DE4215343A1 - Filterverfahren für ein Röntgensystem und Anordnung zur Durchführung eines solchen Filterverfahrens - Google Patents

Filterverfahren für ein Röntgensystem und Anordnung zur Durchführung eines solchen Filterverfahrens

Info

Publication number
DE4215343A1
DE4215343A1 DE4215343A DE4215343A DE4215343A1 DE 4215343 A1 DE4215343 A1 DE 4215343A1 DE 4215343 A DE4215343 A DE 4215343A DE 4215343 A DE4215343 A DE 4215343A DE 4215343 A1 DE4215343 A1 DE 4215343A1
Authority
DE
Germany
Prior art keywords
ray
filter
energy
arrangement
quanta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE4215343A
Other languages
English (en)
Inventor
Geoffrey Dr Harding
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Original Assignee
Philips Patentverwaltung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung GmbH filed Critical Philips Patentverwaltung GmbH
Priority to DE4215343A priority Critical patent/DE4215343A1/de
Priority to EP93201335A priority patent/EP0571017B1/de
Priority to US08/060,174 priority patent/US5394454A/en
Priority to DE59307657T priority patent/DE59307657D1/de
Priority to JP10707193A priority patent/JP3456722B2/ja
Publication of DE4215343A1 publication Critical patent/DE4215343A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/10Scattering devices; Absorbing devices; Ionising radiation filters

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)

Description

Die Erfindung betrifft ein Filterverfahren für ein Röntgensystem sowie eine Anordnung zur Durchführung dieses Filterverfahrens. Aus der Zeitschrift J. Phys. E., Vol. 18, 1985, Seiten 354-357 ist ein Filterverfahren für ein Röntgensystem bekannt, das einen Untersuchungsbereich durchstrahlt, wobei die Röntgenstrahlung aus dem Untersuchungsbereich von einer Detektoranordnung gemessen wird. Bei dem bekannten Verfahren wird eine erste Messung mit einem ersten Filter im Strahlengang zwischen Röntgenstrahler und Untersuchungsbereich durchgeführt und eine zweite Messung mit einem zweiten Filter. Die beiden Filter besitzen unter­ schiedliche Absorptionskanten und sind so bemessen, daß sie für alle Röntgenquan­ ten außerhalb des Energiebereiches zwischen den Absorptionskanten der beiden Filter die gleiche Absorption bzw. Transmission aufweisen. Wird das Ergebnis der beiden Messungen voneinander subtrahiert, dann resultiert ein Differenzwert, der nur von den Spektralkomponenten des polychromatischen Röntgenstrahlers abhängt, die innerhalb des Energiebereiches zwischen den beiden Absorptions­ kanten liegen.
Aufgabe der vorliegenden Erfindung ist es, ein anderes Filterverfahren anzugeben. Diese Aufgabe wird erfindungsgemäß gelöst durch ein Filterverfahren für ein Rönt­ gen-System mit einem Röntgenquanten emittierenden Röntgenstrahler und einer wenigstens ein Meßsignal liefernden Detektoranordnung zur Erfassung der mit einem Objekt in einem Untersuchungsbereich in Wechselwirkung getretenen Röntgenquanten mit folgenden Verfahrensschritten:
  • a) Es wird eine Messung durchgeführt, bei der sich im Strahlengang zwischen dem Röntgenstrahler und dem Untersuchungsbereich ein Filter befindet.
  • b) Es wird eine Messung durchgeführt, bei der sich im Strahlengang zwischen dem Untersuchungsbereich und der Detektoranordnung ein Filter befindet, das aus dem gleichen Material besteht wie das bei der anderen Messung benutzte Filter.
  • c) Die bei den beiden Messungen erhaltenen Meßsignale werden subtraktiv miteinander kombiniert.
Während also bei dem bekannten Verfahren bei zwei Messungen Filter aus unterschiedlichem Material jeweils im Strahlengang zwischen Röntgenstrahler und Untersuchungsbereich plaziert werden, wird bei der Erfindung bei der einen Messung ein Filter in den Strahlengang zwischen Röntgenstrahler und Unter­ suchungsbereich und bei der anderen Messung ein Filter in den Strahlengang zwischen dem Untersuchungsbereich und der Detektoranordnung plaziert, wobei das Filtermaterial in beiden Fällen dasselbe ist. Deshalb kann bei beiden Messungen das gleiche Filter verwendet werden. Es ist jedoch auch möglich, zwei Filter aus demselben Material zu verwenden.
Die Erfindung nutzt die Tatsache aus, daß Röntgenquanten mit einem Objekt im Untersuchungsbereich in unterschiedlicher Weise in Wechselwirkung treten können:
  • 1) Bei der elastischen Streustrahlung (Rayleigh-Streuung) ändert sich zwar die Richtung der Röntgenstrahlung, nicht aber ihre Energie.
  • 2) Bei der inelastischen (Compton-Streuung) verliert die Röntgenstrahlung bei einer Richtungsänderung Energie. Der Energieverlust hängt von der Größe der Richtungsänderung und von der Quantenenergie ab.
  • 3) Bei der photoelektronischen Bremsstrahlung wird durch ein mit einem Atom in Wechselwirkung tretendes Röntgenquant ein Elektron vornehmlich aus der K-Schale befreit, wodurch ein Photoelektron (Röntgenquant) entsteht, dessen Energie um den Betrag kleiner ist als die Energie des primären Röntgenquants, der erforderlich ist, um das Elektron aus der K-Schale zu lösen. Dieser Energie­ betrag steigt kubisch mit der Ordnungszahl des Atoms im periodischen System an.
Das erfindungsgemäße Verfahren gestattet es, die Komponenten, die durch unterschiedliche Wechselwirkung mit dem Untersuchungsbereich entstanden sind, voneinander zu trennen.
Eine erste Weiterbildung der Erfindung sieht vor, daß ein im wesentlichen monochromatischer Röntgenstrahler verwendet wird, daß das Filtermaterial eine Absorptionskante bei einer Quantenenergie hat, die geringfügig niedriger ist als die Energie der von dem monochromatischen Röntgenstrahler emittierten Röntgen­ quanten und daß die Röntgenquanten von der Detektoranordnung unter einem Winkel erfaßt werden, der größer ist als der Winkel, bei dem der Energieverlust der Röntgenquanten durch Compton-Streuung gerade der Differenz zwischen der Energie der Röntgenquanten und der Energie entspricht, bei der das Filter seine Absorptionskante hat. Dieses Verfahren gestattet die Bestimmung des Streuquer­ schnitts für elastische (kohärente) Streustrahlung oder auch für inelastische (inkohärente) Streustrahlung.
Nach einer anderen Ausgestaltung der Erfindung ist vorgesehen, daß ein im wesentlichen monochromatischer Röntgenstrahler verwendet wird, daß das Filter­ material eine Absorptionskante bei einer Quantenenergie hat, die geringfügig niedriger ist als die Energie der von dem monochromatischen Röntgenstrahler emittierten Röntgenquanten, daß die Röntgenquanten von der Detektoranordnung unter einem Winkel erfaßt werden, der kleiner ist als der Winkel, bei dem der Energieverlust der Röntgenquanten durch Compton-Streuung gerade die Differenz zwischen der Energie der Röntgenquanten und der Quantenenergie entspricht, bei der das Filtermaterial eine Absorptionskante aufweist, und daß die Quantenenergie energieauflösend gemessen wird. Bei dieser Ausgestaltung können die auf Compton- und Rayleigh-Streuung zurückgehenden Komponenten unterdrückt werden, so daß nur Komponenten verbleiben, die durch photoelektronische Bremsstrahlung erzeugt werden. Man kann damit in einem (ausgedehnten) Untersuchungsbereich den Gehalt von Stoffen mit niedriger Ordnungszahl, z. B. Kohlenstoff, Sauerstoff bzw. Stickstoff bestimmen.
Eine weitere Ausgestaltung der Erfindung sieht vor, daß ein polychromatischer Röntgenstrahler verwendet wird, und daß die unter einem bestimmten Streuwinkel­ bereich austretende Streustrahlung von der Detektoranordnung gemessen wird. Die nach subtraktiver Kombination der Meßsignale erhaltenen Meßwerte werden nur von Röntgenquanten innerhalb eines bestimmten Energiebandes bestimmt; die Wirkung der anderen Röntgenquanten wird durch die subtraktive Kombination eliminiert.
Die Erfindung wird nachstehend anhand der Zeichnungen näher erläutert. Es zeigen:
Fig. 1 eine Anordnung zur Durchführung des erfindungsgemäßen Filterverfahrens.
Fig. 2 ein Spektrum, das sich bei einer Ausführungsform jenseits des Unter­ suchungsbereiches ergibt.
Fig. 3 die Emissionslinien eines für das Verfahren geeigneten monochromatischen Röntgenstrahlers.
Fig. 4 das Energiespektrum, das sich bei einer anderen Ausführungsform ergibt.
Fig. 5 ein Bremsstrahlungsspektrum vor und hinter dem Untersuchungsbereich.
Fig. 6 eine zweite Ausführungsform des erfindungsgemäßen Verfahrens und
Fig. 7 ein bei der Anordnung nach Fig. 6 verwendbares Filter.
In Fig. 1 ist mit 1 ein Röntgenstrahler bezeichnet, der monochromatische Röntgenstrahlung emittiert; die von dem Strahler 1 emittierten Röntgenquanten haben also alle im wesentlichen die gleiche Energie. Eine mit einer zentralen Bohrung versehene Blende 2 läßt von der von dem Röntgenstrahler 1 emittierten Röntgenstrahlenbündel nur einen Nadelstrahl (pencil-beam) 3 durch. Der Nadelstrahl 3 durchsetzt die zentrale Öffnung in einer weiteren Blendenplatte 4. Die beiden Blendenplatten 2 und 4 begrenzen in Richtung senkrecht zu dem Nadelstrahl 3 einen Untersuchungsbereich, in dem sich ein Untersuchungsobjekt 7 befindet. Die Röntgenquanten in dem Nadelstrahl 3 treten mit dem Unter­ suchungsobjekt 7 in Wechselwirkung, und erzeugen u. a. elastische und inelastische Streustrahlung. Die Streustrahlung, die im Untersuchungsobjekt 7 zwischen einem minimalen Winkel β1 und einem maximalen Winkel β2 erzeugt wird, kann durch eine zum Nadelstrahl 3 konzentrische, ringförmige Öffnung 8 in der Blende 4 hindurch einen ringförmigen Detektor 9 erreichen. Das Detektorsignal wird von einem integrierend wirkenden Verstärker 10 verstärkt und von einem Analog- Digital-Wandler in ein digitales Datenwort umgesetzt. Dieses Datenwort ist der Zahl der während eines Integrationsintervalls bzw. einer Meßzeit vom ringförmigen Detektor 9 registrierten Röntgenquanten proportional und von der Energie der Röntgenquanten unabhängig.
Das Datenwort kann in einem Speicher 12 gespeichert und in einer arithmetisch logischen Einheit (ALU 13) weiterverarbeitet werden. Die Einheiten 10-13 werden von einer Steuereinheit 14 gesteuert. Die Einheiten 12-14 können Teil eines Microprozessors sein.
Im folgenden wird die Durchführung eines Meßverfahrens mit Hilfe der in Fig. 1 skizzierten Anordnung erläutert. Es wird zunächst eine erste Messung durchgeführt. Bei dieser ersten Messung befindet sich im Strahlengang zwischen dem monochro­ matischen Röntgenstrahler 1 und dem Untersuchungsbereich 7 ein Filter 5, das eine Absorptionskante bei einer Quantenenergie Ek hat, die geringfügig niedriger liegt als die Energie der von dem Röntgenstrahler 1 emittierten Röntgenquanten.
Fig. 2 zeigt das Energiespektrum (d. h. die Intensität der Röntgenstrahlung als Funktion der Energie der Röntgenquanten). Man erkennt in dem Spektrum eine Linie Ep und eine Komponente Es mit geringerer Energie. Die Linie Ep entsteht durch elastische Streuung, bei der die Röntgenquanten bekanntlich keine Energie verlieren. Die Energie Ep ist daher auch die Energie der vom Röntgenstrahler 1 emittierten Röntgenquanten. Die Komponente Es entsteht durch Compton- Streuung. Bei diesem inelastischen Streuprozeß verlieren die Röntgenquanten Energie gemäß der Beziehung
1/Es - 1/Ep = c (1 - cos β) (1)
Dabei ist Ep die Energie des Röntgenquants vor dem Streuprozeß, Es die Energie des Röntgenquants, nach dem Streuprozeß c eine Konstante und β der Winkel, den die Bahn des gestreuten Röntgenquants mit der Richtung des Nadelstrahls 3 einschließt.
Bei Gleichung (1) wird vorausgesetzt, daß die Elektronen stationär sind. In der Realität bewegen sich die Elektronen aber. Dies führt zu einer Verbreiterung der Compton-Linie (Compton-shift). In diesem Fall beschreibt Gleichung (1) die Energie des Compton-peaks. Für Streuung unter einem kleinen Streuwinkel ist die Breite des Compton-peaks klein.
Die Verbreiterung der Komponente Es im Vergleich zur Komponente Ep ergibt sich auch dadurch, daß Röntgenquanten den Detektorring 9 unter unterschiedlichen Streuwinkeln erreichen können. Wenn dafür gesorgt wird, daß Streustrahlung nur unter einem definierten Streuwinkel die Detektoranordnung erreichen kann, ergibt sich für die Komponente Es näherungsweise eine Linie. Dies kann beispielsweise dadurch erreicht werden, daß anstelle eines nadelförmigen Primärstrahls ein Primär­ strahlenbündel mit der Form eines Kegelmantels verwendet wird und die Blende 4 durch zur Symmetrieachse des Kegelmantels konzentrische Kollimatorkörper gebildet wird, wie in der DE-OS 40 34 602 beschrieben.
Das in Fig. 1 dargestellte Filter 5 besteht aus einem Material mit einer Absorp­ tionskante bei einer Energie Ek, die geringfügig kleiner ist als die Energie der vom Röntgenstrahler emittierten Röntgenquanten aber größer als die Energie Es der durch den Streuprozeß beeinflußten Röntgenquanten. In Fig. 2 ist der Verlauf der Transmission dieses Filters als Funktion der Quantenenergie durch eine gestrichelte Kurve F schematisch angedeutet. Die Transmission nimmt bis zur Absorptionskante monoton zu, um dann auf einen niedrigen Wert zu springen und danach wieder anzusteigen. Die Transmission des Filters 5 für die Energie der Primärstrahlung ist mit Tp, und die (größere) Transmission des Filters für die Energie Es ist mit Ts bezeichnet. Durch den Einsatz des Filters 5 im Bereich zwischen Röntgenstrahler und Untersuchungsbereich werden die Spektralkomponenten Es und Ep im gleichen Maße reduziert und zwar entsprechend dem Transmissionsfaktor Tp.
Am Ende des Meßzeitraumes liefert der Analog-Digital-Wandler 11 ein Signal, das dem zeitlichen Integral über die Intensität proportional ist.
Danach wird eine weitere Messung durchgeführt, bei der - wie durch Pfeile angedeutet - das Filter 5 aus dem Strahlengang und ein Filter 6 in den Strahlengang zwischen dem Untersuchungsbereich 7 und der Detektoranordnung 9 bewegt wird. Das Filter 6 muß aus dem gleichen Material bestehen wie das Filter 5 und kann dieselbe Dicke haben. Im letzteren Fall könnte man mit einem Filter auskommen, das bei der einen Messung oberhalb des Untersuchungsbereichs, und bei der anderen Messung unterhalb des Untersuchungsbereichs angeordnet wird. Das Filter 6 beeinflußt die gestreuten Komponenten Ep und Es nicht in gleicher Weise. Die Komponente Ep wird durch das Filter 6 in gleichem Maße geschwächt wie durch das Filter 5. Hingegen wird die Komponente Es weniger stark geschwächt, weil Ts größer ist als Tp. Die für diese Messung zur Verfügung stehende Meßzeit entspricht der Meßzeit bei der vorangehenden Messung.
Nach den beiden Messungen kann die Differenz der bei den Messungen erhaltenen Signale gebildet werden. Da bei den beiden Messungen die Komponente Ep im gleichen Maße durch die Filter 5 bzw. 6 gedämpft wird, hängt die Differenz der Meßsignale nur von der Komponente Es ab, die durch Compton-Streuung hervorgerufen wird. Das Differenzsignal ist also ein Maß für die Compton-Streuung.
Verwendet man im Strahlengang zwischen Untersuchungsbereich und Detektor­ anordnung ein Filter aus dem gleichen Material wie das Filter 6, jedoch mit einer um den Faktor Ts/Tp größeren Dicke, dann erfährt die Componente Es bei beiden Messungen dieselbe Dämpfung, während die Komponente Ep bei dieser zweiten Messung stärker unterdrückt wird. Bildet man daher wiederum die Differenz zwischen den Meßsignalen bei den beiden Messungen, dann ist das Differenzsignal unabhängig von Es und ein Maß für die elastische Streustrahlung. Das gleiche Ergebnis kann man aber auch erreichen, wenn man im Strahlengang zwischen Untersuchungsbereich 7 und Detektoranordnung 9 ein Filter aus dem gleichen Material und von der gleichen Dicke verwendet, wie das Filter 5 und die Intensität des Nadelstrahls 3 oder aber die Meßzeit um den Faktor Ts/Tp erhöht.
Eine Modifikation der Anordnung nach Fig. 1 gestattet die Berechnung des Streuquerschnitts eines Volumenelements für elastische und/oder nicht elastische Streustrahlung. Dazu muß zwischen Detektoranordnung 9 und dem Untersuchungs­ bereich 7 eine Blendenanordnung angeordnet sein, durch die hindurch die Detektoranordnung nur ein Volumenelement auf dem Nadelstrahl 3 des Unter­ suchungsbereichs 7 "sehen" kann. (In diesem Fall ist es zweckmäßig, wenn das Objekt 7 relativ zu den übrigen Komponenten der Anordnung - oder umgekehrt - nicht nur senkrecht zum Nadelstrahl 3, sondern auch in Richtung des Nadelstrahls 3 verschiebbar ist, damit jedes Volumenelement innerhalb des Körpers 7 bei Bedarf untersucht werden kann). Für die bei den beiden Messungen erhaltenen Meßsignale S1 und S2 gilt dann folgendes:
S1 = Ip · Tp · (Ae + Ai) (2)
S2 = Ip · (Tp Ae + Ts · Ai) (3)
Dabei sind Ae und Ai Faktoren, die Streuquerschnitten für elastischen (Rayleigh-) bzw. inelastische (Compton-)Streustrahlung proportional sind und Ip die Intensität im Nadelstrahl 3. Aus den Gleichungen 2 und 3 lassen sich die Streuquerschnitte wie folgt ableiten:
Ip · Ai = (S2 - S1)/(Ts - Tp) (4)
Ip · Ae = (S1 · Ts - S2 · Tp)/(Ts · Tp - Tp²) (5)
Gleichung 5 zeigt, daß man den Querschnitt Ae für die elastische Streustrahlung auch ermitteln kann, ohne die Filterdicke, die Meßzeit oder die Intensität Ip zu verändern. Allerdings darf man die subtraktive Kombination der Signale S1 und S2 nicht unmittelbar durch Differenzbildung realisieren, sondern durch eine Linear­ kombination, bei der die Differenz der gewichteten Meßsignale gebildet wird.
Wie Fig. 2 deutlich zeigt, ist Voraussetzung für die Trennung der Komponenten Es und Ep, daß das Filter eine Absorptionskante bei einer Energie Ek hat, die unterhalb von Ep und oberhalb von Es liegt. Damit dies der Fall ist, muß der Energieverlust Ep-Es eines Röntgenquants bei einem Compton-Streuprozeß genü­ gend groß sein. Gemäß Gleichung 1 steigt der Energieverlust Ep-Es nämlich mit dem Streuwinkel. Bei einem bestimmten Streuwinkel entspricht der Energieverlust gerade der Differenz zwischen der Energie Ep und der Energie der Ek Absorptions­ kante. Die Streuwinkel, unter denen die Detektoranordnung 9 die gestreuten Röntgenquanten erfaßt, müssen daher größer sein als dieser Streuwinkel, damit elastisch gestreute Röntgenquanten und inelastisch durch einen Compton-Prozeß gestreute Quanten voneinander getrennt werden.
Eine monochromatische Röntgenstrahlung könnte grundsätzlich mittels eines Radionuklids erzeugt werden. Diese Strahlenquellen haben jedoch nur eine geringe Intensität. Eine weitaus höhere Intensität hat ein Röntgenstrahler, der zunächst eine polychromatische Röntgenstrahlung erzeugt, welche in einem Target in quasi­ monochromatische Fluoreszenzstrahlung umgesetzt wird. Derartige Röntgenstrahler sind aus der EP-OS 292 055 (PHD 87-098 EP) bzw. aus der DE-OS 40 17 002 bekannt. Fig. 3 zeigt das Emissionsspektrum eines derartigen Röntgnestrahlers mit einem Target aus Tantal. Das Spektrum eines derartigen Strahlers setzt sich aus vier K-Linien α2, α1, β1 und β2 (in der Reihenfolge steigende Energie) zusammen; alle anderen in Fig. 3 nicht dargestellten Fluoreszenzlinien von Tantal haben eine weit darunter liegende Energie. Die Kα 1-Linie hat eine Energie von 57,532 keV, während die Kβ 1-Linie ca. 7,5 keV höher liegt. In Verbindung mit einem derartigen Röntgenstrahler ist ein Filter aus Erbium mit einer Absorptionskante bei einer Quantenenergie Ek von 57,485 keV günstig, die oberhalb der Kα 2-Linie und unterhalb der Kα 2-Linie und unterhalb der Kα 1-Linie liegt.
Die Gleichungen 2 und 3 sind für jede der vier Linien gültig. Wenn aber die Emissionslinie und die nach Streuung entstehende Linie entweder beide oberhalb oder beide unterhalb der K-Absorptionskante des Filters liegen, sind Tp und Ts praktisch identisch, und die Beiträge dieser Linien zu dem nach der subtraktiven Kombination der Signale S1 und S2 entstehenden Signale heben sich auf. Die Kα 2- Linie und erst recht die sich daraus durch Compton-Streuung ergebende Linie liegt unterhalb der Absorptionskante Ek des Erbiumfilters. Die Kβ 1- und Kβ 2-Linie und die sich daraus durch Streuung ergebenden Linien liegen oberhalb der Absorptions­ kante liegen, solange der Energieverlust bei den Streuprozessen kleiner ist als 7,5 keV bzw. der Streuwinkel kleiner als 90°. Einzig die Kα 1-Linie liefert einen Beitrag, weil ihre Energie oberhalb der Absorptionskante liegt, während die daraus durch Compton-Streuung entstehende Linie unterhalb der Absorptionskante liegt, wenn der Streuwinkel mindestens 7° beträgt.
Mit leichten Modifikationen ist es möglich, mit der Anordnung nach Fig. 1 die durch den Nadelstrahl erzeugte photoelektronische Bremsstrahlung unabhängig von der durch Compton- oder Rayleigh-Streuung erzeugten Streustrahlung zu messen. Dazu muß der Detektorring 9 und die zwischen diesem Detektorring und dem Untersuchungsbereich angeordnete Blende 4 bzw. Kollimatoranordnung so gestaltet sein, daß der Detektorring aus dem Untersuchungsbereich Strahlung nur unter einem Winkel empfangen kann, der größer ist als 0° und kleiner als derjenige Streuwinkel, bei dem der Energieverlust durch Compton-Streuung im Bereich der Differenz der Energie der monochromatischen Strahlenquelle 1 und der Quanten­ energie ist, bei der das Filter 5 eine Absorptionskante hat; bei der zuvor erläuterten Kombination aus einer Tantalfluoreszenzstrahlungsquelle und einem Erbiumfilter ist dieser Winkel 7°. In diesem Fall haben nicht nur die durch elastische Streuung beeinflußten Röntgenquanten, sondern auch die durch Compton-Streuung hervorgerufenen Röntgenquanten eine Energie, die oberhalb der Absorptionskante des Filters 5 bzw. 6 liegt. Nach der Subtraktion der Meßsignale (die sich mit dem Filter 5 bzw. dem Filter 6 im Strahlengang ergeben) hebt sich daher der Einfluß dieser Streusignale auf.
Für die photoelektronische Bremsstrahlung gilt das jedoch nicht. Diese Strahlung entsteht, wenn Röntgenquanten jeweils ein Elektron aus der K-Schale eines Atoms befreien, wodurch ein Photoelektron entsteht, dessen Energie kleiner ist als die Energie des primären Röntgenquants. Der Energieunterschied gegenüber dem erzeugenden (primären) Röntgenquant hängt von der Ordnungszahl des Atoms ab. Er beträgt z. B. für Kohlenstoff ca. 284 eV, für Stickstoff ca. 400 eV, und für Sauerstoff 532 eV. Wenn er größer ist als die Energiedifferenz zwischen der Quantenenergie der Absorptionskante und der Energie der monochromatischen Strahlung - was bei der Tantalstrahler/Erbiumfilter-Kombination der Fall ist - liegt die Energie der photoelektronischen Bremsstrahlung unterhalb der Energie der Absorptionskante, so daß, wie in Verbindung mit Fig. 2 erläutert wurde, ein getrennter Nachweis dieser Strahlung möglich ist.
Besondere Vorteile ergeben sich bei dieser Modifikation, wenn die Röntgenquanten energieaufgelöst gemessen werden. Es muß dann ein geeigneter Detektor 9, z. B. eine Germaniumdetektor, vorhanden sein, der bei der Detektion eines Röntgen­ quants ein impulsförmiges Signal erzeugt, dessen Amplitude der Quantenenergie proportional ist. Hinter dem Verstärker 10 muß ein Impulshöhenanalysator vorgesehen sein, der für die verschiedenen Amplitudenbereiche die Zahl der Impulse registriert, deren Amplitude in den jeweiligen Amplitudenbereich fällt. Dieser Impulshöhenanalysator liefert also bei jeder Messung eine Anzahl von Zahlen, die das gemessene Energiespektrum, d. h. die Intensität als Funktion der Energie charakterisieren.
Die auf diese Weise erreichbaren Ergebnisse lassen sich anhand von Fig. 4 verstehen, die das bei den beiden Messungen hinter dem Untersuchungsobjekt auftretende Energiespektrum zeigt. Man erkennt wiederum eine Line Ep, die durch die Energie des monochromatischen Strahlers bedingt ist und z. B. mit der Kα 1-Linie der Tantalfluoreszenzstrahlung übereinstimmt. Die durch Compton-Streuung entstehende Linie bei Es liegt unterhalb von Ep, ist oberhalb der Energie Ek der Absorptionskante des Filters, das bei den beiden Messungen im Strahlengang vor bzw. hinter dem Untersuchungsbereich wirksam ist. Unterhalb der Absorptions­ kante Ek zeigt sich ein kontinuierliches Spektrum, nämlich das photoelektronische Bremsstrahlungsspektrum. Dabei ist angenommen, daß in dem Untersuchungs­ bereich als Elemente mit niedrigster Ordnungszahl Kohlenstoff (C), Stickstoff (N) und Sauerstoff (O) vorhanden sind. Wenn ein Röntgenquant aus der K-Schale eines Kohlenstoffatoms ein Elektron befreit, ergibt sich ein Bremsstrahlungsspektrum, dessen höchste Energie unterhalb von Ek liegt und um ca. 284 eV niedriger ist als Ep. Die höchste Energie des durch den Stickstoffanteil hervorgerufenen Brems­ strahlungsspektrum liegt ca. 400 eV niedriger als Ep, während bei Sauerstoff die höchste Energie ca. 532 eV unterhalb von Ep liegt.
Wenn im Untersuchungsbereich mehr als eines der Elemente C/N/O vorhanden ist, hat das Energiespektrum in seinem kurzwelligen Teil einen stufenförmigen Verlauf. Die Höhe jeder der Stufen ist ein Maß für den Kohlenstoff-, Stickstoff- und Sauerstoffanteil. Durch ein geeignetes Kurven-Anpassungsverfahren (Curve-Fitting) kann daher das Verhältnis der drei Komponenten zueinander bestimmen. Da Sprengstoffe bekanntlich ein wohl definiertes C/N/O-Verhältnis haben, läßt sich dieses Verfahren zum Nachweis von Sprengstoffen innerhalb eines ausgedehnteren Untersuchungsbereiches benutzen, beispielsweise bei der Gepäckkontrolle.
Die Fig. 5 bis 7 dienen zur Erläuterung eines Verfahrens, das mit polychroma­ tischer Röntgenstrahlung arbeitet. Die mit einer ausgezogenen Linie dargestellte Kurve P in Fig. 5 stellt das Energiespektrum eines solchen Röntgenstrahlers dar, der eine Röntgenröhre mit einer Wolfram-Anode umfaßt. Man erkennt den typischen Verlauf eines Bremsstrahlungsspektrums mit zwei Intensitätsspitzen (Peaks) im mittleren Energiebereich, die durch die charakteristische Strahlung von Wolfram hervorgerufen werden. Die mit S gestrichelt dargestellte Kurve stellt das Spektrum (in einem anderen Maßstab als das Spektrum P) dar, das sich ergibt, wenn Röntgenstrahlung mit dem Energiespektrum P im Untersuchungsbereich unter einem Streuwinkel von z. B. 140° gestreut wird. Die unter einem solchen Winkel gestreute Strahlung wird im wesentlichen durch Compton-Streuprozesse hervor­ gerufen, die gemäß Gleichung (1) zu einem mit steigender Quantenenergie zunehmendem Energieverlust führt.
Mißt man nun die gestreute Röntgenstrahlung und fügt bei dieser Messung zwischen dem Untersuchungsbereich und der Detektoranordnung ein Filter ein mit einer Absorptionskante bei der Energie Ea (dabei kann es sich beispielsweise um ein Wolframfilter mit einer Absorptionskante bei ca. 70 keV handeln), dann ergibt sich für Quantenenergien unterhalb Es eine geringe Dämpfung und für Quanten­ energien oberhalb Es eine große Dämpfung.
Führt man eine weitere Messung durch und fügt dabei in den Strahlengang zwischen der Strahlenquelle und dem Untersuchungsbereich ein Filter aus dem gleichen Material ein, dann liegt der durch die Absorptionskante bedingte Transmissionssprung wegen des Energieverlustes beim Compton-Streuprozeß bei der niedrigeren Energie Eb. Spektralkomponenten oberhalb von Eb haben eine große Dämpfung und Spektralkomponenten unterhalb von Eb haben eine niedrige Dämpfung.
Bei beiden Messungen erfahren also die Spektralkomponenten unterhalb Eb eine niedrige und oberhalb Ea eine höhere Dämpfung, wobei allerdings (bei gleicher Filterdicke) die Dämpfungswirkung auf der Primärseite etwas geringer ist als auf der Sekundärseite. Wenn man diese Absorptions- bzw. Transmissionsunterschiede dadurch ausgleicht, daß man das Filter auf der Primärseite etwas dicker macht oder - bei gleicher Dicke der Filter - die Meßzeit entsprechend vergrößert, wenn das Filter auf der Sekundärseite eingefügt ist, dann hebt sich der Einfluß der Spektralkomponenten unterhalb Eb und oberhalb Ea im wesentlichen auf, wenn die bei den beiden Messungen erhaltenen Signale voneinander subtrahiert werden. Nur in dem Bereich zwischen Eb und Ea ist dies nicht der Fall. Das Differenzsignal entspricht daher demjenigen Signal, das sich ergeben würde, wenn der Röntgen­ strahler nur Röntgenquanten mit einer Energie zwischen Eb und Ea auftreten würde. Das beschriebene Verfahren bewirkt also eine Bandpaßfilterung.
Für das beschriebene Ausführungsbeispiel mit einem Filter von einer Absorptions­ kante bei 69,5 keV und einem Streuwinkel von 140° ergibt die Differenzbildung einen Bandpaß, der Quantenenergien im Bereich von 56 keV bis 69,5 keV auf der Sekundärseite wirksam macht, was einer Quantenenergie von 69,5 bis 91,5 keV auf der Primärseite entspricht. Wenn man das Wolframfilter durch ein Cer-Filter ersetzt, das eine K-Absorptionskante bei 40,45 KeV aufweist, ergibt sich bei einem Streuwinkel von 140° mit diesem Verfahren ein Energieband zwischen 35,5 und 40,45 keV auf der Sekundärseite bzw. von 40,45 bis 47 keV auf der Primärseite. Die Breite des Energiebandes, das durch dieses Verfahren wirksam wird, ist von dem Streuwinkel abhängig und nimmt mit diesem ab. Bei einem Streuwinkel von 90° beispielsweise reicht das mit einem Wolframfilter hervorzuhebende Energieband von 61,2 keV bis 69,5 keV auf der Sekundärseite bzw. von 69,5 bis 80,44 keV auf der Primärseite.
Nachfolgend wird anhand von Fig. 6 ein Gerät beschrieben, mit dem dieses Verfahren durchgeführt werden kann. Das Gerät besitzt einen Meßkopf 15, der mit einem zur Zeichenebene der Fig. 6 senkrechten Spalt 16 versehen ist. Der Spalt 16 blendet aus dem polychromatischen Strahlenbündel eines nicht näher dargestellten Röntgenstrahlers ein fächerförmiges Strahlenbündel aus, das auf eine drehbare Walze 17 mit einem die Röntgenstrahlung absorbierenden Material trifft. In der Walze sind zwei um 180° gegeneinander versetzte spiralförmig verlaufende Schlitze vorgesehen, so daß in jeder Walzenposition aus dem fächerförmigen Strahlenbündel 17 ein Nadelstrahl 18 ausgeblendet wird, der bei einer Drehung der Walze in einer zur Zeichenebene senkrechten Ebene geschwenkt wird.
Der Nadelstrahl 18 durchsetzt ein Untersuchungsobjekt 19 und erzeugt darin (Compton-)Streustrahlung. Die Streustrahlung, die unter einem Winkel von ca. 140° mit dem Nadelstrahl gestreut wird, tritt durch zwei zur Zeichenebene senkrechte und beiderseits der durch den Spalt 16 definierten Ebene befindliche Schlitze 19 im Meßkopf hindurch und trifft auf zwei aus jeweils mehreren Detektorelementen bestehende Detektoranordnungen 20 in dem Meßkopf. Die sich senkrecht zur Zeichenebene erstreckenden Detektorelemente erfassen wegen der Schlitzgeometrie die Streustrahlung aus unterschiedlichen Tiefen des Objektes.
Insoweit als bisher beschrieben, ist die Anordnung nach Fig. 6 aus der EP-PS 184 247 bekannt. Zusätzlich ist aber im Strahlengang zwischen dem Objekt 19 und dem Meßkopf 15 eine Filteranordnung 21 vorgesehen. Mit dieser Filteranordnung werden für jede Position des Nadelstrahls 18 vier verschiedene Messungen durchgeführt.
Wie aus Fig. 7 hervorgeht, die die Filteranordnung in einer gegenüber Fig. 6 um 90° gedrehten Position zeigt, umfaßt die Filteranordnung eine Halterung 215 für vier Filterplatten 210 . . . 213. Die beiden Filterplatten 210 und 211 bestehen aus Wolfram und haben die gleiche Dicke. Die beiden Filterplatten 212 und 213 bestehen aus Cer und sind gleich dick. Zwischen benachbarten Filterplatten besteht ein Zwischenraum, durch den Röntgenstrahlung unbeeinflußt hindurchtreten kann.
Bei einer ersten Messung ist das Filter so im Strahlengang positioniert, daß der Nadelstrahl 18 ungeschwächt zwischen den Filterplatten 210 und 211 hindurchtreten kann. Die Streustrahlung hingegen trifft auf ihrem Weg zu den Schlitzen 19 auf die Platten 210 bzw. 211 und wird dadurch beeinflußt. Danach wird das Filter seitlich verschoben, so daß bei der zweiten Messung der Nadelstrahl 18 die Filterplatte 211 ersetzt. Die Streustrahlung erreicht dann die Schlitze 19 ungehindert. Aus den in Verbindung mit Fig. 5 erläuterten Gründen dauert diese zweite Messung etwas länger als die erste Messung. Die von jedem einzelnen Element der Detektoranord­ nungen 20 für dieselbe Position des Nadelstrahls 18 und die beiden Positionen der Filteranordnung 21 gelieferten Meßwerte werden voneinander subtrahiert. Wie in Verbindung mit 5 erläutert, ist das Differenzsignal einem Meßsignal äquivalent, das sich ergeben würde, wenn das Spektrum des Röntgenstrahlers auf ein bestimmtes Energieband (Eb-Ea - vergl. Fig. 5) beschränkt wäre.
Nach einer weiteren Verschiebung der Filteranordnung 21 wird bei einer dritten Messung das Cer-Filter 212 von dem Nadelstrahl 18 durchsetzt. Die gestreute Strahlung hingegen erreicht die Detektoranordnung 20 ungehindert durch die Schlitze 19 hindurch. Nach einer neuerlichen Verschiebung der Filteranordnung durchsetzt der Primärstrahl bei einer vierten Messung den Zwischenraum zwischen den beiden Cer-Filtern 212 und 213, die dann die gestreute Strahlung vor ihrem Durchtritt durch die Schlitze 19 filtern. Für jedes Detektorelement und für jede Nadelstrahlposition wird wiederum die Differenz der bei der dritten und der vierten Position der Filteranordnung gemessenen Signale gebildet, woraus sich ein Differenzsignal ergibt, das einem Energieband entspricht, das niedriger liegt als das Energieband, das sich aus der Differenz der ersten und der zweiten Messung mit den Wolfram-Filtern 210 bzw. 211 ergibt.
Somit wird das Objekt 18 mit zwei verschiedenen Energien durchstrahlt, was für die sognannten "Dual-Energy"-Verfahren wesentlich ist. Diese Verfahren liefern zusätzliche Informationen über das Untersuchungsobjekt 19. Mit dem erfindungs­ gemäßen Verfahren kann ein solches Dual-Energy-Verfahren durchgeführt werden, ohne daß das Spektrum der vom Röntgenstrahler erzeugten Röntgenstrahlung geändert werden muß, beispielsweise durch Umschaltung der Hochspannung, die an die im Röntgenstrahler enthaltene Röntgenröhre angelegt wird. Ebensowenig ist es erforderlich, zur Durchführung des Dual-Energy-Verfahrens die gestreute Röntgenstrahlung energieaufgelöst zu messen.
Wie in einem Aufsatz von Harding & Tischler (Phys. Med. Biol, Vol. 31, 477-489, 1986) beschrieben, ist es mit einem Dual-Energy-Verfahren möglich, die Schwächung durch Compton-Streuung und durch photoelektrische Absorption getrennt zu erfassen. Dazu müssen die aus den vier Messungen resultierenden beiden Sätzen von Differenzsignalen in der in der Veröffentlichung genannten Weise miteinander kombiniert werden.

Claims (7)

1. Filterverfahren für ein Röntgen-System mit einem Röntgenquanten emittierenden Röntgenstrahler und einer wenigstens ein Meßsignal liefernden Detektoranordnung zur Erfassung der mit einem Objekt in einem Untersuchungsbereich in Wechselwir­ kung getretenen Röntgenquanten mit folgenden Verfahrensschritten:
  • a) Es wird eine Messung durchgeführt, bei der sich im Strahlengang zwischen dem Röntgenstrahler und dem Untersuchungsbereich ein Filter befindet.
  • b) Es wird eine Messung durchgeführt, bei der sich im Strahlengang zwischen dem Untersuchungsbereich und der Detektoranordnung ein Filter befindet, das aus dem gleichen Material besteht wie das bei der anderen Messung benutzte Filter.
  • c) Die bei den beiden Messungen erhaltenen Meßsignale werden subtraktiv miteinander kombiniert.
2. Filterverfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein im wesentlichen monochromatischer Röntgen­ strahler verwendet wird, daß das Filtermaterial einer Absorptionskante einer Quantenenergie hat, die geringfügig niedriger ist als die Energie der von dem monochromatischen Röntgenstrahler emittierten Röntgenquanten und daß die Röntgenquanten von der Detektoranordnung unter einem Winkel erfaßt werden, der größer ist als der Winkel, bei dem der Energieverlust der Röntgenquanten durch Compton-Streuung gerade der Differenz zwischen der Energie der Röntgen­ quanten und der Energie entspricht, bei der das Filter eine Absorptionskante hat.
3. Filterverfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein im wesentlichen monochromatischer Röntgen­ strahler verwendet wird, daß das Filtermaterial einer Absorptionskante bei einer Quantenenergie hat, die geringfügig niedriger ist als die Energie der von dem monochromatischen Röntgenstrahler emittierten Röntgenquanten, daß die Rönt­ genquanten von der Detektoranordnung unter einem Winkel erfaßt werden, der kleiner ist als der Winkel, bei dem der Energieverlust der Röntgenquanten durch Compton-Streuung gerade die Differenz zwischen der Energie der Röntgenquanten und der Quantenenergie entspricht, bei der das Filtermaterial eine Absorptions­ kante aufweist, und daß die Quantenenergie energieauflösend gemessen wird.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein polychromatischer Röntgenstrahler verwendet wird, und daß die unter einem bestimmten Streuwinkelbereich austretende Streu­ strahlung von der Detektoranordnung gemessen wird.
5. Filterverfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß ein die Tantalfluoreszenzstrahlung emittierender Röntgenstrahler und ein Erbiumfilter verwendet werden.
6. Anordnung zum Durchführen des Filterverfahrens nach Anspruch 1, gekennzeichnet durch ein Röntgensystem mit einem Röntgenstrahler und einer Detektoranordnung zur Erfassung der mit einem Untersuchungsobjekt in Wechselwirkung getretenen Röntgenquanten, mit Filtermitteln zum Einbringen eines Filters entweder in den Strahlengang zwischen dem Röntgenstrahler und dem Untersuchungsobjekt oder in den Strahlengang zwischen dem Untersuchungsobjekt und dem Detektor und mit Mitteln zum subtraktiven Kombinieren der von der Detektoranordnung gelieferten Meßsignale.
7. Anordnung nach Anspruch 6 mit einem polychromatischen Röntgenstrahler und einer Detektoranordnung zum Erfassen der unter einem Winkel von mehr als etwa 90° gestreuten Strahlung, dadurch gekennzeichnet, daß eine Filteranordnung mit wenigstens einem ebenen Filter vorgesehen ist, die in wenigstens zwei Positionen senkrecht zu dem zwischen Röntgenstrahler und Untersuchungsbereich verlaufenden Strahlengang verschiebbar ist, wobei in der einen Position das Filter von der Primärstrahlung und in der anderen Position von der Streustrahlung durchsetzt wird.
DE4215343A 1992-05-09 1992-05-09 Filterverfahren für ein Röntgensystem und Anordnung zur Durchführung eines solchen Filterverfahrens Withdrawn DE4215343A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE4215343A DE4215343A1 (de) 1992-05-09 1992-05-09 Filterverfahren für ein Röntgensystem und Anordnung zur Durchführung eines solchen Filterverfahrens
EP93201335A EP0571017B1 (de) 1992-05-09 1993-05-07 Filterverfahren für ein Röntgensystem und Anordnung zur Durchführung eines solchen Filterverfahrens
US08/060,174 US5394454A (en) 1992-05-09 1993-05-07 Filter method for an x-ray system, and device for carrying out such a filter method
DE59307657T DE59307657D1 (de) 1992-05-09 1993-05-07 Filterverfahren für ein Röntgensystem und Anordnung zur Durchführung eines solchen Filterverfahrens
JP10707193A JP3456722B2 (ja) 1992-05-09 1993-05-07 X線システムのフィルタ方法及びそれを実行する装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4215343A DE4215343A1 (de) 1992-05-09 1992-05-09 Filterverfahren für ein Röntgensystem und Anordnung zur Durchführung eines solchen Filterverfahrens

Publications (1)

Publication Number Publication Date
DE4215343A1 true DE4215343A1 (de) 1993-11-11

Family

ID=6458510

Family Applications (2)

Application Number Title Priority Date Filing Date
DE4215343A Withdrawn DE4215343A1 (de) 1992-05-09 1992-05-09 Filterverfahren für ein Röntgensystem und Anordnung zur Durchführung eines solchen Filterverfahrens
DE59307657T Expired - Fee Related DE59307657D1 (de) 1992-05-09 1993-05-07 Filterverfahren für ein Röntgensystem und Anordnung zur Durchführung eines solchen Filterverfahrens

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59307657T Expired - Fee Related DE59307657D1 (de) 1992-05-09 1993-05-07 Filterverfahren für ein Röntgensystem und Anordnung zur Durchführung eines solchen Filterverfahrens

Country Status (4)

Country Link
US (1) US5394454A (de)
EP (1) EP0571017B1 (de)
JP (1) JP3456722B2 (de)
DE (2) DE4215343A1 (de)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6438621B1 (en) 1994-11-14 2002-08-20 Microsoft Corporation In-memory modification of computer programs
US5600700A (en) * 1995-09-25 1997-02-04 Vivid Technologies, Inc. Detecting explosives or other contraband by employing transmitted and scattered X-rays
US5642393A (en) * 1995-09-26 1997-06-24 Vivid Technologies, Inc. Detecting contraband by employing interactive multiprobe tomography
US5974111A (en) * 1996-09-24 1999-10-26 Vivid Technologies, Inc. Identifying explosives or other contraband by employing transmitted or scattered X-rays
AU5888499A (en) * 1998-09-17 2000-04-03 Quanta Vision, Inc. Reduced-angle mammography device and variants
US6249567B1 (en) * 1998-12-01 2001-06-19 American Science & Engineering, Inc. X-ray back scatter imaging system for undercarriage inspection
DE19962281A1 (de) * 1999-12-23 2001-06-28 Philips Corp Intellectual Pty Röntgenuntersuchungsgerät
US6459761B1 (en) 2000-02-10 2002-10-01 American Science And Engineering, Inc. Spectrally shaped x-ray inspection system
US7538325B2 (en) * 2000-02-10 2009-05-26 American Science And Engineering, Inc. Single-pulse-switched multiple energy X-ray source applications
US20080211431A1 (en) * 2000-02-10 2008-09-04 American Science And Engineering, Inc. Pulse-to-Pulse-Switchable Multiple-Energy Linear Accelerators Based on Fast RF Power Switching
US7010094B2 (en) * 2000-02-10 2006-03-07 American Science And Engineering, Inc. X-ray inspection using spatially and spectrally tailored beams
US20050117683A1 (en) * 2000-02-10 2005-06-02 Andrey Mishin Multiple energy x-ray source for security applications
US8503605B2 (en) 2002-07-23 2013-08-06 Rapiscan Systems, Inc. Four sided imaging system and method for detection of contraband
US8275091B2 (en) 2002-07-23 2012-09-25 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US7963695B2 (en) 2002-07-23 2011-06-21 Rapiscan Systems, Inc. Rotatable boom cargo scanning system
US9958569B2 (en) 2002-07-23 2018-05-01 Rapiscan Systems, Inc. Mobile imaging system and method for detection of contraband
US6928141B2 (en) 2003-06-20 2005-08-09 Rapiscan, Inc. Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers
KR20100102733A (ko) * 2003-08-21 2010-09-24 마이크로소프트 코포레이션 전자 잉크를 분석하기 위한 애플리케이션 프로그래밍 인터페이스를 포함하는 컴퓨터 판독가능 기록 매체, 전자 잉크 분석 방법 및 분석 콘텍스트 대상 생성 방법
DK1733213T3 (da) * 2004-04-09 2010-05-03 American Science & Eng Inc Eliminering af cross-talk i en tilbagespredningsinspektionsportal der omfatter flere kilder, ved at sikre at kun en kilde afgiver stråling ad gangen
US7809109B2 (en) * 2004-04-09 2010-10-05 American Science And Engineering, Inc. Multiple image collection and synthesis for personnel screening
US7505562B2 (en) * 2006-04-21 2009-03-17 American Science And Engineering, Inc. X-ray imaging of baggage and personnel using arrays of discrete sources and multiple collimated beams
GB0420222D0 (en) * 2004-09-11 2004-10-13 Koninkl Philips Electronics Nv Coherent scatter imaging
DE102004060609A1 (de) * 2004-12-16 2006-06-29 Yxlon International Security Gmbh Verfahren zum Messen des Impulsübertragungsspektrums von elastisch gestreuten Röntgenquanten
US7471764B2 (en) 2005-04-15 2008-12-30 Rapiscan Security Products, Inc. X-ray imaging system having improved weather resistance
JP2007071697A (ja) * 2005-09-07 2007-03-22 Jeol Ltd X線分析装置
US7526064B2 (en) 2006-05-05 2009-04-28 Rapiscan Security Products, Inc. Multiple pass cargo inspection system
US7646850B2 (en) * 2007-01-18 2010-01-12 The Research Foundation Of State University Of New York Wide-field, coherent scatter imaging for radiography using a divergent beam
US8638904B2 (en) 2010-03-14 2014-01-28 Rapiscan Systems, Inc. Personnel screening system
US8995619B2 (en) 2010-03-14 2015-03-31 Rapiscan Systems, Inc. Personnel screening system
US8576982B2 (en) 2008-02-01 2013-11-05 Rapiscan Systems, Inc. Personnel screening system
GB0809110D0 (en) 2008-05-20 2008-06-25 Rapiscan Security Products Inc Gantry scanner systems
CN102160085B (zh) * 2008-09-16 2013-11-20 皇家飞利浦电子股份有限公司 成像装置
US8824632B2 (en) 2009-07-29 2014-09-02 American Science And Engineering, Inc. Backscatter X-ray inspection van with top-down imaging
CN102483383A (zh) * 2009-07-29 2012-05-30 美国科技工程公司 自上向下x 光检查拖车
US8576989B2 (en) 2010-03-14 2013-11-05 Rapiscan Systems, Inc. Beam forming apparatus
EP3270185B1 (de) 2011-02-08 2023-02-01 Rapiscan Systems, Inc. Verdeckte überwachung unter verwendung multimodaler erfassung
US9218933B2 (en) 2011-06-09 2015-12-22 Rapidscan Systems, Inc. Low-dose radiographic imaging system
CN104170051B (zh) 2012-02-03 2017-05-31 拉皮斯坎系统股份有限公司 组合散射和透射的多视图成像系统
US10670740B2 (en) 2012-02-14 2020-06-02 American Science And Engineering, Inc. Spectral discrimination using wavelength-shifting fiber-coupled scintillation detectors
DE102013200839A1 (de) * 2013-01-21 2014-04-17 Siemens Aktiengesellschaft Röntgenstreuung mit einem energieauflösenden Detektor
KR102167245B1 (ko) 2013-01-31 2020-10-19 라피스캔 시스템스, 인코포레이티드 이동식 보안검사시스템
US11280898B2 (en) 2014-03-07 2022-03-22 Rapiscan Systems, Inc. Radar-based baggage and parcel inspection systems
GB2538921B (en) 2014-03-07 2020-06-03 Rapiscan Systems Inc Ultra wide band detectors
BR112017011068A2 (pt) 2014-11-25 2018-07-10 Rapiscan Systems, Inc. sistema de gerenciamento de segurança inteligente
JP6746603B2 (ja) 2015-03-20 2020-08-26 ラピスカン システムズ、インコーポレイテッド 手持ち式携帯型後方散乱検査システム
WO2017147603A1 (en) * 2016-02-26 2017-08-31 Rothschild Peter J In-vivo detection of lead in bone
JP6759056B2 (ja) * 2016-10-28 2020-09-23 キヤノン株式会社 放射線検出装置及び放射線撮像システム
EP3226038B1 (de) * 2016-03-28 2020-05-06 Canon Kabushiki Kaisha Strahlungserkennungsvorrichtung und strahlungsabbildungssystem
WO2018064434A1 (en) 2016-09-30 2018-04-05 American Science And Engineering, Inc. X-ray source for 2d scanning beam imaging
WO2019245636A1 (en) 2018-06-20 2019-12-26 American Science And Engineering, Inc. Wavelength-shifting sheet-coupled scintillation detectors
WO2021246998A1 (en) * 2020-06-01 2021-12-09 American Science And Engineering, Inc. Systems and methods for controlling image contrast in an x-ray system
US11193898B1 (en) 2020-06-01 2021-12-07 American Science And Engineering, Inc. Systems and methods for controlling image contrast in an X-ray system
US11175245B1 (en) 2020-06-15 2021-11-16 American Science And Engineering, Inc. Scatter X-ray imaging with adaptive scanning beam intensity
CN114166874A (zh) * 2020-09-11 2022-03-11 同方威视技术股份有限公司 背散射检查系统和方法
US11340361B1 (en) 2020-11-23 2022-05-24 American Science And Engineering, Inc. Wireless transmission detector panel for an X-ray scanner

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4611341A (en) * 1981-05-05 1986-09-09 The Board Of Trustees Of The Leland Stanford Junior University Multiple-energy x-ray substraction imaging system
US4445226A (en) * 1981-05-05 1984-04-24 The Board Of Trustees Of The Leland Stanford Junior University Multiple-energy X-ray subtraction imaging system
US4541106A (en) * 1984-02-22 1985-09-10 General Electric Company Dual energy rapid switching imaging system
DE3443095A1 (de) * 1984-11-27 1986-05-28 Philips Patentverwaltung Gmbh, 2000 Hamburg Anordnung zur untersuchung eines koerpers mit gamma- oder roentgenstrahlung
DE3716618A1 (de) * 1987-05-18 1988-12-08 Philips Patentverwaltung Strahlenquelle zur erzeugung einer im wesentlichen monochromatischen roentgenstrahlung
US4945552A (en) * 1987-12-04 1990-07-31 Hitachi, Ltd. Imaging system for obtaining X-ray energy subtraction images
EP0432730B1 (de) * 1989-12-14 1999-08-04 Aloka Co. Ltd. Vorrichtung zur Messung des Kalziumgehaltes von Knochen
DE4000507A1 (de) * 1990-01-10 1991-07-11 Philips Patentverwaltung Anordnung zur untersuchung eines pruefobjekts mit gamma- oder roentgenstrahlung
DE4034602A1 (de) * 1990-06-20 1992-05-07 Philips Patentverwaltung Anordnung zur messung des impulsuebertragsspektrums von roentgenquanten
US5157074A (en) * 1991-07-23 1992-10-20 Miles Inc. Aqueous compositions containing an at least partially blocked polyisocyanates and a trimerization catalyst and coatings and binders prepared therefrom

Also Published As

Publication number Publication date
EP0571017A2 (de) 1993-11-24
EP0571017A3 (de) 1995-05-31
JP3456722B2 (ja) 2003-10-14
DE59307657D1 (de) 1997-12-18
EP0571017B1 (de) 1997-11-12
JPH0638949A (ja) 1994-02-15
US5394454A (en) 1995-02-28

Similar Documents

Publication Publication Date Title
EP0571017B1 (de) Filterverfahren für ein Röntgensystem und Anordnung zur Durchführung eines solchen Filterverfahrens
EP0209952B1 (de) Verfahren zum Bestimmen der räumlichen Verteilung der Streuquerschnitte für elastisch gestreute Röntgenstrahlung und Anordnung zur Durchführung des Verfahrens
EP0153786B1 (de) Röntgengerät
EP0496454B1 (de) Röntgengerät
EP0360347B1 (de) Anordnung zur Messung des Impulsübertrags-Spektrums
DE2733586C2 (de)
EP0311177B1 (de) Anordnung zur Untersuchung eines Körpers mit einer Strahlenquelle
EP0242895B1 (de) Verfahren zur Bestimmung der räumlichen Struktur in einer Schicht eines Untersuchungsbereiches
DE2544354A1 (de) Verfahren zur bestimmung der dichte von koerpern mittels durchdingender strahlen und geraet zu seiner durchfuehrung
EP0259921A2 (de) Verfahren zur zweidimensionalen Compton-Profil-Abbildung
DE102007058447A1 (de) Röntgendetektor, Röntgengerät und Verfahren zur Erfassung einer Röntgenstrahlung
EP0217464B1 (de) Verfahren zur Bestimmung der Fotoschwächung in einem Bereich eines Untersuchungskörpers und Anordnung zur Durchführung des Verfahrens
DE3035929C2 (de) Vorrichtung zur Ermittlung der Volumenanteile eines Mehrkomponentengemisches durch Transmission mehrerer Gammalinien
DE3300406A1 (de) Referenzdetektorvorrichtung fuer multidetektor-tomodensitometer und mit dieser vorrichtung ausgeruestetes tomodensitometer
EP2217946B1 (de) Vorrichtung zur online-bestimmung des gehalts einer substanz und verfahren unter verwendung einer solchen vorrichtung
WO2006063849A1 (de) Anordnung zum messen des impulsübertragungsspektrums von elastisch gestreuten röntgenquanten
DE2426794A1 (de) Einrichtung zur strahlungsfeststellung und verfahren zur feststellung des vorhandenseins eines interessierenden elementes in einer probe
DE19603000A1 (de) Verfahren zum Kalibrieren einer Anordnung zur Ermittlung des Impulsübertragsspektrums und Kalibriereinheit zur Durchführung des Verfahrens
DE3300566C2 (de)
DE2001513A1 (de) Vorrichtung zur Messung des Gehalts einer Probe an einem Element durch Gamma-Absorptiometrie
DE102012204360A1 (de) Verfahren und Vorrichtung zur Energiekalibrierung eines quantenzählenden CT-Detektors mittels Fluoreszenzstrahlung
DE4123871A1 (de) Anordnung zur erzeugung von radiographien oder tomographischer schnittbilder
DE3007456C2 (de)
DE102017202309B3 (de) Messvorrichtung für Röntgenphotonen
DE2351362C2 (de) Verfahren zum Messen des Absorptionsanteils eines Strahlenbündels niedriger Strahlungsenergie und Vorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee