EP4130379A1 - Verfahren zur berichtigung des seitenabstandes und des höhenabstandes einer bahnsteigkante eines bahnsteiges zur gleisachse - Google Patents

Verfahren zur berichtigung des seitenabstandes und des höhenabstandes einer bahnsteigkante eines bahnsteiges zur gleisachse Download PDF

Info

Publication number
EP4130379A1
EP4130379A1 EP22187233.6A EP22187233A EP4130379A1 EP 4130379 A1 EP4130379 A1 EP 4130379A1 EP 22187233 A EP22187233 A EP 22187233A EP 4130379 A1 EP4130379 A1 EP 4130379A1
Authority
EP
European Patent Office
Prior art keywords
track
tamping
platform
height
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP22187233.6A
Other languages
English (en)
French (fr)
Inventor
Bernhard Lichtberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HP3 Real GmbH
Original Assignee
HP3 Real GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HP3 Real GmbH filed Critical HP3 Real GmbH
Publication of EP4130379A1 publication Critical patent/EP4130379A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/12Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
    • E01B27/13Packing sleepers, with or without concurrent work on the track
    • E01B27/16Sleeper-tamping machines
    • E01B27/17Sleeper-tamping machines combined with means for lifting, levelling or slewing the track
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • E01B35/02Applications of measuring apparatus or devices for track-building purposes for spacing, for cross levelling; for laying-out curves
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • E01B35/02Applications of measuring apparatus or devices for track-building purposes for spacing, for cross levelling; for laying-out curves
    • E01B35/04Wheeled apparatus
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • E01B35/06Applications of measuring apparatus or devices for track-building purposes for measuring irregularities in longitudinal direction
    • E01B35/10Applications of measuring apparatus or devices for track-building purposes for measuring irregularities in longitudinal direction for aligning

