte Linien). Die Rampe 47 ist für die Überstellfährt und den Arbeitseinsatz durch Antriebe in eine Ruheposition zurückverschwenkbar, bei der sie etwa parallel zur Rahmenebene 41 unmittelbar oberhalb des Fahrzeugrahmens 42 zu liegen kommt. Das Meßfahrzeug 39 ist mit Hilfe eines Motors 49 und eines Fahrantriebes 50 verfahrbar. Eine gemäß Anspruch 1 definierte Begrenzungsebene 51 schließt mit der Rahmenebene 41 einen Winkel von 8o ein. Der auf dem Fahrzeugrahmen 42 befindliche Satellitenwagen 45, die Steuereinrichtung 43 und die Sitzgelegenheit 44 befinden sich unterhalb dieser Begrenzungsebene 51, so daß von einer im hinteren Endbereich angeschlossenen Stopfmaschine für die gemeinsame Überstellfahrt eine ungehinderte Sicht auf das Gleis gegeben ist.

Claims (15)

  1. Meßfahrzeug (1,39) zur Ermittlung der Gleis-Ist-Lage in Bezug auf die Gleis-Soll-Lage, mit einem auf Schienenfahrwerken (5,40) abgestützten, eine parallel zu einer durch die Radaufstandspunkte (4) gebildete Bezugsebene verlaufende Rahmenebene (3,41) aufweisenden Fahrzeugrahmen (2,42), und mit einem auf diesem transportierbaren und unabhängig verfahrbaren Satellitenwagen (22,45), dadurch gekennzeichnet, daß das Meßfahrzeug (1,39) und der Satellitenwagen (22,45) derart ausgebildet sind, daß ihre oberen Umrißlinien (12) unterhalb einer Begrenzungsebene (13,51) angeordnet sind, die in Bezug auf eine durch die Radaufstandspunkte (4) der Schienenfahrwerke (5,40) gebildete Bezugsebene einen Winkel α von 5 bis 10o einschließt, wobei die Begrenzungsebene (13,51) mit der Rahmenebene (3,41) im in Arbeitsrichtung vorderen Ende des Meßfahrzeuges (1,39) eine senkrecht zur Maschinenlängsrichtung und parallel zur Bezugsebene verlaufende Schnittlinie (14) bildet und durch den Sichtbereich (25) einer Fahrkabine (34) einer an das Meßfahrzeug (1,39) ankuppelbaren Maschine (32) verläuft.
  2. Meßfahrzeug nach Anspruch 1, dadurch gekennzeichnet, daß oberhalb der Rahmenebene (3) lediglich ein Motor (7) und ein oberer Teil einer in einer Ausnehmung des Fahrzeugrahmens (2) angeordneten Fahrkabine (9) auf dem in Arbeitsrichtung hinteren Maschinenende des Meßfahrzeuges (1) vorgesehen sind und der Satellitenwagen (22) unterhalb der Rahmenebene (3) mit dem vorderen Maschinenende verbunden ist.
  3. Meßfahrzeug nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß unterhalb der Rahmenebene (3) und unmittelbar vor dem vorderen Schienenfahrwerk (5) ein höhenverstellbarer Meßwagen (16) mit Spurkranzrädern (15) und einem Laser-Empfänger (17) mit einer CCD-Matrix-Kamera sowie eine Vorrichtung (23) zur Anhebung und lösbaren Befestigung des Satellitenwagens (22) vorgesehen sind.
  4. Meßfahrzeug nach einem der Ansprüche 1, 2 oder 3, dadurch gekennzeichnet, daß ein in Arbeitsrichtung am hinteren Maschinenende angeordneter Zughaken (30) für eine fernsteuerbare Lösung einer mit einer angeschlossenen Maschine gebildeten Kupplung ausgebildet ist.
  5. Meßfahrzeug nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Schienenfahrwerke (5) zwischen Achslager und Fahrwerksrahmen befindliche, hydraulisch beaufschlagbare Blockierantriebe (29) aufweisen.
  6. Meßfahrzeug nach Anspruch 3, dadurch gekennzeichnet, daß der Laser-Empfänger (17) durch Antriebe (20) höhen- und querverstellbar am Meßwagen (16) gelagert ist.
  7. Meßfahrzeug nach Anspruch 3, dadurch gekennzeichnet, daß dem Meßwagen (16) eine Wegmeßeinrichtung (21) mit einer auf dem Schienenkopf abrollbaren Tastrolle zugeordnet ist.
  8. Meßfahzeug nach Anspruch 3, dadurch gekennzeichnet, daß am Meßwagen (16) zwei bezüglich der Maschinenquerrichtung einander gegenüberliegende Videokameras (19) zur videotechnischen Abtastung des im Bereich jedes Spurkranzrades (15) befindlichen Schienenabschnittes angeordnet sind.
  9. Meßfahrzeug nach Anspruch 3, dadurch gekennzeichnet, daß der Meßwagen (16) mit einem Querneigungsmesser (18) verbunden ist.
  10. Meßfahrzeug nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß am eine Sitzgelegenheit (26) und einen Fahrantrieb (25) aufweisenden Satellitenwagen (22) ein Laser-Sender (27) und eine Distanzmeßeinrichtung zum Erfassen der Höhen- und Seitenabweichungen des Gleises in Bezug auf einen Gleisfestpunkt angeordnet sind.
  11. Meßfahrzeug nach Anspruch 10, dadurch gekennzeichnet, daß der Laser-Sender (27) auf einer Querverstelleinrichtung (28) gelagert und jeweils bis zu 500 mm von der Gleismitte querverschiebbar ist.
  12. Meßfahrzeug nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Länge des über das vordere Schienenfahrwerk vorragenden Fahrzeugrahmens (2) größer als die Gesamtlänge des Satellitenwagens (22) ausgebildet ist.
  13. Meßfahrzeug nach Anspruch 1, dadurch gekennzeichnet, daß das vordere Ende des Fahrzeugrahmens (42) mit einer verschwenkbaren Rampe (47) zur Überstellung des Satellitenwagens (45) von einer auf der Rahmenebene (41) befindlichen Überstellposition auf das Gleis (48) vorgesehen ist.
  14. Anlage (31) zur Vermessung der Gleis-Ist-Lage sowie einer Gleislagekorrektur mit Hilfe der durch die Vermessung ermittelten Differenzwerte zwischen Ist- und Soll-Lage und einer Unterstopfung des in seiner Gleislage korrigierten Gleises, mit einem Meßfahrzeug (1), insbesondere nach Anspruch 1, gekennzeichnet durch eine dreiteilige Ausbildung, wobei- in Arbeitsrichtung der Anlage gesehen - der hintere Teil durch eine Stopfmaschine (32) gebildet ist, die für eine gemeinsame Überstellfahrt mit dem Meßfahrzeug (1) gekuppelt ist, auf dessen vorderem Endbereich der Satellitenwagen (22) befestigt ist.
  15. Anlage nach Anspruch 14, dadurch gekennzeichnet, daß das Meßfahrzeug (1) eine Recheneinheit (38) zur Ermittlung der Verschiebe- und Höhenkorrekturwerte sowie eine Funkeinrichtung (36) zur Übertragung dieser Werte an eine auf der Stopfmaschine (32) befindliche Steuereinrichtung (37) zur automatischen Steuerung von Hebe- und Richtantrieben eines Gleishebe- und Richtaggregates aufweist.
EP92110434A 1991-06-27 1992-06-20 Messfahrzeug Expired - Lifetime EP0520342B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT1287/91 1991-06-27
AT128791 1991-06-27

