EP0292055B1 - Strahlenquelle zur Erzeugung einer im wesentlichen monochromatischen Röntgenstrahlung - Google Patents

Strahlenquelle zur Erzeugung einer im wesentlichen monochromatischen Röntgenstrahlung Download PDF

Info

Publication number
EP0292055B1
EP0292055B1 EP88200941A EP88200941A EP0292055B1 EP 0292055 B1 EP0292055 B1 EP 0292055B1 EP 88200941 A EP88200941 A EP 88200941A EP 88200941 A EP88200941 A EP 88200941A EP 0292055 B1 EP0292055 B1 EP 0292055B1
Authority
EP
European Patent Office
Prior art keywords
anode
radiation source
radiation
rays
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88200941A
Other languages
English (en)
French (fr)
Other versions
EP0292055A3 (en
EP0292055A2 (de
Inventor
Geoffrey Dr. Harding
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Patentverwaltung GmbH
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung GmbH, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Philips Patentverwaltung GmbH
Priority to AT88200941T priority Critical patent/ATE74690T1/de
Publication of EP0292055A2 publication Critical patent/EP0292055A2/de
Publication of EP0292055A3 publication Critical patent/EP0292055A3/de
Application granted granted Critical
Publication of EP0292055B1 publication Critical patent/EP0292055B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/066Details of electron optical components, e.g. cathode cups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/16Vessels
    • H01J2235/165Shielding arrangements
    • H01J2235/168Shielding arrangements against charged particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • H01J35/116Transmissive anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • H01J35/18Windows
    • H01J35/186Windows used as targets or X-ray converters