Definitions

  • the invention relates to a method for correcting the lateral distance and the vertical distance of a platform edge of a platform to the track axis of a track with a track-movable track tamping machine equipped with a lifting and straightening unit and a tamping unit, wherein initially with a 3D Image recording device platform and track are recorded, that an evaluation device determines the spatial positions of the platform edge and track axis from the recorded image data, calculates the actual value for lateral distance and height distance and by comparing these actual values with nominal lateral distances and nominal height distances, correction values for the direction and the height depending on the track kilometers be calculated and that the track position is adjusted by the calculated correction values using the lifting and straightening unit and fixed in the correct position with the tamping unit.
  • a method for maintaining a track for rail vehicles is known, with a laser rotation scanner attached to the front of the track construction machine, for example, recording the current condition of the track including any obstacles that may be present, such as platform edges or switch elements.
  • the two-dimensional data obtained using the scanner are supplemented by the position data to form a 3D image.
  • the correction data which in turn are used to control the lifting/straightening or tamping unit, are determined from the desired track position data determined using this data.
  • a final measurement with complete logging is planned with the same vehicle.
  • a track tamping machine that has a measuring system that has three measuring carriages reveals the WO 2020233934 A1 . That can be done with a camera system track being processed and obstacles in the track can be scanned, with which the tamping units can be controlled in a targeted manner in order to avoid obstacles.
  • Measuring and control systems based on the three-point method are mainly used to guide the correction tools of the superstructure machine.
  • the machine control controls the track lifting and straightening system in such a way that it brings the track to the desired position. This position is fixed by tamping the sleepers.
  • the railway superstructure machines are equipped with so-called acceptance measuring systems and an acceptance recorder.
  • the remaining errors are recorded with this acceptance recorder.
  • specified tolerances of the track position errors must be undershot.
  • Two-axle measuring cars are known which carry an inertial navigation measuring system, with the aid of which the geometric position of the track can be measured in terms of height, direction, superelevation, inclination and torsion.
  • track geometry optimization programs are known, which consist of a measurement be able to determine a target geometry by means of an inertial navigation measuring system or a chord measurement and, by comparison with the actual position, correction values in height and direction as well as the transverse height.
  • Time-of-flight cameras can carry out 3D measurement recordings, i.e. deliver dimensional images and use the transit time method to measure distances to recorded motifs, i.e. they can measure distances. Spatial measurements are also possible with stereoscopically arranged digital cameras.
  • the distance and height of the train boarding should be within certain tolerances as far as possible. If the distances or height differences are too great, passengers can be endangered. The height and distance of the track from the platform (platform) must therefore be checked regularly and, if necessary, corrected with track tamping machines.
  • Laser scanners currently allow measuring angles of more than 180°, measuring frequencies up to 50Hz, measuring distances of 0.3-5m and absolute accuracies of 1-2mm standard deviation.
  • the distances and heights of the track to the edge of the platform are measured using manual methods or total stations.
  • the deviations from the target distance and the target height of the track to the platform are recorded at certain distances in the longitudinal direction of the track and the tamping machine or written to the sleepers. If the values are written on the thresholds, then these are entered manually into the control by the operator in front of the car.
  • the work result is checked behind the tamping machine, again manually or with a total station.
  • another disadvantage is that the work result is not automatically recorded continuously (measurements every 5 m are usual) and that exceeding the tolerances are not automatically measured and recorded objectively.
  • the invention is therefore based on the object of specifying a method which allows absolute deviations of a track axis of a track to an associated platform edge of a platform to be checked with simple means and, if necessary, corrected in one operation. According to a development of the invention, it should also be possible to directly check the correction that has been made and compliance with specified tolerances.
  • the invention solves the problem in that a measuring system of the track tamping machine, which has three measuring carriages, a front, a middle and a rear measuring carriage, is guided in such a way that the track position with the tamping unit and the lifting and straightening unit is adjusted by the correction values for the direction and the height is corrected and the corrected track axis follows the reference lines for the lateral distance and the height distance, resulting in particularly simple correction relationships. This allows the measured track position error to be corrected within narrow tolerances.
  • 3D image capturing device used that objects or image points in the capturing and recording area are captured with associated distance data, so that a three-dimensional image can be generated over the course of the track using known methods.
  • Individual recordings are assigned to a specific track kilometer, i.e. to a specific position along the track axis.
  • a 3D image capturing device provided in the area of the front of the tamping machine and directed towards the track and platform captures the track and platform depending on the kilometer position.
  • the position can be measured using an odometer or satellite position data.
  • Image data and the evaluation data obtained from them are always stored together with the assigned position on the track, i.e. depending on the track kilometers.
  • the spatial positions of the platform edge and track axis are calculated from the recorded image data.
  • the platform edge runs at least approximately parallel to the rails and the track axis, which is also parallel to the rails, is determined by the position of the rails.
  • the image can be scaled over the specified rail distance, usually 1,500 mm for standard gauge, and a transverse axis lying on the rail heads can be determined on which the track axis lies in the middle between the two rails.
  • This transverse axis is mathematically shifted parallel upwards to the measured edge of the platform.
  • the shifting distance corresponds to the height difference.
  • the lateral distance is determined from the distance on the displacement axis between the edge of the platform and a displacement axis normal going through the track axis.
  • the measured actual distances are compared with target distances and from this correction values are determined for the lifting and straightening device, which straightens the track at the position assigned to the measuring points, i.e. offset in the track axis direction to the 3D image acquisition device, according to the correction values and in the straightened position plug fixed.
  • a laser scanner, a time-of-flight (TOF) camera and/or a stereoscopic camera system are preferably used as the image acquisition device for surveying the track and the platform. Depending on which camera is more suitable for the respective purpose.
  • the platform and track are recorded with the image capturing device installed on the track tamping machine, either in a separate measuring run or, particularly preferably, in the directional run with a first image capturing device arranged at the front end of the tamping machine, which may be connected in the working direction with an actuator via a front Buffer breast of the tamping machine can also be moved. If the image capturing device can be moved in the working direction with an adjusting drive beyond a buffer breast of the tamping machine, then it can be withdrawn into a secured area of the track tamping machine during transfer journeys. In measuring operation, on the other hand, it is ensured that the platform and track as well as any obstacles can be properly recorded. Due to the known distances along the longitudinal axis of the track tamping machine, correction values determined depending on the track kilometers can be corrected in the correct position.
  • the track can be released again after the measurement run.
  • a second image recording device is installed at the rear end of the tamping machine, which records the course of the correction position and correction height achieved by the tamping work on a storage medium during the tamping work and verifies compliance with the tolerances, the track can be released again immediately after the track work has been completed and decreases the duration of a required track closure.
  • the second image capturing device can optionally counter to the working direction be displaceable with an actuator via a rear buffer breast of the tamping machine.
  • the advantages of the invention lie in the precise, automatic and dense detection in the longitudinal direction of the track of the deviations in the actual position of the track relative to the edge of the platform and the automatic guidance of the tamping machine according to the detected deviations.
  • Another advantage is the automatic quality control by recording the remaining deviations after tamping. Quality control checks whether the tolerances are exceeded. Exceedances are marked and the tamping machine can correct them in a correction process if necessary.
  • Another advantage is the automatically achieved higher quality of the correction and measurement and a reduction in the susceptibility to errors.
  • this front end can be guided (virtually) on the nominal track position and the rear end on the track that has already been corrected.
  • the straightening and lifting process is carried out at the work site.
  • the position of the tamping machine in the longitudinal track axis is determined with an odometer.
  • the machine 1 shows a track tamping machine 1 working in the working direction A.
  • the machine is designed to be mobile on a track 3 with bogies 2 .
  • a lifting and straightening unit 4 namely the roller tongs 15, the lifting hook 14 or the track straightening roller 7 and the lifting cylinders 5, the track can be lifted and aligned laterally.
  • the track lifting unit is articulated to the machine frame via a drawbar 13 and can be moved in the longitudinal direction of the machine by means of hydraulic cylinders.
  • the travel distance along the track is measured with an odometer or a GPS system. All recorded data are processed and recorded by an evaluation device 16 .
  • the three measuring carriages 6 and 8 form the usual three-point system for measuring the track.
  • an inertial navigation measuring system 9 which is located on the rear measuring car 8, the current track position and the course of the track in space is recorded.
  • the position of the track is fixed after lifting and straightening.
  • Telescoping image acquisition device carriers 18 are located at the front and, if necessary, at the rear of the machine 1, by means of which the laser scanners 17 can be moved beyond the buffer breast and corresponding scans can be made there Position 19 can make.
  • the distance c lies between the scanning plane and the front measuring carriage 6 of the measuring system. If the correction values are measured at position 19, a cross-section through the platform and track at a certain track kilometer, they are offset by the distance c and fed to the three-point system. This data is fed into the evaluation device 16 .
  • platform 19 and track 3 are recorded with a 3D image acquisition device 17 built on the tamping machine 1 .
  • the evaluation device 16 determines and calculates the spatial positions of the platform edge K and track axis GA from the recorded image data from this the actual value for the lateral distance D and the vertical distance H.
  • correction values for the direction VD, vl, vr and the height VH, h are calculated depending on the track kilometers by subtraction.
  • the track geometry is finally straightened by the calculated correction values by means of the lifting and straightening unit 4 and fixed in the straightened position with the tamping unit 12 .
  • FIG. 2 shows schematically two platforms 19 enclosing a track 3, usually only one platform will be provided, the sleeper 20 and the transverse axis 21 between the rails 3, which rests on the upper edge of the rails.
  • the lateral distance D to the edge of the platform K is measured from the connecting line 23 which goes through the track axis GA and is normal to the transverse axis 21 .
  • the track axis GA lies in the middle between the two rails on the transverse axis 21.
  • a line 22 intersecting the platform edge is drawn parallel to the transverse axis 21.
  • the normal distance between the line 22 and the transverse axis 21 corresponds to the vertical distance H of the track axis GA to the edge of the platform.
  • Typical target height distances with tolerances are, for example, 760 +5/-35mm.
  • Typical target lateral distances to the track axis with tolerances are 1,700 +35/-50mm.
  • Accuracies in the range of 1mm are achieved with currently available laser scanners, which is sufficient for the required accuracy.
  • FIG 3 shows a schematic of a scan of a certain track kilometer, i.e. a cross-section through platform 19 and track 3.
  • the rail spacing S (usually with standard gauge 1,500mm) and scale the image.
  • the transverse axis 21 resting on the top of the rails is also obtained from the scan. This is mathematically shifted parallel upwards to the measured platform edge K 22. This results in the measured vertical distance H.
  • the connecting line 23 is calculated at right angles. The The distance between the edge of the platform K and the connecting line 23 on line 22 corresponds to the measured lateral distance D.
  • FIG. 4 shows schematically the measurement diagram of the measured lateral distance MD of the platform edge from the track axis GA.
  • the target lateral distance ND of the platform from the track axis is drawn into the curve.
  • MIN and MAX indicate the permissible tolerances. If the course of MD were within the tolerances, no correction would be necessary in principle.
  • the differences between the measured lateral distance MD and the target lateral distance ND result in corrections to the left from left or right from right depending on the position.
  • the three-point system of the tamping machine, in particular the front measuring carriage 6, is corrected by the correction values VD (on the right in 4 ) virtually at the front tendon point.
  • DAW corresponds to the reference line of the average target distance to the edge of the platform.
  • the course of the platform edge is formed by smoothing (sliding averaging) in the longitudinal direction. This compensates for or smoothes out any outliers such as flaking at the edge, joints or grooves on the edge of the platform.
  • figure 5 shows schematically the measurement diagram of the measured height distance MH of the platform edge to the track axis.
  • the nominal height distance NH of the platform from the track axis GA is drawn into the curve.
  • Min and Max indicate the permissible tolerances.
  • F shows a track error where the track is too high and therefore above MAX. This error cannot be corrected with a track tamping machine. Tamping machines cannot lower the track, only lift it and straighten it sideways. The error will remain in this area. So that there is a continuous transition to this track error F, the reference line of the height distance NH' can be brought up to the MAX line as a polygon.
  • the reference line of the height distance NH' is then guided in such a way that it lies within the MIN and MAX tolerances and above the actual height MH.
  • the resulting elevations h (dotted line) relative to the reference line HAW (from NH') are given in the diagram on the right.
  • the diagram shows the correction values VH with respect to the altitude.
  • the height edge NH of the platform can also be compensated by smoothing any unwanted errors such as breaks, joints, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Abstract

