EP0096824B1 - Feinfokus-Röntgenröhre und Verfahren zur Bildung eines Mikrofokus der Elektronenemission einer Röntgenröhren-Glühkathode - Google Patents

Feinfokus-Röntgenröhre und Verfahren zur Bildung eines Mikrofokus der Elektronenemission einer Röntgenröhren-Glühkathode Download PDF

Info

Publication number
EP0096824B1
EP0096824B1 EP83105571A EP83105571A EP0096824B1 EP 0096824 B1 EP0096824 B1 EP 0096824B1 EP 83105571 A EP83105571 A EP 83105571A EP 83105571 A EP83105571 A EP 83105571A EP 0096824 B1 EP0096824 B1 EP 0096824B1
Authority
EP
European Patent Office
Prior art keywords
cathode
ray tube
wire
electron
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83105571A
Other languages
English (en)
French (fr)
Other versions
EP0096824A1 (de
Inventor
Alfred Dipl.-Ing. Reinhold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Feinfocus Verwaltungs & Co KG GmbH
Original Assignee
Feinfocus Verwaltungs & Co KG GmbH
Feinfocus Verwaltungs & Co KG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Feinfocus Verwaltungs & Co KG GmbH, Feinfocus Verwaltungs & Co KG GmbH filed Critical Feinfocus Verwaltungs & Co KG GmbH
Priority to AT83105571T priority Critical patent/ATE29088T1/de
Publication of EP0096824A1 publication Critical patent/EP0096824A1/de
Application granted granted Critical
Publication of EP0096824B1 publication Critical patent/EP0096824B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/064Details of the emitter, e.g. material or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/066Details of electron optical components, e.g. cathode cups

Definitions

  • the invention relates to a fine focus X-ray tube, in the evacuated piston of which is housed a hot cathode partially surrounded by a rotationally symmetrical control electrode, formed by a heating wire, and an anode equipped with a target, electromagnetic electron beam focusing and deflection devices and an inlet aperture, and a method for forming a microfocus Electron emission.
  • the X-ray tube mentioned in the introduction has become known from US-A-41 59 436.
  • a hot cathode formed from a V-shaped wire is provided here, which is surrounded by a hollow cylinder with a front internal protrusion as a control electrode, special means for forming a microfocus are not provided here, however, because problems of improving the insulation and problems are involved electrostatic or electromagnetic focusing.
  • the greatly shortened service life of the hot cathode means that it must be replaced frequently, a process in which the X-ray blush has to be evacuated again before it is ready for use again. This is a time-consuming process that affects the ratio of usage time to downtime very unfavorably.
  • the invention is based on the finding that the longer the cross-section of the filament and the lower its temperature, at least at the surface, the longer the service life of a hot cathode, and that a microfocus can be formed on this surface of a relatively thick wire if it is only possible to expose a location of the surface to special physical conditions that do not exist on other parts of the surface and that are preferably suitable for electron emission.
  • the invention consists in that the cross-sectional dimensions of the wire of the hot cathode are large compared to the dimensions of the electron exit surface and that a device for achieving an increased surface temperature is provided at the point at which the electric field between the anode and cathode reaches its highest value.
  • control electrode offers itself as a simple component that is present anyway if it is only dimensioned in a suitable manner.
  • the glow wire is cooled (to different extents) in such a way that the highest temperature prevails on the surface of the glow wire at the location of the electron exit surface.
  • the device for achieving an elevated temperature is a device which strongly absorbs heat radiation and which partially surrounds the hot cathode. Because with this device, an enormous increase in the intensity of the electron emission can be achieved with the least effort.
  • This device can be the control electrode present in the X-ray tube anyway, if it is only adapted in a special way to this purpose of heat absorption.
  • a fine focus X-ray tube is characterized in that the control electrode is designed as a thick-walled body which has the shape of a hollow cylinder with an inward projection on the end face, the outside of which widens in a funnel shape, this funnel having an angle of 100 ° to Includes 140 °, and that the hot cathode with its most emerging from the inside of the control electrode in the axis of the control electrode is arranged in a plane which is in the region of the lower edge of the funnel-shaped part of the end face.
  • the hot cathode can be designed such that the hot cathode consists of a U-shaped or V-shaped wire.
  • the control electrode which acts as a cooling device, a tiny spot is then formed in the tip of the bend in the filament, which is least affected by the cooling effect and which, because it is also located at the location of the highest field strength, is a location of particularly intense electron emission .
  • a microfocus is achieved on a by no means pointed electrode of previously unsuitable shape and size, the efficiency of the emission of which significantly exceeds the pointed shaped known electrodes.
  • the cooling effect of the surface parts of the hot cathode is the cause of the significant increase in the life of the hot cathode.
  • a further increase in the intensity of the X-rays, which goes far beyond what is to be expected after the increase in electron emission, can be achieved in that the target has a spherically curved surface and the target angle has a value between 0 ° and 10 °.
  • the interaction of the measures according to the invention on the cathode with the measures according to the invention on the anode shows an increase in intensity by more than an order of magnitude, without any particular effort being made and without a loss in service life.
  • the piston of the X-ray tube consists of two parts 1, 2.
  • Part 1 takes the cathode, consisting of the filament 3, which serves as an emitter for the electron current 11, the contacts 12, 13 for the filament 3 and the base 14 and the control electrode 4, which is also carried by the base 14 and which is connected via the connection contact 15 to a voltage source, not shown.
  • the part 2 serving as the anode accommodates in its interior focusing coils 5, deflection coils 6 provided with an air gap 26 and is provided with the target head 7, which receives the target 8 (the anti-cathode) and a shield 16 in its interior, which provides an opening for has the exit of the X-rays 10 generated at the target 8, which exit through the exit window 9.
  • the target head is cooled by a cooling liquid which enters or exits a cooling chamber through the tubes 17.
  • the piston of the x-ray tube has a vacuum connection 18.
  • the electrical connections for the focusing coil 5 and the deflection coils 6 are designated 19 to 22.
  • FIG. 2 is an enlarged view of the Structure of cathode and control electrode shown.
  • the filament 3 Via the connection contacts 12, 13, which end in clamping devices 27, 28 for the U-shaped filament (emitter) 3, the filament 3 is supplied with voltage, which makes this filament glow.
  • the two clamping devices 27, 28 are accommodated in a holder 29 which also supports the grating 4 by means of the insulating ring 30.
  • This control electrode 4 is designed as a thick-walled hollow cylinder which has on its one end, surrounding the filament 3, an inward projection 34, which is formed on the outside in the form of a funnel 31, which has an opening angle ⁇ of 100 ° to 140 ° , preferably 120 °.
  • This funnel 31 merges on its inside into a cylindrical surface 32, the rounded edge 33.
  • the control electrode 4 ensures that more radiation is emitted from all surface parts of the filament 3 to the control electrode than from that location of the filament at which the geometric axis breaks through the surface of the heating wire 3 facing the target. As a result, the surface of the heating wire is cooled everywhere, but the cooling is lowest at the location at which the geometric axis 36 breaks through the surface of the heating wire facing the target 8.
  • the diameter D of the heating wire is chosen to be more than 0.17 mm, the inner radius Ri of the curvature is selected to be greater than 0.1 D. These dimensions are significantly larger than the dimensions previously used for fine focus X-ray tubes.
  • the inner radius Ri and the outer radius Ra can also have significantly larger values.
  • This apron 37 is expediently produced in one piece with the control electrode 4 and essentially represents a solid hollow cylinder.
  • FIG. 3 shows the detail 1 from FIG. 1, namely a part of the target head 7 and the target 8 in cross section.
  • the target 8 is designed as a solid block, which has a cylindrical or spherical surface on the side facing the electron stream 11.
  • the inside of the target head 7 is provided with a lining 16 made of lead.
  • the target head 7 has a lateral opening which is closed by the radiation exit window 9 for the emerging X-rays 10.
  • the values set on the target 8 are explained in more detail with reference to FIG. 4:
  • the electron beam axis E of the electron beam with the electron beam diameter De runs parallel to the tube axis 36.
  • the point of impact of the electron beam axis E and the target radius of curvature R is chosen so that a target angle a of 10 ° results. Since, with the measures according to the invention, a very thinly focused electron beam already hits the target 8, the optical focal spot width BFo is very small.
  • the hot cathode need not necessarily consist of a current-carrying wire, it can also be heated indirectly, e.g. B. are heated inductively. In this case, too, it is important that the cross-sectional dimensions of the hot cathode, which may well have the shape of a needle, are large compared to the dimensions of the electron exit area and that a point with a higher surface temperature than the other surface parts is present on the hot cathode at which the electric field between anode and cathode reaches its highest value. However, there are also ways of heating the cathode both directly through a current flowing through it and additionally indirectly.