Definitions

  • the invention relates to a radiation source for generating an essentially monochromatic X-ray radiation with a cathode for generating electrons accelerated to an anode and with a conical body enclosed by the anode, which converts the X-rays impinging on it into fluorescent radiation and with its tapering end onto one Radiation leakage points.
  • Such a radiation source is known from DE-OS 22 59 382.
  • the monochromatic radiation is formed by the fluorescent radiation which emanates from the body when it is struck by primary X-ray radiation.
  • the primary X-ray radiation is suppressed by a collimator located at a suitable location.
  • the anode In the known radiation source, the anode is designed as a so-called transmission anode, ie it is struck by electrons on its outer surface and the X-ray radiation that strikes the conical body emerges from the inner surface of the anode.
  • the thickness of the anode must be a compromise between the contradictory demands to absorb as many electrons as possible on the one hand and to weaken the generated X-rays as little as possible on the other. This results in relatively small thicknesses, which results in poor heat dissipation and thus a limited tube load capacity.
  • the object of the present invention is to design a radiation source of the type mentioned at the outset in such a way that there is an increased thermal load capacity.
  • This object is achieved in that the anode is hit on its inner surface facing the body by the electrons emitted from the cathode.
  • the heat can be dissipated much better from the anode, for example by liquid cooling and / or by using a relatively thick-walled anode.
  • DE-A-2 029 141 discloses an analysis arrangement in which a sample holder is partially surrounded by a cylindrical, water-cooled anode with a radiation outlet and a conical inner surface, while a cathode filament is coaxial with the radiation outlet and the sample holder lies.
  • the electrons of the cathode hit the inner surface of the anode and generate primary X-rays.
  • the sample attached to the sample holder is exposed to primary X-rays and emits fluorescent X-rays and secondary electrons that are measured together.
  • a further development of the invention provides that the inner surface of the anode facing the body has the shape of a truncated cone jacket tapering towards the radiation exit.
  • the anode consists of a solid metal block which is provided on its inner surface with a heavy-duty metal layer.
  • the material of the metal block of the anode can consist of a thermally highly conductive material, for example copper, while the metal on the inner surface can be chosen with a view to the highest possible fluorescence radiation yield.
  • the material for the inner surface of the anode and the outer surface of the body is selected so that the characteristic X-ray radiation emitted from the anode has an energy that is slightly greater than the K-absorption edge of the body. Since X-rays, the energy of which is slightly above the absorption edge of a material, are converted into fluorescence radiation to a particularly high percentage, this results in an increased intensity of the fluorescence radiation.
  • a cylindrical metal screen which surrounds the body and which only weakens the X-ray radiation only slightly.
  • the screen absorbs the secondary electrons and prevents them from generating X-rays with an energy different from the energy of the fluorescent radiation.
  • the rotationally symmetrical radiation source has a cylindrical housing 1 to which a cathode arrangement 3 with a ring-shaped or spiral-shaped cathode 4 is attached via a ceramic insulator 2.
  • a cathode arrangement 3 with a ring-shaped or spiral-shaped cathode 4 is attached via a ceramic insulator 2.
  • an electron beam indicated by the dashed lines 4a, is emitted, which strikes the inner surface of an anode, which is shaped like the shell of a truncated cone. This results in a relatively uniform distribution of the electrons on the inner surface of the anode.
  • the anode consists of a metal block 5a made of a thermally highly conductive material, preferably copper, which is coated on its inner surface with a heavy-duty metal layer, in which X-rays are generated by the electron bombardment.
  • the X-ray radiation strikes a target 7 through a thin cylindrical screen 6, which is conical on its side facing away from the cathode and converts the primary radiation striking it into essentially monochromatic fluorescent radiation.
  • the screen 6, which carries the target 7, has the task of keeping scattered electrons away from the target 7. These stray electrons would generate an undesirable bremsradiation spectrum when they hit the target 7.
  • the screen 6 absorbs too much primary X-ray radiation and on the other hand even emits X-radiation due to stray or secondary electrons, the screen 6 is as thin-walled as is just permitted for mechanical reasons and consists of a low-atom material, e.g. Titanium.
  • the primary X-ray radiation emanating from the anode 5a, 5b is suppressed by a collimator arrangement 8, in the center of which the screen 6 is attached in a vacuum-tight manner.
  • the collimator consists of a radiation-absorbing material or a plurality of plates of such a material which are offset with respect to one another in the direction of the axis of symmetry, the thickness of the collimator or the distance between the outer plates of this collimator being selected such that the anode starts primary X-ray radiation must hit the collimator before it reaches the radiation exit 9.
  • the energy of the fluorescence radiation depends on the material of the target. If tantalum is chosen as the material, the energy of the fluorescent radiation is 57.5 keV (K ⁇ 1 line). If a fluorescence radiation with higher or lower energy is to be generated, the tantalum target must be replaced by a target which consists of an element or an alloy with a higher or lower atomic number.
  • the tube voltage (expressed in kV) must be about twice as high as the energy of the fluorescent radiation (expressed in keV).
  • it is expedient to detachably e.g. by a screw connection to connect to the screen.
  • the screen must be designed so that it hermetically seals the inside of the evacuated housing of the radiation source to the outside
  • the layer 5b in which the primary X-ray radiation is generated, has a high atomic number and is expediently chosen such that the energy of the characteristic radiation generated in this layer lies slightly above the K absorption edge of the target 7, because this results in a particularly good implementation in fluorescence radiation. If the target consists of tantalum (K absorption edge at 67.4 keV), this condition is met by a layer 5b of gold (K ⁇ line at 68.8 keV).
  • the layer 5b is preferably applied to a solid metal block 5a made of copper.
  • the back of this copper block is cooled by a cooling liquid which flows into a cavity 10, which is hermetically sealed from the inside of the tube, around the copper block from the outside in a manner not shown in detail.
  • a cooling liquid which flows into a cavity 10, which is hermetically sealed from the inside of the tube, around the copper block from the outside in a manner not shown in detail.
  • water is preferably used as the cooling liquid.
  • a metal block enclosed by a cavity for cooling it is also possible to use a metal block in which cooling channels, for example in spiral form, have already been incorporated. With a suitable design, this allows the cooling surface and thus also the maximum electrical power that can be supplied to be increased.
  • the fluorescence radiation generated on the target 7 is not completely monochromatic. This is because other lines besides the desired K ⁇ lines are excited, e.g. the higher energy Kß line or L lines with much lower energy.
  • the Kß line can be suppressed by a radiation filter arranged in the radiation outlet, which consists of a material whose absorption edge lies between the K ⁇ and the Kß line.
  • filters made of ytterbium or thulium are suitable as radiation filters.
  • the soft lines can optionally be suppressed by the same filter or by a filter made of a material with a lower atomic number, which is dimensioned such that the desired K ⁇ line is only slightly weakened, while the L lines are largely suppressed.

Landscapes

  • X-Ray Techniques (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

  • Die Erfindung betrifft eine Strahlenquelle zur Erzeugung einer im wesentlichen monochromatischen Röntgenstrahlung mit einer Kathode zur Erzeugung von auf eine Anode beschleunigten Elektronen und mit einem von der Anode umschlossenen kegelförmigen Körper, der auf ihn auftreffende Röntgenstrahlung in Fluoreszenzstrahlung umsetzt und der mit seinem sich verjüngenden Ende auf einen Strahlenaustritt weist.
  • Eine solche Strahlenquelle ist aus der DE-OS 22 59 382 bekannt. Die monochromatische Strahlung wird bei dieser Strahlenquelle durch die Fluoreszenzstrahlung gebildet, die von dem Körper ausgeht, wenn er durch primäre Röntgenstrahlung getroffen wird. Die primäre Röntgenstrahlung wird durch einen an geeigneter Stelle befindlichen Kollimator unterdrückt.
  • Bei der bekannten Strahlenquelle ist die Anode als sogenannte Transmissionsanode ausgebildet, d.h. sie wird auf ihrer Außenfläche von Elektronen getroffen und die Röntgenstrahlung, die auf den kegelförmigen Körper auftrifft, tritt aus der Innenfläche der Anode aus. Die Dicke der Anode muß ein Kompromiß sein zwischen den gegensätzlichen Forderungen, einerseits möglichst alle Elektronen zu absorbieren und andererseits die erzeugte Röntgenstrahlung möglichst wenig zu schwächen. Dabei ergeben sich relativ geringe Dicken, woraus eine schlechte Wärmeabfuhr und damit eine begrenzte Röhrenbelastbarkeit resultieren.
  • Aufgabe der vorliegenden Erfindung ist es, eine Strahlenquelle der eingangs genannten Art so auszugestalten, daß sich eine erhöhte thermische Belastbarkeit ergibt.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Anode auf ihrer dem Körper zugewandten Innenfläche von den aus der Kathode emittierten Elektronen getroffen wird.
  • Da bei dieser Bauform der Anode nur deren Innenfläche dem Elektronenbeschuß ausgesetzt und Ausgangspunkt der Röntgenstrahlung ist, kann die Wärme wesentlich besser aus der Anode abgeführt werden, beispielsweise durch eine Flüssigkeitskühlung und/oder dadurch, daß eine relativ dickwandige Anode verwendet wird.
  • An sich ist aus der Schrift DE-A-2 029 141 eine Analyseanordnung bekannt, bei der ein Probenhalter teilweise von einer zylindrischen, wassergekühlten Anode mit einem Strahlenaustritt und einer kegelförmigen Innenfläche umschlossen ist, während ein Kathoden-Glühfaden koaxial gegenüber dem Strahlenaustritt und dem Probenhalter liegt.
  • Die Elektronen der Kathode treffen auf die Innenfläche der Anode und erzeugen eine primäre Röntgenstrahlung. Die auf dem Probenhalter befestigte Probe ist der primären Röntgenstrahlung ausgesetzt und emittiert fluoreszierende Röntgenstrahlung und sekundäre Elektronen, die zusammen gemessen werden.
  • Eine Weiterbildung der Erfindung sieht vor, daß die dem Körper zugewandte Innenfläche der Anode die Form eines sich zum Strahlenaustritt hin verjüngenden Kegelstumpfmantels aufweist. Bei dieser Ausgestaltung, bei der das sich verjüngende Ende der Anode dem Strahlenaustritt und das sich erweiternde Ende der Kathode zugewandt ist, ergibt sich eine relativ gleichmäßige Verteilung der Elektronen über die Anodenfläche, so daß auch die thermische Belastbarkeit vergleichmäßigt wird.
  • Eine andere Weiterbildung sieht vor, daß die Anode aus einem massiven Metallblock besteht, der auf seiner Innenfläche mit einer schweratomigen Metallschicht versehen ist. Das Material des Metallblocks der Anode kann dabei aus einem thermisch gut leitenden Werkstoff bestehen, beispielsweise Kupfer, während das Metall auf der Innenfläche im Hinblick auf eine möglichst hohe Fluoreszenzstrahlungsausbeute gewählt werden kann.
  • Eine andere Weiterbildung sieht vor, daß das Material für die Innenfläche der Anode und die Außenfläche des Körpers so gewählt ist, daß die aus der Anode emittierte charakteristische Röntgenstrahlung eine Energie besitzt, die geringfügig größer ist als die K-Absorptionskante des Körpers. Da Röntgenstrahlung, deren Energie geringfügig oberhalb der Absorptionskante eines Materials liegt, in diesem zu einem besonders hohen Prozentsatz in Fluoreszenzstrahlung umgesetzt wird, ergibt sich dadurch eine vergrößerte Intensität der Fluoreszenzstrahlung.
  • Nach einer anderen Weiterbildung ist vorgesehen, daß sich zwischen der Anode und dem Körper ein den Körper umschließender zylinderförmiger Metallschirm befindet, der die Röntgenstrahlung nur geringfügig schwächt. Der Schirm absorbiert die Sekundärelektronen und verhindert, daß dadurch in dem Körper Röntgenstrahlung mit einer von der Energie der Fluoreszenzstrahlung abweichenden Energie erzeugt wird.
  • Die Erfindung wird nachstehend anhand der Zeichnung näher erläutert, die einen Querschnitt durch einen Teil einer erfindungsgemäßen Strahlenquelle zeigt.
  • Die rotationssymmetrisch ausgebildete Strahlenquelle besitzt ein zylinderförmiges Gehäuse 1, an dem über einen Keramikisolator 2 eine Kathodenanordnung 3 mit einer ring-oder spiralförmigen Kathode 4 befestigt ist. Im Betriebszustand wird aus der Kathode ein durch die gestrichelten Linien 4a angedeutetes Elektronenbündel emittiert, das auf die Innenfläche einer Anode trifft, die wie der Mantel eines Kegelstumpfes geformt ist. Dadurch ergibt sich eine relativ gleichmäßige Verteilung der Elektronen auf der Anodeninnenfläche.
  • Die Anode besteht aus einem Metallblock 5a aus thermisch gut leitendem Material, vorzugsweise Kupfer, das auf seiner Innenfläche mit einer schweratomigen Metallschicht beschichtet ist, in der durch den Elektronenbeschuß Röntgenstrahlung entsteht.
  • Die Röntgenstrahlung trifft durch einen dünnen zylindrischen Schirm 6 hindurch auf ein Target 7, das auf seiner von der Kathode abgewandten Seite kegelförmig gestaltet ist und die auf ihn auftreffende Primärstrahlung in im wesentlichen monochromatische Fluoreszenzstrahlung umsetzt.
  • Der Schirm 6, der das Target 7 trägt, hat die Aufgabe, Streuelektronen vom Target 7 fernzuhalten. Diese Streuelektronen würden beim Auftreffen auf das Target 7 ein unerwünschtes Bremsstrahlungsspektrum erzeugen. Um zu vermeiden, daß einerseits der Schirm 6 zuviel primäre Röntgenstrahlung absorbiert und andererseits durch auftreffende Streu- oder Sekundärelektronen selbst Röntgenstrahlung emittiert, ist der Schirm 6 so dünnwandig wie aus mechanischen Gründen gerade noch zulässig und besteht aus einem niederatomigen Material, z.B. Titan.
  • Das offene Ende des Schirms, dem die Spitze des kegelförmigen Targets 7 zugewandt ist, bildet den Strahlenaustritt 9 für die erzeugte Fluoreszenzstrahlung. Die von der Anode 5a, 5b ausgehende primäre Röntgenstrahlung wird von einer Kollimatoranordnung 8 unterdrückt, in deren Zentrum der Schirm 6 vakuumdicht angebracht ist. Der Kollimator besteht aus einem strahlenabsorbierenden Material oder mehreren in Richtung der Symmetrieachse gegeneinander versetzten Platten aus einem solchen Material, wobei die Dicke des Kollimators bzw. der Abstand der äußeren Platten dieses Kollimators so gewählt sind, daß von der Anode ausgehende primäre Röntgenstrahlung auf den Kollimator treffen muß, bevor sie den Strahlenaustritt 9 erreicht.
  • Die Energie der Fluoreszenzstrahlung hängt von dem Material des Targets ab. Wenn Tantal als Material gewählt wird, ergibt sich eine Energie der Fluoreszenzstrahlung von 57,5 keV (Kα₁-Linie). Wenn eine Fluoreszenzstrahlung mit höherer oder niedrigerer Energie erzeugt werden soll, muß das Tantaltarget durch eine Target ersetzt werden, das aus einem Element oder einer Legierung mit höherer bzw. niedrigerer Ordnungszahl besteht. Die Röhrenspannung (ausgedrückt in kV) muß dabei jeweils etwa doppelt so groß sein wie die Energie der Fluoreszenzstrahlung (ausgedrückt in keV). Um zwecks Erzeugung von monochromatischer Strahlung mit unterschiedlicher Wellenlänge aus unterschiedlichem Material bestehende Targets verwenden zu können, ist es zweckmäßig, das Target lösbar, z.B. durch eine Schraubverbindung, mit dem Schirm zu verbinden. Der Schirm muß dabei so gestaltet sein, daß er das Innere des evakuierten Gehäuses der Strahlenquelle hermetisch nach außen hin abschließt
  • Die Schicht 5b, in der die primäre Röntgenstrahlung erzeugt wird, hat eine hohe Ordnungszahl und ist zweckmäßigerweise so gewählt, daß die Energie der in dieser Schicht erzeugten charakteristischen Strahlung geringfügig oberhalb der K-Absorptionskante des Targets 7 liegt, weil sich dabei eine besonders gute Umsetzung in Fluoreszenzstrahlung ergibt. Wenn das Target aus Tantal besteht (K-Absorptionskante bei 67,4 keV), wird diese Bedingung durch eine Schicht 5b aus Gold (Kα-Linie bei 68,8 keV) erfüllt.
  • Wie bereits erwähnt, ist die Schicht 5b auf einen massiven Metallblock 5a vorzugsweise aus Kupfer aufgebracht. Die Rückseite dieses Kupferblocks wird von einer Kühlflüssigkeit gekühlt, die in einen zum Röhreninnern hin hermetisch abgedichteten Hohlraum 10 um den Kupferblock herum in nicht näher dargestellter Weise von außen einströmt. Da die Anode 5a, 5b ebenso wie das Gehäuse 1 und der Kollimator 8 Massepotential führen, wird als Kühlflüssigkeit vorzugsweise Wasser eingesetzt. Anstelle eines von einem Hohlraum für die Kühlung umschlossenen Metallblocks kann auch ein Metallblock eingesetzt werden, in den bereits Kühlkanäle, beispielsweise in Spiralform, eingearbeitet sind. Dadurch läßt sich bei geeigneter Auslegung die Kühlfläche und damit auch die maximal zuführbare elektrische Leistung vergrößern.
  • Die auf dem Target 7 erzeugte Fluoreszenzstrahlung ist nicht völlig monochromatisch. Dies liegt daran, daß außer der erwünschten Kα-Linien auch andere Linien angeregt werden, z.B. die höherenergetische Kß-Linie oder L-Linien mit wesentlich niedrigerer Energie. Die Kß-Linie kann durch ein im Strahlenaustritt angeordnetes Strahlenfilter unterdrückt werden, das aus einem Material besteht, dessen Absorptionskante zwischen der Kα- und der Kß-Linie liegt. Bei einem Tantaltarget eignen sich als Strahlenfilter Filter aus Ytterbium oder Thulium. Die weichen Linien können gegebenenfalls durch das gleiche Filter oder durch ein Filter aus einem Material mit einer niedrigeren Ordnungszahl unterdrückt werden, das so bemessen ist, daß die erwünschte Kα-Linie nur unwesentlich geschwächt wird, während die L-Linien weitgehend unterdrückt sind.

Claims (12)

  1. Strahlenquelle zur Erzeugung einer im wesentlichen monochromatischen Röntgenstrahlung mit einer Kathode (3, 4) zur Erzeugung von auf eine Anode (5a, 5b) beschleunigten Elektronen und mit einem von der Anode umschlossenen kegelförmigen Körper (7), der auf ihn auftreffende Röntgenstrahlung in Fluoreszenzstrahlung umsetzt und der mit seinem sich verjüngenden Ende auf einen Strahlenaustritt weist,
    dadurch gekennzeichnet, daß die Anode auf ihrer dem Körper (7) zugewandten Innenfläche (5b) von den aus der Kathode (4) emittierten Elektronen getroffen wird.
  2. Strahlenquelle nach Anspruch 1,
    dadurch gekennzeichnet, daß die Kathode (4) auf der vom Strahlenaustritt abgewandten Seite angeordnet ist und Ring- oder Spiralform aufweist.
  3. Strahlenquelle nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß die dem Körper zugewandte Innenfläche (5b) der Anode die Form eines sich zum Strahlenaustritt hin verjüngenden Kegelstumpfmantels aufweist.
  4. Strahlenquelle nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, daß die Anode auf ihrer Außenfläche mit einer Kühlflüssigkeit kühlbar ist.
  5. Strahlenquelle nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß die Kathode auf einem negativen Hochspannungspotential und die Anode auf Erdpotential gehalten werden und daß als Kühlmittel Wasser dient.
  6. Strahlenquelle nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß die Anode aus einem massiven Metallblock (5a) besteht, der auf seiner Innenfläche mit einer schweratomigen Metallschicht (5b) versehen ist.
  7. Strahlenquelle nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß das Material für die Innenfläche der Anode und die Außenfläche des Körpers so gewählt ist, daß die aus der Anode emittierte charakteristische Röntgenstrahlung eine Energie besitzt, die geringfügig größer ist als die K-Absorptionskante der Außenfläche des Körpers.
  8. Strahlenquelle nach Anspruch 7,
    dadurch gekennzeichnet, daß die Anode zumindest im Bereich der Innenfläche aus Gold besteht und daß der Körper aus Tantal besteht.
  9. Strahlenquelle nach einem der Ansprüch 1 bis 8,
    dadurch gekennzeichnet, daß sich zwischen der Anode und dem Körper ein den Körper umschließender zylinderförmiger Metallschirm (6) befindet, der die Röntgenstrahlung nur geringfügig schwächt.
  10. Strahlenquelle nach Anspruch 9,
    dadurch gekennzeichnet, daß der Schirm (6) den Körper (7) trägt und das Gehäuse der Strahlenquelle vakuumdicht abschließt.
  11. Strahlenquelle nach Anspruch 9,
    dadurch gekennzeichnet, daß der Schirm (6) nach außen offen ist und daß der Körper (7) lösbar mit dem Schirm verbunden ist.
  12. Strahlenquelle nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß im Strahlenaustritt ein Filter (9) aus einem Material angeordnet ist, dessen Absorptionskante zwischen der Kα- und der Kß-Linie des Körpers liegt.
EP88200941A 1987-05-18 1988-05-11 Strahlenquelle zur Erzeugung einer im wesentlichen monochromatischen Röntgenstrahlung Expired - Lifetime EP0292055B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88200941T ATE74690T1 (de) 1987-05-18 1988-05-11 Strahlenquelle zur erzeugung einer im wesentlichen monochromatischen roentgenstrahlung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3716618 1987-05-18
DE19873716618 DE3716618A1 (de) 1987-05-18 1987-05-18 Strahlenquelle zur erzeugung einer im wesentlichen monochromatischen roentgenstrahlung