Publications (2)

Publication Number Publication Date
EP0520342A1 true EP0520342A1 (de) 1992-12-30
EP0520342B1 EP0520342B1 (de) 1995-12-06

Family

ID=3510629

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92110434A Expired - Lifetime EP0520342B1 (de) 1991-06-27 1992-06-20 Messfahrzeug

Country Status (18)

Country Link
US (1) US5301548A (de)
EP (1) EP0520342B1 (de)
JP (1) JP2865950B2 (de)
CN (1) CN1044021C (de)
AT (1) ATE131232T1 (de)
AU (1) AU646743B2 (de)
CA (1) CA2070791C (de)
CZ (1) CZ278676B6 (de)
DE (1) DE59204556D1 (de)
DK (1) DK0520342T3 (de)
ES (1) ES2081523T3 (de)
FI (1) FI98314C (de)
HU (1) HU212948B (de)
NO (1) NO301599B1 (de)
PL (1) PL168287B1 (de)
RU (1) RU2041310C1 (de)
SK (1) SK280109B6 (de)
ZA (1) ZA924770B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015018478A1 (de) * 2013-08-07 2015-02-12 Plasser & Theurer Export Von Bahnbaumaschinen Gesellschaft M.B.H. Verfahren zur unterstopfung eines gleises
AT514718A1 (de) * 2013-09-11 2015-03-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren für die Korrektur eines Gleises
EP2960371A1 (de) * 2014-06-27 2015-12-30 System7-Railsupport GmbH Vorrichtung zum Vermessen von Gleisen
WO2018166755A1 (de) * 2017-03-17 2018-09-20 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Maschine und verfahren zum profilieren und verteilen von schotter eines gleises