Landscapes

  • X-Ray Techniques (AREA)

Description

  • Die Erfindung betrifft eine Feinfocus-Röntgenröhre, in deren evakuiertem Kolben eine von einer rotationssymmetrischen Steuerelektrode teilweise umgebene, durch einen Heizdraht gebildete Glühkathode und eine mit Target, elektromagnetischen Elektronenstrahlbündelungs- und ablenkungsvorrichtungen und einer Eintrittsblende ausgestattete Anode untergebracht sind sowie ein Verfahren zur Bildung eines Mikrofocus der Elektronenemission.
  • Die eingangs genannte Röntgenröhre ist aus der US-A-41 59 436 bekannt geworden. Hier ist zwar eine aus einem V-förmig gebogenen Draht gebildete Glühkathode vorgesehen, die von einem Hohlzylinder mit stirnseitigem Innenvorsprung als Steuerelektrode umgeben ist, besondere Mittel zur Bildung eines Mikrofocus sind hier jedoch nicht vorgesehen, weil es hier um Probleme der Verbesserung der Isolation und Probleme der elektrostatischen oder elektromagnetischen Fokussierung geht.
  • Aus der US-A-35 64 317, Fig. 3, ist es bekannt geworden, eine wendelförmige Glühkathode von einem ringförmigen Metallklotz als Kathodenkappe zu umgeben. Die durch die Glühkathode erzeugte Hitze kann über diesen ringförmigen Metallklotz abgeführt werden. Mittel zur Bildung eines Mikrofocus sind hier aber nicht vorgesehen, vielmehr sind durch die senkrechte Lage der Wendel zur Elektronenstromrichtung eine Reihe von Emissionsstellen nebeneinander angeordnet. Zu einer Erhöhung des Auflösungsvermögens ist es aber notwendig, eine einzige Emissionsstelle zu haben und diese nach Möglichkeit in ihren Flächenausdehnungen so klein zu machen, wie es nur irgend möglich ist.
  • In dem Bestreben, das Auflösungsvermögen bei Röntgengeräten zu steigern, um immer kleinere Details in Röntgenaufnahmen zu erkennen, z. B. feinste Haarrisse in Turbinenschaufeln, wurden Röntgenröhren entwickelt, deren Glühkathoden aus immer feineren Drähten hergestellt wurden und die wie spitze Nadeln geformt wurden, um die Elektronenaustrittsfläche - an der Nadelspitze - möglichst klein zu gestalten. Nur so glaubte man bisher der Regel aus der Optik, - je kleiner und punktförmiger die Lichtquelle, umso höher das Auflösungsvermögen -, entsprechen zu können und scharfe Röntgenbildaufnahmen erzielen zu können.
  • Es gelingt auch, auf diesem Wege das Auflösungsvermögen eines Röntgengerätes erheblich zu steigern, doch nur um den Preis einer geringeren Elektronenemission und um den Preis einer stark verkürzten Lebensdauer der Glühkathode. Die geringere Elektronenemission führt dazu, daß man in der medizinischen Anwendung von Röntgengeräten längere Expositionszeiten benötigt und dadurch den Patienten stärker belastet, während in der Anwendung von Röntgengeräten zur Materialprüfung dem Durchdringungsvermögen Grenzen gesetzt sind, die Untersuchungen erheblich längere Zeit in Anspruch nehmen und die Einsatzmöglichkeiten am bewegten Untersuchungsobjekt erheblich eingeschränkt werden. Die stark verkürzte Lebensdauer der Glühkathode macht deren häufiges Auswechseln erforderlich, ein Vorgang, bei dem nach dem Auswechseln die Röntgenröte erst wieder evakuiert werden muß, ehe sie erneut einsatzbereit ist. Das ist ein zeitaufwendiger Vorgang, der das Verhältnis von Benutzungszeit zu Stillstandszeit sehr ungünstig beeinflußt.
  • Maßnahme am Target der Röntgenröhre zur Verbesserung der Auflösung führten weder zur Vermeidung der aufgezeigten Nachteile an der Kathode noch zu einer wesentlichen Verbesserung der Intensität der emittierten Röntgenstrahlen, wohl aber zu einem vorzeitigen Verschleiß der Targetoberfläche. Hier am Target hielt die Fachwelt bisher strikt die von Heel aufgestellte Regel ein, daß der Targetwinkel (Winkel zwischen der Senkrechten zur Elektroneneinfallsrichtung und der Targetoberfläche) zwischen 10° und 40° liegen solle, weil bei 30° bis 33° Targetwinkel ein Maximum der Intensität der Röntgenstrahlungsabstrahlung liegt. Da hier am Target keine Verbesserungen möglich erschienen, richteten sich die Versuche zur Verbesserung der Intensität auf die Kathode der Röntgenröhren und endeten an den aufgezeigten Grenzen.
  • Es ist die Aufgabe der Erfindung, die Intensität der Elektronenemission aus einem Mikrofocus einer Glühkathode bei gleichzeitiger Steigerung deren Lebensdauer erheblich zu erhöhen und die Intensität der Röntgenstrahlenemission zu steigern.
  • Der Erfindung liegt die Erkenntnis zugrunde, daß die Lebensdauer eine Glühkathode umso höher ist, je stärker der Querschnitt des Glühdrahtes ist und umso niedriger dessen Temperatur zumindest an der Oberfläche ist, und daß auf dieser Oberfläche eines relativ dicken Drahtes sich ein Mikrofocus ausbilden läßt, wenn es nur gelingt, einen Ort der Oberfläche besonderen physikalischen Bedingungen auszusetzen, die an anderen Teilen der Oberfläche nicht herrschen und die zur Elektronenemission bevorzugt geeignet sind.
  • Die Erfindung besteht darin, daß die Querschnittsdimensionen des Drahtes der Glühkathode groß gegenüber den Dimensionen der Elektronenaustrittsfläche sind und daß eine Vorrichtung zur Erzielung einer erhöhten Oberflächentemperatur an derjenigen Stelle vorgesehen ist, an der das elektrische Feld zwischen Anode und Kathode seinen höchsten Wert erreicht.