Publications (3)

Publication Number Publication Date
EP0292055A2 EP0292055A2 (de) 1988-11-23
EP0292055A3 EP0292055A3 (en) 1989-04-19
EP0292055B1 true EP0292055B1 (de) 1992-04-08

Family

ID=6327798

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88200941A Expired - Lifetime EP0292055B1 (de) 1987-05-18 1988-05-11 Strahlenquelle zur Erzeugung einer im wesentlichen monochromatischen Röntgenstrahlung

Country Status (5)

Country Link
US (1) US4903287A (de)
EP (1) EP0292055B1 (de)
JP (1) JP2747295B2 (de)
AT (1) ATE74690T1 (de)
DE (2) DE3716618A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0432568A3 (en) * 1989-12-11 1991-08-28 General Electric Company X ray tube anode and tube having same
DE4017002A1 (de) * 1990-05-26 1991-11-28 Philips Patentverwaltung Strahlenquelle fuer quasimonochromatische roentgenstrahlung
DE4215343A1 (de) * 1992-05-09 1993-11-11 Philips Patentverwaltung Filterverfahren für ein Röntgensystem und Anordnung zur Durchführung eines solchen Filterverfahrens
US5433771A (en) * 1994-04-25 1995-07-18 Westinghouse Electric Corporation Hot gas filtration system fail-safe and thermal regeneration device
DE19509006C2 (de) * 1995-03-13 1998-11-05 Siemens Ag Röntgenröhre
DE19544203A1 (de) * 1995-11-28 1997-06-05 Philips Patentverwaltung Röntgenröhre, insbesondere Mikrofokusröntgenröhre
JPH11288678A (ja) * 1998-02-10 1999-10-19 Siemens Ag 蛍光x線源
DE19808342C1 (de) * 1998-02-27 1999-08-19 Siemens Ag Abschaltbare Fluoreszenz-Röntgenstrahlenquelle
RU2161843C2 (ru) * 1999-02-17 2001-01-10 Кванта Вижн, Инк. Точечный высокоинтенсивный источник рентгеновского излучения
DE10251635A1 (de) 2002-11-06 2004-05-27 Feinfocus Röntgen-Systeme GmbH Röntgenröhre, insbesondere Mikrofokus-Röntgenröhre
JP2007503703A (ja) * 2003-05-19 2007-02-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 蛍光x線源
US7200203B2 (en) * 2004-04-06 2007-04-03 Duke University Devices and methods for targeting interior cancers with ionizing radiation
JP4738189B2 (ja) * 2006-02-01 2011-08-03 東芝電子管デバイス株式会社 X線源および蛍光x線分析装置
JP2007207539A (ja) * 2006-02-01 2007-08-16 Toshiba Corp X線源および蛍光x線分析装置
WO2007088934A1 (ja) * 2006-02-01 2007-08-09 Toshiba Electron Tubes & Devices Co., Ltd. X線源及び蛍光x線分析装置
US8331534B2 (en) 2009-04-16 2012-12-11 Silver Eric H Monochromatic X-ray methods and apparatus
TWI555511B (zh) 2010-12-07 2016-11-01 和鑫生技開發股份有限公司 一種穿透式x光管及一種反射式x光管
CN103094030A (zh) * 2011-10-28 2013-05-08 和鑫生技开发股份有限公司 穿透式x光管及反射式x光管
US9368316B2 (en) * 2013-09-03 2016-06-14 Electronics And Telecommunications Research Institute X-ray tube having anode electrode
KR20240055138A (ko) 2017-05-19 2024-04-26 이매진 싸이언티픽, 인크. 단색 엑스선 영상 시스템 및 방법
CA3129632A1 (en) 2018-02-09 2019-08-15 Imagine Scientific, Inc. Monochromatic x-ray imaging systems and methods
US10818467B2 (en) 2018-02-09 2020-10-27 Imagine Scientific, Inc. Monochromatic x-ray imaging systems and methods
WO2020056281A1 (en) 2018-09-14 2020-03-19 Imagine Scientific, Inc. Monochromatic x-ray component systems and methods

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1655455A (en) * 1923-09-29 1928-01-10 Gen Electric X-ray apparatus
US2309566A (en) * 1940-09-09 1943-01-26 Gen Electric X Ray Corp Window for X-ray tubes
US2343730A (en) * 1942-11-30 1944-03-07 Gen Electric X Ray Corp X-ray tube
US3567928A (en) * 1969-06-12 1971-03-02 Du Pont Fluorescent analytical radiation source for producing soft x-rays and secondary electrons
GB1443048A (en) * 1972-12-05 1976-07-21 Strahlen Umweltforsch Gmbh X-ray source
JPS542084A (en) * 1977-06-02 1979-01-09 Philips Corp Rotary anode xxray tube

Also Published As

Publication number Publication date
DE3869829D1 (de) 1992-05-14
EP0292055A3 (en) 1989-04-19
US4903287A (en) 1990-02-20
JP2747295B2 (ja) 1998-05-06
EP0292055A2 (de) 1988-11-23
JPS63304557A (ja) 1988-12-12
DE3716618A1 (de) 1988-12-08
ATE74690T1 (de) 1992-04-15

Similar Documents

Publication Publication Date Title
EP0292055B1 (de) Strahlenquelle zur Erzeugung einer im wesentlichen monochromatischen Röntgenstrahlung
EP0584871B1 (de) Röntgenröhre mit einer Transmissionsanode
EP0059238B1 (de) Röntgenröhre
EP0459567B1 (de) Strahlenquelle für quasimonochromatische Röntgenstrahlung
DE19957559A1 (de) Wärmeenergiespeicher- und Übertragungsvorrichtung
DE2154888A1 (de) Roentgenroehre
DE19544203A1 (de) Röntgenröhre, insbesondere Mikrofokusröntgenröhre
DE2807735A1 (de) Roentgenroehre mit einem aus metall bestehenden roehrenkolben
EP0063840B1 (de) Hochspannungs-Vakuumröhre, insbesondere Röntgenröhre
DE2719609A1 (de) Roentgenroehre
DE2738165A1 (de) Roentgenstrahlungsgenerator
DE2845504A1 (de) Bildverstaerkerroehre
DE3514700A1 (de) Roentgenroehre
DE526003C (de) Roentgenroehre
DE1225310B (de) Betriebsverfahren fuer eine Vorrichtung zum Bestrahlen mit Elektronen und Bestrahlungsvorrichtung
DE19639241C2 (de) Monochromatische Röntgenstrahlenquelle
DE2304947A1 (de) Roentgenstrahlroehre
DE102005018342B4 (de) Vorrichtung und Verfahren zur Erzeugung von Röntgenstrahlung
DE483337C (de) Gluehkathodenroehre, insbesondere Roentgenroehre
DE3934321A1 (de) Roentgenroehre mit austrittsfenster
DE619621C (de) Roentgenroehre mit durchlochter Hohlanode
DE2720640C2 (de) Röntgenröhre für Körperhöhlenuntersuchungen
DE2749856A1 (de) Roentgenroehre
DE4209226A1 (de) Strahlenquelle zur erzeugung einer im wesentlichen monochromatischen roentgenstrahlung
DE19805290C2 (de) Monochromatische Röntgenstrahlenquelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE FR GB NL

17P Request for examination filed

Effective date: 19891016

17Q First examination report despatched

Effective date: 19910613

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920408

REF Corresponds to:

Ref document number: 74690

Country of ref document: AT

Date of ref document: 19920415

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19920511

REF Corresponds to:

Ref document number: 3869829

Country of ref document: DE

Date of ref document: 19920514

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20050609

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070713

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070522

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070529

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20080510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080510