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ285403B6 (cs) * 1995-03-16 1999-08-11 Franz Plasser Bahnbaumaschinen-Industriegesellschaft M. B. H. Pracovní vozidlo pro provádění kolejových stavebních prací
AT405425B (de) * 1997-08-20 1999-08-25 Plasser Bahnbaumasch Franz Gleisbaumaschine mit einem laser-bezugsystem und verfahren
US6154973A (en) * 1998-03-27 2000-12-05 Franz Plasser Bahnbaumaschinen-Industriegesellschaft M.B.H. Method for correcting the track geometry of a track
US6161429A (en) * 1998-10-13 2000-12-19 Paveset America, Llc Dual path profilograph
ATA18499A (de) * 1999-02-10 2000-04-15 Plasser Bahnbaumasch Franz Verfahren zur lagekorrektur eines gleises
DE50015765D1 (de) * 1999-02-12 2009-12-03 Plasser Bahnbaumasch Franz Verfahren zum Aufmessen eines Gleises
US6405141B1 (en) * 2000-03-02 2002-06-11 Ensco, Inc. Dynamic track stiffness measurement system and method
SE516170C2 (sv) * 2000-03-29 2001-11-26 Railvac Ab Sätt att planera banvallssidor och lasermätningsanordning
ITVE20000023A1 (it) * 2000-05-12 2001-11-12 Tecnogamma S A S Di Zanin E & Apparecchiatura laser per il controllo delle rotaie di una linea ferrotramviaria.
US9733625B2 (en) 2006-03-20 2017-08-15 General Electric Company Trip optimization system and method for a train
US10308265B2 (en) 2006-03-20 2019-06-04 Ge Global Sourcing Llc Vehicle control system and method
AT6219U3 (de) * 2002-07-23 2004-07-26 Plasser Bahnbaumasch Franz Verfahren zur beladung eines verladezuges
AT5982U3 (de) * 2002-11-13 2003-12-29 Plasser Bahnbaumasch Franz Verfahren zur abtastung eines bettungsprofiles
US9950722B2 (en) 2003-01-06 2018-04-24 General Electric Company System and method for vehicle control
US6804621B1 (en) * 2003-04-10 2004-10-12 Tata Consultancy Services (Division Of Tata Sons, Ltd) Methods for aligning measured data taken from specific rail track sections of a railroad with the correct geographic location of the sections
US9956974B2 (en) 2004-07-23 2018-05-01 General Electric Company Vehicle consist configuration control
US9828010B2 (en) 2006-03-20 2017-11-28 General Electric Company System, method and computer software code for determining a mission plan for a powered system using signal aspect information
CN100371198C (zh) * 2006-03-27 2008-02-27 太原理工大学 递推式铁路轨道检测车及检测方法
US8914171B2 (en) 2012-11-21 2014-12-16 General Electric Company Route examining system and method
CN101700777B (zh) * 2009-10-24 2011-09-28 株洲南车时代电气股份有限公司 一种轨道几何参数测量小车
CN102101478A (zh) * 2009-12-19 2011-06-22 襄樊金鹰轨道车辆有限责任公司 车载作业车
AU2013299501B2 (en) 2012-08-10 2017-03-09 Ge Global Sourcing Llc Route examining system and method
US9702715B2 (en) 2012-10-17 2017-07-11 General Electric Company Distributed energy management system and method for a vehicle system
CN103046442B (zh) * 2012-12-18 2015-03-11 北京二七轨道交通装备有限责任公司 打磨车激光定位装置及打磨车
US9255913B2 (en) 2013-07-31 2016-02-09 General Electric Company System and method for acoustically identifying damaged sections of a route
RU2538482C1 (ru) * 2013-08-08 2015-01-10 Открытое акционерное общество "БетЭлТранс" (ОАО "БЭТ") Система автоматизированного контроля геометрических параметров шпал
US20150083914A1 (en) * 2013-09-25 2015-03-26 Nordco Inc. Railway reference machine having a collapsible projector assembly
CN104652197A (zh) * 2015-02-13 2015-05-27 中铁第一勘察设计院集团有限公司 高速铁路轨道测量仪分离式行走轮驱动装置
WO2016153486A1 (en) * 2015-03-24 2016-09-29 Harsco Technologies LLC Moveable seat on a rail vehicle
AT518839B1 (de) * 2016-07-11 2018-12-15 Plasser & Theurer Exp Von Bahnbaumaschinen G M B H System und Verfahren zum Vermessen eines Gleises
AT519575B1 (de) * 2017-02-15 2018-08-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Gleismessfahrzeug und Verfahren zur Erfassung einer vertikalen Gleislage
CN110116734A (zh) * 2019-05-07 2019-08-13 中国铁建重工集团股份有限公司 磁浮轨道作业车
CN112442927A (zh) * 2019-09-02 2021-03-05 中国铁道科学研究院集团有限公司铁道建筑研究所 一种捣固车前端偏差测量方法
RU199383U1 (ru) * 2020-02-04 2020-08-31 Общество с ограниченной ответственностью "РН-Пурнефтегаз" Каретка для дистанционного перемещения отражателя по рельсе
CN114987565B (zh) * 2022-06-17 2023-08-04 杭州申昊科技股份有限公司 一种具有越障功能的轨道探伤车

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691565A (en) * 1985-08-22 1987-09-08 Franz Plasser Bahnbaumaschinen-Industriegesellschaft M.B.H. Mobile machine for measuring track parameters

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1154311A (en) * 1965-03-23 1969-06-04 Canron Ltd Railway Track Lifting Apparatus
US3750299A (en) * 1969-01-22 1973-08-07 Plasser Bahnbaumasch Franz Track apparatus with laser beam reference

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691565A (en) * 1985-08-22 1987-09-08 Franz Plasser Bahnbaumaschinen-Industriegesellschaft M.B.H. Mobile machine for measuring track parameters

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015018478A1 (de) * 2013-08-07 2015-02-12 Plasser & Theurer Export Von Bahnbaumaschinen Gesellschaft M.B.H. Verfahren zur unterstopfung eines gleises
AT514718A1 (de) * 2013-09-11 2015-03-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren für die Korrektur eines Gleises
AT514718B1 (de) * 2013-09-11 2015-06-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren für die Korrektur eines Gleises
EP2960371A1 (de) * 2014-06-27 2015-12-30 System7-Railsupport GmbH Vorrichtung zum Vermessen von Gleisen
US9518845B2 (en) 2014-06-27 2016-12-13 System 7-Railsupport Gmbh Device for surveying tracks
EP2960371B1 (de) 2014-06-27 2017-08-09 HP3 Real GmbH Vorrichtung zum Vermessen von Gleisen
WO2018166755A1 (de) * 2017-03-17 2018-09-20 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Maschine und verfahren zum profilieren und verteilen von schotter eines gleises
CN110337512A (zh) * 2017-03-17 2019-10-15 普拉塞-陶依尔铁路出口股份有限公司 用于对轨道的道碴进行成型和分配的机器和方法
AT519784B1 (de) * 2017-03-17 2019-11-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Maschine und Verfahren zum Profilieren und Verteilen von Schotter eines Gleises
EA038714B1 (ru) * 2017-03-17 2021-10-08 Плассер Энд Тойрер Экспорт Фон Банбаумашинен Гмбх Машина и способ для профилирования и распределения щебня рельсового пути
CN110337512B (zh) * 2017-03-17 2022-03-08 普拉塞-陶依尔铁路出口股份有限公司 用于对轨道的道碴进行成型和分配的机器和方法
US11718963B2 (en) 2017-03-17 2023-08-08 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Machine and method for profiling and distributing ballast of a track

Also Published As

Publication number Publication date
HUT64276A (en) 1993-12-28
CZ198392A3 (en) 1993-01-13
NO301599B1 (no) 1997-11-17
PL168287B1 (pl) 1996-01-31
CN1044021C (zh) 1999-07-07
HU9202115D0 (en) 1992-10-28
DK0520342T3 (da) 1996-01-08
FI922974A0 (fi) 1992-06-26
FI98314B (fi) 1997-02-14
ES2081523T3 (es) 1996-03-16
NO922200D0 (no) 1992-06-04
DE59204556D1 (de) 1996-01-18
CA2070791A1 (en) 1992-12-18
JP2865950B2 (ja) 1999-03-08
ZA924770B (en) 1993-03-31
CA2070791C (en) 2002-12-31
NO922200L (no) 1992-12-28
EP0520342B1 (de) 1995-12-06
ATE131232T1 (de) 1995-12-15
CN1067938A (zh) 1993-01-13
FI922974A (fi) 1992-12-28
AU646743B2 (en) 1994-03-03
HU212948B (en) 1996-12-30
SK280109B6 (sk) 1999-08-06
SK198392A3 (en) 1994-08-10
PL294986A1 (en) 1992-12-28
US5301548A (en) 1994-04-12
AU1862192A (en) 1993-01-07
RU2041310C1 (ru) 1995-08-09
FI98314C (fi) 1997-05-26
CZ278676B6 (en) 1994-04-13
JPH05202506A (ja) 1993-08-10

Similar Documents

Publication Publication Date Title
EP0520342B1 (de) Messfahrzeug
EP0213253B1 (de) Gleisfahrbare Maschine zum Messen bzw. Registrieren oder Korrigieren der Gleislage mit Laser-Strahlen bzw. -Ebenen
EP3358079B1 (de) Verfahren und vorrichtung zum messen und berechnen einer gleislage
EP1028325B1 (de) Verfahren zum Aufmessen eines Gleises
AT403066B (de) Verfahren zum ermitteln der abweichungen der ist-lage eines gleisabschnittes
EP0511191B1 (de) Einrichtung zum Messen der Lage eines Gleises zu einem Fixpunkt
DE3137194C2 (de)
EP1738029B1 (de) Verfahren zur vermessung von fahrbahnen
EP3555365B1 (de) Messvorrichtung und verfahren zum erfassen einer gleisgeometrie
AT516343B1 (de) Verfahren zum Ermitteln der Lage der Oberleitung bzw. der Stromschiene für Fahrzeuge
WO2022058127A1 (de) Verfahren und system zur ermittlung eines soll-gleisverlaufs für eine lagekorrektur
EP0424811A1 (de) Bezugsystem für Gleisbaumaschinen
EP0652325B1 (de) Gleisbaumaschine zur Korrektur der Gleislage
EP0732451A1 (de) Arbeitsfahrzeug zur Durchführung von Gleisbauarbeiten
EP1001085A1 (de) Verfahren und Stopfmaschine zum Unterstopfen eines Gleises
AT514718B1 (de) Verfahren für die Korrektur eines Gleises
DE102006027852B4 (de) Gleismeßfahrzeug
EP4251491A1 (de) Verfahren und system zur ermittlung von korrekturwerten für eine lagekorrektur eines gleises
DE2738751C2 (de) Fahrbare Gleis-Nivellierstopf- und Richtmaschinenanordnung
EP0731217B1 (de) Stopfmaschine, Maschineanordnung und Verfahren zum Unterstopfen eines Gleises
EP0722013B1 (de) Verfahren und Gleisbaumaschine zur Durchführung von Gleisbauarbeiten
EP4008838A1 (de) Stopfmaschine zum unterstopfen von schwellen eines gleises
EP4130379A1 (de) Verfahren zur berichtigung des seitenabstandes und des höhenabstandes einer bahnsteigkante eines bahnsteiges zur gleisachse
DE1816224C3 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19930518

17Q First examination report despatched

Effective date: 19940613

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 131232

Country of ref document: AT

Date of ref document: 19951215

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REF Corresponds to:

Ref document number: 59204556

Country of ref document: DE

Date of ref document: 19960118

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960116

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DIPL.-ING. ETH H. R. WERFFELI PATENTANWALT

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2081523

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090528

Year of fee payment: 18

Ref country code: DK

Payment date: 20090526

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090526

Year of fee payment: 18

Ref country code: SE

Payment date: 20090528

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090602

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090526

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090811

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20100519

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20100511

Year of fee payment: 19

Ref country code: IT

Payment date: 20100624

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100428

Year of fee payment: 19

BERE Be: lapsed

Owner name: FRANZ *PLASSER BAHNBAUMASCHINEN- INDUSTRIEGESELLSC

Effective date: 20100630

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110620

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110620

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 131232

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110620

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100621