  • Auf diese Weise erreicht man, daß trotz der Verwendung eines sehr stabilen Glühdrahtes, der infolge seiner Querschnittsgröße und seiner Oberflächentemperatur eine lange Lebensdauer aufweist, ein Mikrofokus geschaffen ist, der sich durch eine besonders hohe Intensität der Elektronenemission auszeichnet. Durch die Anordnung der Elektronenemissionsstelle in zwei Feldern, einem elektrischen Feld und einem Temperaturfeld an der Oberfläche des Glühdrahtes, deren Spitzenwerte an ein und denselben Ort fallen, läßt sich auf dem Glühdraht ein Fokus intensiver Elektronenemission von sehr kleinen Abmessungen schaffen, obwohl der Durchmesser des Glühdrahtes viel größer ist.
  • Dabei braucht man den winzigen Fleck erhöhter Temperatur nicht einmal durch äußere Strahlungseinwirkung, z. B. durch Lichteinstrahlung, Infraroteinstrahlung oder mittels eines Lasers, zu schaffen, dieser Ort erhöhter Temperatur läßt sich viel einfacher, aber ebenso wirkungsvoll dadurch schaffen, daß man die Glühkathode mit einem Wärmestrahlung absorbierenden Körper so (teilweise) umgibt, daß von allen Orten der Oberfläche des Glühdrahtes mehr Strahlung absorbiert wird als von dem Ort der Elektronenaustrittsfläche. Hierzu bietet sich die Steuerelektrode (Gitter) als einfaches, sowieso vorhandenes Bauelement an, wenn man es nur in geeigneter Weise dimensioniert.
  • Durch diese Strahlungsabsorption, aber auch mit anderen Maßnahmen der Kühlung läßt sich erreichen, daß man den Glühdraht so (unterschiedlich stark) kühlt, daß am Ort der Elektronenaustrittsfläche die höchste Temperatur an der Oberfläche des Glühdrahtes herrscht.
  • Dabei ist es,zweckmäßig, wenn die Vorrichtung zur Erzielung einer erhöhten Temperatur eine Wärmestrahlung stark absorbierende Vorrichtung ist, welche die Glühkathode teilweise umgibt. Denn mit dieser Vorrichtung läßt sich bei geringstem Aufwand eine enorme Steigerung der Intensität der Elektronenemission erzielen.
  • Diese Vorrichtung kann die sowieso in der Röntgenröhre vorhandene Steuerelektrode sein, wenn sie nur in besonderer Weise diesem Zweck der Wärmeabsorption angepaßt ist. Eine solche Feinfokus-Röntgenröhre zeichnet sich dadurch aus, daß die Steuerelektrode als ein starkwandiger Körper ausgebildet ist, der die Form eines Hohlzylinders mit an der Stirnseite nach innen gerichteten Vorsprung aufweist, dessen Außenseite sich trichterförmig erweitert, wobei dieser Trichter einem Winkel von 100° bis 140° einschließt, und daß die Glühkathode mit ihrer am weitesten aus dem Inneren der Steuerelektrode austretenden Stelle in der Achse der Steuerelektrode in einer Ebene angeordnet ist, die im Bereich der Unterkante des trichterförmigen Teiles der Stirnseitenfläche liegt.
  • In dieser Röntgenröhre kann die Glühkathode so ausgeführt sein, daß die Glühkathode aus einem U- oder V-förmig gebogenen Draht besteht. In Zusammenwirken mit der als Kühlvorrichtung wirkenden Steuerelektrode bildet sich dann in der Spitze der Biegung des Glühdrahtes ein winziger Fleck aus, der von der Kühlwirkung am wenigsten erfaßt wird und der, da er gleichzeitig am Ort der höchsten Feldstärke liegt, ein Ort besonders intensiver Elektronenemission ist. So wird hier an einer keineswegs spitzen Elektrode von bisher ungeeignet erscheinender Form und Größe ein Mikrofokus erzielt, dessen Wirkungsgrad der Emission die spitzgeformten bekannten Elektroden wesentlich übertrifft. Die Kühlwirkung gerade der Oberflächenteile der Glühkathode ist die Ursache für die bedeutende Erhöhung der Lebensdauer der Glühkathode.
  • Eine weitere Steigerung der Intensität der Röntgenstrahlung, die weit über das hinausgeht, was nach der Steigerung der Elektronenemission zu erwarten ist, ist dadurch erreichbar, daß das Target eine sphärisch gekrümmte Oberfläche aufweist und der Targetwinkel einen Wert zwischen 0° und 10° hat. Hier zeigt das Zusammenwirken der erfindungsgemäßen Maßnahmen an der Kathode mit den erfindungsgemäßen Maßnahmen an der Anode eine Steigerung der Intensität um mehr als eine Größenordnung, ohne daß ein besonderer Aufwand getrieben wurde und ohne daß eine Einbuße an Lebensdauer entsteht.
  • Das erfindungsgemäße Verfahren ist durch die Ansprüche 6 bis 8 gekennzeichnet.
  • Das Wesen der Erfindung ist nachstehend anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispieles näher erläutert.
  • Es zeigen :
    • Figur 1 einen Querschnitt durch die Feinfokus-Röntgenröhre,
    • Figur 2 einen Querschnitt durch die Kathode und die Anordnung der Steuerelektrode (Gitters),
    • Figur 3 einen Querschnitt durch einen Teil der Röntgenröhre im Bereich des Targets,
    • Figur 4 einen Teil des Targets,
    • Figur 5 eine andere Ausbildung des Glühdrahtes,
    • Figur 6 eine weitere Ausbildung des Glühdrahtes.
  • Der Kolben der Rontgenröhre besteht aus zwei Teilen 1, 2. Das Teil 1 nimmt die Kathode, bestehend aus dem Heizfaden 3, der als Emitter für den Elektronenstrom 11 dient, den Anschlußkontakten 12, 13 für den Heizfaden 3 und dem Sockel 14 und die Steuerelektrode 4 auf, welches ebenfalls vom Sockel 14 getragen wird und welches über den Anschlußkontakt 15 mit einer nicht dargestellten Spannungsquelle verbunden ist. Das als Anode dienende Teil 2 nimmt in seinem Inneren mit einem Luftspalt 26 versehene Fokussierspulen 5, Ablenkspulen 6 auf und ist mit dem Targetkopf 7 versehen, der in seinem Inneren das Target 8 (die Antikathode) und eine Abschirmung 16 aufnimmt, die eine Durchbrechung für den Austritt der am Target 8 erzeugten Röntgenstrahlen 10 aufweist, die durch das Austrittsfenster 9 austreten. Der Targetkopf wird durch eine Kühlflüssigkeit gekühlt, die durch die Rohre 17 in einen Kühlraum ein- bzw. austritt. Der Kolben der Röntgenröhre weist einen Vakuumanschluß 18 auf. Die elektrischen Anschlüsse für die Fokussierspule 5 und die Ablenkspulen 6 sind mit 19 bis 22 bezeichnet. Zwischen den beiden Teilen 1 und 2 des Kolbens der Röntgenröhre befindet sich eine Trennwand (Anode) 24, welche mit einer Durchlaßöffnung 25 für den Elektronenstrom 11 versehen ist.