Es wird ein Verfahren zur Messung des Abstandes (D) und der Höhe (H) einer Bahnsteigkante zur Gleisachse (GA) mit einem auf einer gleisfahrbaren Gleisstopfmaschine (1) aufgebauten Laserscanner (17) angegeben mit dem vor der Arbeit eine Messfahrt durchgeführt wird und durch Vergleich der Sollabstände (D) und Sollhöhen (H) mit den Istwerten Korrekturwerte für die Richtung (VD, vl, vr) und die Höhe (VH, h) errechnet werden und damit anschließend das Messsystem der Maschine (6, 8) so geführt wird, dass die Gleislage mit dem Stopfaggregat (12) und dem Hebe-Richt-Aggregat (4) so berichtigt wird, dass die neue Gleisachse den Referenzlinien für den Abstand (ND) und die Höhe (NH, NH') folgt.

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Berichtigung des Seitenabstandes und des Höhenabstandes einer Bahnsteigkante eines Bahnsteiges zur Gleisachse eines Gleises mit einer gleisfahrbaren, mit einem Hebe-Richt-Aggregat und einem Stopfaggregat ausgestatteten, Gleisstopfmaschine, wobei zunächst mit einer auf der Gleisstopfmaschine aufgebauten 3D-Bilderfassungsvorrichtung Bahnsteig und Gleis aufgenommen werden, dass eine Auswerteeinrichtung aus den aufgenommenen Bilddaten die räumlichen Lagen von Bahnsteigkante und Gleisachse ermittelt, daraus den Istwert für Seitenabstand und Höhenabstand errechnet und durch einen Abgleich dieser Istwerte mit Sollseitenabständen und Sollhöhenabständen, Korrekturwerte für die Richtung und die Höhe gleiskilometerabhängig errechnet werden und dass die Gleislage mittels des Hebe-Richt-Aggregats um die errechneten Korrekturwerte gerichtet und mit dem Stopfaggregat in der gerichteten Lage fixiert wird.
  • Aus der WO 2017215777 A2 ist ein Verfahren zur Instandhaltung eines Fahrwegs für Schienenfahrzeuge bekannt, wobei beispielsweise ein Laser-Rotationsscanner, der an der Vorderfront der Gleisbaumaschine angebracht ist, der Istzustand des Gleises samt eventuell vorhandener Hindernisse, wie Bahnsteigkanten oder Weichenelemente aufnimmt. Die mittels Scanner gewonnenen zweidimensionalen Daten werden durch die Positionsdaten zu einem 3D-Bild ergänzt. Aus den an Hand dieser gewonnenen Daten ermittelten Gleislagesolldaten werden die Korrekturdaten ermittelt, die wiederum zur Ansteuerung des Hebe-/Richt- bzw. des Stopfaggregats verwendet werden. Nach der Gleisbearbeitung ist mit demselben Fahrzeug eine Nachmessung mit vollständiger Protokollierung vorgesehen.
  • Eine Gleisstopfmaschine, die über ein Messsystem verfügt, das drei Messwägen aufweist offenbart die WO 2020233934 A1 . Mit einem Kamerasystem kann das zu bearbeitende Gleis aufgenommen und können Hindernisse im Gleis gescannt werden, womit die Stopfaggregate derart gezielt angesteuert werden können, um Hindernissen auszuweichen.
  • Die meisten Gleise für die Eisenbahn sind als Schotteroberbau ausgeführt. Die Schwellen liegen dabei im Schotter. Durch die wirkenden Radkräfte der darüberfahrenden Züge werden unregelmäßige Setzungen im Schotter und Verschiebungen der seitlichen Lagegeometrie des Gleises hervorgerufen. Durch die Setzungen des Schotterbettes treten Fehler in der Längshöhe, der Überhöhung (im Bogen) und der Richtlage auf. Eine Gleisstopfmaschine ( EP 1 028 193 A1 ) verbessert die Gleisgeometrie, die durch die Belastung der Züge verschlechtert wurde. Dazu wird das Gleis mittels elektrohydraulisch gesteuerten Hebe- Richteinrichtungen in die Gleissollposition gehoben und gerichtet und in dieser Lage durch Verdichten (Stopfen) des Schotters unter den Schwellen fixiert.
  • Zur Führung der Berichtigungswerkzeuge der Oberbaumaschine werden überwiegend Mess- und Steuerungssysteme nach dem Dreipunkt-Verfahren eingesetzt. Bei diesem Verfahren wird die Soll-Gleisgeometrie und die Abweichungen des Gleises in Höhe und Richtung von der Soll-Lage vorgegeben. Die Maschinensteuerung steuert die Gleishebe-Richt-Anlage derart an, dass sie das Gleis auf die Soll-Lage bringt. Diese Lage wird durch Unterstopfen der Schwellen fixiert.
  • Damit das Gleis nach derartigen Gleisgeometrieverbesserungsarbeiten wieder für den Zugsbetrieb frei gegeben werden kann, sind die Eisenbahnoberbaumaschinen mit so genannten Abnahmemessanlagen und einem Abnahmeschreiber ausgestattet. Mit diesem Abnahmeschreiber werden die verbleibenden Fehler aufgezeichnet. Für die Freigabe sind dazu vorgegebene Toleranzen der Gleislagefehler zu unterschreiten. Bekannt sind zweiachsige Messwagen die ein inertiales Navigations-Messsystem tragen, mit dessen Hilfe die geometrische Lage des Gleises hinsichtlich Höhe, Richtung, Überhöhung, Neigung und Verwindung gemessen werden kann. Zudem sind Gleisgeometrieoptimierungsprogramme bekannt, die aus einer Aufmessung mittels inertialen Navigations-Messsystem oder einer Sehnenmessung eine Soll-Geometrie und durch Vergleich mit der Ist-Lage Korrekturwerte in Höhe und Richtung sowie der Querhöhe ermitteln können.
  • Time-of-Flight Kameras können 3D-Messaufnahmen durchführen, liefern also dimensionale Bilder und messen mit dem Laufzeitverfahren Distanzen zu aufgenommenen Motiven, können also Entfernungen messen. Mit stereoskopisch angeordnete Digital-Kameras sind ebenfalls räumliche Messungen möglich.
  • Bei Einstiegsbereichen von Zügen soll Abstand und Höhe des Zugeinstiegs möglichst innerhalb gewisser Toleranzen liegen. Bei zu großen Abständen oder Höhenunterschieden können Passagiere gefährdet werden. Die Höhe und der Abstand des Gleises zur Plattform (Perron) sind daher regelmäßig zu überprüfen und gegebenenfalls mit Gleisstopfmaschinen zu berichtigen.
  • Zur Berichtigung von Gleisfehlern haben sich verschiedene Gleisrichtverfahren herausgebildet ( WO2019140467A1 ). Einerseits gibt es Relativverfahren die die Gleislage nur glätten und andererseits Absolutverfahren (Dreipunktverfahren). Letztere haben sich bei den modernen Bahnen weitgehend durchgesetzt. Bei den Absolutverfahren werden die Gleislagen nach vorgegebenen Sollgeometrien berichtigt. Die Sollgeometrien der Eisenbahngleise stehen als Gleislagepläne zur Verfügung und können nach Eingabe in den Steuercomputer der Oberbaumaschine zur Berechnung der systematischen Fehler unter Kenntnis des Verhaltens der Messsysteme genutzt werden.
  • Laserscanner erlauben derzeit Messwinkel von mehr als 180°, Messfrequenzen bis 50Hz, Messabstände von 0,3-5m und Absolutgenauigkeiten von 1-2 mm Standardabweichung.
  • Derzeit werden die Abstände und Höhen des Gleises zur Bahnsteigkante aufwendig mit manuellen Methoden oder mit Totalstationen gemessen. Die Abweichungen zum Sollabstand und zur Sollhöhe des Gleises zum Perron werden in gewissen Abständen in Gleislängsrichtung erfasst und der Stopfmaschine übermittelt oder an den Schwellen angeschrieben. Werden die Werte an den Schwellen angeschrieben, dann werden diese vom Vorwagenbediener händisch in die Steuerung eingegeben. Eine Überprüfung des Arbeitsergebnisses erfolgt hinter der Stopfmaschine wieder auf manuellem Weg oder mit Totalstation. Nachteilig neben der kostspieligen und zeitraubenden Aufmessung und Kontrolle ist auch, dass das Arbeitsergebnis nicht automatisch durchgängig aufgezeichnet wird (üblich sind Messungen alle 5m) und dass Überschreitungen der Toleranzen nicht automatisch objektiv gemessen und verzeichnet werden.
  • Der Erfindung liegt somit die Aufgabe zugrunde ein Verfahren anzugeben, welches es gestattet Absolutabweichungen einer Gleisachse eines Gleises zu einer zugeordneten Bahnsteigkante eines Bahnsteiges mit einfachen Mitteln überprüfen und gegebenenfalls in einem Arbeitsgang korrigieren zu können. Nach einer Weiterbildung der Erfindung soll zudem eine unmittelbare Überprüfung der durchgeführten Korrektur und Einhaltung vorgegebener Toleranzen möglich sein.
  • Die Erfindung löst die gestellte Aufgabe dadurch, dass ein drei Messwägen, einen vorderen, einen mittleren und einen hinteren Messwagen, aufweisendes Messsystem der Gleisstopfmaschine derart geführt wird, dass die Gleislage mit dem Stopfaggregat und dem Hebe-Richt-Aggregat um die Korrekturwerte für die Richtung und die Höhe korrigiert wird und die berichtigte Gleisachse den Referenzlinien für den Seitenabstand und den Höhenabstand folgt, womit sich besonders einfache Korrekturverhältnisse ergeben. Damit kann der gemessene Gleislagefehler in engen Toleranzen korrigiert werden.
  • Wesentlich für die eingesetzte 3D-Bilderfassungsvorrichtung ist, dass Objekte bzw. Bildpunkte im Erfassungs- und Aufnahmebereich mit zugeordneten Entfernungsdaten erfasst werden, damit über den Gleisverlauf mit bekannten Methoden ein räumliches Bild erzeugt werden kann. Einzelne Aufnahmen werden je einem bestimmten Gleiskilometer, also einer bestimmten Position entlang der Gleisachse zugeordnet.
  • Beispielsweise erfasst eine im Bereich der Gleisstopfmaschinenfront vorgesehene, gegen Gleis und Bahnsteig gerichtete, 3D-Bilderfassungsvorrichtung Gleis und Bahnsteig abhängig von der kilometrischen Position. Die Position kann mittels Odometer oder Satellitenpositionsdaten gemessen werden. Bilddaten bzw. die daraus gewonnenen Auswertedaten werden stets zusammen mit der zugeordneten Position im Gleis, also gleiskilometerabhängig, abgespeichert. Aus den aufgenommenen Bilddaten werden die räumlichen Lagen von Bahnsteigkante und Gleisachse errechnet. Die Bahnsteigkante hat idealerweise einen zumindest annähernd schienenparallelen Verlauf und die ebenfalls schienenparallele Gleisachse bestimmt sich über die Lage der Schienen. Über die aufgenommene Kontur der Schiene kann das Bild über den vorgegebenen Schienenabstand, üblicherweise bei Normalspur 1.500mm, skaliert werden und kann eine auf den Schienenköpfen aufliegende Querachse bestimmt werden auf der mittig zwischen den beiden Schienen die Gleisachse liegt. Diese Querachse wird rechnerisch parallel nach oben bis zur gemessenen Bahnsteigkante verschoben. Der Verschubweg entspricht dem Höhenabstand. Der Seitenabstand bestimmt sich aus dem Abstand auf der Verschubachse zwischen Bahnsteigkante und einer durch die Gleisachse gehenden Verschubachsennormalen. Die gemessenen tatsächlichen Abstände werden mit Sollabständen abgeglichen und daraus Korrekturwerte für die Hebe-Richt-Einrichtung ermittelt, die das Gleis an der den Messpunkten zugeordneten Position, also in Gleisachsrichtung zur 3D-Bilderfassungsvorrichtung nachfolgend versetzt, entsprechend den Korrekturwerten richtet und in der gerichteten Lage durch stopfen fixiert.
  • Als Bilderfassungsvorrichtung zur Aufmessung des Gleises und des Bahnsteiges werden vorzugsweise ein Laserscanner, eine Time-of-Flight (TOF) Kamera und/oder ein stereoskopisches Kamerasystem verwendet. Je nachdem, welche Kamera für den jeweiligen Einsatzzweck besser geeignet ist.
  • Konstruktiv einfach umzusetzen ist dies, wenn, die Ermittlung der Korrekturwerte für die Richtung und die Höhe sowie die Korrektur der Gleislage in einem Arbeitsgang erfolgen wobei der der Bilderfassungsvorrichtung in Arbeitsrichtung um eine Distanz nacheilende vordere Messwagen des Messsystems virtuell auf der um die Korrekturwerte berichtigten Gleissolllage geführt wird. Damit lassen sich Gleislagefehler besonders sanft korrigieren und werden insbesondere Querstöße bzw. starke Krümmungsänderungen in Gleisquerrichtung vermieden.
  • Bahnsteig und Gleis werden vor der Stopfarbeit mit der auf der Gleisstopfmaschine aufgebauten Bilderfassungsvorrichtung aufgenommen und zwar entweder in einer eigenen Messfahrt oder aber besonders bevorzugt in der Richtfahrt mit einer am vorderen Ende der Stopfmaschine angeordneten ersten Bilderfassungsvorrichtung, die gegebenenfalls in Arbeitsrichtung mit einem Stelltrieb über eine vordere Pufferbrust der Stopfmaschine hinaus verlagerbar ist. Ist die Bilderfassungsvorrichtung in Arbeitsrichtung mit einem Stelltrieb über eine Pufferbrust der Stopfmaschine hinaus verlagerbar, dann kann sie bei Überstellungsfahrten in einen gesicherten Bereich der Gleisstopfmaschine zurückgezogen werden. Im Messbetrieb ist hingegen sichergestellt, dass Bahnsteig und Gleis sowie etwaige Hindernisse einwandfrei erfasst werden können. Durch die bekannten Abstände entlang der Gleisstopfmaschinenlängsachse können gleiskilometerabhängig ermittelte Korrekturwerte lagerichtig korrigiert werden.
  • Wird nach der Korrektur der Gleislage eine weitere Messfahrt mit der Bilderfassungsvorrichtung durchgeführt, bei welcher der Verlauf der durch die Stopfarbeit erreichten Korrekturlage und Korrekturhöhe auf einem Speichermedium aufgezeichnet und die Einhaltung der Toleranzen nachgewiesen wird, so kann das Gleis nach der Messfahrt wieder freigegeben werden.
  • Ist am hinteren Ende der Stopfmaschine eine zweite Bilderfassungsvorrichtung aufgebaut, die während der Stopfarbeit den Verlauf der durch die Stopfarbeit erreichten Korrekturlage und Korrekturhöhe auf einem Speichermedium aufzeichnet und die Einhaltung der Toleranzen nachweist kann das Gleis gegebenenfalls unmittelbar nach der erfolgten Gleisarbeit wieder freigegeben werden und verringert sich die Dauer einer erforderlichen Gleissperre. Dazu kann die zweite Bilderfassungsvorrichtung gegebenenfalls gegen die Arbeitsrichtung mit einem Stelltrieb über eine hintere Pufferbrust der Stopfmaschine hinaus verlagerbar sein.
  • Die Vorteile der Erfindung liegen in der präzisen automatischen und in Gleislängsrichtung dichten Erfassung der Abweichungen der Istlage des Gleises zur Bahnsteigkante und der automatischen Führung der Stopfmaschine nach den erfassten Abweichungen. Ein weiterer Vorteil liegt in der automatischen Qualitätskontrolle durch die Aufzeichnung der Restabweichungen nach dem Stopfen. Die Qualitätskontrolle prüft die Toleranzen auf Überschreitung. Überschreitungen werden gekennzeichnet und die Stopfmaschine kann diese in einem Korrekturgang falls notwendig beheben. Ein weiterer Vorteil ist die damit garantierte automatisch erzielte höhere Qualität der Berichtigung und Messung und einer Verringerung der Fehleranfälligkeit.
  • Sind die absoluten Korrekturwerte für das vordere Ende der Maschinenmesseinrichtung bekannt, dann kann dieses vordere Ende (virtuell) auf der Gleis-Solllage und das hintere Ende auf dem bereits berichtigten Gleis geführt werden. An der Arbeitsstelle wird der Richt- und Hebevorgang durchgeführt. Die Position der Stopfmaschine in der Gleislängsachse wird mit einem Odometer bestimmt.
  • In der Zeichnung ist der Erfindungsgegenstand beispielhaft schematisch dargestellt. Es zeigen
    • Fig. 1 Schematische Seitenansicht einer Gleisstopfmaschine,
    • Fig. 2 eine Definition von Soll-Abstand und Soll-Höhe Bahnsteigkante zu Gleisachse anhand eines Gleisquerschnittes,
    • Fig. 3 eine Darstellung eines mit einem Laserscanner an einem bestimmten Gleiskilometer aufgenommenen Gleisquerschnittes,
    • Fig. 4 eine Darstellung eines Messverlaufs des Ist-Abstands der Gleisachse zur Bahnsteigkante, und
    • Fig. 5 eine Darstellung des Messverlaufs der Ist-Höhe der Gleisachse zur Bahnsteigkante.
  • Fig. 1 zeigt eine in Arbeitsrichtung A arbeitende Gleisstopfmaschine 1. Die Maschine ist auf einem Gleis 3 mit Drehgestellen 2 gleisfahrbar ausgeführt. Mit Hilfe eines Hebe-Richt-Aggregates 4, nämlich der Rollenzange 15, dem Hebehaken 14 oder der Gleisrichtrolle 7 und den Hebezylindern 5 kann das Gleis gehoben und seitlich gerichtet werden. Das Gleisheberichtaggregat ist über eine Deichsel 13 am Maschinenrahmen angelenkt und kann mittels Hydraulikzylinder in Maschinenlängsrichtung verschoben werden. Mit einem Odometer bzw. einem GPS System wird der Verfahrweg längs des Gleises gemessen. Alle aufgenommenen Daten werden von einer Auswerteeinrichtung 16 verarbeitet und aufgezeichnet. Die drei Messwagen 6 und 8 bilden das übliche Dreipunktsystem zum vermessen des Gleises. Mit einem inertialen Navigationsmesssystem 9, welches sich auf dem hinteren Messwagen 8 befindet, wird die aktuelle Gleislage und der Gleisverlauf im Raum aufgezeichnet. Durch Verdichten des Schotters unter den Schwellen mit dem Stopfaggregat 12 wird die Lage des Gleises nach einem Heben und Richten fixiert.
  • Der Bediener arbeitet von der Stopfkabine 11 aus. Zutritt zu den Kabinen ist über die Türen 10 möglich. Die Erfassung, Aufzeichnung der Daten und die Berechnung der Korrekturwerte, sowie der Sollwerte erfolgt in der Auswerteeinrichtung 16. Vorne und gegebenenfalls hinten an der Maschine 1 befinden sich teleskopierbare Bilderfassungsvorrichtungsträger 18 mittels denen die Laserscanner 17 über die Pufferbrust hinausgefahren werden können und dort entsprechend Scans an Position 19 anfertigen können. Zwischen Scanebene und vorderem Messwagen 6 des Messsystems liegt die Distanz c. Werden die Korrekturwerte bei Position 19, einem Querschnitt durch Bahnsteig und Gleis an einem bestimmten Gleiskilometer, gemessen, so sind diese um die Distanz c versetzt dem Dreipunktsystem zuzuführen. Diese Daten werden in die Auswerteeinrichtung 16 eingespeist.
  • Zunächst werden mit einer auf der Gleisstopfmaschine 1 aufgebauten 3D-Bilderfassungsvorrichtung 17 Bahnsteig 19 und Gleis 3 aufgenommen. Die Auswerteeinrichtung 16 ermittelt aus den aufgenommenen Bilddaten die räumlichen Lagen von Bahnsteigkante K und Gleisachse GA und errechnet daraus den Istwert für Seitenabstand D und Höhenabstand H. Durch einen Abgleich dieser Istwerte mit vorgegebenen, in der Auswerteeinrichtung hinterlegten, Sollseitenabständen SD und Sollhöhen SH, werden durch Subtraktion Korrekturwerte für die Richtung VD, vl, vr und die Höhe VH, h gleiskilometerabhängig errechnet. Die Gleislage wird abschließend mittels des Hebe-Richt-Aggregats 4 um die errechneten Korrekturwerte gerichtet und mit dem Stopfaggregat 12 in der gerichteten Lage fixiert.
  • Fig. 2 zeigt schematisch zwei, ein Gleis 3 einfassende Bahnsteige 19 üblicherweise wird nur ein Bahnsteig vorgesehen sein, die Schwelle 20 und die Querachse 21 zwischen den Schienen 3, welche auf den Schienenoberkante aufliegt. Der Seitenabstand D zur Bahnsteigkante K wird zur durch die Gleisachse GA gehenden und auf die Querachse 21 normalen Verbindungslinie 23 gemessen. Die Gleisachse GA liegt mittig zwischen den beiden Schienen auf der Querachse 21. Parallel zur Querachse 21 wird eine die Bahnsteigkante schneidende Linie 22 gezogen. Der Normalabstand zwischen der Linie 22 und der Querachse 21 entspricht dem Höhenabstand H der Gleisachse GA zur Bahnsteigkante. Diese Istwerte von Höhe und Abstand werden mit vorgegeben Sollwerten verglichen. Typische Sollhöhenabstände mit Toleranzen sind beispielsweise 760 +5/-35mm. Typische für Sollseitenabstände zur Gleisachse mit Toleranzen sind 1.700 +35/-50mm. Mit derzeit verfügbaren Laserscannern werden Genauigkeiten im Bereich von 1mm erzielt, also ausreichend für die erforderliche Genauigkeit.
  • Fig. 3 zeigt schematisch einen Scan an einem bestimmten Gleiskilometer, also eine Querschnitt durch Bahnsteig 19 und Gleis 3. Man erkennt die Umrisse der Schiene 3, die Schwellenkontur 20 und den Schotter am Vorkopf 24. Über die Kontur der Schiene wird der Schienenabstand S (üblicherweise bei Normalspur 1.500mm) hineingerechnet und das Bild skaliert. Aus dem Scan ergibt sich auch die auf den Schienenoberkanten aufliegende Querachse 21. Diese wird rechnerisch parallel nach oben bis zur gemessenen Bahnsteigkante K verschoben 22. Daraus ergibt sich der gemessene Höhenabstand H. In der Mitte der Spurweite S wird rechtwinkelig die Verbindungslinie 23 errechnet. Der Abstand zwischen Bahnsteigkante K und Verbindungslinie 23 auf der Linie 22 entspricht dem gemessenen Seitenabstand D.
  • Fig. 4 zeigt schematisch das Messdiagramm des gemessenen Seitenabstandes MD der Bahnsteigkante von der Gleisachse GA. In den Verlauf eingezeichnet ist der Soll-Seitenabstand ND des Bahnsteigs von der Gleisachse. MIN und MAX geben die zulässigen Toleranzen an. Würde der Verlauf von MD innerhalb der Toleranzen liegen, dann wäre prinzipiell keine Berichtigung notwendig. Die Differenzen des gemessenen Seitenabstandes MD zum Soll-Seitenabstand ND ergeben je nach Lage Korrekturen nach links vl oder rechts vr. Das Dreipunktsystem der Gleisstopfmaschine, insbesondere der vordere Messwagen 6, wird durch die Korrekturwerte VD (rechts in Fig. 4) virtuell am vorderen Sehnenpunkt geführt. DAW entspricht der Bezugslinie des mittleren Soll-Abstandes zur Bahnsteigkante. Falls die Bahnsteigkantenlinie ND nicht eben und gerade verläuft wird der Verlauf der Bahnsteigkante durch Glättung (gleitende Mittelwertbildung) in Längsrichtung gebildet. Damit werden eventuelle Ausreißer wie Abbröckelungen an der Kante, Fugen oder Riefen der Bahnsteigkante kompensiert bzw. weggeglättet.
  • Fig. 5 zeigt schematisch das Messdiagramm des gemessenen-Höhenabstandes MH der Bahnsteigkante zur Gleisachse. In den Verlauf eingezeichnet ist der Soll-Höhenabstand NH des Bahnsteigs von der Gleisachse GA. Min und Max geben die zulässigen Toleranzen an. F zeigt einen Gleisfehler bei dem das Gleis zu hoch und damit über MAX liegt. Dieser Fehler kann mit einer Gleisstopfmaschine nicht berichtigt werden. Stopfmaschinen können das Gleis nicht absenken, sondern nur heben und seitlich richten. Der Fehler wird in diesem Bereich verbleiben. Damit sich ein kontinuierlicher Übergang zu diesem Gleisfehler F ergibt kann die Referenzlinie des Höhenabstandes NH' als Polygonzug an die MAX-Linie herangeführt werden. Die Referenzlinie des Höhenabstandes NH' wird dann so geführt, dass sie einerseits innerhalb der Toleranzen MIN und MAX und oberhalb der Ist-Höhe MH zu liegen kommt. Im rechten Diagramm werden die sich ergebenden Hebungen h (punktierte Linie) bezüglich der Referenzlinie HAW (aus NH') angegeben. Das Diagramm zeigt die Korrekturwerte VH bezüglich der Höhenlage. Die Höhenkante NH des Bahnsteiges kann ebenfalls durch Glättung von etwaigen unerwünschten Fehlern wie Abbrüchen, Fugen etc. kompensiert werden.

Claims (8)

  1. Verfahren zur Berichtigung des Seitenabstandes (D) und des Höhenabstandes (H) einer Bahnsteigkante (K) eines Bahnsteiges (19) zur Gleisachse (GA) eines Gleises (3) mit einer gleisfahrbaren, mit einem Hebe-Richt-Aggregat (4) und einem Stopfaggregat (12) ausgestatteten, Gleisstopfmaschine (1), wobei zunächst mit einer auf der Gleisstopfmaschine (1) aufgebauten 3D-Bilderfassungsvorrichtung (17) Bahnsteig (19) und Gleis (3) aufgenommen werden, dass eine Auswerteeinrichtung (16) aus den aufgenommenen Bilddaten die räumlichen Lagen von Bahnsteigkante (K) und Gleisachse (GA) ermittelt, daraus den Istwert für Seitenabstand (D) und Höhenabstand (H) errechnet und durch einen Abgleich dieser Istwerte mit Sollseitenabständen (SD) und Sollhöhenabständen (SH), Korrekturwerte für die Richtung (VD, vl, vr) und die Höhe (VH, h) gleiskilometerabhängig errechnet werden und dass die Gleislage mittels des Hebe-Richt-Aggregats (4) um die errechneten Korrekturwerte gerichtet und mit dem Stopfaggregat (12) in der gerichteten Lage fixiert wird, dadurch gekennzeichnet, dass ein drei Messwägen (6, 8) aufweisendes Messsystem der Gleisstopfmaschine (1) derart geführt wird, dass die Gleislage mit dem Stopfaggregat (12) und dem Hebe-Richt-Aggregat (4) um die Korrekturwerte für die Richtung (VD, vl, vr) und die Höhe (VH, h) korrigiert wird und die berichtigte Gleisachse (GA) den Referenzlinien für den Seitenabstand (ND) und den Höhenabstand (NH, NH') folgt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass Bahnsteig (19) und Gleis (3) vor der Stopfarbeit mit der auf der Gleisstopfmaschine (1) aufgebauten Bilderfassungsvorrichtung (17) aufgenommen werden und zwar entweder in einer eigenen Messfahrt oder in der Richtfahrt mit einer am vorderen Ende der Stopfmaschine (1) angeordneten ersten Bilderfassungsvorrichtung (17), die gegebenenfalls in Arbeitsrichtung A mit einem Stelltrieb über eine Pufferbrust der Stopfmaschine (1) hinaus verlagerbar ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Bilderfassungsvorrichtung (17) ein Laserscanner zur Aufmessung des Gleises (3) und des Bahnsteiges (19) verwendet wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Bilderfassungsvorrichtung (17) eine Time-of-Flight Kamera zur Aufmessung des Gleises (3) und des Bahnsteiges (19) verwendet wird.
  5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Bilderfassungsvorrichtung (17) ein stereoskopisches Kamerasystem zur Aufmessung des Gleises (3) und des Bahnsteiges (19) verwendet wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Ermittlung der Korrekturwerte für die Richtung (VD, vl, vr) und die Höhe (VH, h) sowie die Korrektur der Gleislage in einem Arbeitsgang erfolgen wobei der der Bilderfassungsvorrichtung (17) in Arbeitsrichtung (A) um eine Distanz (c) nacheilende vordere Messwagen (6) des Messsystems virtuell auf der um die Korrekturwerte berichtigten Gleissolllage geführt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass nach der Korrektur der Gleislage eine weitere Messfahrt mit der Bilderfassungsvorrichtung (17) durchgeführt wird die den Verlauf der durch die Stopfarbeit erreichten Korrekturlage (MD) und Korrekturhöhe (MH) auf einem Speichermedium aufzeichnet und die Einhaltung der Toleranzen (MIN, MAX) nachweist.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass am hinteren Ende der Stopfmaschine (1) eine zweite Bilderfassungsvorrichtung (17) aufgebaut ist, die während der Stopfarbeit den Verlauf der durch die Stopfarbeit erreichten Korrekturlage (MD) und Korrekturhöhe (MH) auf einem Speichermedium aufzeichnet und die Einhaltung der Toleranzen (MIN, MAX) nachweist.
EP22187233.6A 2021-08-04 2022-07-27 Verfahren zur berichtigung des seitenabstandes und des höhenabstandes einer bahnsteigkante eines bahnsteiges zur gleisachse Withdrawn EP4130379A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA50636/2021A AT525332A1 (de) 2021-08-04 2021-08-04 Verfahren zur Berichtigung des Seitenabstandes und des Höhenabstandes einer Bahnsteigkante zur Gleisachse

Publications (1)

Publication Number Publication Date
EP4130379A1 true EP4130379A1 (de) 2023-02-08

Family

ID=82748248

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22187233.6A Withdrawn EP4130379A1 (de) 2021-08-04 2022-07-27 Verfahren zur berichtigung des seitenabstandes und des höhenabstandes einer bahnsteigkante eines bahnsteiges zur gleisachse

Country Status (2)

Country Link
EP (1) EP4130379A1 (de)
AT (1) AT525332A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1028193A1 (de) 1999-02-10 2000-08-16 Franz Plasser Bahnbaumaschinen-Industriegesellschaft m.b.H. Verfahren zur Lagekorrektur eines Gleises
WO2017215777A2 (de) 2016-06-13 2017-12-21 Plasser & Theurer Export Von Bahnbaumaschinen Gesellschaft M.B.H. Verfahren und system zur instandhaltung eines fahrweges für schienenfahrzeuge
WO2019140467A1 (de) 2018-01-22 2019-07-25 Hp3 Real Gmbh Verfahren zur gleislageverbesserung durch eine gleisfahrbare gleisstopfmaschine
US20190367060A1 (en) * 2018-06-01 2019-12-05 Tetra Tech, Inc. Apparatus and method for calculating wooden crosstie plate cut measurements and rail seat abrasion measurements based on rail head height
WO2020233934A1 (de) 2019-05-23 2020-11-26 Plasser & Theurer Export Von Bahnbaumaschinen Gesellschaft M.B.H. Gleisbaumaschine und verfahren zum stopfen eines gleises

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT519739B1 (de) * 2017-05-12 2018-10-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren zum Steuern einer Gleisbaumaschine
AT520824B1 (de) * 2018-05-24 2019-08-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren und Maschine zum Unterstopfen eines Gleises im Bereich einer Weiche

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1028193A1 (de) 1999-02-10 2000-08-16 Franz Plasser Bahnbaumaschinen-Industriegesellschaft m.b.H. Verfahren zur Lagekorrektur eines Gleises
WO2017215777A2 (de) 2016-06-13 2017-12-21 Plasser & Theurer Export Von Bahnbaumaschinen Gesellschaft M.B.H. Verfahren und system zur instandhaltung eines fahrweges für schienenfahrzeuge
WO2019140467A1 (de) 2018-01-22 2019-07-25 Hp3 Real Gmbh Verfahren zur gleislageverbesserung durch eine gleisfahrbare gleisstopfmaschine
US20190367060A1 (en) * 2018-06-01 2019-12-05 Tetra Tech, Inc. Apparatus and method for calculating wooden crosstie plate cut measurements and rail seat abrasion measurements based on rail head height
WO2020233934A1 (de) 2019-05-23 2020-11-26 Plasser & Theurer Export Von Bahnbaumaschinen Gesellschaft M.B.H. Gleisbaumaschine und verfahren zum stopfen eines gleises

Also Published As

Publication number Publication date
AT525332A1 (de) 2023-02-15

Similar Documents

Publication Publication Date Title
EP0520342B1 (de) Messfahrzeug
EP0213253B1 (de) Gleisfahrbare Maschine zum Messen bzw. Registrieren oder Korrigieren der Gleislage mit Laser-Strahlen bzw. -Ebenen
AT516278B1 (de) Verfahren zur Messung und Darstellung der Gleisgeometrie einer Gleisanlage
EP3358079B1 (de) Verfahren und vorrichtung zum messen und berechnen einer gleislage
EP1420113B1 (de) Verfahren zur Abtastung eines Bettungsprofiles
DE3137194C2 (de)
EP4214103B1 (de) Verfahren und system zur ermittlung eines soll-gleisverlaufs für eine lagekorrektur
AT519739B1 (de) Verfahren zum Steuern einer Gleisbaumaschine
EP3802265B1 (de) Verfahren und system zur ermittlung einer ist-lage von schienen eines gleises
EP3535456B1 (de) Gleisbaumaschine mit gleislagemesssystem
DE68914828T2 (de) Vorrichtung und verfahren zur bestimmung der ortung einer schiene.
AT516590B1 (de) Verfahren und Vorrichtung zum Verdichten der Schotterbettung eines Gleises
EP0652325B1 (de) Gleisbaumaschine zur Korrektur der Gleislage
EP1270814B1 (de) Gleisbaumaschine und Verfahren zur Erfassung einer Gleislage
EP1028193B1 (de) Verfahren zur Lagekorrektur eines Gleises
EP3584366B1 (de) Gleisfahrbarer messwagen
DE9308435U1 (de) Gleisbaumaschine mit einem Laser-Bezugsystem
EP4130379A1 (de) Verfahren zur berichtigung des seitenabstandes und des höhenabstandes einer bahnsteigkante eines bahnsteiges zur gleisachse
CH623624A5 (de)
AT522404B1 (de) Schotterplaniermaschine
AT523900A1 (de) Verfahren zur automatischen autonomen Steuerung einer Stopfmaschine
DE2434073C2 (de) Verfahren zum Richten und bzw. oder Längsnivellieren von Eisenbahngleisen mittels einer schienenfahrbaren Gleisstopf-Richt-Nivelliermaschine und Vorrichtung zur Durchführung des Verfahrens
AT522405B1 (de) Schotterplaniermaschine
EP4256133A2 (de) Verfahren zur automatischen autonomen steuerung einer stopfmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230809