EP0140065B1 - Elektronische Einrichtung zur Steuerung der Kraftstoffzumessung einer Brennkraftmaschine - Google Patents

Elektronische Einrichtung zur Steuerung der Kraftstoffzumessung einer Brennkraftmaschine Download PDF

Info

Publication number
EP0140065B1
EP0140065B1 EP84110673A EP84110673A EP0140065B1 EP 0140065 B1 EP0140065 B1 EP 0140065B1 EP 84110673 A EP84110673 A EP 84110673A EP 84110673 A EP84110673 A EP 84110673A EP 0140065 B1 EP0140065 B1 EP 0140065B1
Authority
EP
European Patent Office
Prior art keywords
synchronization
fuel amount
combustion
control
smooth running
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84110673A
Other languages
English (en)
French (fr)
Other versions
EP0140065A1 (de
Inventor
Thomas Dipl.-Ing. Küttner
Wolf Ing. Grad. Wessel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to AT84110673T priority Critical patent/ATE39163T1/de
Publication of EP0140065A1 publication Critical patent/EP0140065A1/de
Application granted granted Critical
Publication of EP0140065B1 publication Critical patent/EP0140065B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Definitions

  • the change in the fuel metering to the individual cylinders is carried out in such a way that the total amount of fuel supplied to the machine remains unchanged.
  • a device is also known from US Pat. No. 4,179,922 in which the mean value formed across all cylinders is used as the setpoint for the period between two burns.
  • the object of the invention is to carry out the correction of the fuel quantities to be injected into the individual cylinders quickly, precisely, safely and with the aim that each cylinder delivers the same torque and that this results in smooth engine running.
  • This object is achieved on the basis of an electronic device for controlling the fuel metering of an internal combustion engine according to the preamble of claim 1 by the characterizing features of claim 1.
  • FIG. 1 shows the basic structure of a smooth running control for an internal combustion engine
  • FIG. 2 shows the timing diagram of this smooth running control
  • FIGS. 3 to 5 show possibilities for integrating the smooth running control into an existing fuel metering device.
  • FIG. 1 shows the structure of a smooth running control for an internal combustion engine.
  • This smooth running control 10 comprises z controls 11, 12 and 13, where z is the number of cylinders of the internal combustion engine. Furthermore, the smooth running control 10 includes storage devices 14, 15 and 16, two synchronization devices 17 and 18, and a device for forming an average value 19.
  • FIG. 1 also shows an idling control 20, one of the position of the accelerator pedal dependent control 21, a fuel metering device 22 and the internal combustion engine 23 are shown.
  • the z controls 11, 12 and 13 are now connected on the one hand to the respectively associated z storage devices 14, 15 and 16 and on the other hand to the output of the device for forming an average value 19.
  • This device 19 is acted upon by the output signals of all z memory devices 14 to 16.
  • the inputs of the z storage devices 14 to 16 are connected to the synchronization device 17, while the outputs of the z controls 11 to 13 are connected to the synchronization device 18.
  • These two synchronization devices 17 and 18 are now controlled by a signal dependent on the internal combustion engine 23.
  • the internal combustion engine 23 itself is connected to the fuel metering device 22, which in turn is connected to the synchronization device 18, the idle control 20 and the accelerator pedal-dependent control 21.
  • FIG. 2 this is a time diagram of an internal combustion engine with four cylinders. The period of two crankshaft revolutions is shown, i.e. 720 ° KW. During this period, combustion took place in each of the four cylinders.
  • I and J denote two actual signals that are generated using a segment wheel.
  • This segment wheel which is connected to the crankshaft, has four segments which are distributed symmetrically on its circumference.
  • Each pulse of the actual signal J now corresponds to a segment of this segment wheel.
  • the length of each pulse of this actual signal J corresponds to the time it takes for a segment of this segment wheel to to pass through the plane perpendicular to the segment wheel. Since four segments of the segment wheel pass through the imaginary plane during a crankshaft revolution, but since only two burns take place in the cylinders during this time, exactly two segments of the segment wheel pass through the imaginary plane perpendicular to the segment wheel between two burnings.
  • the time between two burns is thus divided into two time segments with the help of these two segments of the segment wheel. Due to the symmetry of the segment wheel, and since the crankshaft angular velocity is always somewhat higher immediately after combustion than immediately before combustion, these two time periods, e.g. B. J21 and J22 always different sizes. The shorter of the two periods, e.g. J21, always indicates that combustion has taken place, while the longer of the two periods, e.g. J22, announces an upcoming combustion.
  • the simulated combustion times V of the individual cylinders which are also called synchronization signals, can be precisely determined with the aid of the actual signal J.
  • These combustion times V of the individual cylinders and their relationship with the actual signal J are shown in the time diagram in FIG.
  • This determination of the combustion times V from the actual signal J is carried out in both synchronization devices 17 and 18 of FIG. 1.
  • the synchronization device 17 switches the actual values 11, 12 and Iz to the corresponding storage devices 14, 15 and 16 with the aid of the simulated combustion times V, these actual values li, 12 to Iz also being formed by the synchronization device 17 with the aid of the actual signal J.
  • the actual values 11, 12 to Iz are each the time periods between two combustion times, as shown in FIG. 2.
  • the synchronization device 18 likewise uses the actual signal J to determine the simulated combustion times V, and thus applies the control values S1, S2 and Sz formed by the control devices 11, 12 and 13 as control signal S to the fuel metering device 22.
  • the control signal S is shown in the time diagram of FIG. 2. It consists of the control values S1, S2 to Sz of the individual cylinders, these control values being formed by the associated control devices. So z. B. the control value S1 is produced by the control device 11 from the actual value 11 buffered by the storage device 14 and an average value Mz. The mean value Mz is formed by the device 19 from all temporarily stored actual values 11, 12 to Iz.
  • This control value S3 is activated shortly after the time T so that the associated control device can also set this new control value. This means that this new manipulated variable is dependent on all previous actual values.
  • the entire smooth running control 10 thus generates an actuating signal S for actuating the fuel metering device 22 from an actual signal I, which is obtained with the aid of a segment wheel. influenced by an idle control 20 and / or by an accelerator pedal-dependent control 21.
  • the fuel metering device 22 determines z. B. the amount of fuel to be injected into the internal combustion engine 23.
  • the smooth running control 10 must be integrated into the entire injection system of the internal combustion engine. This is e.g. possible that the smooth running control 10 can only influence the entire injection system dynamically. For this dynamic influence, the sum of the manipulated values S1 to Sz must be 0, i.e. it must be the average amount of fuel that is supplied to the internal combustion engine less or more due to the smooth running control over z injections 0. This requirement for the integration of the smooth running control 10 into the entire injection system can e.g. B. with the help of one of the changes shown in Figure 3 to Figure 5 of the smooth running control.
  • FIG. 3 shows the block diagram of part of the smooth running control, in this example the integration of the smooth running control in the entire injection system is realized by subtracting the mean value of the control signal S from the output signals of the integrating components of the controls assigned to the individual cylinders.
  • the control 11 consists of an integrating component 30, a proportional component 31, two subtraction points 32 and 33 and an addition point 34.
  • the input signals 11 and Mz supplied to the control 11 are first linked to one another at the subtraction point 32.
  • the output signal of this subtraction point 32 is supplied to the integrating component 30 and the proportional component 31.
  • the output signal of the proportional component 31 is connected to the addition point 34, which is further subjected to the output signal of the subtraction point 33.
  • This output signal of the subtraction point 33 is formed on the one hand from the output signal of the inte limiting portion 30 and from the mean value of the control signal S.
  • the output signal of the addition point 34 now represents the control value S1, which is fed to the synchronization device 18.
  • the output signal of this synchronization device 18 is the control signal S, which is fed to a device for forming an average 35, the output signal of which then represents the average of the control signal S.
  • This device for forming an average 35 can consist, for example, of a low-pass filter.
  • control signal S is not only fed back to the control 11, but also to the controls 12 to 13 assigned to the other cylinders. This feedback of the control signal S to all the controls 11 to 13 of the smooth running control 10 is achieved that the mean value of the control signal over z burns is 0.
  • the smooth running control is integrated into the entire injection system by subtracting the mean value of the integrating components of the controls assigned to the individual cylinders from the output signals of these integrating components of the individual controls.
  • the control 11 then consists of an integrating component 40, a proportional component 41, two subtraction points 42 and 43 and an addition point 44.
  • the input signals 11 and Mz fed to the control 11 are connected to one another at the subtraction point 42.
  • the output signal of this subtraction point 42 is supplied to the integrating component 40 and the proportional component 41.
  • the output signal of the integrating component 40 is now connected to a summation point 45, which is further subjected to the output signals of the integrating components of the controls assigned to the other cylinders.
  • the output signal of this summation point 45 is fed to a device for forming an average value 46, the output signal of which is connected to the node 47.
  • This connection point 47 is linked to all the controls assigned to the individual cylinders.
  • the connection point 47 is connected to the subtraction point 43, which is further subjected to the output signal of the integrating component 40.
  • the addition point 44 is connected on the one hand to the output signal of this subtraction point 43 and on the other hand to the output signal of the proportional component 41.
  • the output signal of the addition point 44 represents the manipulated variable S1.
  • FIG. 5 shows a further possibility of integrating the smooth running control into the entire injection system, in which the mean value of the control values of the controls assigned to the individual cylinders is subtracted from the output signal of the integrating components of these controls.
  • Regulation 11 is e.g. from an integrating part 50, a proportional part 51, two subtraction points 52 and 53 and an addition point 54.
  • the input signals 11 and Mz fed to the control 11 are linked together at the subtraction point 52.
  • the output signal of this subtraction point 52 is now fed to the integrating component 50 and the proportional component 51.
  • the output signal of the integrating part is connected to the subtraction point 52, the output signal of the proportional part to the addition point 54.
  • This addition point 54 is also subjected to the output signal of the subtraction point 53, the output signal of this addition point 54 represents the manipulated variable S1.
  • This manipulated variable S1 is led to an addition point 57, to which the manipulated values of the controls assigned to the other cylinders are also connected are.
  • the output signal of this addition point 57 is fed to a device for forming an average value 56, the output signal of which is connected to a node 55.
  • this connection point 55 all the controls associated with the individual cylinders are connected, such as e.g. is shown in the control 11 with the connection of the node 55 to the subtraction point 53.
  • the smooth running control described is only intended to prevent the vehicle from vibrating in the lower speed range, especially when idling. This is achieved by the fact that the smooth running control is only effective in a certain speed range.
  • the transition areas from this area of the active smoothness control to speeds at which the smoothness control is not effective can e.g. B. covered with a control of the smooth running control.
  • the output variable of the smooth running control is further multiplied by a fuel quantity-dependent factor which is between 0 and 1 in order to achieve a soft increase in the manipulated variable in the event of a sharp drop in speed.
  • the actual signal that is to say the time period between two combustion times, was determined with the aid of the segment wheel. It is also possible to generate a speed signal using a fast tachometer generator or by means of a gearwheel with a subsequent pulse generator and frequency voltage converter. An actual signal for the smooth running control can be generated by integrating this speed signal from injection to injection or from synchronizing pulse to synchronizing pulse. A further possibility for generating the actual signal would be a peak value evaluation of the speed signal between two injection quantities.
  • the combustion times required for the provision of the actual signal are determined in the smooth running control described by dividing the time period between two combustion times into two time segments. Since the switching of the actual signal to the storage devices and / or the switching of the control values to the fuel metering device may not take place exactly at the time of combustion, it is possible to extend the smoothness control described with the aid of a counter so that this counter is converted from a reference signal, e.g. B. is reset by a needle stroke pulse, an injection start pulse, a combustion start pulse, etc., and controls the two synchronization devices at certain, predeterminable counter readings. This makes it possible to generate the switching through of the two synchronization devices at arbitrary, but fixed times.
  • a reference signal e.g. B. is reset by a needle stroke pulse, an injection start pulse, a combustion start pulse, etc.
  • the counter can now either count up as a function of speed and then deliver the synchronization pulses to the two synchronization devices at certain counter readings, or it counts up at a fixed frequency and determines the synchronization times depending on the speed. It is also possible that the counter is reset with every synchronization pulse and with every reference pulse.
  • the four segments of the segment wheel were distributed evenly over the circumference of the wheel. With the help of these segments, the time between two combustion times was divided into a short and a long period. To reinforce the difference between these short and long periods of time, it is now possible to design the segments of the segment wheel asymmetrically. In the case of the described smooth running control in an internal combustion engine with four cylinders, this would mean that only two opposing segments have the same length. This asymmetry has no influence on the determination of the actual signal I, since the actual signal I represents the time period between two combustions and this time period comprises two segments.
  • the segment wheel divides the time between two combustion times into a short and a long period. Interference signals with a lower frequency than the injection frequency can now be superimposed on these time periods. This means that short and long periods of time are no longer evenly changed.
  • the synchronization devices now determine whether a time segment is longer than the previous and the following, they carry out a maximum time check. A synchronization counter, which is increased by 1 at the end of each time period, is always checked when the maximum time check e.g. has noticed a long period of time. If the synchronization is correct, the ends of the long periods of time always fall on z. B. odd-numbered synchronization counts.
  • the synchronization is incorrect. If an incorrect synchronization is detected, it is checked whether in the next e.g. An incorrect synchronization occurs again after 20 periods. The synchronization is only changed if this is the case.
  • control signal S was fed to the fuel metering device 22, which then e.g. influences the amount of fuel to be injected into the internal combustion engine. It is of course also possible that the control signal S indirectly or directly influences other control variables of the internal combustion engine, e.g. the exhaust gas recirculation, the injection timing, the injection duration, the fuel / air ratio, the ignition timing, etc.
  • the device shown and described in Figures 1 to 5 can e.g. can be realized with the help of an analog circuit structure. It is particularly advantageous to use the described smooth running control and, if necessary, also other control and / or regulating devices for fuel metering, e.g. using a suitably programmed microprocessor. With such a computer solution, however, it is then possible that the block diagrams shown can no longer be recognized, since they have been replaced by subroutine structures, time-division multiplexing, etc.
  • the smooth running control described can be used in internal combustion engines of various functional principles, that is to say in self-igniting internal combustion engines, in spark-ignited internal combustion engines, etc. It is particularly advantageous that depending on the function principle of the internal combustion engine, the control assigned to each cylinder of the internal combustion engine directly or indirectly influences a number of control variables of the internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

    Stand der Technik
  • Bei Kraftfahrzeugen tritt häufig im unteren Drehzahlbereich, insbesondere im Leerlauf, ein niederfrequentes Schwingen des gesamten Fahrzeugs auf. Dieses Schwingen wird oft als Schütteln bezeichnet und liegt im Bereich zwischen 1 und 5 Hz. Begründet ist dieses Schütteln in der Serienherstellung der Einspritzausrüstungen. Dabei treten Toleranzen an den Einspritzkomponenten auf, die von Zylinder zu Zylinder unterschiedliche Einspritzmengen hervorrufen. Diese Kraftstoffmengenunterschiede führen zu schnellen Drehmomentänderungen, die das schwingfähige Gebilde Motor + Karosserie anregen. Das Schütteln ist also eine unvermeidliche Folge von Fertigungstoleranzen.
  • Aus der US-PS 4366793 ist eine Einrichtung bekannt, die dazu dient, Drehmomentschwankungen einer Brennkraftmaschine, die sich infolge unterschiedlicher Kraftstoffzumessung zu den einzelnen Zylindern ergeben, entgegenzuwirken. Die Drehmomentschwankungen werden aus periodischen Drehzahlschwankungen der Kurbelwelle abgeleitet. Ein Energy Discriminator erzeugt für jeden einzelnen Zylinder ein entsprechendes Signal. Abhängig von diesem Signal wird die Kraftstoffzufuhr zu den einzelnen Zylindern entweder erhöht oder erniedrigt. Als Istwert dient die Zeitdauer zwischen zwei Verbrennungszeitpunkten in den jeweiligen Zylindern, als Sollwert dient ein aus den vorangegangenen Verbrennungen ermittelter Mittelwert.
  • Die Änderung der Kraftstoffzumessung zu den einzelnen Zylindern wird so vorgenommen, dass die gesamte der Maschine zugeführte Kraftstoffmenge unverändert bleibt.
  • Aus der US-PS 4179 922 ist weiterhin eine Einrichtung bekannt, bei welcher als Sollwert für den zwischen zwei Verbrennungen liegenden Zeitraum der über alle Zylinder gebildete Mittelwert benutzt wirt.
  • Ferner ist aus der FR-A-2 301 691 bekannt, mit Hilfe eines PI-Reglers die Kraftstoffzumessung einer Brennkraftmaschine so zu beeinflussen, dass Drehmomentschwankungen entgegengewirkt wird.
  • Aufgabe der Erfindung ist es, die Korrektur der in die einzelnen Zylinder einzuspritzenden Kraftstoffmengen schnell, genau, sicher und mit dem Ziel durchzuführen, dass jeder Zylinder das gleiche Drehmoment abgibt, und dass dadurch ein ruhiger Motorlauf entsteht. Diese Aufgabe wird ausgehend von einer elektronischen Einrichtung zur Steuerung der Kraftstoffzumessung einer Brennkraftmaschine nach dem Oberbegriff des Anspruches 1 durch die kennzeichnenden Merkmale des Anspruches 1 gelöst.
  • Durch die in den Unteransprüchen aufgeführten Massnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 angegebenen Einrichtung möglich.
  • Zeichnung
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 den prinzipiellen Aufbau einer Laufruheregelung für eine Brennkraftmaschine, Figur 2 das Zeitdiagramm dieser Laufruheregelung und Figur 3 bis Figur 5 Möglichkeiten der Einbindung der Laufruheregelung in eine vorhandene Kraftstoffzumesseinrichtung.
  • Beschreibung der Ausführungsbeispiele
  • Figur 1 zeigt den Aufbau einer Laufruheregelung für eine Brennkraftmaschine. Diese Laufruheregelung 10 umfasst z Regelungen 11, 12 und 13, wobei z die Anzahl der Zylinder der Brennkraftmaschine ist. Weiter beinhaltet die Laufruheregelung 10 z Speichereinrichtungen 14, 15 und 16, zwei Synchronisationseinrichtungen 17 und 18, sowie eine Einrichtung zur Bildung eines Mittelwerts 19. Zum besseren Verständnis der Laufruheregelung 10 sind in der Figur 1 noch eine Leerlaufregelung 20, eine von der Stellung des Fahrpedals abhängige Steuerung 21, eine Kraftstoffzumesseinrichtung 22 und die Brennkraftmaschine 23 dargestellt.
  • Die z Regelungen 11, 12 bzw. 13 sind nun zum einen mit den jeweils zugehörigen z Speichereinrichtungen 14, 15 bzw. 16 und zum anderen mit dem Ausgang der Einrichtung zur Bildung eines Mittelwerts 19 verbunden. Diese Einrichtung 19 wird von den Ausgangssignalen aller z Speichereinrichtungen 14 bis 16 beaufschlagt. Die Eingänge der z Speichereinrichtungen 14 bis 16 sind mit der Synchronisationseinrichtung 17 verbunden, während die Ausgänge der z Regelungen 11 bis 13 an die Synchronisationseinrichtung 18 angeschlossen sind. Diese beiden Synchronisationseinrichtungen 17 und 18 werden nun von einem von der Brennkraftmaschine 23 abhängigen Signal angesteuert. Die Brennkraftmaschine 23 selbst ist mit der Kraftstoffzumesseinrichtung 22 verbunden, die ihrerseits an die Synchronisationseinrichtung 18, die Leerlaufregelung 20 und die fahrpedalabhängige Steuerung 21 angeschlossen ist.
  • Die Funktionsweise der in Figur 1 dargestellten Laufruheregelung lässt sich am besten mit Hilfe des in Figur 2 dargestellten Zeitdiagramms beschreiben. Es handelt sich dabei in Figur 2 um ein Zeitdiagramm einer Brennkraftmaschine mit vier Zylindern. Abgebildet ist der Zeitraum von zwei Kurbelwellenumdrehungen, also von 720° KW. In diesem Zeitraum hat in jedem der vier Zylinder eine Verbrennung stattgefunden.
  • Mit I und J sind in diesem Zeitdiagramm zwei Istsignale bezeichnet, die mit Hilfe eines Segmentrads erzeugt werden. Dieses Segmentrad, das mit der Kurbelwelle verbunden ist, besitzt vier Segmente, die symmetrisch auf seinem Umfang verteilt sind. Jeder Impuls des Istsignals J entspricht nun einem Segment dieses Segmentrads. Dabei entspricht die Länge eines jeden Impulses dieses Istsignals J der Zeitdauer, die ein Segment dieses Segmentrads benötigt, um eine gedachte, senkrecht zum Segmentrad stehende Ebene zu durchlaufen. Da während einer Kurbelwellenumdrehung vier Segmente des Segmentrads die gedachte Ebene durchlaufen, da in dieser Zeit aber nur zwei Verbrennungen in den Zylindern stattfinden, durchlaufen demnach genau zwei Segmente des Segmentrads zwischen zwei Verbrennungen die gedachte, senkrecht zum Segmentrad stehende Ebene. Die Zeitdauer zwischen zwei Verbrennungen ist also mit Hilfe dieser beiden Segmente des Segmentrads in zwei Zeitabschnitte aufgeteilt. Aufgrund der Symmetrie des Segmentrads, und da direkt nach einer Verbrennung die Kurbelwellenwinkelgeschwindigkeit immer etwas grösser ist als direkt vor einer Verbrennung, sind diese beiden Zeitabschnitte, z. B. J21 und J22 immer verschieden gross. Der kürzere der beiden Zeitabschnitte, z.B. J21, deutet also immer auf eine stattgefundene Verbrennung hin, während der längere der beiden Zeitabschnitte, z.B. J22, eine kommende Verbrennung ankündigt.
  • Nach einer einmaligen Justierung des Segmentrads auf der Kurbelwelle lassen sich somit mit Hilfe des Istsignals J die nachgebildeten Verbrennungszeitpunkte V der einzelnen Zylinder, die auch Synchronisationssignale genannt werden, genau festlegen. Im Zeitdiagramm der Figur 2 sind diese Verbrennungszeitpunkte V der einzelnen Zylinder und ihr Zusammenhang mit dem Istsignal J dargestellt.
  • Diese Bestimmung der Verbrennungszeitpunkte V aus dem Istsignal J wird in beiden Synchronisationseinrichtungen 17 und 18 der Figur 1 durchgeführt. Die Synchronisationseinrichtung 17 schaltet mit Hilfe der nachgebildeten Verbrennungszeitpunkte V die Istwerte 11, 12 bzw. Iz auf die entsprechenden Speichereinrichtungen 14, 15 bzw. 16, wobei diese Istwerte li, 12 bis Iz ebenfalls von der Synchronisationseinrichtung 17 mit Hilfe des Istsignals J gebildet werden. Es handelt sich bei den Istwerten 11, 12 bis Iz jeweils um die Zeitdauern zwischen zwei Verbrennungszeitpunkten, wie es in Figur 2 dargestellt ist. Die Synchronisationseinrichtung 18 bestimmt ebenfalls mit Hilfe des Istsignals J die nachgebildeten Verbrennungszeitpunkte V, und schaltet damit die von den Regeleinrichtungen 11, 12 bzw. 13 gebildeten Stellwerte S1, S2 bzw. Sz als Stellsignal S auf die Kraftstoffzumesseinrichtung 22 auf.
  • Das Stellsignal S ist im Zeitdiagramm der Figur 2 dargestellt. Es besteht aus den Stellwerten S1, S2 bis Sz der einzelnen Zylinder, wobei diese Stellwerte von den jeweils zugehörigen Regeleinrichtungen gebildet werden. So wird z. B. der Stellwert S1 von der Regeleinrichtung 11 aus dem von der Speichereinrichtung 14 zwischengespeicherten Istwert 11 und einem Mittelwert Mz hergestellt. Der Mittelwert Mz wird dabei von der Einrichtung 19 aus sämtlichen zwischengespeicherten Istwerten 11, 12 bis Iz gebildet.
  • Befindet sich die Brennkraftmaschine z. B. gerade im Zeitpunkt T, wie es im Zeitdiagramm der Figur 2 dargestellt ist, so findet in diesem Augenblick erstens eine Verbrennung im Zylinder 2 statt, zweitens übergibt die Synchronisationseinrichtung 17 den Istwert 11, also die Zeitdauer von der Verbrennung des Zylinders 1 bis zur Verbrennung des Zylinders 2 an die Speichereinrichtung 14, und drittens schaltet die Synchronisationseinrichtung 18 den Stellwert S3 für die nachfolgende Verbrennung des Zylinders 3 auf die Kraftstoffzumesseinrichtung 22 auf. Dieses Aufschalten des Stellwerts S3 findet kurze Zeit nach dem Zeitpunkt T statt, damit die zugehörige Regeleinrichtung diesen neuen Stellwert auch einstellen kann. Dadurch ist dieser neue Stellwert abhängig von sämtlichen vorhergehenden Istwerten.
  • Die gesamte Laufruheregelung 10 erzeugt also aus einem Istsignal I, das mit Hilfe eines Segmentrads gewonnen wird, ein Stellsignal S zur Ansteuerung der Kraftstoffzumesseinrichtung 22. Diese Einrichtung 22 wird des weiteren noch gegebenenfalls z.B. von einer Leerlaufregelung 20 und/oder von einer fahrpedalabhängigen Steuerung 21 beeinflusst. Aus diesen Eingangssignalen bestimmt dann die Kraftstoffzumesseinrichtung 22 z. B. die der Brennkraftmaschine 23 einzuspritzende Kraftstoffmenge.
  • Da die Regelungen 11 bis 13 z. B. auch Integralverhalten aufweisen können, und da des weiteren auch die Leerlaufregelung 20 Integralverhalten besitzen kann, ist es möglich, dass diese beiden I-Regelanteile gegeneinander arbeiten. Damit dies verhindert wird, muss die Laufruheregelung 10 in das gesamte Einspritzsystem der Brennkraftmaschine eingebunden werden. Dies ist z.B. dadurch möglich, dass die Laufruheregelung 10 das gesamte Einspritzsystem nur dynamisch beeinflussen kann. Für diese dynamische Beeinflussung muss dann die Summe der Stellwerte S1 bis Sz gleich 0 sein, d.h. es muss die mittlere Kraftstoffmenge, die aufgrund der Laufruheregelung der Brennkraftmaschine weniger oder mehr zugeführt wird, über z Einspritzungen 0 sein. Diese Forderung zur Einbindung der Laufruheregelung 10 in das gesamte Einspritzsystem kann z. B. mit Hilfe einer der in Figur 3 bis Figur 5 gezeigten Änderungen der Laufruheregelung erfüllt werden.
  • Figur 3 zeigt das Blockschaltbild eines Teils der Laufruheregelung, wobei in diesem Beispiel die Einbindung der Laufruheregelung in das gesamte Einspritzsystem dadurch realisiert wird, dass der Mittelwert des Stellsignals S von den Ausgangssignalen der integrierenden Anteile der den einzelnen Zylindern zugeordneten Regelungen subtrahiert wird. Die Regelung 11 besteht in diesem Beispiel aus einem integrierenden Anteil 30, einem Proportionalanteil 31, zwei Subtraktionsstellen 32 und 33 und einer Additionsstelle 34. Die der Regelung 11 zugeführten Eingangssignale 11 und Mz werden zuerst an der Subtraktionsstelle 32 miteinander verknüpft. Das Ausgangssignal dieser Subtraktionsstelle 32 wird dem integrierenden Anteil 30 und dem Proportionalanteil 31 zugeführt. Das Ausgangssignal des Proportionalanteils 31 ist an die Additionsstelle 34 angeschlossen, die des weiteren noch mit dem Ausgangssignal der Subtraktionsstelle 33 beaufschlagt wird. Dieses Ausgangssignal der Subtraktionsstelle 33 wird zum einen gebildet aus dem Ausgangssignal des integrierenden Anteils 30 und aus dem Mittelwert des Stellsignals S. Das Ausgangssignal der Additionsstelle 34 stellt nun den Stellwert S1 dar, der der Synchronisationseinrichtung 18 zugeführt wird. Das Ausgangssignal dieser Synchronisationseinrichtung 18 ist das Stellsignal S, das einer Einrichtung zur Bildung eines Mittelwerts 35 zugeführt wird, deren Ausgangssignal dann den Mittelwert des Stellsignals S darstellt. Diese Einrichtung zur Bildung eines Mittelwerts 35 kann z.B. aus einem Tiefpassfilter bestehen.
  • Wie es in Figur 3 angedeutet ist, wird das Stellsignal S nicht nur auf die Regelung 11 rückgekoppelt, sondern auch auf die den anderen Zylindern zugeordneten Regelungen 12 bis 13. Durch diese Rückkopplung des Stellsignals S auf sämtliche Regelungen 11 bis 13 der Laufruheregelung 10 wird erreicht, dass der Mittelwert des Stellsignals über z Verbrennungen gleich 0 ist.
  • In Figur 4 wird die Einbindung der Laufruheregelung in das gesamte Einspritzsystem dadurch bewerkstelligt, dass der Mittelwert der integrierenden Anteile der den einzelnen Zylinder zugeordneten Regelungen von den Ausgangssignalen dieser integrierenden Anteile der einzelnen Regelungen subtrahiert wird. Die Regelung 11 besteht dann aus einem integrierenden Anteil 40, einem Proportionalanteil 41, zwei Subtraktionsstellen 42 und 43 und einer Additionsstelle 44. Die der Regelung 11 zugeführten Eingangssignale 11 und Mz werden an der Subtraktionsstelle 42 miteinander verbunden. Das Ausgangssignal dieser Subtraktionsstelle 42 wird dem integrierenden Anteil 40 und dem Proportionalanteil 41 zugeführt. Das Ausgangssignal des integrierenden Anteils 40 wird nun an eine Summationsstelle 45 angeschlossen, die des weiteren noch mit den Ausgangssignalen der integrierenden Anteile der den anderen Zylindern zugeordneten Regelungen beaufschlagt wird. Das Ausgangssignal dieser Summationsstelle 45 wird einer Einrichtung zur Bildung eines Mittelwertes 46 zugeführt, deren Ausgangssignal mit dem Verknüpfungspunkt 47 verbunden ist. Dieser Verknüpfungspunkt 47 ist mit sämtlichen den einzelnen Zylindern zugeordneten Regelungen verknüpft. In der in Figur 4 dargestellten Regelung - 11 ist der Verknüpfungspunkt 47 an die Substraktionsstelle 43 angeschlossen, die des weiteren noch mit dem Ausgangssignal des integrierenden Anteils 40 beaufschlagt ist. Die Additionsstelle 44 ist zum einen mit dem Ausgangssignal dieser Subtraktionsstelle 43 und zum anderen mit dem Ausgangssignal des Proportionalanteils 41 verbunden. Das Ausgangssignal der Additionsstelle 44 stellt den Stellwert S1 dar. Durch die Bildung eines Mittelwerts aus sämtlichen Ausgangssignalen der integrierenden Anteile der den einzelnen Zylindern zugeordneten Regelungen und durch die Subtraktion dieses Mittelwerts von diesen Ausgangssignalen der integrierenden Anteile der einzelnen Regelungen wird nun erreicht, dass die Forderung nach der Einbindung der Laufruheregelung in das gesamte Einspritzsystem erfüllt ist.
  • Die Figur 5 zeigt eine weitere Möglichkeit der Einbindung der Laufruheregelung in das gesamte Einspritzsystem, bei dem der Mittelwert der Stellwerte der den einzelnen Zylindern zugeordneten Regelungen vom Ausgangssignal der integrierenden Anteile dieser Regelungen subtrahiert wird. Die Regelung 11 besteht dabei z.B. aus einem integrierenden Anteil 50, einem Proportionalanteil 51, zwei Subtraktionsstellen 52 und 53 und einer Additionsstelle 54. Die der Regelung 11 zugeführten Eingangssignale 11 und Mz werden an der Subtraktionsstelle 52 miteinander verknüpft. Das Ausgangssignal dieser Subtraktionsstelle 52 wird nun dem integrierenden Anteil 50 und dem Proportionalanteil 51 zugeführt. Das Ausgangssignal des integrierenden Anteils wird an die Substraktionsstelle 52, das Ausgangssignal des Proportionalanteils an die Additionsstelle 54 angeschlossen. Diese Additionsstelle 54 ist des weiteren noch mit dem Ausgangssignal der Subtraktionsstelle 53 beaufschlagt, das Ausgangssignal dieser Additionsstelle 54 stellt den Stellwert S1 dar. Dieser Stellwert S1 wird zu einem Additionspunkt 57 geführt, an dem des weiteren noch die Stellwerte der den anderen Zylindern zugeordneten Regelungen angeschlossen sind. Das Ausgangssignal dieser Additionsstelle 57 wird einer Einrichtung zur Bildung eines Mittelwerts 56 zugeführt, deren Ausgangssignal an einen Verknüpfungspunkt 55 angeschlossen ist. Mit diesem Verknüpfungspunkt 55 sind sämtliche den einzelnen Zylindern zugeordneten Regelungen verbunden, wie dies z.B. bei der Regelung 11 mit der Verbindung des Verknüpfungspunktes 55 mit der Subtraktionsstelle 53 gezeigt ist. Durch diese Rückkopplung des Mittelwerts der Stellwerte der den einzelnen Zylindern zugeordneten Regelungen auf die Ausgangssignale der integrierenden Anteile dieser Regelungen wird erreicht, dass die Laufruheregelung nur dynamisch wirkt, dass also das Stellsignai S über z-Verbrennungen gleich 0 ist.
  • Die beschriebene Laufruheregelung soll nur im unteren Drehzahlbereich, besonders im Leerlauf, ein Schwingen des Fahrzeugs verhindern. Dies erreicht man dadurch, dass die Laufruheregelung nur in einem bestimmten Drehzahlbereich wirksam ist. Die Übergangsbereiche von diesem Bereich der aktiven Laufruheregelung zu Drehzahlen, bei denen die Laufruheregelung nicht wirksam ist, können z. B. mit Hilfe einer Steuerung der Laufruheregelung abgedeckt werden. Ausserdem ist es auch möglich, in den Übergangsbereichen das Ausgangssignal der Laufruheregelung, mit einem Faktor, der zwischen 0 und 1 liegt, zu bewerten, was ein sprunghaftes Ansteigen oder Abfallen der Ausgangsgrösse der Laufruheregelung verhindert. Im Betriebsfall der gesteuerten Laufruheregelung wird des weiteren noch die Ausgangsgrösse der Laufruheregelung mit einem kraftstoffmengenabhängigen Faktor, der zwischen 0 und 1 liegt, multipliziert, um bei einem starken Drehzahlabfall ein der Kraftstoffmenge proportionales weiches Ansteigen der Stellgrösse zu erreichen.
  • Bei der beschriebenen Laufruheregelung wurde das Istsignal, also die Zeitdauer zwischen zwei Verbrennungszeitpunkten, mit Hilfe des Segmentrads bestimmt. Es ist auch möglich, ein Drehzahlsignal mit Hilfe eines schnellen Tachogenerators oder mittels eines Zahnrads mit nachfolgendem Impulsgeber und Frequenzspannungswandler zu erzeugen. Ein Istsignal für die Laufruheregelung kann durch Integration dieses Drehzahlsignals von Einspritzung zu Einspritzung oder von Synchronisierimpuls zu Synchronisierimpuls erzeugt werden. Eine weitere Möglichkeit zur Erzeugung des Istsignals wäre eine Spitzenwertauswertung des Drehzahlsignals zwischen zwei Einspritzmengen.
  • Die für die Bereitstellung des Istsignals notwendigen Verbrennungszeitpunkte werden in der beschriebenen Laufruheregelung durch die Unterteilung der Zeitdauer zwischen zwei Verbrennungszeitpunkten in zwei Zeitabschnitte bestimmt. Da die Durchschaltung des Istsignals auf die Speichereinrichtungen und/oder die Durchschaltung der Stellwerte auf die Kraftstoffzumesseinrichtung unter Umständen nicht genau in einem Verbrennungszeitpunkt erfolgen soll, ist es möglich, die beschriebene Laufruheregelung mit Hilfe eines Zählers so zu erweitern, dass dieser Zähler von einem Referenzsignal, z. B. von einem Nadelhubimpuls, einem Spritzbeginnimpuls, einem Verbrennungsbeginnimpuls, usw., zurückgesetzt wird, und bei bestimmten, vorgebbaren Zählerständen die beiden Synchronisationseinrichtungen ansteuert. Dadurch ist es möglich, das Durchschalten der beiden Synchronisationseinrichtungen in beliebigen, aber festen Zeitpunkten zu erzeugen. Der Zähler kann nun entweder drehzahlabhängig hochzählen und dann bei bestimmten Zählerständen die Synchronisierimpulse an die beiden Synchronisationseinrichtungen abgeben, oder er zählt mit einer festen Frequenz hoch und bestimmt die Synchronisationszeitpunkte abhängig von der Drehzahl. Ebenso ist es möglich, dass der Zähler bei jedem Synchronisationsimpuls und bei jedem Referenzimpuls zurückgesetzt wird.
  • Bei der beschriebenen Laufruheregelung wurden die vier Segmente des Segmentrads gleichmässig über den Umfang des Rads verteilt. Mit Hilfe dieser Segmente wurde die Zeitdauer zwischen zwei Verbrennungszeitpunkten in einen kurzen und einen langen Zeitabschnitt aufgeteilt. Zur Verstärkung des Unterschieds zwischen diesen kurzen und langen Zeitdauern ist es nun möglich, die Segmente des Segmentrads asymmetrisch zu gestalten. Im Falle der beschriebenen Laufruheregelung bei einer Brennkraftmaschine mit vier Zylindern würde dies bedeuten, dass nur jeweils zwei sich gegenüberliegende Segmente dieselbe Länge haben. Auf die Bestimmung des Istsignals I hat diese Asymmetrie keinen Einfluss, da das Istsignal I die Zeitdauer zwischen zwei Verbrennungen darstellt, und diese Zeitdauer zwei Segmente umfasst.
  • Unter normalen Betriebsbedingungen wird mittels des Segmentrads die Zeitdauer zwischen zwei Verbrennungszeitpunkten in einen kurzen und einen langen Zeitabschnitt aufgeteilt. Es können nun diesen Zeitdauern auch Störsignale mit kleinerer Frequenz als die Einspritzfrequenz überlagert sein. Dadurch ist ein gleichmässiger Wechsel kurzer und langer Zeitabschnitte nicht mehr gegeben. Die Synchronisationseinrichtungen stellen nun fest, ob ein Zeitabschnitt-länger ist als der vorherige und der nachfolgende, sie führen eine Maximalzeitprüfung durch. Ein Synchronisationszähler, der am Ende eines jeden Zeitabschnitts um 1 erhöht wird, wird immer dann geprüft, wenn die Maximalzeitprüfung z.B. einen langen Zeitabschnitt festgestellt hat. Wenn die Synchronisation richtig ist, fallen die Enden der langen Zeitabschnitte immer auf z. B. ungeradzahlige Synchronisationszählerstände. Fällt durch eine Fehlfunktion das Ende eines langen Zeitabschnitts auf einen geradzahligen Synchronisationszählerstand, so ist die Synchronisation falsch. Wenn eine falsche Synchronisation erkannt wird, wird geprüft, ob in den nächsten z.B. 20 Zeitabschnitten nochmals eine falsche Synchronisation auftritt. Nur wenn dies der Fall ist, wird die Synchronisation geändert.
  • Es ist auch möglich, Fehlfunktionen dadurch zu erkennen, dass immer die beiden letzten Zeitabschnitte voneinander subtrahiert werden. Abhängig vom Ergebnis dieser Subtraktion wird ein Wert in ein Schieberegister eingeschrieben. Durch den Vergleich der Werte des Schieberegisters mit vorgegebenen Werten können Fehlfunktionen erkannt und danach entsprechend behoben werden. Die Grösse des Schieberegisters und auch die vorgegebenen Werte, die die Fehlfunktionen charakterisieren, müssen experimentiell bestimmt werden.
  • Bei der beschriebenen Laufruheregelung wurde das Stellsignal S der Kraftstoffzumesseinrichtung 22 zugeführt, die dann z.B. die der Brennkraftmaschine einzuspritzende Kraftstoffmenge beeinflusst. Es ist selbstverständlich auch möglich, dass das Stellsignal S mittelbar oder unmittelbar andere Steuergrössen der Brennkraftmaschine beeinflusst, so z.B. die Abgasrückführung, den Einspritzzeitpunkt, die Einspritzdauer, das Kraftstoff/Luft-Verhältnis, den Zündzeitpunkt usw.
  • Die in den Figuren 1 bis 5 dargestellte und beschriebene Einrichtung kann z.B. mit Hilfe eines analogen Schaltungsaufbaus realisiert werden. Besonders vorteilhaft ist es, die beschriebene Laufruheregelung und gegebenenfalls auch noch weitere Steuer- und/oder Regeleinrichtungen für die Kraftstoffzumessung z.B. mittels eines entsprechend programmierten Mikroprozessors zu verwirklichen. Bei einer derartigen Rechnerlösung ist es dann jedoch möglich, dass die dargestellten Blockschaltbilder nicht mehr erkennbar sind, da sie durch Unterprogrammstrukturen, Zeitmultiplexverfahren, usw. ersetzt worden sind.
  • Die beschriebene Laufruheregelung ist bei Brennkraftmaschinen verschiedenster Funktionsprinzipien anwendbar, also bei selbstzündenden Brennkraftmaschinen, bei fremdgezündeten Brennkraftmaschinen, usw. Dabei ist es besonders vorteilhaft, dass abhängig vom Funktionsprinzip der Brennkraftmaschine die jedem Zylinder der Brennkraftmaschine zugeordnete Regelung mehrere Steuergrössen der Brennkraftmaschine mittelbar oder unmittelbar beeinflusst.

Claims (11)

1. Elektronische Einrichtung zur Steuerung der Kraftstoffzumessung einer Brennkraftmaschine, mit einer ersten Einrichtung zur Bereitstellung einer von Drehzahl und Last abhängigen Kraftstoffgrundmenge und mit einer, eine Synchronisationseinrichtung aufweisenden zweiten Einrichtung zur zylinderspezifischen Beeinflussung der Kraftstoffzumessung, die abhängig von der Differenz eines Laufruhesoll- und Istwertes ist, dadurch gekennzeichnet, dass die zweite Einrichtung eine jedem Zylinder zugeordnete, proportionales und integrales Verhalten aufweisende Regelung aufweist, wobei als Laufruheistwert die Zeitdauer zwischen zwei Verbrennungszeitpunkten und als Laufruhesollwert der Mittelwert aus sämtlichen zwischengespeicherten Istwerten angenommen werden, und wobei die Stellgrösse der Regelung ein für den jeweiligen Zylinder bestimmtes Kraftstoffmengensignal ist, das beim nächsten Einspritzvorgang mit dem Kraftstoffgrundmengensignal additiv verknüpft wird.
2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass zur Synchronisation Zeitpunkte verwendet werden, die mittelbar oder unmittelbar von den Zeitpunkten der Verbrennung in den einzelnen Zylindern abhängen.
3. Einrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Synchronisationen mit Hilfe von Referenzsignalen, Zählern und Vergleichern erzeugt werden.
4. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, dass es sich bei den Referenzsignalen um Nadelhubimpulse, Spritzbeginnimpulse, Verbrennungsbeginnimpulse usw. handelt, die bei jeder oder jeder zweiten Umdrehung auftreten.
5. Einrichtung nach Anspruch 4, dadurch gekennzeichnet, dass Mittel zur Überwachung der Synchronisation vorhanden sind, die nach zweimaliger falscher Synchronisation innerhalb einer vorgebbaren, bestimmten Zeit die nachfolgenden Synchronisationen ändern.
6. Einrichtung nach wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Kraftstoffmengensignale (S) gemittelt über eine der Anzahl der Zylinder entsprechende Zahl von Verbrennungen gleich Null sind.
7. Einrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass Mittel vorgesehen sind, die die Beeinflussung der Kraftstoffgrundmengensignale auf einen bestimmten vorgebbaren Drehzahlbereich beschränken und in den daran angrenzenden Übergangsbereichen ein sprunghaftes Ansteigen oder Abfallen des Kraftstoffmengensignales verhindern.
8. Elektronische Einrichtung nach wenigstens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Einrichtung Mittel zur Erfassung der Augenblicksgeschwindigkeit der Kurbelwelle umfasst, die aus einem mit der Kurbelwelle verbundenen symmetrischen Segmentrad und einer Zeitmesseinrichtung zur Messung der Durchlaufzeit eines Segmentes des Segmentrades durch eine gedachte, senkrecht zum Segmentrad stehende Ebene bestehen, und dass die Zeitdauer zwischen zwei Verbrennungszeitpunkten mittels des Segmentrades in zwei Abschnitte unterteilt wird, wodurch derjenige der beiden Zeitabschnitte der einem Verbrennungszeitpunkt direkt nachfolgt, kürzer ist als der andere Zeitabschnitt und dass dadurch der Zeitpunkt einer Verbrennung erkannt wird.
9. Elektronische Einrichtung nach Anspruch 8, dadurch gekennzeichnet, dass mit Hilfe einer abwechselnden Anordnung von langen und kurzen Segmenten auf dem Segmentrad der Zeitpunkt einer Verbrennung noch sicherer erkannt wird.
10. Elektronische Einrichtung nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass mit Hilfe der unterschiedlichen Längen der beiden Zeitabschnitte zwischen Verbrennungszeitpunkten eine Diagnose der Arbeitsfähigkeit der einzelnen Zylinder der Brennkraftmaschine durchgeführt wird.
11. Elektronische Einrichtung nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass jeder Zeitabschnitt mit dem vorhergehenden und dem nachfolgenden Zeitabschnitt verglichen wird, dass bei jedem Vergleich ein Synchronisationszähler inkrementiert wird, dass abhängig vom Ergebnis des Vergleiches des Synchronisationszählers geprüft wird und dass abhängig von den innerhalb einer vorgebbaren bestimmten Zeit durchgeführten Prüfungen des Synchronisationszählers gegebenenfalls die Synchronisation geändert wird.
EP84110673A 1983-10-04 1984-09-07 Elektronische Einrichtung zur Steuerung der Kraftstoffzumessung einer Brennkraftmaschine Expired EP0140065B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84110673T ATE39163T1 (de) 1983-10-04 1984-09-07 Elektronische einrichtung zur steuerung der kraftstoffzumessung einer brennkraftmaschine.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3336028 1983-10-04
DE3336028A DE3336028C3 (de) 1983-10-04 1983-10-04 Einrichtung zur Beeinflussung von Steuergrößen einer Brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP0140065A1 EP0140065A1 (de) 1985-05-08
EP0140065B1 true EP0140065B1 (de) 1988-12-07

Family

ID=6210935

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84110673A Expired EP0140065B1 (de) 1983-10-04 1984-09-07 Elektronische Einrichtung zur Steuerung der Kraftstoffzumessung einer Brennkraftmaschine

Country Status (5)

Country Link
US (1) US4688535A (de)
EP (1) EP0140065B1 (de)
JP (1) JPH0633723B2 (de)
AT (1) ATE39163T1 (de)
DE (2) DE3336028C3 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2185132A (en) * 1985-12-28 1987-07-08 Diesel Kiki Co Apparatus for controlling idling operation of internal combustion engine
WO1987005074A1 (en) * 1986-02-17 1987-08-27 Robert Bosch Gmbh Device for adjusting the smooth running of internal combustion engines
US4742462A (en) * 1984-09-22 1988-05-03 Diesel Kiki Co., Ltd. Apparatus for controlling idling operation of an internal combustion engine
EP0353217A1 (de) * 1988-07-04 1990-01-31 Automotive Diesel Gesellschaft m.b.H. Einrichtung zum Steuern und Regeln der Brennkraftmaschine eines Fahrzeuges
EP0353216A1 (de) * 1988-07-04 1990-01-31 Automotive Diesel Gesellschaft m.b.H. Einrichtung zum Steuern und Regeln der Brennkraftmaschine eines Fahrzeuges
EP0354497A1 (de) * 1988-08-08 1990-02-14 Hitachi, Ltd. Gerät zur Erfassung von Verbrennungsausfällen und Steuerungssystem für einen Verbrennungsmotor
EP0406765A1 (de) * 1989-07-07 1991-01-09 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Drehzahlregelung eines langsamlaufenden, mehrzylindrischen Dieselmotors
WO1991011599A1 (de) * 1990-01-26 1991-08-08 Robert Bosch Gmbh Aussetzererkennung bei einem verbrennungsmotor
EP0448603A1 (de) * 1988-12-19 1991-10-02 Motorola Inc System zum regeln der leistung eines motors.
WO2001059282A1 (de) 2000-02-11 2001-08-16 Robert Bosch Gmbh Verfahren und einrichtung zur bestimmung zylinderindividueller unterschiede einer steuergröss bei einer mehrzylindrigen brennkraftmaschine
DE10009065A1 (de) * 2000-02-25 2001-09-13 Bosch Gmbh Robert Verfahren und Einrichtung zur Steuerung einer mehrzylindrigen Brennkraftmaschine

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3337908A1 (de) * 1983-10-19 1985-05-09 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zum schnellen verstellen eines elektromagnetischen verbrauchers, insbesondere in verbindung mit brennkraftmaschinen
IT1182558B (it) * 1985-09-20 1987-10-05 Weber Spa Sistema di controllo automatico in condizioni di regime di rotazione minimo del tipo della miscela combustibile adotta ad un motore endotermico comorendente un sistema di iniezione elettronica
JP2556964B2 (ja) * 1985-11-14 1996-11-27 株式会社ゼクセル 内燃機関用アイドル運転制御装置
JP2510991B2 (ja) * 1986-05-10 1996-06-26 日産自動車株式会社 エンジン制御装置
DE3634583A1 (de) * 1986-10-10 1988-04-21 Bosch Gmbh Robert Einrichtung zur erfassung von eingangssignalen eines steuergeraetes in einer brennkraftmaschine
DE3705586C2 (de) * 1987-02-21 1995-06-29 Bosch Gmbh Robert Elektronisch gesteuerte Kraftstoffzumeßeinrichtung für eine Brennkraftmaschine
SE8702208D0 (sv) * 1987-05-26 1987-05-26 Nira Automotive Ab The nira turbo control system
DE3804345A1 (de) * 1988-02-12 1989-08-24 Bosch Gmbh Robert Regeleinrichtung fuer brennkraftmaschine
DE3821740A1 (de) * 1988-06-28 1990-01-11 Jan Thomas Dipl Ing Haas Zylinderautonome steuerung der zuendung/einspritzung bei verbrennungsmotoren
JP2710058B2 (ja) * 1988-09-08 1998-02-10 株式会社ゼクセル アイドル運転時のエンジン燃焼制御システム
JPH0315645A (ja) * 1989-06-13 1991-01-24 Hitachi Ltd エンジン制御装置
DE3929746A1 (de) * 1989-09-07 1991-03-14 Bosch Gmbh Robert Verfahren und einrichtung zum steuern und regeln einer selbstzuendenden brennkraftmaschine
JPH03145571A (ja) * 1989-10-30 1991-06-20 Mitsubishi Electric Corp 内燃機関用点火制御方法
DE4005735A1 (de) * 1990-02-23 1991-08-29 Bosch Gmbh Robert Verfahren und einrichtung zur regelung/steuerung der laufruhe einer brennkraftmaschine
JPH0460142A (ja) * 1990-06-29 1992-02-26 Nissan Motor Co Ltd アイドル回転数制御装置
DE4122139C2 (de) * 1991-07-04 2000-07-06 Bosch Gmbh Robert Verfahren zur Zylindergleichstellung bezüglich der Kraftstoff-Einspritzmengen bei einer Brennkraftmaschine
US5385129A (en) * 1991-07-04 1995-01-31 Robert Bosch Gmbh System and method for equalizing fuel-injection quantities among cylinders of an internal combustion engine
DE4239842A1 (de) * 1992-11-27 1994-06-01 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE4319677C2 (de) * 1993-06-14 2002-08-01 Bosch Gmbh Robert Verfahren und Vorrichtung zur Regelung der Laufruhe einer Brennkraftmaschine
IT1279073B1 (it) * 1994-12-23 1997-12-04 Bosch Gmbh Robert Procedimento e dispositivo per la regolazione della silezionsita' di funzionamento di un motore endotermico
DE19527218B4 (de) * 1994-12-23 2004-03-18 Robert Bosch Gmbh Verfahren und Vorrichtung zur Regelung der Laufruhe einer Brennkraftmaschine
JPH09177587A (ja) * 1995-12-25 1997-07-08 Toyota Motor Corp 燃料噴射制御装置の異常判定装置
DE19653521B4 (de) * 1996-12-20 2006-01-19 Bayerische Motoren Werke Ag Elektronische Steuerung einer mehrzylindrigen insbesondere fremdgezündeten Brennkraftmaschine
DE19700711C2 (de) * 1997-01-10 1999-05-12 Siemens Ag Verfahren zum Ausgleich des systematischen Fehlers an Einspritzvorrichtungen für eine Brennkraftmaschine
DE19725233B4 (de) * 1997-06-14 2005-03-24 Volkswagen Ag Verfahren zur Anpassung der Einspritzmenge einer Brennkraftmaschine zur Laufruheregelung
DE19828279A1 (de) * 1998-06-25 1999-12-30 Bosch Gmbh Robert Gleichstellung der zylinderindividuellen Drehmomentenbeiträge beim mehrzylindrigen Verbrennungsmotor
DE19859018A1 (de) * 1998-12-21 2000-06-29 Bosch Gmbh Robert Verfahren und Vorrichtung zur Zylindergleichstellung bei Brennkraftmaschinen
DE19859074A1 (de) 1998-12-21 2000-06-29 Bosch Gmbh Robert Verfahren zur Regelung der Laufruhe eines Verbrennungsmotors
US6039028A (en) * 1999-01-14 2000-03-21 Ford Global Technologies, Inc. Active engine speed pulsation damping
KR100325224B1 (ko) * 1999-06-11 2002-03-04 이계안 차량의 엔진 실린더 불균형 방지장치
DE19931823B4 (de) * 1999-07-08 2009-02-12 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19951581B4 (de) 1999-10-27 2012-04-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur Gleichstellung wenigstens zweier Zylinderbänke einer Brennkraftmaschine
DE10007205A1 (de) * 2000-02-17 2001-09-06 Bosch Gmbh Robert Verfahren und Vorrichtung zur Laufruheregelung einer Brennkraftmaschine
DE10012025A1 (de) * 2000-03-11 2001-10-18 Bosch Gmbh Robert Verfahren zum Betreiben einer mehrzylindrigen Brennkraftmaschine
JP2001349243A (ja) * 2000-06-07 2001-12-21 Isuzu Motors Ltd エンジンの燃料噴射制御装置
DE10143950A1 (de) * 2001-09-07 2003-04-30 Siemens Ag Verfahren zur Leerlaufregelung einer Mehrzylinder-Brennkraftmaschine und Signalkonditionierungsanordnung hierfür
DE10153520A1 (de) 2001-10-30 2003-05-22 Bosch Gmbh Robert Verfahren und Vorrichtung zum Auslesen von Daten eines Kraftstoffzumesssystems
DE10153522A1 (de) 2001-10-30 2003-05-22 Bosch Gmbh Robert Verfahren und Vorrichtung zum Auslesen von Daten eines Kraftstoffzumesssystems
DE10233778A1 (de) * 2002-07-25 2004-02-05 Robert Bosch Gmbh Verfahren zum Verbessern des Rundlaufs einer Brennkraftmaschine
DE102004006554B3 (de) * 2004-02-10 2005-06-30 Siemens Ag Verfahren zur Zylindergleichstellung bezüglich der Kraftstoff-Einspritzmengen bei einer Brennkraftmaschine
DE102004020123B4 (de) * 2004-04-24 2015-07-09 Conti Temic Microelectronic Gmbh Verfahren zur Einstellung des Betriebes einer Brennkraftmaschine
DE102004044808B4 (de) * 2004-09-16 2015-12-17 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erkennen zylinderindividueller Füllungsunterschiede
DE102006026640A1 (de) * 2006-06-08 2007-12-13 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102006032172B4 (de) * 2006-07-12 2021-03-18 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Zylindergleichstellung einer Brennkraftmaschine
DE102007012309B4 (de) 2007-03-14 2017-11-30 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung der Kraftstoffqualität bei einer Brennkraftmaschine
DE102007019641A1 (de) 2007-04-26 2008-10-30 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102007030562B4 (de) 2007-06-30 2018-03-15 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine
GB2463022B (en) * 2008-08-28 2012-04-11 Gm Global Tech Operations Inc A method for correcting the cylinder unbalancing in an internal combustion engine
DE102008042104A1 (de) 2008-09-15 2010-03-18 Robert Bosch Gmbh Verfahren zur Steuerung einer Brennkraftmaschine
DE102009003211B4 (de) * 2009-05-19 2019-08-01 Robert Bosch Gmbh Verfahren zur Ansteuerung von Injektoren in einer Brennkraftmaschine
DE102010045689A1 (de) * 2010-09-16 2011-04-21 Daimler Ag Verfahren zum Betreiben einer Verbrennungskraftmaschine
DE102010042736B4 (de) 2010-10-21 2022-08-25 Robert Bosch Gmbh Verfahren zur Mengenausgleichregelung bei einer Brennkraftmaschine
DE102011004068B3 (de) * 2011-02-14 2012-08-23 Continental Automotive Gmbh Verfahren und Steuervorrichtung zum Gleichstellen mehrerer Zylinder einer Brennkraftmaschine
DE102011005974A1 (de) 2011-03-23 2012-09-27 Robert Bosch Gmbh Verfahren zum Korrigieren des Einspritzverhaltens mindestens eines Injektors
DE102013214824A1 (de) 2013-07-30 2015-02-05 Robert Bosch Gmbh Verfahren zur Überwachung eines Einspritzverhaltens eines Kraftstoffinjektors eines Kraftstoffzumesssystems
US9732722B1 (en) * 2015-03-06 2017-08-15 Brunswick Corporation Methods and systems for cylinder speed increase control to improve combustion uniformity
KR101755864B1 (ko) 2015-10-21 2017-07-10 현대자동차주식회사 엔진 회전수 제어방법
DE102016215775A1 (de) 2016-08-23 2018-03-01 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines Kraftstoffzumesssystems einer Brennkraftmaschine
DE102016226132A1 (de) * 2016-12-23 2018-06-28 Robert Bosch Gmbh Verfahren zum Ermitteln einer Einspritzmenge eines Injektors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2301691A1 (fr) * 1975-02-19 1976-09-17 Bosch Gmbh Robert Procede et dispositif pour obtenir une valeur mesuree permettant une appr
US4179922A (en) * 1977-03-25 1979-12-25 Harris Corporation Data acquisition for use in determining malfunctions of cylinders of an internal combustion engine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2507057A1 (de) * 1975-02-19 1976-09-02 Bosch Gmbh Robert Verfahren und vorrichtung zur bestimmung der laufunruhe einer brennkraftmaschine
DE2507198A1 (de) * 1975-02-20 1976-09-02 Blocher Motor Kg Gleichstrommotor
US4178891A (en) * 1975-03-11 1979-12-18 Robert Bosch Gmbh Method and apparatus for controlling the operation of an internal combustion engine
US4357662A (en) * 1978-05-08 1982-11-02 The Bendix Corporation Closed loop timing and fuel distribution controls
US4197767A (en) * 1978-05-08 1980-04-15 The Bendix Corporation Warm up control for closed loop engine roughness fuel control
JPS54147727A (en) * 1978-05-11 1979-11-19 Mitsubishi Electric Corp Tuning display unit for television receiver
US4301678A (en) * 1979-12-20 1981-11-24 United Technologies Corporation Relative power contribution of an internal combustion engine
US4366793A (en) * 1980-10-24 1983-01-04 Coles Donald K Internal combustion engine
JPS5879642A (ja) * 1981-11-05 1983-05-13 Nissan Motor Co Ltd エンジンの空燃比制御装置
US4495920A (en) * 1982-04-09 1985-01-29 Nippondenso Co., Ltd. Engine control system and method for minimizing cylinder-to-cylinder speed variations
JPS58176424A (ja) * 1982-04-09 1983-10-15 Nippon Denso Co Ltd エンジンシリンダ別燃料調量バラツキ補正方法
US4475511A (en) * 1982-09-01 1984-10-09 The Bendix Corporation Fuel distribution control system for an internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2301691A1 (fr) * 1975-02-19 1976-09-17 Bosch Gmbh Robert Procede et dispositif pour obtenir une valeur mesuree permettant une appr
US4179922A (en) * 1977-03-25 1979-12-25 Harris Corporation Data acquisition for use in determining malfunctions of cylinders of an internal combustion engine

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742462A (en) * 1984-09-22 1988-05-03 Diesel Kiki Co., Ltd. Apparatus for controlling idling operation of an internal combustion engine
GB2185132B (en) * 1985-12-28 1990-03-21 Diesel Kiki Co Apparatus for controlling idling operation of internal combustion engine
GB2185132A (en) * 1985-12-28 1987-07-08 Diesel Kiki Co Apparatus for controlling idling operation of internal combustion engine
WO1987005074A1 (en) * 1986-02-17 1987-08-27 Robert Bosch Gmbh Device for adjusting the smooth running of internal combustion engines
EP0353217A1 (de) * 1988-07-04 1990-01-31 Automotive Diesel Gesellschaft m.b.H. Einrichtung zum Steuern und Regeln der Brennkraftmaschine eines Fahrzeuges
EP0353216A1 (de) * 1988-07-04 1990-01-31 Automotive Diesel Gesellschaft m.b.H. Einrichtung zum Steuern und Regeln der Brennkraftmaschine eines Fahrzeuges
EP0354497A1 (de) * 1988-08-08 1990-02-14 Hitachi, Ltd. Gerät zur Erfassung von Verbrennungsausfällen und Steuerungssystem für einen Verbrennungsmotor
EP0448603A1 (de) * 1988-12-19 1991-10-02 Motorola Inc System zum regeln der leistung eines motors.
EP0448603A4 (en) * 1988-12-19 1993-01-13 Motorola, Inc. System for monitoring and controlling engine performance
EP0406765A1 (de) * 1989-07-07 1991-01-09 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Drehzahlregelung eines langsamlaufenden, mehrzylindrischen Dieselmotors
WO1991000956A1 (de) * 1989-07-07 1991-01-24 Siemens Aktiengesellschaft Verfahren und vorrichtung zur drehzahlregelung eines langsamlaufenden, mehrzylindrischen dieselmotors
WO1991011599A1 (de) * 1990-01-26 1991-08-08 Robert Bosch Gmbh Aussetzererkennung bei einem verbrennungsmotor
WO2001059282A1 (de) 2000-02-11 2001-08-16 Robert Bosch Gmbh Verfahren und einrichtung zur bestimmung zylinderindividueller unterschiede einer steuergröss bei einer mehrzylindrigen brennkraftmaschine
US6694960B2 (en) 2000-02-11 2004-02-24 Robert Bosch Gmbh Method and arrangement for determining cylinder-individual differences of a control variable in a multi-cylinder internal combustion engine
DE10009065A1 (de) * 2000-02-25 2001-09-13 Bosch Gmbh Robert Verfahren und Einrichtung zur Steuerung einer mehrzylindrigen Brennkraftmaschine

Also Published As

Publication number Publication date
DE3475549D1 (en) 1989-01-12
DE3336028A1 (de) 1985-04-18
DE3336028C2 (de) 1992-06-04
ATE39163T1 (de) 1988-12-15
US4688535A (en) 1987-08-25
JPH0633723B2 (ja) 1994-05-02
JPS6081450A (ja) 1985-05-09
DE3336028C3 (de) 1997-04-03
EP0140065A1 (de) 1985-05-08

Similar Documents

Publication Publication Date Title
EP0140065B1 (de) Elektronische Einrichtung zur Steuerung der Kraftstoffzumessung einer Brennkraftmaschine
DE4122139C2 (de) Verfahren zur Zylindergleichstellung bezüglich der Kraftstoff-Einspritzmengen bei einer Brennkraftmaschine
DE68918320T2 (de) Einrichtung zur Glättung des Momentes bei Brennkraftmaschinen.
EP0416270B1 (de) Verfahren und Einrichtung zum Steuern und Regeln einer selbstzündenden Brennkraftmaschine
DE68904840T2 (de) Geraet zur erfassung von verbrennungsausfaellen und steuerungssystem fuer einen verbrennungsmotor.
DE3423144C2 (de) Verfahren zum Steuern der Zufuhr von Kraftstoff zu einer Brennkraftmaschine bei Beschleunigung
DE2659239A1 (de) Einrichtung zur zuendzeitpunktverstellung bei brennkraftmaschinen
DE3201372A1 (de) Rueckkopplungs-steuersystem fuer das luft/kraftstoff-verhaeltnis eines verbrennungsmotors mit mehreren zylindern sowie rueckkopplungs-steuerverfahren fuer das luft/kraftstoff-verhaeltnis eines verbrennungsmotors mit mehreren zylindern
DE69524775T2 (de) Elektronische einrichtung zur erfassung der belastung und drehzahl einer brennkraftmaschine
DE102007057530B4 (de) Verfahren zum Regeln einer Leerlaufdrehzahl
DE102006050597A1 (de) Fehlzündungsdetektionssystem für einen Motor mit bedarfsabhängigem Hubraum
EP1797308A1 (de) Verfahren zum betreiben einer brennkraftmaschine
EP0443147B1 (de) Verfahren und Einrichtung zur Regelung/Steuerung der Laufruhe einer Brennkraftmaschine
DE4013943C2 (de)
DE3725521C2 (de)
DE3403260C2 (de)
EP1005609B1 (de) Verfahren zur steuerung der abgasrückführung bei einer brennkraftmaschine
DE3838963C2 (de) System zur Steuerung der Kraftstoffeinspritzung für einen Kraftfahrzeugmotor
DE2845357A1 (de) Regelanordnung fuer brennkraftmaschine
DE19581053B4 (de) Verfahren und Vorrichtung für eine adaptive Kraftstoffzumessung bei Zweitaktmotoren
DE3919778C2 (de)
DE102011077698A1 (de) Verfahren und Vorrichtung zur Regelung der Laufruhe einer Brennkraftmaschine
EP0368954A1 (de) Steuersystem für eine dieselbrennkraftmaschine.
DE2434743C2 (de) Verfahren und Einrichtung zur Regelung des Betriebsverhaltens einer Brennkraftmaschine
DE68916566T2 (de) Schlupfüberschusssteuereinrichtung für angetriebene Räder.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840907

AK Designated contracting states

Designated state(s): AT DE FR GB

17Q First examination report despatched

Effective date: 19860428

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB

REF Corresponds to:

Ref document number: 39163

Country of ref document: AT

Date of ref document: 19881215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3475549

Country of ref document: DE

Date of ref document: 19890112

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030819

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030825

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030917

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031029

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040907

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20