  • In Fig. 2 ist in vergrößerter Darstellung der Aufbau von Kathode und Steuerelektrode dargestellt. Über die Anschlußkontakte 12, 13, die in Klemmvorrichtungen 27, 28 für den U-förmig gebogenen Heizfaden (Emitter) 3 enden, wird dem Heizfaden 3 Spannung zugeführt, die diesen Heizfaden zum Glühen bringt. Die beiden Klemmvorrichtungen 27, 28 sind dabei in einer Halterung 29 untergebracht, die mittels des Isolierringes 30 auch das Gitter 4 trägt. Diese Steuerelektrode 4 ist als ein starkwandiger Hohlzylinder ausgebildet, der an seiner einen, den Heizfaden 3 umschließenden Stirnseite einen nach innen gerichteten Vorsprung 34 aufweist, der an seiner Außenseite in Form eines Trichters 31 ausgebildet ist, der einen Öffnungswinkel ß von 100° bis 140°, vorzugsweise 120°, aufweist. Dieser Trichter 31 geht auf seiner Innenseite in eine zylindrische Oberfläche 32 über, die abgerundete Kante 33, über. Im Bereich dieser abgerundeten Kante 33 befindet sich die Ebene 35, in welcher sich derjenige Oberflächenteil des Heizdrahtes 3 befindet, der Elektronen emittiert. Durch die besondere geometrische Ausbildung der Steuerelektrode wird einerseits ein elektrisches Feld erzeugt, welches seinen Spitzenwert in der Achse 36 dort hat, wo die Achse 36 die dem Target zugewandte Oberfläche des Heizdrahtes 3 durchbricht. Andererseits ist durch die besondere geometrische Gestaltung der Steuerelektrode 4 erreicht, daß von allen Oberflächenteilen des Heizfadens 3 mehr Strahlung an die Steuerelektrode abgegeben wird als von demjenigen Ort des Heizfadens, an dem die geometrische Achse die dem Target zugewandte Oberfläche des Heizdrahtes 3 durchbricht. Hierdurch wird die Oberfläche des Heizdrahtes überall gekühlt, jedoch ist die Kühlung am geringsten an demjenigen Ort, an dem die geometrische Achse 36 die dem Target 8 zugewandte Oberfläche der Heizdrahtes durchbricht. Als Durchmesser D des Heizdrahtes wird ein solcher von mehr als 0,17 mm gewählt, der Innenradius Ri der Krümmung ist größer als 0,1 D gewählt. Diese Abmessungen sind erheblich größer als die Abmessungen, die bisher für Feinfokus-Röntgenröhren verwendet werden. Der Innenradius Ri und der Außenradius Ra können aber auch noch erheblich größere Werte aufweisen. - In manchen Fällen ist es zweckmäßig, die massiv wie ein Klotz ausgebildete ringförmige Steuerelektrode 4 noch mit einer zusätzlichen Schürze 37 zu versehen, um die nach außen erfolgende Abstrahlung von Wärme zu vergrößern. Diese Schürze 37 wird zweckmäßigerweise einstückig mit der Steuerelektrode 4 hergestellt und stellt im wesentlichen einen massiven Hohlzylinder dar.
  • Man kann anstelle des Heizdrahtes 3 auch andere Formen für den Emitter verwenden, z. B. Emitter in den Formen, wie sie in Fig. 5 und 6 dargestellt sind. Diese aus massivem Material hergestellten Emitter werden ebenfalls bis zum Glühen durch durchfließenden Strom erhitzt.
  • In Fig. 3 ist das Detail 1 aus Fig. 1 dargestellt, nämlich ein Teil des Targetkopfes 7 und das Target 8 im Querschnitt. Das Target 8 ist als ein massiver Klotz ausgeführt, der eine zylindrische oder sphärische Oberfläche auf der dem Elektronenstrom 11 zugekehrten Seite aufweist.
  • Die Innenseite des Targetkopfes 7 ist mit einer Auskleidung 16 aus Blei versehen. Der Targetkopf 7 weist eine seitliche Durchbrechung auf, die durch das Strahlenaustrittsfenster 9 für die austretenden Röntgenstrahlen 10 verschlossen ist. Die am Target 8 eingestellten Werte sind anhand der Fig. 4 näher erläutert : Parallel zur Röhrenachse 36 verläuft die Elektronenstrahlachse E des Elektronenstrahles mit dem Elektronenstrahldurchmesser De. Der Auftreffpunkt der Elektronenstrahlachse E und der Targetkrümmungsradius R wird so gewählt, daß sich ein Targetwinkel a von maximal 10° ergibt. Da mit den erfindungsgemäßen Maßnahmen an der Kathode bereits ein sehr dünn gebündelter Elektronenstrahl auf das Target 8 fällt, ergibt sich eine sehr geringe Breite BFo des optischen Brennflecks. Bei einer Wahl des Targetwinkels von maximal 10° wird eine sehr hohe Intensität der Röntgenstrahlung erreicht, deren Ursache noch nicht wissenschaftlich geklärt werden konnte. Es wird angenommen, daß hier ähnliche Verhältnisse auftreten, wie sie bei der Totalreflexion in der Optik auftreten.
  • Die Glühkathode braucht nicht unbedingt aus einem stromdurchflossenen Draht zu bestehen, sie kann auch indirekt beheizt werden, z. B. induktiv beheizt werden. Auch in diesem Falle ist es wichtig, daß die Querschnittsdimensionen der Glühkathode, die durchaus die Form einer Nadel haben kann, groß gegenüber den Dimensionen der Elektronenaustrittsfläche sind und daß man an der Glühkathode einen Punkt mit einer gegenüber den anderen Oberflächenteilen erhöhten Oberflächentemperatur an der Stelle hat, an der das elektrische Feld zwischen Anode und Kathode seinen höchsten Wert erreicht. Es gibt aber auch Möglichkeiten, die Kathode sowohl direkt durch einen hindurchfließenden Strom als auch zusätzlich indirekt zu beheizen.

Claims (8)

1. Feinfocus-Röntgenröhre, in deren evakuiertem Kolben eine von einer rotationssymetrischen Steuerelektrode teilweise umgebene, durch einen Heizdraht gebildete Glühkathode und eine mit Target, elektromagnetischen Elektronenstrahlbündelungs- und -ablenkungsvorrichtungen und einer Eintrittsblende ausgestattete Anode untergebracht sind, dadurch gekennzeichnet, daß die Querschnittsdimensionen des Drahtes (3) der Glühkathode groß gegenüber den Dimensionen der Elektronenaustrittsfläche sind und daß eine Vorrichtung zur Erzielung einer erhöhten Oberflächentemperatur an derjenigen Stelle vorgesehen ist, an der das elektrische Feld zwischen Anode und Kathode seinen höchsten Wert erreicht.
2. Feinfocus-Röntgenröhre nach Anspruch 1, dadurch gekennzeichnet, daß die Vorrichtung zur Erzielung einer erhöhten Temperatur eine Wärmestrahlung stark absorbierende Vorrichtung ist, welche die Glühkathode teilweise umgibt.
3. Feinfocus-Röntgenröhre nach Anspruch 1, dadurch gekennzeichnet, daß die Steuerelektrode (4) als ein starkwandiger Körper ausgebildet ist, der die Form eines Hohlzylinders mit an der Stirnseite nach innen gerichtetem Vorsprung aufweist, dessen Aussenseite sich trichterförmig erweitert, wobei dieser Trichter einen Winkel von 100° bis 140° einschließt und daß die Glühkathode mit ihrer am weitesten aus dem Inneren der Steuerelektrode austretenden Stelle in der Achse der Steuerelektrode in einer Ebene angeordnet ist, die im Bereich der Unterkante des trichterförmigen Teiles der Stirnseitenfläche liegt.
4. Feinfocus-Röntgenröhre nach Anspruch 1, dadurch gekennzeichnet, daß der Draht (3) der Glühkathode U- oder V-förmig gebogen ist.
5. Feinfocus-Röntgenröhre nach Anspruch 1, dadurch gekennzeichnet, daß das Target (8) eine sphärisch gekrümmte Oberfläche aufweist und der Targetwinkel einen Wert zwischen 0° und 10° hat.
6. Verfahren zur Bildung eines Mikrofocus der Elektronenemission einer Röntgenröhren-Glühkathode, dadurch gekennzeichnet, daß ein Glühdraht (3) verwendet wird, dessen Querschnittsdimensionen groß gegenüber den Dimensionen der Elektronenaustrittsfläche sind, daß auf dem Glühdraht (3) am Ort der Elektronenaustrittsfläche ein Ort erhöhter Temperatur geschaffen wird und daß das elektrische Feld so gestaltet wird, daß es an diesem Ort erhöhter Temperatur seinen Spitzenwert erreicht.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß der Ort erhöhter Temperatur dadurch geschaffen wird, daß von allen Orten der Oberfläche des Glühdrahtes mehr Wärmestrahlung durch einen Wärmestrahlung absorbierenden Körper (4) absorbiert wird als von dem Ort der Elektronenaustrittsfläche.
8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß der Glühdraht (3) so unterschiedlich stark gekühlt wird, daß am Ort der Elektronenaustrittsfläche die höchste Temperatur an der Oberfläche des Glühdrahtes (3) herrscht.
EP83105571A 1982-06-16 1983-06-07 Feinfokus-Röntgenröhre und Verfahren zur Bildung eines Mikrofokus der Elektronenemission einer Röntgenröhren-Glühkathode Expired EP0096824B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83105571T ATE29088T1 (de) 1982-06-16 1983-06-07 Feinfokus-roentgenroehre und verfahren zur bildung eines mikrofokus der elektronenemission einer roentgenroehren-gluehkathode.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3222511 1982-06-16
DE3222511A DE3222511C2 (de) 1982-06-16 1982-06-16 Feinfokus-Röntgenröhre

Publications (2)

Publication Number Publication Date
EP0096824A1 EP0096824A1 (de) 1983-12-28
EP0096824B1 true EP0096824B1 (de) 1987-08-19

Family

ID=6166125

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83105571A Expired EP0096824B1 (de) 1982-06-16 1983-06-07 Feinfokus-Röntgenröhre und Verfahren zur Bildung eines Mikrofokus der Elektronenemission einer Röntgenröhren-Glühkathode

Country Status (5)

Country Link
US (1) US4573186A (de)
EP (1) EP0096824B1 (de)
JP (1) JPH0618119B2 (de)
AT (1) ATE29088T1 (de)
DE (1) DE3222511C2 (de)

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3330806A1 (de) * 1983-08-26 1985-03-14 Feinfocus Röntgensysteme GmbH, 3050 Wunstorf Roentgenlithographiegeraet
DE3426624A1 (de) * 1984-07-19 1986-01-30 Scanray A/S, Kopenhagen Roentgenroehre
US4764947A (en) * 1985-12-04 1988-08-16 The Machlett Laboratories, Incorporated Cathode focusing arrangement
US4868842A (en) * 1987-03-19 1989-09-19 Siemens Medical Systems, Inc. Cathode cup improvement
ATE72498T1 (de) * 1988-08-25 1992-02-15 Steffel Gmbh Spezialmaschbau Rundstrahl-roentgenroehre.
US5077777A (en) * 1990-07-02 1991-12-31 Micro Focus Imaging Corp. Microfocus X-ray tube
JPH04101339A (ja) * 1990-08-20 1992-04-02 Rigaku Denki Kogyo Kk X線管
US5111494A (en) * 1990-08-28 1992-05-05 North American Philips Corporation Magnet for use in a drift tube of an x-ray tube
US5515413A (en) * 1994-09-26 1996-05-07 General Electric Company X-ray tube cathode cup assembly
GB9620160D0 (en) * 1996-09-27 1996-11-13 Bede Scient Instr Ltd X-ray generator
US6134300A (en) * 1998-11-05 2000-10-17 The Regents Of The University Of California Miniature x-ray source
US6185276B1 (en) * 1999-02-02 2001-02-06 Thermal Corp. Collimated beam x-ray tube
US7062017B1 (en) * 2000-08-15 2006-06-13 Varian Medical Syatems, Inc. Integral cathode
JP4762436B2 (ja) * 2001-05-16 2011-08-31 浜松ホトニクス株式会社 カソードユニット及び開放型x線発生装置
US7180981B2 (en) * 2002-04-08 2007-02-20 Nanodynamics-88, Inc. High quantum energy efficiency X-ray tube and targets
US7138768B2 (en) * 2002-05-23 2006-11-21 Varian Semiconductor Equipment Associates, Inc. Indirectly heated cathode ion source
US7466799B2 (en) * 2003-04-09 2008-12-16 Varian Medical Systems, Inc. X-ray tube having an internal radiation shield
DE10352334B4 (de) * 2003-11-06 2010-07-29 Comet Gmbh Verfahren zur Regelung einer Mikrofokus-Röntgeneinrichtung
CN1786819B (zh) * 2004-12-09 2011-08-10 Ge医疗系统环球技术有限公司 X射线光阑、x射线辐照器和x射线成像设备
EP2084728A2 (de) * 2006-10-17 2009-08-05 Philips Intellectual Property & Standards GmbH Emitter für röntgenröhren und erwärmungsverfahren dafür
US7737424B2 (en) * 2007-06-01 2010-06-15 Moxtek, Inc. X-ray window with grid structure
US20110121179A1 (en) * 2007-06-01 2011-05-26 Liddiard Steven D X-ray window with beryllium support structure
WO2009009610A2 (en) * 2007-07-09 2009-01-15 Brigham Young University Methods and devices for charged molecule manipulation
US8736138B2 (en) * 2007-09-28 2014-05-27 Brigham Young University Carbon nanotube MEMS assembly
US8498381B2 (en) 2010-10-07 2013-07-30 Moxtek, Inc. Polymer layer on X-ray window
US9305735B2 (en) 2007-09-28 2016-04-05 Brigham Young University Reinforced polymer x-ray window
US7924983B2 (en) * 2008-06-30 2011-04-12 Varian Medical Systems, Inc. Thermionic emitter designed to control electron beam current profile in two dimensions
US20100239828A1 (en) * 2009-03-19 2010-09-23 Cornaby Sterling W Resistively heated small planar filament
US8247971B1 (en) 2009-03-19 2012-08-21 Moxtek, Inc. Resistively heated small planar filament
US7983394B2 (en) * 2009-12-17 2011-07-19 Moxtek, Inc. Multiple wavelength X-ray source
CN103189955A (zh) * 2010-08-27 2013-07-03 Ge传感与检测技术有限公司 用于高分辨率x射线设备的微焦点x射线管
US8526574B2 (en) 2010-09-24 2013-09-03 Moxtek, Inc. Capacitor AC power coupling across high DC voltage differential
US8804910B1 (en) 2011-01-24 2014-08-12 Moxtek, Inc. Reduced power consumption X-ray source
US8750458B1 (en) 2011-02-17 2014-06-10 Moxtek, Inc. Cold electron number amplifier
US8929515B2 (en) 2011-02-23 2015-01-06 Moxtek, Inc. Multiple-size support for X-ray window
JP5711007B2 (ja) * 2011-03-02 2015-04-30 浜松ホトニクス株式会社 開放型x線源用冷却構造及び開放型x線源
US8989354B2 (en) 2011-05-16 2015-03-24 Brigham Young University Carbon composite support structure
US9076628B2 (en) 2011-05-16 2015-07-07 Brigham Young University Variable radius taper x-ray window support structure
US9174412B2 (en) 2011-05-16 2015-11-03 Brigham Young University High strength carbon fiber composite wafers for microfabrication
US20150117599A1 (en) 2013-10-31 2015-04-30 Sigray, Inc. X-ray interferometric imaging system
US8761344B2 (en) 2011-12-29 2014-06-24 Moxtek, Inc. Small x-ray tube with electron beam control optics
US9072154B2 (en) 2012-12-21 2015-06-30 Moxtek, Inc. Grid voltage generation for x-ray tube
US9177755B2 (en) 2013-03-04 2015-11-03 Moxtek, Inc. Multi-target X-ray tube with stationary electron beam position
US9184020B2 (en) 2013-03-04 2015-11-10 Moxtek, Inc. Tiltable or deflectable anode x-ray tube
US9173623B2 (en) 2013-04-19 2015-11-03 Samuel Soonho Lee X-ray tube and receiver inside mouth
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
US9570265B1 (en) 2013-12-05 2017-02-14 Sigray, Inc. X-ray fluorescence system with high flux and high flux density
US9449781B2 (en) 2013-12-05 2016-09-20 Sigray, Inc. X-ray illuminators with high flux and high flux density
US9448190B2 (en) 2014-06-06 2016-09-20 Sigray, Inc. High brightness X-ray absorption spectroscopy system
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
US9823203B2 (en) 2014-02-28 2017-11-21 Sigray, Inc. X-ray surface analysis and measurement apparatus
US9594036B2 (en) 2014-02-28 2017-03-14 Sigray, Inc. X-ray surface analysis and measurement apparatus
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
US9748070B1 (en) 2014-09-17 2017-08-29 Bruker Jv Israel Ltd. X-ray tube anode
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
JP6677420B2 (ja) * 2016-04-01 2020-04-08 キヤノン電子管デバイス株式会社 X線管装置
WO2018024553A1 (en) 2016-08-01 2018-02-08 Koninklijke Philips N.V. X-ray unit
US10247683B2 (en) 2016-12-03 2019-04-02 Sigray, Inc. Material measurement techniques using multiple X-ray micro-beams
JP6937380B2 (ja) 2017-03-22 2021-09-22 シグレイ、インコーポレイテッド X線分光を実施するための方法およびx線吸収分光システム
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
US10989822B2 (en) 2018-06-04 2021-04-27 Sigray, Inc. Wavelength dispersive x-ray spectrometer
GB2591630B (en) 2018-07-26 2023-05-24 Sigray Inc High brightness x-ray reflection source
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
CN110867359B (zh) * 2018-08-28 2022-02-01 姚智伟 微焦点x射线源
WO2020051061A1 (en) 2018-09-04 2020-03-12 Sigray, Inc. System and method for x-ray fluorescence with filtering
US11056308B2 (en) 2018-09-07 2021-07-06 Sigray, Inc. System and method for depth-selectable x-ray analysis
US11302508B2 (en) 2018-11-08 2022-04-12 Bruker Technologies Ltd. X-ray tube
US11152183B2 (en) 2019-07-15 2021-10-19 Sigray, Inc. X-ray source with rotating anode at atmospheric pressure
US11164713B2 (en) * 2020-03-31 2021-11-02 Energetiq Technology, Inc. X-ray generation apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB701050A (en) * 1950-03-22 1953-12-16 Werner Ehrenberg Improvements in or relating to x-ray tubes
US2866113A (en) * 1952-10-07 1958-12-23 Cosslett Vernon Ellis Fine focus x-ray tubes
US3141993A (en) * 1959-12-24 1964-07-21 Zeiss Jena Veb Carl Very fine beam electron gun
NL271119A (de) * 1961-07-10
DE1614158A1 (de) * 1967-05-13 1971-04-29 Mueller C H F Gmbh Kathode fuer Roentgenroehre
NL7314131A (nl) * 1973-10-15 1975-04-17 Philips Nv Draaianode roentgenbuis.
GB1597841A (en) * 1977-01-19 1981-09-09 Nicolet Xrd Corp Electron beam focussing
NL7803837A (nl) * 1978-04-11 1979-10-15 Neratoom Inrichting voor het opwekken van roentgenstralen.

Also Published As

Publication number Publication date
ATE29088T1 (de) 1987-09-15
US4573186A (en) 1986-02-25
DE3222511A1 (de) 1983-12-22
JPS598251A (ja) 1984-01-17
DE3222511C2 (de) 1985-08-29
JPH0618119B2 (ja) 1994-03-09
EP0096824A1 (de) 1983-12-28

Similar Documents

Publication Publication Date Title
EP0096824B1 (de) Feinfokus-Röntgenröhre und Verfahren zur Bildung eines Mikrofokus der Elektronenemission einer Röntgenröhren-Glühkathode
DE60007852T2 (de) Verfahren und vorrichtung zum verlängern der lebenszeit einer röntgenanode
DE102010060484B4 (de) System und Verfahren zum Fokussieren und Regeln/Steuern eines Strahls in einer indirekt geheizten Kathode
DE366550C (de) Hochvakuumroentgenroehre mit Gluehkathode
DE10240628B4 (de) Röntgenröhre mit Ringanode und Röntgen-System mit einer solchen Röntgenröhre
EP0292055B1 (de) Strahlenquelle zur Erzeugung einer im wesentlichen monochromatischen Röntgenstrahlung
DE2807735B2 (de) Röntgenröhre mit einem aus Metall bestehenden Röhrenkolben
DE2518688A1 (de) Linsen-gitter-system fuer elektronenroehren
EP0777255A1 (de) Röntgenröhre, insbesondere Mikrofokusröntgenröhre
DE19510047C2 (de) Anode für eine Röntgenröhre
DE1156521B (de) Elektronenstrahlkanone zum Erhitzen von Metallen
EP0481103B1 (de) Röntgencomputertomograph mit ringförmig geführtem Elektronenstrahl
DE526003C (de) Roentgenroehre
DE2310061A1 (de) Roentgenroehre
DE102012103974A1 (de) Vorrichtung und Verfahren zur Erzeugung zumindest eines Röntgenstrahlen abgebenden Brennflecks
DE1764063B1 (de) Elektrodensystem zur erzeugung eines elektronenstrahlbuendels
DE407431C (de) Elektrodenanordnung fuer Roentgenroehren
DE3426623C2 (de)
DE2913487A1 (de) Vorrichtung zum erzeugen von roentgenstrahlen
DE3222515A1 (de) Feinfokus-roentgenroehre
EP0168777B1 (de) Röntgenröhre
EP0417642B1 (de) Elektronenstrahlerzeuger, insbesondere für eine Elektronenstrahlkanone
DE605180C (de) Roentgenroehre, bei der die einzelnen Teile des Brennfleckes mit voneinander verschiedener Geschwindigkeit relativ zur Antikathodenflaeche bewegt werden
DE619621C (de) Roentgenroehre mit durchlochter Hohlanode
EP3053182B1 (de) Strahlungserzeugungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19840313

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FEINFOCUS VERWALTUNGS GMBH & CO. KG

RIN1 Information on inventor provided before grant (corrected)

Inventor name: REINHOLD, ALFRED, DIPL.-ING.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: DOTT. FRANCO CICOGNA

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 29088

Country of ref document: AT

Date of ref document: 19870915

Kind code of ref document: T

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 83105571.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980601

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980602

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980612

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980616

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19980625

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980626

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980630

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980925

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990607

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990607

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

BERE Be: lapsed

Owner name: FEINFOCUS VERWALTUNGS G.M.B.H. & CO. K.G.

Effective date: 19990630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990607

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 83105571.0

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST