WO2007088934A1 - X線源及び蛍光x線分析装置 - Google Patents

X線源及び蛍光x線分析装置 Download PDF

Info

Publication number
WO2007088934A1
WO2007088934A1 PCT/JP2007/051710 JP2007051710W WO2007088934A1 WO 2007088934 A1 WO2007088934 A1 WO 2007088934A1 JP 2007051710 W JP2007051710 W JP 2007051710W WO 2007088934 A1 WO2007088934 A1 WO 2007088934A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
rays
target
electron beam
primary
Prior art date
Application number
PCT/JP2007/051710
Other languages
English (en)
French (fr)
Inventor
Nobutada Aoki
Akiko Kakutani
Original Assignee
Toshiba Electron Tubes & Devices Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006024261A external-priority patent/JP4738189B2/ja
Priority claimed from JP2006024071A external-priority patent/JP2007207539A/ja
Application filed by Toshiba Electron Tubes & Devices Co., Ltd. filed Critical Toshiba Electron Tubes & Devices Co., Ltd.
Priority to EP07707896A priority Critical patent/EP1988564A4/en
Publication of WO2007088934A1 publication Critical patent/WO2007088934A1/ja
Priority to US11/905,911 priority patent/US7809113B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/10Scattering devices; Absorbing devices; Ionising radiation filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/24Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/24Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof
    • H01J35/26Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof by rotation of the anode or anticathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/32Tubes wherein the X-rays are produced at or near the end of the tube or a part thereof which tube or part has a small cross-section to facilitate introduction into a small hole or cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/081Target material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/086Target geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/088Laminated targets, e.g. plurality of emitting layers of unique or differing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • H01J35/18Windows
    • H01J35/186Windows used as targets or X-ray converters

Definitions

  • the present invention relates to an X-ray source that emits characteristic X-rays, and a fluorescent X-ray analyzer using the X-ray source.
  • braking X-rays and target-specific characteristic X-rays are emitted when electrons accelerated by a high voltage are incident on a target, which is an anode (for example, see Japanese Patent Application Laid-Open No. 2004-2005). — 28845 gazette, pages 4-5, Figure 1-2).
  • the braking X-ray is a continuous energy spectrum composed of white, and its spectral distribution changes depending on the incident electron energy, whereas the characteristic X-ray does not depend on the electron energy and A single color with a unique single energy distribution.
  • X-ray fluorescence analysis measures the energy distribution of fluorescent X-ray signals emitted when characteristic X-rays are incident on a sample and identifies the type and amount of elements in the sample.
  • Various X-ray sources that are devised to enhance the efficiency are used.
  • FIG. 29 shows an example of a general configuration of a high-resolution X-ray fluorescence analyzer that uses the characteristic X-rays described above.
  • a general X-ray source 1 is used, and continuous X-ray 2 that is the primary X-ray of the continuous energy spectrum emitted from X-ray source 1 is incident on secondary target 3, and characteristic X-rays are emitted.
  • 4 is emitted and irradiated to the sample 6 through the collimator 5 installed outside, and the fluorescent X-rays 7 emitted by exciting the elements on the surface of the sample 6 are detected by the X-ray detector 8.
  • the efficiency of irradiating the secondary target 3 is low Characteristic emitted from the secondary target 3
  • Characteristic emitted from the secondary target 3 To increase the intensity of the X-ray 4, it is necessary to provide a high-power X-ray source 1, which results in a high-resolution fluorescence X
  • the size of X-ray analyzers has increased, power consumption has increased, the scale of X-ray shielding has increased, and as a result, costs have increased, and this has become a factor that increases restrictions on diffusion (for example, the current state of fluorescent X-ray analysis).
  • Izumi Nakai Applied Physics 74th No. 4 (2005) pp. 455-456 Izumi Nakai Applied Physics 74th No. 4 (2005) pp. 455-456.
  • FIG. 30 shows a total reflection X-ray fluorescence analysis (TXRF) which has been used for the purpose of surface contamination inspection of a semiconductor wafer as a sample 6 in recent years.
  • TXRF total reflection X-ray fluorescence analysis
  • a sheet beam shape that includes a fan-shaped fan beam is suitable because it must be incident on the surface of the semiconductor wafer at a constant angle as much as possible and at a very shallow angle of 0.1 ° or less. ing.
  • the configuration using the secondary target 3 is a force that is an effective method for emitting characteristic X-rays 4 while maintaining a high monochromaticity while keeping the mixing ratio of unnecessary components (noise) low.
  • 3 is a configuration placed outside the X-ray source 1 and continuous X-ray 2 is emitted in all directions (4 ⁇ direction), so it attenuates by the square of the distance and excites the secondary target 3 The utilization rate of continuous X-ray 2 will decrease. Furthermore, since a space for arranging the secondary target 3 and the monochromatic filter etc. is required outside the X-ray source 1, it has been a problem that the system becomes large.
  • the present invention has been made in view of the above points, and can generate characteristic X-rays efficiently, suppress the mixing of noise components into the emitted characteristic X-rays, and, for example, totally reflected fluorescence.
  • Sheet beam shape characteristics suitable for X-ray analysis An object of the present invention is to provide an X-ray source that can easily obtain X-rays, and a fluorescent X-ray analyzer using the X-ray source.
  • the X-ray source of the present invention includes an electron gun that generates an electron beam, a primary target that emits an electron beam from the electron gun and transmits X-rays, and is superimposed on the primary target. And a secondary target that transmits and emits characteristic X-rays excited by X-rays emitted from the primary target.
  • the X-ray source of the present invention includes a vacuum container having an X-ray transmission window, an electron gun that generates an electron beam in the vacuum container, and the electron gun disposed in the vacuum container.
  • a primary target that emits X-rays in the reflection direction when an electron beam is incident is disposed opposite to the periphery of the primary target in the vacuum chamber and emitted from the primary target.
  • a secondary target that emits the characteristic X-rays excited by the X-rays in a reflection direction toward the X-ray transmission window.
  • the X-ray source of the present invention is arranged in a ring shape in a vacuum vessel having an X-ray transmission window, an electron gun that generates a ring-shaped electron beam in the vacuum vessel, and A primary target that is irradiated with a ring-shaped electron beam from the electron gun and emits X-rays in the reflection direction, and is disposed opposite to the center of the primary target in the vacuum vessel.
  • a secondary target that emits the characteristic X-rays excited by the X-rays emitted from the secondary target in the direction of reflection toward the X-ray transmission window.
  • the X-ray source of the present invention includes a vacuum container having an X-ray transmission window, an electron gun having a ground potential that generates an electron beam disposed in the vacuum container, and the vacuum container disposed in the vacuum container.
  • a primary target that emits an X-ray in a reflection direction when an electron beam is incident thereon, and an X-ray that is disposed at the position of an X-ray transmission window in the vacuum vessel and is emitted from the primary target.
  • a secondary target that transmits X-rays and emits them. Is.
  • the X-ray source of the present invention includes an electron gun that generates an electron beam, a primary target that receives an electron beam from the electron gun, transmits X-rays, and emits the primary beam; and the primary A plurality of secondary targets that overlap the target and are movable relative to the X-ray generation position of the primary target, and the secondary target arranged at the X-ray generation position is emitted from the primary target. And a secondary target body that transmits and emits X-rays that are excited by X-rays.
  • the X-ray source of the present invention includes a vacuum container having an X-ray transmission window, an electron gun that generates an electron beam in the vacuum container, and a different primary target disposed in the vacuum container. And a plurality of sets of target portions that are combined with the secondary target, and the plurality of sets of target portions can be moved with respect to the electron beam incident position where the electron gun force electron beam is incident.
  • the primary target of the target unit located at the electron beam incident position transmits and emits X-rays by the incidence of the electron beam, and the secondary target is excited by the X-rays emitted from the primary target X
  • the X-ray source of the present invention includes a vacuum vessel having an X-ray transmission window, an electron gun that generates an electron beam in the vacuum vessel, and a different primary target disposed in the vacuum vessel. And a plurality of sets of target portions that are combined with a secondary target and a filter, and the plurality of sets of target portions are movable with respect to the electron beam incident position where the electron gun force electron beam is incident. Characteristic X-rays excited by X-rays emitted from the primary target when the primary target of the target unit located at the beam incident position transmits and emits X-rays by the incidence of the electron beam.
  • the characteristic that the filter is emitted through the secondary target and the filter is emitted from the secondary target ⁇ Among the ⁇ rays and Ka rays contained in the X rays, K ⁇ rays are attenuated, Ka rays are transmitted, and the X rays Release from the transmission window And the target body, those that comprise a moving mechanism for moving the target object in the vacuum chamber.
  • the X-ray source of the present invention includes a vacuum container having an X-ray transmission window movably provided, an electron gun for generating an electron beam in the vacuum container, and an X-ray in the vacuum container.
  • Transparent window Provided with a plurality of sets of target portions in which different primary targets and secondary targets are combined in combination, and the plurality of sets of target portions enter the electron beam from the electron gun by the movement of the X-ray transmission window.
  • the primary target of the target unit arranged at the electron beam incident position can be moved with respect to the electron beam incident position, and transmits and emits X-rays when the electron beam is incident, and the secondary target is the primary target.
  • the X-ray source of the present invention includes a vacuum vessel having an X-ray transmission window movably provided, an electron gun for generating an electron beam in the vacuum vessel, and an X-ray in the vacuum vessel.
  • a plurality of sets of target portions that are provided in the transmission window and are formed by combining different primary targets, secondary targets, and filters, and the plurality of sets of target portions are moved by the movement of the X-ray transmission window.
  • the beam is movable with respect to the incident position of the incident electron beam, and the primary target of the target unit arranged at the incident position of the electron beam transmits and emits X-rays by the incidence of the electron beam.
  • Characteristic excited by X-rays emitted from the secondary target Transmits and emits X-rays, and the filter emits characteristic X-rays from the secondary target Among the ⁇ ⁇ rays and Ka rays, ⁇ ⁇ rays Attenuate the X-ray transmission window force by transmitting kappa alpha rays is also one that comprises a target body to be released.
  • the X-ray trend analyzer of the present invention includes the X-ray source that irradiates a sample with characteristic X-rays, and the fluorescence X that is emitted when elements on the surface of the sample are excited by irradiation with the characteristic X-rays. And an X-ray detector for detecting a line.
  • the X-ray source of the present invention includes a vacuum vessel, an electron gun that generates an electron beam in the vacuum vessel, a wall section that defines the inside of the vacuum vessel, and the electron gun provided on the wall portion.
  • a partition portion having an electron beam passage hole through which the generated electron beam passes, and a primary target provided in the partition portion and emitting an X-ray upon incidence of the electron beam that has passed through the electron beam passage hole.
  • a secondary target which is provided in the partition part and which emits characteristic X-rays when X-rays emitted from the primary target are incident; and a vacuum target which faces the partition part and is provided from the secondary target. Characteristics of emitted X-ray transmission window for emitting X-rays to the outside.
  • the X-ray fluorescence analyzer of the present invention includes the X-ray source that irradiates a sample with characteristic X-rays, and the fluorescence X that is emitted when the elements on the surface of the sample are excited by irradiation with the characteristic X-rays. And an X-ray detector for detecting a line.
  • FIG. 1 is an explanatory diagram of an X-ray source showing a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram for explaining the X-ray conversion action at the target portion of the X-ray source.
  • FIG. 3 is an explanatory diagram of an X-ray source showing a second embodiment of the present invention.
  • FIG. 4 is an explanatory diagram for explaining the X-ray conversion action in the target portion of the X-ray source.
  • FIG. 5 is an explanatory diagram of an X-ray source showing a third embodiment of the present invention.
  • FIG. 6 is an explanatory diagram of an X-ray source showing a fourth embodiment of the present invention.
  • FIG. 7 is an explanatory diagram of an X-ray source showing a fifth embodiment of the present invention.
  • FIG. 8 is an explanatory diagram of an X-ray source showing a sixth embodiment of the present invention.
  • FIG. 9 is an explanatory diagram of an X-ray source showing a seventh embodiment of the present invention.
  • FIG. 10A is an explanatory diagram of an X-ray source showing an eighth embodiment of the present invention.
  • FIG. 10B is a perspective view of a secondary target body showing the eighth embodiment of the present invention.
  • FIG. 11A is an explanatory diagram of an X-ray source showing a ninth embodiment of the present invention.
  • FIG. 11B is a perspective view of the secondary target body and the filter body showing the ninth exemplary embodiment of the present invention.
  • FIG. 12A is an explanatory diagram of an X-ray source showing a tenth embodiment of the present invention.
  • FIG. 12B is an explanatory diagram of the X-ray source showing the tenth embodiment of the present invention.
  • FIG. 13 is an explanatory diagram of an X-ray source showing an eleventh embodiment of the present invention.
  • FIG. 14 is an explanatory diagram of an X-ray source showing a twelfth embodiment of the present invention.
  • FIG. 15 is an explanatory diagram of an X-ray source showing a thirteenth embodiment of the present invention.
  • FIG. 16 is an explanatory diagram of an X-ray source showing a fourteenth embodiment of the present invention.
  • FIG. 17 is an explanatory diagram of a fluorescent X-ray analyzer using the X-ray source of the present invention.
  • FIG. 18 is an explanatory view showing another example of the X-ray fluorescence analyzer of the present invention.
  • FIG. 19 is an explanatory diagram of the X-ray source showing the first embodiment of the present invention.
  • FIG. 20 is an explanatory view for explaining the relationship between the electron gun of the X-ray source and the X-ray generation unit.
  • FIG. 21 is an explanatory diagram for explaining the relationship between the electron gun and the X-ray generation unit, also seeing a directional force that is 90 ° different from that of FIG. 20 of the X-ray source.
  • FIG. 22 is an explanatory diagram of an X-ray source showing a sixteenth embodiment of the present invention.
  • FIG. 23A is an explanatory diagram showing the relationship between the energy and intensity of an electron beam according to a seventeenth embodiment of the present invention.
  • FIG. 23B is an explanatory diagram showing the relationship between the energy and intensity of an electron beam according to the seventeenth embodiment of the present invention.
  • FIG. 23C is an explanatory diagram showing the relationship between the energy and the intensity of the electron beam according to the seventeenth embodiment of the present invention.
  • FIG. 23D is an explanatory diagram showing the relationship between the energy and the intensity of the electron beam according to the seventeenth embodiment of the present invention.
  • FIG. 24 is an explanatory diagram of an X-ray source showing an eighteenth embodiment of the present invention.
  • FIG. 25 is an explanatory diagram of the target of the X-ray source same as above.
  • FIG. 26 is an explanatory diagram of an X-ray source showing a nineteenth embodiment of the present invention.
  • FIG. 27 is an explanatory diagram of an X-ray source showing a twentieth embodiment of the present invention.
  • FIG. 28 is an explanatory diagram of a fluorescent X-ray analyzer using the X-ray source of the present invention.
  • FIG. 29 is an explanatory diagram of a conventional X-ray fluorescence analyzer.
  • FIG. 30 is an explanatory diagram of a conventional total reflection X-ray fluorescence analysis method.
  • 1 and 2 show a first embodiment of an X-ray source.
  • an X-ray source 111 has a vacuum container 112 in which the inside is held in vacuum, and an X-ray transmission window 113 for emitting X-rays to the outside is disposed at one end of the vacuum container 112. Has been.
  • An electron gun 114 is disposed at the other end of the vacuum vessel 112, and is located in the vacuum vessel 112 so as to be X-ray.
  • An emitter 116 that emits an electron beam 115 toward the X-ray transmission window 113 is provided at the end of the electron gun 114 that faces the transmission window 113.
  • the electron gun 114 generates and accelerates an electron beam 115 by a driving power source 117.
  • the X-ray transmission window 113 includes a primary target 118 facing the electron gun 114 in the vacuum vessel 112, and a secondary target 119 arranged in close contact with the outer side of the primary target 118 and force. I will be left behind!
  • the primary target 118 emits continuous X-rays 120 as primary X-rays, which are X-rays when the electron beam 115 is incident, and the continuous X-rays 120 are emitted to the secondary target. Permeate through 119.
  • the secondary target 1 19 emits characteristic X-rays 121 excited by continuous X-rays 120 transmitted and emitted from the primary target 118, and transmits these characteristic X-rays 121 to be emitted outside the vacuum vessel 112. To do.
  • the characteristic X-ray 121 includes ⁇ rays having a long wavelength of K rays and ⁇ rays having a short wavelength.
  • the ratio of Ka line and ⁇ ⁇ line is about 10: 2.
  • the electron beam 115 obtained by the drive power source 117 has sufficient energy to excite and emit the characteristic X-ray 121 of the secondary target 119, that is, the K-line and the ⁇ -line X-ray. To do.
  • the primary target 118 should be selected to be an element that is about 2 larger in atomic number than the secondary target 1 19. Is the optimal combination. For example, select a combination in which the primary target 118 is Cu (copper) with an atomic number 29 and the secondary target 119 is Co (conoret) with an atomic number 27.
  • the small X-ray source 111 that can efficiently emit the target energy characteristic X-ray 121 can be provided.
  • the energy of the incident electrons is a penetration depth of several / zm into the primary target 118.
  • the surface of the next target 119 is coated with or coated with the element of the first target 118 This can be effective in suppressing the attenuation of continuous X-rays 120 transmitted through the primary target 118.
  • the secondary target 119 needs to have a thickness that does not cause deformation or destruction due to a force-pressure difference that has the function of the X-ray transmission window 113. Therefore, when aiming at the emission of low-energy characteristic X-ray 121, a material with a small X-ray attenuation rate such as Be (beryllium) is used as the X-ray transmission window 113, and the X-ray transmission window 113 is placed on the X-ray transmission window 113. It is also possible to apply a structure in which the secondary target 119 and the primary target 118 are coated to the required thickness.
  • Be beryllium
  • the secondary target 119 is electrically non-conductive or Ge ( Even if it is a semiconductor such as germanium) or Si (silicon), if the primary target 118 is a conductor, stable operation is possible without causing charge accumulation due to the incidence of the electron beam 115 (charge-up). It becomes.
  • FIGS. 3 and 4 show a second embodiment.
  • the characteristic X-ray 121 ⁇ ⁇ -ray of the secondary target 119, K j8, outside the secondary target 119 a short wavelength, a weak ⁇ -ray is attenuated, and a K edge filter 122 as a filter that transmits the long wavelength and the Ka line is superposed in a close contact state.
  • the elements of the edge filter 122 have an atomic number higher than that of the secondary target 119 that emits characteristic X-rays 121. A small one is appropriate. For example, a combination is selected in which the secondary target 11 9 is Cu (copper) with atomic number 29 and the K edge filter 122 is Ni (nickel) with atomic number 28.
  • the K-edge filter 122 has the characteristic of the secondary target 119.
  • ⁇ ⁇ rays and K j8 rays of the X-ray 121 it has a large attenuation effect on the short-wave ⁇ ⁇ ⁇ ⁇
  • the thicknesses of the targets 118 and 119 and the K edge filter 122 need to be set in consideration of the target X-ray attenuation and monochromaticity. If a sufficient thickness cannot be obtained as the line transmission window 113, a material having a small X-ray attenuation rate, such as Be (beryllium), is used as the X-ray transmission window 113, as in the first embodiment. A configuration in which the targets 11 8, 119 and the K edge filter 122 are coated can be applied.
  • FIG. 5 shows a third embodiment.
  • the primary target 118 on which the electron beam 115 is incident has a conical shape and is on the axis of the electron beam 115.
  • the secondary target 119 has a cylindrical shape and is arranged around the primary target 118 on a concentric circle centered on the axis of the electron beam 115, that is, the primary target 118. It is the structure arrange
  • the inner peripheral surface of the secondary target 119 is parallel to the surface of the conical primary target 118, and the characteristic X-ray 121 excited by the continuous X-ray 120 incident from the primary target is transmitted through the X-ray transmission window. It is configured to emit in the direction of reflection towards 113.
  • the electron beam 115 generated by the electron gun 114 passes through the center opening of the secondary target 119 and is incident on the surface of the conical primary target 118, and is secondary from the surface of the primary target 118.
  • Continuous X-rays 120 are emitted in the direction of reflection toward the inner peripheral surface of the target 119.
  • the characteristic X-ray 121 emitted from the primary target 118 enters the inner peripheral surface of the secondary target 119, and the inner peripheral surface force characteristic X-ray 121 of the secondary target 119 is directed to the X-ray transmission window 113. Emit in the direction of reflection.
  • the characteristic X-ray 121 emitted from the secondary target 119 passes through the X-ray transmission window 113 and is emitted to the outside.
  • the distance between the primary target 118 and the secondary target 119 is longer than that in the configuration of the first embodiment, and the irradiation and excitation efficiency to the secondary target 119 are reduced.
  • the distance between the primary target 118 and the secondary target 119 can be shortened, and the primary target 118 is continuously discharged.
  • the X-ray 120 can be efficiently used to excite the secondary target 119, and the characteristic X-ray 121 can be generated efficiently.
  • the primary target 118 and the secondary target 119 can be applied with a Balta structure with an arbitrary thickness and a large heat capacity,
  • the thermal shock is superior to the transmission method as in the form, and the incident electron beam current amount can be set large, and the high-power characteristic X-ray 121 can be emitted.
  • the secondary target 119 can also be cooled with water to further improve the heat resistance.
  • FIG. 6 shows a fourth embodiment.
  • a K edge filter 122 is installed outside the X-ray transmission window 113.
  • the K edge filter 122 has the characteristic of the secondary target 119.
  • ⁇ ⁇ rays and K j8 rays of the X-ray 121 it has a large attenuation effect on the short-wave ⁇ ⁇ ⁇ ⁇
  • a radiation source 111 can be provided.
  • FIG. 7 shows a fifth embodiment.
  • the emitter 116 of the electron gun 114 has a ring shape that generates a ring-shaped electron beam 115, and
  • the primary target 118 is formed in a ring shape coaxial with the axis of the ring-shaped electron beam 115 so that the ring-shaped electron beam 1 15 generated from the emitter 116 of the electron gun 114 is incident, and the secondary target 119 is
  • the primary target 118 is arranged in the center so as to face the inner peripheral surface of the primary target 118.
  • the inner peripheral surface of the primary target 118 is an inclined surface that expands and inclines when directed to the electron gun, and emits continuous X-rays 120 in the direction of reflection toward the central secondary target 119.
  • the secondary target 119 has a conical shape and is arranged with the top facing the X-ray transmission window 113.
  • the surface of the secondary target 119 is parallel to the inner peripheral surface of the primary target 118, and Characteristics X-ray 121 excited by incident continuous X-ray 120 X-ray It is configured to emit in the direction of reflection toward the transmission window 113.
  • the ring-shaped electron beam 115 generated by the electron gun 114 passes through the circumference of the primary target 118 and enters the inner circumferential surface of the primary target 118, and from the surface of the primary target 118.
  • Continuous X-rays 120 are emitted in the direction of reflection toward the surface of the secondary target 119.
  • the continuous X-ray 120 emitted from the primary target 118 is incident on the surface of the secondary target 119, and the reflection characteristics of the surface X-ray 121 of the secondary target 119 toward the X-ray transmission window 113 are reflected.
  • the characteristic X-ray 121 emitted from the secondary target 119 passes through the X-ray transmission window 113 and is emitted to the outside.
  • the distance between the primary target 118 and the secondary target 119 is longer than that of the configuration of the first embodiment, and the irradiation and excitation efficiency to the secondary target 119 are reduced.
  • the distance between the primary target 118 and the secondary target 119 can be shortened, and the primary target 118 force is released.
  • the continuous X-ray 120 can be efficiently used for exciting the secondary target 119, and the characteristic X-ray 121 can be generated efficiently.
  • the primary target 118 can have a structure with a large heat capacity, can be easily cooled through the vacuum vessel 112 and the X-ray transmission window 113, and This makes it possible to increase the current and energy of incident electrons, increase the number of continuous X-rays 120 generated, and increase the characteristic X-rays 121 associated therewith!
  • the generation point of the characteristic X-ray 121 can be formed into a spot shape, and the primary target 118 acts as a collimator that suppresses the expansion S of the characteristic X-ray 121, so that the divergence angle of the characteristic X-ray 121 is increased. It is possible to take out in a small beam shape, and there is an advantage that the background by X-ray irradiation to the part other than the examination site can be reduced.
  • FIG. 8 shows a sixth embodiment.
  • a K edge filter 122 is installed outside the X-ray transmission window 113.
  • the K edge filter 122 is a characteristic of the secondary target 119.
  • 8 lines have a large attenuation effect, and the long wavelength ⁇ ⁇ rays are transmitted so that the proportion of long wavelength ⁇ ⁇ rays is remarkably high, Highly monochromatic X-ray 121 can be emitted.
  • FIG. 9 shows a seventh embodiment.
  • the electron gun 114 is set to the ground potential, and the primary target 118 is set to the high voltage potential.
  • the electron gun 114 preferably has a ring structure, and the primary target 118 has a frustoconical shape, and the top is arranged at the center of the ring-shaped electron gun 114 toward the X-ray transmission window 113.
  • Ru The surface of the truncated cone-shaped primary target 118 is configured so that an electron beam 115 is incident from an electron gun 114 and continuous X-rays 120 are emitted in a reflection direction toward the X-ray transmission window 113.
  • a secondary target 119 is disposed in the X-ray transmission window 113, and a heel edge filter 122 is disposed outside the secondary target 119.
  • the electron beam 115 generated by the ring-shaped electron gun 114 is incident on the surface of the frustoconical primary target 118, and the secondary target of the X-ray transmission window 113 passes from the surface of the primary target 118.
  • Continuous X-rays 120 are emitted in the direction of reflection toward 119.
  • the continuous X-ray 120 emitted from the primary target 118 is incident on the secondary target 119 and is transmitted through the characteristic X-ray 121 from the secondary target 119.
  • the characteristic X-rays 121 emitted from the secondary target 119 are transmitted through the edge filter 122 of the X-ray transmission window 113 and emitted to the outside.
  • the distance between the primary target 118 and the secondary target 119 is longer than that in the configuration of the first embodiment, and the irradiation and excitation efficiency to the secondary target 119 are reduced.
  • the distance between the primary target 118 and the secondary target 119 can be shortened, and the primary target 118 force is released.
  • the continuous X-ray 120 can be efficiently used for exciting the secondary target 119, and the characteristic X-ray 121 can be generated efficiently.
  • the primary target 118 can have a structure with a large heat capacity, which can increase the current and energy of incident electrons. In other words, there is an advantage that the number of continuous X-rays 120 generated is increased and the characteristic X-rays 121 are increased accordingly.
  • the small X-ray source 111 of the common cathode type capable of efficiently emitting the target energy characteristic X-ray 121 can be provided.
  • a material having excellent X-ray transmission characteristics such as Be (beryllium) may be used as the X-ray transmission window 113, and a K edge filter 122 may be attached to the outside of the X-ray transmission window 113. It is possible.
  • FIGS. 8 and 8 show an eighth embodiment.
  • a secondary target body 131 is provided in the configuration of the X-ray source 111 similar to that of the first embodiment, and is arranged so as to overlap the primary target 118! / Speak.
  • the secondary target body 131 has, for example, a plurality of secondary targets 119a, 119b, 119c, and 119d that can generate characteristic X-rays 121 having different energies. Are provided at equal intervals on the same circumference of the rotating body 133 that can rotate around the center.
  • the rotating shaft 132 of the rotating body 133 is rotatable via a rotating mechanism as a moving mechanism (not shown), overlaps with the primary target 118, and the secondary target 119a with respect to the X-ray generation position of the primary target 118. ⁇ 119d !, one of them is selectively placed.
  • a plurality of secondary targets 119a to 119d are provided, and by placing any one of the plurality of secondary targets 119a to 119d with respect to the X-ray generation position of the primary target 118, 2 Since it is not necessary to move the X-ray source 111 for the next target exchange, there is an advantage that characteristic X-rays 121 having different energies can be easily extracted without changing the X-ray generation point.
  • the analysis can be performed without breaking the measurement system such as the X-ray generation point and the sample position.
  • FIGS. ⁇ ⁇ and ⁇ ⁇ show a ninth embodiment.
  • the X-ray source 111 of the eighth embodiment includes a filter body 135 disposed outside the secondary target body 131.
  • This filter body 135 has, for example, K edge filters 122a, 122b, 122c, 122d as filters corresponding to the respective secondary targets 119a to 119d that generate characteristic X-rays 121 of different energies, and these K edge filters 122a to 122a 122d is provided on the same circumference of the rotator 136 that can rotate about the rotation axis 132 and at a position corresponding to each of the secondary targets 119a to 119d.
  • the rotating body 133 of the secondary target body 131 and the rotating body 136 of the filter body 135 may be an integrated disk or a separate disk.
  • the corresponding K edge filters 122a to 122d Arbitrary one is also arranged. Therefore, it is not necessary to move the X-ray source 111 to replace the secondary target or K-edge filter. Similar to the eighth embodiment, the characteristics of different energies without changing the X-ray generation point X-ray 121 There is an advantage that can be easily taken out.
  • the K-edge finoleta 122a to 122d are used for the secondary targets 119 & to 119
  • the wavelength length and Ka ray are transmitted so that the ratio of wavelength length and Ka ray is remarkably high, and the characteristic X-ray 121 with high monochromaticity can be emitted. .
  • FIGS. 12A and 12B show a tenth embodiment.
  • a target body 141 that is rotatably arranged in the vacuum vessel 112 is provided in the configuration of the X-ray source 111 similar to that of the first embodiment.
  • This target body 141 includes a plurality of sets of target parts 142a, 14 2b, 142c, 142d in which different primary targets 118a, 118b, 118c, 118d and appropriate secondary targets 1 19a, 119b, 119c, 119d are combined in an overlapping manner.
  • the primary targets 118a to 118d and the secondary targets 119a to 119d have the same circumference on the same circumference of the rotating bodies 144 and 145 that rotate about the rotation axis 143. The positions are provided at equal intervals.
  • the rotating body 144 and the rotating body 145 may be an integrated disk or separate disks.
  • a rotation mechanism 146 is provided as a moving mechanism for rotating the target body 141 in the vacuum container 112 from the outside of the vacuum container 112.
  • the target body 141 has a plurality of sets of target portions 142a around the rotation axis 143.
  • the target portions 142a to 142d arranged at the electron beam incident position are
  • the primary targets 118a to 118d transmit and emit continuous X-rays 120 by the incidence of the electron beam 115, and the secondary targets 119a to 119d are excited by the continuous X-rays 120 emitted from the primary targets 118a to 118d.
  • the characteristic X-ray 121 of the selected energy can be easily extracted, and it is not necessary to replace the X-ray source 111 at the time of selection, and the X-ray generation point is fixed. There are advantages that can be done.
  • the thickness of the primary targets 118a to 118d and the secondary targets 119a to 119d can be arbitrarily selected. .
  • FIG. 13 shows an eleventh embodiment.
  • the X-ray source 111 of the tenth embodiment includes a filter body 148 disposed outside the secondary target body 131.
  • This filter body 148 has K edge filters 122a, 122b, 122c, 122d corresponding to the respective target portions 142a to 142d, and these K edge filters 122a to 122d can rotate around the rotation shaft 143. It is provided on the same circumference of the body 149 and at a position corresponding to each of the secondary targets 119a to 119d.
  • the rotation shaft 143 is provided through the X-ray transmission window 113.
  • the secondary targets 119a to 119d and the K edge filters 122a to 122d that rotate together with the primary targets 118a to 118d are provided with the K edge finoleta 122a to 122d.
  • FIG. 14 shows a twelfth embodiment.
  • the target body 141 has different primary targets 118a, 118b, 118c, 118d and appropriate secondary targets 119a, 1 19b, 119c. , 119d and appropriate K-edge finoleta 122a, 122b, 122c, 122d, and a plurality of sets of target portions 142a, 142b, 142c, 142d.
  • the driving unit is not provided outside the X-ray source 111 by rotating it integrally, there is an advantage that the X-ray source 111 can be placed close to the sample with higher reliability.
  • the movement of 42a to 142d is not limited to rotation, but may be a slide.
  • FIG. 15 shows a thirteenth embodiment.
  • the X-ray transmission window 113 is configured to be rotatable with respect to the vacuum vessel 112 in the configuration of the X-ray source 111 similar to that of the eighth embodiment.
  • a plurality of sets of target portions 142a, 142b, 142b, 118b, 118c, 118d and appropriate secondary targets 119a, 1 19b, 119c, 119d are combined.
  • a target body 141 having 2c and 142d is formed.
  • the target body 141 has a plurality of ⁇ a target portions 1 by rotation of the X-ray transmission window 113.
  • the displacement force can be arranged with respect to the electron beam incident position where the electron beam 115 is incident from the electron gun 114.
  • the primary targets 118a to 118d in the first get portions 142a to 142d transmit and emit continuous X-rays 120 when the electron beam 115 is incident, and the secondary targets 119a to 119d emit from the primary targets 118a to 118d.
  • the characteristic X-ray 121 excited by the continuous X-ray 120 is transmitted and emitted from the X-ray transmission window 113.
  • the selected energy characteristic X-ray 121 can be easily taken out, and the target body 141 is rotated together with the primary target heated by the electron beam 115. 118a to 118d are cooled by heat conduction to the X-ray transmission window 113, and there is an advantage that the life is extended.
  • a small X-ray source 111 having a long lifetime and capable of selectively emitting several characteristics X-rays 121 having high monochromaticity without changing the X-ray generation point is provided. It can
  • FIG. 16 shows a fourteenth embodiment.
  • the target body 141 has different primary targets 118a, 118b, 118c, 118d and appropriate secondary targets 119a, 1 19b, 119c. , 119d and appropriate K-edge finoleta 122a, 122b, 122c, 122d, and a plurality of sets of target portions 142a, 142b, 142c, 142d.
  • the primary targets 118a to 118d heated by the electron beam 115 are cooled by heat conduction to the X-ray transmission window 113, and there is an advantage that the lifetime is extended.
  • a small X-ray source 111 that can selectively emit several X-rays 121 having high monochromaticity without changing the X-ray generation point and has a long lifetime. it can
  • FIG. 17 shows an X-ray fluorescence spectrometer 161 using the X-ray source 111 of each of the above embodiments.
  • the X-ray fluorescence spectrometer 161 irradiates the sample 162 with the characteristic X-ray 121 emitted from the X-ray source 111, and emits the fluorescent X-ray 163 emitted when the surface element of the sample 162 is excited. It is configured to perform elemental analysis through an energy discrimination type X-ray detector 165 through 4.
  • the X-ray source 111 applied to the X-ray fluorescence spectrometer 161 has an energy spectrum whose characteristic X-rays ( ⁇ ⁇ -ray, K j8-ray) 121 of the secondary targets 119a to ll 9d are the main components. As a result, the fluorescent X-ray 163 emitted when the element on the surface of the sample 162 is excited is captured.
  • Elemental composition can be analyzed.
  • the spectrum of the characteristic X-ray 121 to be excited is stored in the analytical instrument in advance, and if the relationship between the fluorescence signal Z excitation intensity obtained thereby is grasped, the sample 162 can be obtained from the fluorescence signal intensity. Quantitative analysis of elements on the surface of can be performed with high accuracy.
  • the X-ray source 111 is applied using the rotating primary target 118a to 118d and the secondary target 119a to 119d or the K-edge filters 122a to 122d, the X-ray source 111 is not exchanged. Characteristics used for excitation depending on the atomic number of the element contained in the target sample 162 X-ray
  • 121 energies can be selected.
  • the X-ray source 111 capable of efficiently emitting characteristic X-rays 121 enables high-resolution fluorescence.
  • An X-ray segment device 161 can be provided.
  • This fluorescent X-ray analyzer 161 includes a plurality of X-ray sources 111, which irradiates a sample 162 with characteristic X-rays 121 emitted from one of them, and through an collimator 164, an energy discrimination type.
  • the X-ray detector 165 captures the fluorescent X-ray 163 and performs elemental analysis.
  • the element on the surface of the sample 162 is excited by the characteristic X-ray ( ⁇ ⁇ -ray, K
  • the characteristic X-ray 121 from the other X-ray source 111 the elemental composition of a wide range of atomic numbers can be analyzed in a short time. It becomes possible to analyze.
  • the X-ray source 111 capable of efficiently emitting characteristic X-rays 121 can provide the X-ray fluorescence spectrometer 161 that enables high-resolution elemental analysis in a short time.
  • FIGS. 19 to 21 show a fifteenth embodiment.
  • the X-ray source 211 has a vacuum vessel 212 in which the inside is held in vacuum, and an X-ray transmission window 213 for emitting X-rays to the outside is disposed on a side surface on one end side of the vacuum vessel 212. .
  • An electron gun 214 is disposed at the other end of the vacuum vessel 212, and an electron beam 215 is emitted toward one end of the vacuum vessel 212 at the end of the electron gun 214 located in the vacuum vessel 212.
  • a filament 216 which is an emitter is provided.
  • the filament 216 is formed in a line shape, and can emit an elongate line-shaped electron beam 215.
  • the electron gun 214 generates and accelerates an electron beam 215 by a driving power source 217.
  • a box-shaped X-ray generator 221 is formed on one end side in the vacuum vessel 212 by being partitioned.
  • a partition part 223 is formed by a wall part 222 that partitions the inside of the vacuum vessel 212.
  • the surface of the wall 222 facing the electron gun 214 passes through a slit-shaped electron beam that allows the electron beam 215 to easily pass through the surface corresponding to the shape of the line-shaped electron beam 215 generated by the electron gun 214.
  • a hole 224 is formed.
  • An X-ray transmission window 213 is disposed on a plane that intersects the plane where the electron beam passage hole 224 of the partition part 223 is provided.
  • a primary target 226 is provided on the inner surface facing the electron beam passage hole 224 in the partition 223, and a box-shaped secondary is formed on the inner surface of the partition 223 except for the primary target 226.
  • a target 227 is provided.
  • the primary target 226 receives the electron beam 215 that has passed through the electron beam passage hole 224 and emits continuous X-rays 228 as primary X-rays, which are X-rays, toward the secondary target 227.
  • the secondary target 227 emits characteristic X-rays 229 as K-rays that are secondary X-rays when continuous X-rays 228 emitted from the primary target 226 are incident.
  • the secondary target 227 is formed with a slit-shaped electron beam passage hole 230 that allows the electron beam 215 to easily pass through corresponding to the shape of the line-shaped electron beam 215 generated by the electron gun 214.
  • An X-ray passage hole 231 that emits characteristic X-rays 229 is formed on a surface that intersects the surface on which the beam passage hole 230 is formed and that faces the X-ray transmission window 213.
  • the X-ray passage hole 231 is formed in an elongated slit-like hole shape so that the continuous X-ray 228 is not mixed and the characteristic X-ray 229 of the sheet beam shape can be taken out.
  • the secondary target 227 has a shape in which the distance between the primary target 226 and the secondary target 227 is narrow in the direction in which the electron beam 215 passes, and the 1 The distance to the next target 226 is short. With this configuration, it becomes possible to allow continuous X-rays 228 from which the primary target 226 force is also emitted to be incident on the secondary target 227 at a wide angle, and the excitation efficiency of the secondary target 227 can be increased.
  • the primary target 226 is also formed in an elongated line shape in accordance with the shape of the electron beam 215 passing through the electron beam passage hole 230 of the secondary target 227, and a high-intensity electron beam is incident, a water cooling jacket 232
  • the primary target 226 can be attached to a force sword structure equipped with
  • the electron beam 215 emitted by applying a voltage from the drive power source 217 to the electron gun 214 passes through the electron beam passage hole 230 of the box-shaped secondary target 227, and is installed facing it. Incident primary target 226.
  • the secondary target 227 irradiated with the continuous X-rays 228 emitted from the primary target 226 is excited so that the secondary target 227 is excited and emits characteristic X-rays 229. Characteristics emitted from the surface of the secondary target 227 at a shallow angle Only the component of the X-ray 229 passes through the X-ray passage hole 231 and is emitted to the outside through the X-ray transmission window 213.
  • the X-ray source 211 can be provided that provides the sheet beam shape characteristic X-ray 229 in which mixing of noise components other than the characteristic X-ray 229 to be used is suppressed.
  • box-shaped secondary target 227 does not need to use all the constituent materials as secondary target materials.
  • a general material such as stainless steel is used as the main constituent material. It is possible to cope with the case where the foil of the secondary target material is pasted or coated only on the inner surface where the light enters.
  • FIG. 22 shows a sixteenth embodiment.
  • the X-ray source 211 of the first embodiment is configured by using a plurality of materials (elements) for the primary targets 226a, 226b, and 226c and simultaneously irradiating continuous X-rays 228. It is assumed that a plurality of materials (atoms) are used for the opposing secondary targets 227a, 227b, and 227c that receive the target.
  • primary targets 226 & ⁇ 226c that emit continuous X-rays 228 that excite secondary target 227 are about 2 larger in atomic number than secondary targets 227 & ⁇ 227c It is best to use the characteristic X-ray 229 emitted by the element The secondary target 227 can be excited efficiently.
  • secondary targets 227a to 227c are titanium (Ti: characteristic X-rays ⁇ ⁇ energy 4.5 keV) and primary targets 226a to 226c are chromium (Cr: characteristic X-rays ⁇ ⁇ energy 5.4 keV)
  • Mo characteristic X-rays ⁇ ⁇ energy 17.5 keV
  • Rh characteristic X-ray ⁇ ⁇ energy 20.2 keV
  • secondary target 227a to 227c As the primary target 226a to 226c for gadolinium (Gd: characteristic X-rays ⁇ ⁇ energy 43keV), a combination of tantalum (Ta: characteristic X-rays ⁇ ⁇ -energy 57.5 keV) can be taken. It is possible to emit an X-ray beam containing three characteristic X-rays (4.5 keV, 17.5 keV, 43 keV) 29 at the same time, Mo and
  • the X-ray source 211 that can emit the characteristic X-ray 229 that includes the characteristic X-ray spectrum of a plurality of energies with few noise components can be provided.
  • FIGS. 23A, 23B, 23C, and 23D show a seventeenth embodiment.
  • the X-ray source 211 of the sixteenth embodiment includes a combination of a plurality of primary targets 226a to 226c and a plurality of secondary targets 227a to 27c.
  • the operation method of the X-ray source 211 is as follows.
  • the electron beam 215 that irradiates 26c has sufficient energy to sufficiently emit continuous X-rays 228 from the primary targets 226a to 226c.
  • X-rays 228 can be emitted, and the characteristic X-rays 229 of the secondary targets 227a to 227c are also emitted most efficiently.
  • the electron beam is selected according to the energy of the selected X-ray 229.
  • An operation method is possible in which the acceleration voltage of 215, that is, the energy of the electron beam 215 is adjusted.
  • FIGS. 23A, 23B, 23C, and 23D show a method for controlling the spectral distribution of the characteristic X-ray 229 to be emitted.
  • the primary targets 226a to 226c with high atomic numbers are excited most efficiently as shown in target D etc.
  • the characteristic X-rays 229 emitted from the targets 227a to 227c can be increased in intensity, and conversely, as shown in the target A etc., continuous X-rays emitted from the low atomic number primary targets 226a to 226c. Since the intensity of 228 is low, the intensity of the characteristic X-ray 229 from the combined secondary targets 227a to 227c is low.
  • the spectral intensity of the characteristic X-ray 229 on the high energy side decreases as shown in targets D and C, and as shown in targets C and B. Characteristic on the low energy side The spectral intensity of X-ray 229 increases. Furthermore, as the power supply voltage continues to decrease, the high-energy energy spectrum disappears as shown in targets D and C, and only the low-energy side appears as shown in targets B and A. X-ray spectrum can be emitted.
  • the characteristic X-ray 229 is emitted using the X-ray source 211 that emits the characteristic X-ray 229, which has a characteristic X-ray spectrum with a low noise component and multiple energy characteristics.
  • An X-ray source 211 whose distribution can be adjusted can be provided.
  • FIG. 24 and FIG. 25 show an eighteenth embodiment.
  • characteristic X-rays 229 from a plurality of primary targets 226a to 226c and secondary targets 227a to 227c can be emitted simultaneously. Since 215 is distributed and irradiated to the number of primary targets 226a to 226c installed, it is disadvantageous in increasing the intensity of each characteristic X-ray 229.
  • a plurality of X-ray generation units 221a to 221d which are a plurality of units in which the primary targets 226a to 226d and the secondary targets 227a to 227d are combined, are rotated. Installed on the same circumference of the turntable 242 rotated by mechanism 241. It is possible to change the characteristic X-ray 229 to be emitted by selecting an arbitrary X-ray generation unit 221a to 221d by the rotating mechanism 241 and moving it with respect to the electron beam incident position where the electron beam 215 is incident. Is.
  • the vacuum vessel 212 is provided with a target exchange rod 243 that can exchange the X-ray generators 221a to 221d, and a vacuum pump 244 that exhausts the inside of the vacuum vessel 212. Yes. Therefore, even when the required X-ray energy changes, the X-ray generation units 2 21 a to 2 Id can be exchanged and used.
  • the characteristic X-rays 229 emitted can be selected and used in order.
  • irradiating the characteristic X-rays 229 one by one in this way is effective in accurately identifying the elements in the sample.
  • the X-ray source 211 capable of arbitrarily selecting and extracting a plurality of characteristic X-rays 229 having high intensity with less noise components.
  • FIG. 26 shows a nineteenth embodiment.
  • the electron beam passage hole 224 of the wall portion 222 of the partition unit 223, which is the anode, and the electron beams of the secondary targets 227a to 227c The deflecting magnet 252 of the electron beam deflecting means 251 is installed upstream of the passing hole 230 in the electron beam passing direction.
  • the trajectory of the electron beam 215 can be changed to an electron beam 215 a, an electron beam 215 b, and an electron beam 215 c by controlling the magnetic field strength.
  • different primary targets 226a-22 6c can be irradiated.
  • the X-ray source 211 that can be extracted while controlling the spectrum distribution including the plurality of characteristic X-rays 229 with the voltage having a small noise component can be provided.
  • FIG. 27 shows a twentieth embodiment.
  • the primary targets 226a to 226c and the secondary targets 227a to 27c are further independent one by one.
  • the X-ray generators 221a to 221c are separated.
  • the electron beam 215 has its trajectory bent by the deflecting magnet 252 and is incident on the primary targets 226a to 226c of the arbitrary X-ray generation units 221a to 221c.
  • the energy of the electron beam 215a and the magnetic field strength of the deflecting magnet 252 are set so that the electron beam 215a is incident on the primary target 226a of the X-ray generation unit 221a
  • the X-ray generation unit 221a The continuous X-rays 228 incident on the primary target 226a excite the independent box-shaped secondary target 227a, and enter the secondary targets 227b and 227c of the other X-ray generation units 221b and 221c.
  • the other characteristic X-ray 229 Only a single characteristic X-ray 229 can be used.
  • the characteristic X-ray 229 from low energy to high energy can be irradiated and excited in order in the fluorescent X-ray analysis, so that the elements in the sample can be discriminated. Is easy.
  • the X-ray source 211 can be provided which can arbitrarily take out a plurality of characteristic X-rays 229 one by one by controlling the voltage and magnetic field strength with less noise components.
  • FIG. 28 shows an X-ray fluorescence spectrometer 61 using the X-ray source 211 of each of the above embodiments.
  • the X-ray fluorescence analyzer 261 irradiates the sample 262 with the characteristic X-ray 229 of the sheet beam shape emitted from the X-ray source 211, and the fluorescent X-rays 263 emitted from the elements on the surface of the sample 262 are excited.
  • X-ray detector 265 is used to perform elemental analysis.
  • the characteristic X-ray 229 is as constant as possible with respect to the surface of the semiconductor wafer and at a very shallow angle of 0.1 ° or less.
  • a sheet beam shape including a fan-shaped fan beam is required.
  • the X-ray source 211 applied to the fluorescent X-ray analyzer 261 has its energy spectrum 1S secondary targets 227, 227a to 227d, characteristic X-ray 229 forces, and S as a main component.
  • the elemental composition can be analyzed by capturing the fluorescent X-rays 63 emitted by the elements on the surface of the sample 262 being excited.
  • the sample 262 is obtained from the fluorescence signal intensity. Quantitative analysis of elements on the surface of can be performed with high accuracy.
  • the X-ray source 211 capable of efficiently emitting the characteristic X-ray 229 of the sheet beam shape can provide the high-resolution X-ray fluorescence analyzer 261.
  • the X-rays that also emit the primary target force can be efficiently used for excitation of the secondary target, and characteristic X-rays are generated efficiently.
  • X-ray source and fluorescent X-ray analyzer using this X-ray source can be provided [0174]
  • the distance between the primary target and the secondary target can be shortened.
  • X-rays emitted from the target can be efficiently used for excitation of the secondary target, characteristic X-rays can be generated efficiently, and the electron beam is emitted in the reflection direction by the primary target.
  • an X-ray source and fluorescent X-ray analyzer using this X-ray source which have superior thermal shock resistance compared to the X-ray transmission method and can cope with an increase in the amount of electron beam current to increase output. can do.
  • an X-ray source that can emit a characteristic X-ray with high efficiency by incorporating a primary target and a secondary target in a vacuum vessel.
  • the X-ray source and the fluorescence using this X-ray source can be easily obtained, for example, in a sheet beam shape suitable for total reflection fluorescent X-ray analysis.
  • An X-ray analyzer can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • X-Ray Techniques (AREA)

Description

明 細 書
X線源及び蛍光 X線分析装置
技術分野
[0001] 本発明は、特性 X線を放出する X線源、及びこの X線源を用いた蛍光 X線分析装置 に関する。
背景技術
[0002] 一般的な X線源では、高電圧で加速した電子を陽極であるターゲットに入射するこ とにより、制動 X線とターゲット特有の特性 X線とが放出される(例えば、特開 2004— 28845号公報、第 4— 5頁、図 1— 2)。
[0003] 制動 X線は、連続的なエネルギスペクトルであって白色で構成され、そのスペクトル 分布は入射する電子エネルギによって変化するのに対し、特性 X線は、電子エネル ギに依存せず、ターゲット固有の単一的なエネルギ分布の単色である。蛍光 X線分 析は、特性 X線を試料に入射したときに放出される蛍光 X線の信号のエネルギ分布 を測定し、試料中の元素の種類、量を同定するものであるが、分析性能を高めるべく 工夫された様々の X線源が利用されて 、る。
[0004] 蛍光 X線分析装置においては、既知のスペクトルを持つ特性 X線を利用して試料を 励起することによって、蛍光 X線の信号と入射 X線の散乱であるノイズ成分とを分別し やすくなり、高 SZN比での元素分析が可能となることから、 X線源力 放出される X 線スペクトルを単色に近いものにする試みが試行され、その一部が実用に至っている
[0005] 図 29は、上述の特性 X線を利用する高分解能の蛍光 X線分析装置の一般的な構 成例を示したものである。ここでは、一般的な X線源 1を用いて、その X線源 1から放 出させた連続エネルギスペクトルの 1次 X線である連続 X線 2を 2次ターゲット 3に入射 し、特性 X線 4を放出させて外部に設置したコリメータ 5を通して試料 6に照射し、試 料 6の表面の元素を励起して発する蛍光 X線 7を X線検出器 8で検出する構成として いる。
[0006] この構成における特性 X線 4の放出方式では、 X線源 1と 2次ターゲット 3とを離して 設置しなければならない。連続 X線 2は全周方向である 4 π方向に放出され、その強 度は距離の 2乗に反比例して減少するため、従来の構成では X線源 1から放出される 連続 X線 2で 2次ターゲット 3を照射する効率が低ぐ 2次ターゲット 3から放出される 特性 X線 4の強度を高めるには、大出力の X線源 1を備える必要が生じ、これにより高 分解能の蛍光 X線分析装置が大形化、電力消費量の増大、 X線遮蔽規模の増加、 さらに結果的にコスト増加を招き、普及に対する制約を強める要因となっている(例え ば、蛍光 X線分析の現状と展望 中井泉 応用物理 第 74卷 第 4号 (2005年) 第 455頁〜第 456頁)。
[0007] また、図 30は、近年、試料 6としての半導体ゥヱハの表面汚染検査を目的としての 利用が著しい全反射蛍光 X線分析 (TXRF)を示したものである力 特性 X線 4は、半 導体ウェハ表面に対してできるだけ一定角度で、し力も 0. 1° 以下の非常に浅い角 度で入射する必要があるため、例えば扇状のファンビームのようなものも含むシートビ ーム形状が適している。
発明の開示
[0008] 上述した高分解能の蛍光 X線分析装置にお!ヽては、特性 X線 4を効率良く発生で きる X線源 1を提供することが最も重要な課題となっている。 2次ターゲット 3を用いる 構成は、不要成分 (ノイズ)の混入割合を低く抑え、高い単色性を維持して特性 X線 4 を放出させるのに有効な手法である力 従来方法では、 2次ターゲット 3が X線源 1の 外部に置かれた構成であり、連続 X線 2は全方向(4 π方向)に放出されるため、距離 の 2乗で減衰し、 2次ターゲット 3を励起するための連続 X線 2の利用率が低下してし まう。さらに、 X線源 1の外部に 2次ターゲット 3や単色フィルタ等を配置するスペース が必要であることから、システムが大形ィ匕することが問題となっていた。
[0009] また、この副次的な影響として、 2次ターゲット 3から試料 6までの距離も長く設定す ることが必要となるため、試料 6への特性 X線 4の強度を確保するためには、大強度 の X線源 1を適用することが要求され、これにより X線遮蔽規模の増大、装置価格の 増加等を招く要因となっていた。
[0010] 一方、放出される X線スペクトル中に不要なノイズの成分を極力含まないこと、さら に分析対象に合わせて複数の特性 X線を選べるような X線源を提供することも課題と なっている。
[0011] とりわけ、半導体分野で普及の著しい高分解能の全反射蛍光 X線分析で要求され る低ノイズつまり高単色性、シート状 X線ビームが得られる X線源が求められて ヽる。
[0012] 本発明は、このような点に鑑みなされたもので、特性 X線を効率良く発生でき、また 、放出する特性 X線へのノイズ成分の混入が抑えられ、かつ、例えば全反射蛍光 X線 分析に適するようなシートビーム形状の特性 X線を容易に得られる X線源、及びこの X線源を用いた蛍光 X線分析装置を提供することを目的とする。
[0013] 本発明の X線源は、電子ビームを発生する電子銃と、前記電子銃から電子ビーム が入射して X線を透過させて放出する 1次ターゲットと、前記 1次ターゲットに重ねて 配置され、前記 1次ターゲットから放出される X線によって励起された特性 X線を透過 させて放出する 2次ターゲットとを具備しているものである。
[0014] また、本発明の X線源は、 X線透過窓を有する真空容器と、前記真空容器内で電 子ビームを発生する電子銃と、前記真空容器内に配置され、前記電子銃から電子ビ ームが入射して反射方向に X線を放出する 1次ターゲットと、前記真空容器内で前記 1次ターゲットを中心とする周囲に対向して配置され、前記 1次ターゲットから放出さ れる X線によって励起された特性 X線を前記 X線透過窓へ向けた反射方向に放出す る 2次ターゲットとを具備しているものである。
[0015] また、本発明の X線源は、 X線透過窓を有する真空容器と、前記真空容器内でリン グ状の電子ビームを発生する電子銃と、前記真空容器内でリング状に配置され、前 記電子銃からリング状の電子ビームが入射して反射方向に X線を放出する 1次ター ゲットと、前記真空容器内で前記 1次ターゲットの中心に対向して配置され、前記 1次 ターゲットから放出される X線によって励起された特性 X線を前記 X線透過窓へ向け た反射方向に放出する 2次ターゲットとを具備して 、るものである。
[0016] また、本発明の X線源は、 X線透過窓を有する真空容器と、前記真空容器内に配 置された電子ビームを発生する接地電位の電子銃と、前記真空容器内に配置され、 前記電子銃力も電子ビームが入射して反射方向に X線を放出する 1次ターゲットと、 前記真空容器内で X線透過窓の位置に配置され、前記 1次ターゲットから放出される X線によって励起された特性 X線を透過させて放出する 2次ターゲットとを具備してい るものである。
[0017] また、本発明の X線源は、電子ビームを発生する電子銃と、前記電子銃から電子ビ ームが入射して X線を透過させて放出する 1次ターゲットと、前記 1次ターゲットに重 なりかつ 1次ターゲットの X線発生位置に対して移動可能とする複数の 2次ターゲット を有し、前記 X線発生位置に配置された 2次ターゲットが、前記 1次ターゲットから放 出される X線によって励起された特性 X線を透過させて放出する 2次ターゲット体とを 具備しているものである。
[0018] また、本発明の X線源は、 X線透過窓を有する真空容器と、前記真空容器内で電 子ビームを発生する電子銃と、前記真空容器内に配置され、異なる 1次ターゲットと 2 次ターゲットとを重ねて組み合わせた複数組のターゲット部を有し、これら複数組のタ 一ゲット部を前記電子銃力 電子ビームが入射する電子ビーム入射位置に対して移 動可能とし、前記電子ビーム入射位置に配置されたターゲット部の 1次ターゲットが 電子ビームの入射によって X線を透過させて放出するとともに 2次ターゲットが 1次タ 一ゲットから放出される X線によって励起された特性 X線を透過させて前記 X線透過 窓から放出するターゲット体と、前記真空容器内のターゲット体を移動させる移動機 構とを具備して 、るものである。
[0019] また、本発明の X線源は、 X線透過窓を有する真空容器と、前記真空容器内で電 子ビームを発生する電子銃と、前記真空容器内に配置され、異なる 1次ターゲットと 2 次ターゲットとフィルタとを重ねて組み合わせた複数組のターゲット部を有し、これら 複数組のターゲット部を前記電子銃力 電子ビームが入射する電子ビーム入射位置 に対して移動可能とし、その電子ビーム入射位置に配置されたターゲット部の 1次タ 一ゲットが電子ビームの入射によって X線を透過させて放出し、 2次ターゲットが 1次 ターゲットから放出される X線によって励起された特性 X線を透過させて放出し、フィ ルタが 2次ターゲットから放出される特性 X線に含まれる Κ β線及び K a線のうち、 K β線を減弱させ、 K a線を透過させて前記 X線透過窓から放出するターゲット体と、 前記真空容器内のターゲット体を移動させる移動機構とを具備しているものである。
[0020] また、本発明の X線源は、移動可能に設けられた X線透過窓を有する真空容器と、 前記真空容器内で電子ビームを発生する電子銃と、前記真空容器内で X線透過窓 に設けられ、異なる 1次ターゲットと 2次ターゲットとを重ねて組み合わせた複数組の ターゲット部を有し、前記 X線透過窓の移動により複数組のターゲット部が前記電子 銃から電子ビームを入射する電子ビーム入射位置に対して移動可能とし、その電子 ビーム入射位置に配置されたターゲット部の 1次ターゲットが電子ビームの入射によ つて X線を透過させて放出するとともに 2次ターゲットが 1次ターゲットから放出される X線によって励起された特性 X線を透過させて前記 X線透過窓から放出するターゲッ ト体とを具備して 、るものである。
[0021] また、本発明の X線源は、移動可能に設けられた X線透過窓を有する真空容器と、 前記真空容器内で電子ビームを発生する電子銃と、前記真空容器内で X線透過窓 に設けられ、異なる 1次ターゲットと 2次ターゲットとフィルタとを重ねて組み合わせた 複数組のターゲット部を有し、前記 X線透過窓の移動により複数組のターゲット部が 前記電子銃力 電子ビームを入射する電子ビーム入射位置に対して移動可能とし、 その電子ビーム入射位置に配置されたターゲット部の 1次ターゲットが電子ビームの 入射によって X線を透過させて放出し、 2次ターゲットが 1次ターゲットから放出される X線によって励起された特性 X線を透過させて放出し、フィルタが 2次ターゲットから 放出される特性 X線に含まれる Κ β線及び K a線のうち、 Κ β線を減弱させ、 Κ α線 を透過させて前記 X線透過窓力も放出するターゲット体とを具備しているものである。
[0022] また、本発明の X線傾向分析装置は、特性 X線を試料に照射する前記 X線源と、前 記特性 X線の照射にて試料の表面の元素が励起して発する蛍光 X線を検出する X線 検出器とを具備して 、るものである。
[0023] 本発明の X線源は、真空容器と、前記真空容器内で電子ビームを発生する電子銃 と、前記真空容器内を区画する壁部、及びこの壁部に設けられ前記電子銃が発生す る電子ビームが通過する電子ビーム通過孔を有する区画部と、前記区画部内に設け られ、前記電子ビーム通過孔を通過した電子ビームが入射して X線を放出する 1次タ 一ゲットと、前記区画部内に設けられ、前記 1次ターゲットから放出された X線が入射 して特性 X線を放出する 2次ターゲットと、前記区画部に臨んで真空容器に設けられ 、前記 2次ターゲットから放出される特性 X線を外部に放出する X線透過窓とを具備し ているものである。 [0024] また、本発明の蛍光 X線分析装置は、特性 X線を試料に照射する前記 X線源と、前 記特性 X線の照射にて試料の表面の元素が励起して発する蛍光 X線を検出する X線 検出器とを具備して 、るものである。
図面の簡単な説明
[0025] [図 1]図 1は、本発明の第 1の実施の形態を示す X線源の説明図である。
[図 2]図 2は、同上 X線源のターゲット部分での X線変換作用を説明する説明図であ る。
[図 3]図 3は、本発明の第 2の実施の形態を示す X線源の説明図である。
[図 4]図 4は、同上 X線源のターゲット部分での X線変換作用を説明する説明図であ る。
[図 5]図 5は、本発明の第 3の実施の形態を示す X線源の説明図である。
[図 6]図 6は、本発明の第 4の実施の形態を示す X線源の説明図である。
[図 7]図 7は、本発明の第 5の実施の形態を示す X線源の説明図である。
[図 8]図 8は、本発明の第 6の実施の形態を示す X線源の説明図である。
[図 9]図 9は、本発明の第 7の実施の形態を示す X線源の説明図である。
[図 10A]図 10Aは、本発明の第 8の実施の形態を示す X線源の説明図である。
[図 10B]図 10Bは、本発明の第 8の実施の形態を示す 2次ターゲット体の斜視図であ る。
[図 11A]図 11Aは、本発明の第 9の実施の形態を示す X線源の説明図である。
[図 11B]図 11Bは、本発明の第 9の実施の形態を示す 2次ターゲット体及びフィルタ 体の斜視図である。
[図 12A]図 12Aは、本発明の第 10の実施の形態を示す X線源の説明図である。
[図 12B]図 12Bは、本発明の第 10の実施の形態を示す X線源の説明図である。
[図 13]図 13は、本発明の第 11の実施の形態を示す X線源の説明図である。
[図 14]図 14は、本発明の第 12の実施の形態を示す X線源の説明図である。
[図 15]図 15は、本発明の第 13の実施の形態を示す X線源の説明図である。
[図 16]図 16は、本発明の第 14の実施の形態を示す X線源の説明図である。
[図 17]図 17は、本発明の X線源を用いた蛍光 X線分析装置の説明図である。 [図 18]図 18は、本発明の蛍光 X線分析装置の他の例を示す説明図である。
[図 19]図 19は、本発明の第 1の実施の形態を示す X線源の説明図である。
[図 20]図 20は、同上 X線源の電子銃と X線発生部との関係を説明する説明図である
[図 21]図 21は、同上 X線源の図 20に対して 90° 異なる方向力も見て電子銃と X線 発生部との関係を説明する説明図である。
[図 22]図 22は、本発明の第 16の実施の形態を示す X線源の説明図である。
[図 23A]図 23Aは、本発明の第 17の実施の形態であって、電子ビームのエネルギと 強度との関係を示す説明図である。
[図 23B]図 23Bは、本発明の第 17の実施の形態であって、電子ビームのエネルギと 強度との関係を示す説明図である。
[図 23C]図 23Cは、本発明の第 17の実施の形態であって、電子ビームのエネルギと 強度との関係を示す説明図である。
[図 23D]図 23Dは、本発明の第 17の実施の形態であって、電子ビームのエネルギと 強度との関係を示す説明図である。
[図 24]図 24は、本発明の第 18の実施の形態を示す X線源の説明図である。
[図 25]図 25は、同上 X線源のターゲットの説明図である。
[図 26]図 26は、本発明の第 19の実施の形態を示す X線源の説明図である。
[図 27]図 27は、本発明の第 20の実施の形態を示す X線源の説明図である。
[図 28]図 28は、本発明の X線源を用いた蛍光 X線分析装置の説明図である。
[図 29]図 29は、従来の蛍光 X線分析装置の説明図である。
[図 30]図 30は、従来の全反射蛍光 X線分析方法の説明図である。
発明を実施するための最良の形態
[0026] 以下、本発明の実施の形態を図面を参照して説明する。
[0027] 図 1及び第 2に X線源の第 1の実施の形態を示す。
[0028] 図 1において、 X線源 111は、内部が真空保持される真空容器 112を有し、この真 空容器 112の一端には X線を外部に放出する X線透過窓 113が配設されている。
[0029] 真空容器 112の他端には電子銃 114が配設され、真空容器 112内に位置して X線 透過窓 113に対向する電子銃 114の端部に、 X線透過窓 113へ向けて電子ビーム 1 15を放出するェミッタ 1 16が設けられている。電子銃 114は、駆動電源 117によって 電子ビーム 115を発生、加速する。
[0030] X線透過窓 113には、真空容器 112内で電子銃 114に対向する 1次ターゲット 118 とこの 1次ターゲット 118の外側に密着状態に重ね合わせて配置された 2次ターゲット 119と力酉己置されて!ヽる。
[0031] 図 2に示すように、 1次ターゲット 118は、電子ビーム 115が入射して X線である 1次 X線としての連続 X線 120を放出し、この連続 X線 120を 2次ターゲット 119に透過さ せる。 2次ターゲット 1 19は、 1次ターゲット 118から透過して放出される連続 X線 120 によって励起された特性 X線 121を放出し、この特性 X線 121を透過させて真空容器 112の外部に放出する。特性 X線 121は、 K線の波長が長い Κ α線及び波長が短い Κ β線を含む。 K a線と Κ β線との割合は 10: 2程度となって 、る。
[0032] なお、駆動電源 117によって得られる電子ビーム 115は、 2次ターゲット 119の特性 X線 121、すなわち K a線及び Κ β線の Κ線を励起放出させるのに十分なエネルギ を持つものとする。
[0033] さらに、 2次ターゲット 1 19の特性 X線 121の放出を効果的に行うためには、 1次タ 一ゲット 118を 2次ターゲット 1 19よりも原子番号で 2程度大きな元素を選ぶことが最 適な組み合わせとなる。例えば、 1次ターゲット 118を原子番号 29の Cu (銅)とし、 2 次タ—ゲット 119を原子番号 27の Co (コノ レト)とするような組み合せを選ぶ。
[0034] そして、 1次ターゲット 118から放出された連続 X線 120は、 1次ターゲット 118を透 過し、 1次ターゲット 118に密着した 2次ターゲット 119にそのまま入射することになる ため、従来のように距離による連続 X線 120の発散を最小にすることができ、 2次ター ゲット 119の励起に効率良く利用できる。
[0035] このように、目的とするエネルギの特性 X線 121を効率良く放出させることが可能と なる小形の X線源 111を提供できる。
[0036] なお、 1次ターゲット 118の厚さとしては、入射する電子のエネルギにおいて、その 1 次ターゲット 118内への数/ z mの浸透深さ程度であれば十分であることを考慮すると 、 2次ターゲット 119の表面に 1次ターゲット 118の元素をコーティング、またはメツキし たものを利用してもよぐ 1次ターゲット 118内を透過する連続 X線 120の減衰を抑制 する上で効果的なものにできる。
[0037] また、 2次ターゲット 119は、 X線透過窓 113の機能を持つ力 圧力差による変形、 破壊が生じない十分な厚さを選ぶ必要がある。そのため、低エネルギの特性 X線 12 1の放出を目的とするような場合には、 Be (ベリリウム)等 X線減弱率の小さな材料を X 線透過窓 113とし、その X線透過窓 113上に 2次ターゲット 119と 1次ターゲット 118と を必要な厚さだけコーティングするような構造を適用することもできる。
[0038] さらに、この 2つのターゲット 118, 1 19の選択例として、上記のような原子番号の取 り合わせ条件を満足し、かつ、 2次ターゲット 119が電気的に不導体、または、 Ge (ゲ ルマニウム)、 Si (シリコン)のような半導体であっても、 1次ターゲット 118が導体であ れば、電子ビーム 115の入射による電荷蓄積 (チャージアップ)を発生させることなく 安定な動作が可能となる。
[0039] 次に、図 3及び図 4に第 2の実施の形態を示す。
[0040] この実施の形態では、第 1の実施の形態の構成の X線源 111において、 2次ターゲ ット 119の外側に、 2次ターゲット 119の特性 X線 121の Κ α線、 K j8線のうち、波長 の短 、Κ β線を減弱させ、波長の長 、K a線を透過させるフィルタとしての Kエッジフ ィルタ 122を密着状態に重ね合わせて配置した構成である。
[0041] これら 2次ターゲット 119と Κエッジフィルタ 122とは、それぞれ適切な組み合わせを 選ぶ必要があり、 Κエッジフィルタ 122の元素は、特性 X線 121を放出させる 2次ター ゲット 119よりも原子番号で 1程度小さなものが適切である。例えば、 2次ターゲット 11 9を原子番号 29の Cu (銅)とし、 Kエッジフィルタ 122を、原子番号 28の Ni (ニッケル )とするような組み合わせを選ぶ。
[0042] そして、 Kエッジフィルタ 122は、 2次ターゲット 119の特性 X線 121の Κ α線、 K j8 線のうち、波長の短い Κ |8線に対して大きな減弱作用を持ち、波長の長い Κ α線は 透過させるように作用を有するため、波長の長い Κ α線の割合が際立って高くなり、 単色性の高い特性 X線 121を放出させることができる。
[0043] このように、 2次ターゲット 119の特性 X線 121のうち、 Κ α線の割合が高く単色性に 優れた小形の X線源 111を提供できる。 [0044] なお、この実施の形態においても、各ターゲット 118, 119と Kエッジフィルタ 122の 厚さは、目的とする X線減弱度と、単色度を考慮して設定する必要があるが、 X線透 過窓 113として十分な厚さが得られない場合は、第 1の実施の形態と同様に、 Be (ベ リリウム)等 X線減弱率の小さな材料を X線透過窓 113とし、その上に各ターゲット 11 8, 119、 Kエッジフィルタ 122をコーティングするような構成を適用することができる。
[0045] 次に、図 5に第 3の実施の形態を示す。
[0046] この実施の形態では、第 1の実施の形態と同様の X線源 111の構成の中で、電子 ビーム 115を入射する 1次ターゲット 118は、円錐形状とし、電子ビーム 115の軸線 上に頂部を電子銃 114に対向させて配置し、また、 2次ターゲット 119は、筒状とし、 電子ビーム 115の軸線すなわち 1次ターゲット 118を中心とする同心円上に 1次ター ゲット 118の周囲に対向して配置した構成である。 2次ターゲット 119の内周面は、例 えば、円錐形状の 1次ターゲット 118の表面と平行で、 1次ターゲットから入射する連 続 X線 120によって励起された特性 X線 121を X線透過窓 113へ向けた反射方向に 放出するように構成されて 、る。
[0047] そして、電子銃 114で発生した電子ビーム 115は 2次ターゲット 119の中央の開口 を通過して円錐形状の 1次ターゲット 118の表面に入射し、その 1次ターゲット 118の 表面から 2次ターゲット 119の内周面へ向けた反射方向に連続 X線 120を放出する。 1次ターゲット 118から放出された特性 X線 121は、 2次ターゲット 119の内周面に入 射し、その 2次ターゲット 119の内周面力 特性 X線 121を X線透過窓 113へ向けた 反射方向に放出する。 2次ターゲット 119から放出された特性 X線 121は X線透過窓 113を透過して外部に放出する。
[0048] この場合、 1次ターゲット 118と 2次ターゲット 119との距離は、第 1実施の形態の構 成に比べて、長くなり、 2次ターゲット 119への照射、励起効率は低下するが、真空容 器 112内に 1次ターゲット 118と 2次ターゲット 119とを配置したことで、 1次ターゲット 118と 2次ターゲット 119との距離を短くことが可能となり、 1次ターゲット 118から放出 される連続 X線 120を 2次ターゲット 119の励起に効率良く利用でき、特性 X線 121を 効率良く発生できる。し力も、 1次ターゲット 118及び 2次ターゲット 119共に、任意の 厚みを持たせて熱容量の大きなバルタ構造のものが適用できるため、第 1の実施の 形態のような透過方式よりも耐熱衝撃に優れたものとなり、入射電子ビーム電流量を 大きく設定し、大出力の特性 X線 121を放出させることが可能となる。
[0049] また、入射電子ビーム電流量をさらに増加させるような場合には、 1次ターゲット 11
8、必要に応じて 2次ターゲット 119も水冷却を施し、さらに耐熱性を向上させる構成 を採ることも可會となる。
[0050] このように、大電流条件においても各ターゲット 118, 119の耐久性を確保し、大出 力の特性 X線 121の放出を可能とした小形の X線源 111を提供できる。
[0051] 次に、図 6に第 4の実施の形態を示す。
[0052] この実施の形態では、第 3の実施の形態の構成の X線源 111にお 、て、 X線透過 窓 113の外側に、 Kエッジフィルタ 122を設置した構成である。
[0053] そして、 Kエッジフィルタ 122は、 2次ターゲット 119の特性 X線 121の Κ α線、 K j8 線のうち、波長の短い Κ |8線に対して大きな減弱作用を持ち、波長の長い Κ α線は 透過させるように作用を有するため、波長の長い Κ α線の割合が際立って高くなり、 単色性の高い特性 X線 121を放出させることができる。
[0054] このように、大電流条件においても、各ターゲット 118, 119の耐久性を確保し、大 出力の特性 X線 121を、さらに単色性を高めて放出させることを可能とした小形の X 線源 111を提供できる。
[0055] 次に、図 7に第 5の実施の形態を示す。
[0056] この実施の形態では、第 3の実施の形態と同様の X線源 111の構成の中で、電子 銃 114のェミッタ 116は、リング状の電子ビーム 115を発生するリング状とし、また、 1 次ターゲット 118は、電子銃 114のェミッタ 116から発生するリング状の電子ビーム 1 15を入射するようにリング状の電子ビーム 115の軸線と同軸のリング状とし、また、 2 次ターゲット 119は、 1次ターゲット 118の中心にその 1次ターゲット 118の内周面に 対向して配置した構成である。 1次ターゲット 118の内周面は、電子銃に向力つて拡 開傾斜する傾斜面で、中心の 2次ターゲット 119へ向けた反射方向に連続 X線 120 を放出する。 2次ターゲット 119は、円錐形状で、頂部を X線透過窓 113へ向けて配 置され、例えば、 2次ターゲット 119の表面が 1次ターゲット 118の内周面と平行で、 1 次ターゲット 118から入射する連続 X線 120によって励起された特性 X線 121を X線 透過窓 113へ向けた反射方向に放出するように構成されて 、る。
[0057] そして、電子銃 114で発生したリング状の電子ビーム 115は 1次ターゲット 118の周 囲を通過して 1次ターゲット 118の内周面に入射し、その 1次ターゲット 118の表面か ら 2次ターゲット 119の表面へ向けた反射方向に連続 X線 120を放出する。 1次ター ゲット 118から放出された連続 X線 120は、 2次ターゲット 119の表面に入射し、その 2次ターゲット 119の表面カゝら特性 X線 121を X線透過窓 113へ向けた反射方向に 放出する。 2次ターゲット 119から放出された特性 X線 121は X線透過窓 113を透過 して外部に放出する。
[0058] この場合にも、 1次ターゲット 118と 2次ターゲット 119との距離は、第 1実施の形態 の構成に比べて、長くなり、 2次ターゲット 119への照射、励起効率は低下するが、真 空容器 112内に 1次ターゲット 118と 2次ターゲット 119とを配置したことで、 1次ター ゲット 118と 2次ターゲット 119との距離を短くことが可能となり、 1次ターゲット 118力 ら放出される連続 X線 120を 2次ターゲット 119の励起に効率良く利用でき、特性 X線 121を効率良く発生できる。
[0059] また、第 3の実施の形態と同様に、 1次ターゲット 118は、熱容量の大きな構造のも のとすることができ、真空容器 112や X線透過窓 113を通じて冷却を容易にでき、こ れにより、入射電子の電流 ·エネルギを増加することが可能となり、発生する連続 X線 120の増加と、それにともなう特性 X線 121を増力!]させる利点がある。また、特性 X線 121の発生点をスポット形状にでき、さらに、 1次ターゲット 118が特性 X線 121の拡 力 Sりを抑制するコリメータの役割をすることにより、特性 X線 121を発散角が小さいビ ーム状で取り出すことが可能となり、検査部位以外への X線照射によるバックグラウン ドを低減できる利点がある。
[0060] このように、大線量の特性 X線 121をビーム状に取り出すことが可能な小形の X線 源 111を提供できる。
[0061] 次に、図 8に第 6の実施の形態を示す。
[0062] この実施の形態では、第 5の実施の形態の X線源 111において、 X線透過窓 113の 外側に、 Kエッジフィルタ 122を設置した構成である。
[0063] そして、 Kエッジフィルタ 122は、 2次ターゲット 119の特性 X線 121の Κ α線、 K j8 線のうち、波長の短い Κ |8線に対して大きな減弱作用を持ち、波長の長い Κ α線は 透過させるように作用を有するため、波長の長い Κ α線の割合が際立って高くなり、 単色性の高い特性 X線 121を放出させることができる。
[0064] このように、単色性を高めて、大線量の特性 X線 121をビーム状に取り出すことが可 能な小形の X線源 111を提供できる。
[0065] 次に、図 9に第 7の実施の形態を示す。
[0066] この実施の形態では、上記各実施の形態の構成とは逆に、電子銃 114を接地電位 とし、 1次ターゲット 118を高圧電位にぉ 、た構成である。
[0067] 電子銃 114は、リング構造のものが適し、また、 1次ターゲット 118は、円錐台形状 で、リング状の電子銃 114の中心に頂部が X線透過窓 113へ向けて配置されて 、る 。円錐台形状の 1次ターゲット 118の表面は、電子銃 114から電子ビーム 115を入射 して連続 X線 120を X線透過窓 113へ向けた反射方向に放出するように構成されて いる。
[0068] X線透過窓 113には 2次ターゲット 119が配置され、この 2次ターゲット 119の外側 に Κエッジフィルタ 122が配置されている。
[0069] そして、リング状の電子銃 114で発生した電子ビーム 115は円錐台形状の 1次ター ゲット 118の表面に入射し、その 1次ターゲット 118の表面から X線透過窓 113の 2次 ターゲット 119へ向けた反射方向に連続 X線 120を放出する。 1次ターゲット 118から 放出された連続 X線 120は、 2次ターゲット 119に入射し、その 2次ターゲット 119から 特性 X線 121を透過して放出する。
[0070] 2次ターゲット 119から放出された特性 X線 121は X線透過窓 113の Κエッジフィル タ 122を透過して外部に放出する。
[0071] この場合にも、 1次ターゲット 118と 2次ターゲット 119との距離は、第 1実施の形態 の構成に比べて、長くなり、 2次ターゲット 119への照射、励起効率は低下するが、真 空容器 112内に 1次ターゲット 118と 2次ターゲット 119とを配置したことで、 1次ター ゲット 118と 2次ターゲット 119との距離を短くことが可能となり、 1次ターゲット 118力 ら放出される連続 X線 120を 2次ターゲット 119の励起に効率良く利用でき、特性 X線 121を効率良く発生できる。 [0072] また、第 3の実施の形態と同様に、 1次ターゲット 118は、熱容量の大きな構造のも のとすることができ、これにより、入射電子の電流 ·エネルギを増加することが可能とな り、発生する連続 X線 120の増加と、それにともなう特性 X線 121を増加させる利点が ある。
[0073] このように、目的とするエネルギの特性 X線 121を効率良く放出させることが可能と なる陰極接地型の小形の X線源 111を提供できる。
[0074] なお、 Be (ベリリウム)のような X線透過特性の優れた材質を X線透過窓 113とし、そ の X線透過窓 113の外側に Kエッジフィルタ 122を貼り付ける構成とすることも可能で ある。
[0075] 次に、図 ΙΟΑ,ΙΟΒに第 8の実施の形態を示す。
[0076] この実施の形態では、第 1の実施の形態と同様の X線源 111の構成の中で、 1次タ ーゲット 118の外側に重ねて配置される 2次ターゲット体 131を備えて!/ヽる。この 2次 ターゲット体 131は、例えば異なるエネルギの特性 X線 121を発生可能な複数の 2次 ターゲット 119a, 119b, 119c, 119dを有し、これら複数の 2次ターゲット 119a〜l l 9dが回転軸 132を中心として回転可能とする回転体 133の同一円周上に等間隔に 設けられている。
[0077] 回転体 133の回転軸 132は、図示しない移動機構としての回転機構を介して回転 可能とし、 1次ターゲット 118に重なりかつ 1次ターゲット 118の X線発生位置に対して 2次ターゲット 119a〜 119dの!、ずれか 1つが選択的に配置される。
[0078] そして、複数の 2次ターゲット 119a〜119dを備え、 1次ターゲット 118の X線発生 位置に対して複数の 2次ターゲット 119a〜119dのうちの任意の 1つを配置すること により、 2次ターゲット交換のために X線源 111を動かすことが不要になるため、 X線 発生点を変えることなく異なるエネルギの特性 X線 121を容易に取り出せる利点があ る。これは、 X線源 111を蛍光 X線分析装置に適用する場合には、 X線発生点や、試 料位置等の測定体系を崩すことなく分析ができる。
[0079] このように、 X線発生点を変えることなぐ異なるエネルギの特性 X線 121を選んで 放出させることが可能な小形の X線源 111を提供できる。
[0080] 次に、図 Ι ΙΑ,Ι ΙΒに第 9の実施の形態を示す。 [0081] この実施の形態では、第 8の実施の形態の X線源 111において、 2次ターゲット体 1 31の外側に配置されるフィルタ体 135を備えている。このフィルタ体 135は、例えば 異なるエネルギの特性 X線 121を発生する各 2次ターゲット 119a〜119dに対応した フィルタとしての Kエッジフィルタ 122a, 122b, 122c, 122dを有し、これら Kエッジフ ィルタ 122a〜122dが回転軸 132を中心として回転可能とする回転体 136の同一円 周上であって各 2次ターゲット 119a〜 119dに対応した位置に設けられて!/、る。 2次 ターゲット体 131の回転体 133とフィルタ体 135の回転体 136とは一体化した円盤と されても、別体の円盤でもよい。
[0082] そして、 1次ターゲット 118の X線発生位置に対して複数の 2次ターゲット 119a〜l 19dのうちの任意の 1つを配置することにより、対応する Kエッジフィルタ 122a〜 122 dのうちの任意の 1つも配置される。そのため、 2次ターゲット交換や Kエッジフィルタ 交換のため X線源 111を動かすことが不要になり、第 8の実施の形態と同様に、 X線 発生点を変えることなぐ異なるエネルギの特性 X線 121を容易に取り出せる利点が ある。
[0083] また、 Kエッジフイノレタ 122a〜122dは、 2次ターゲット119&〜119(1の特性难12 1の Κ α線、 Κ |8線のうち、波長の短い Κ |8線に対して大きな減弱作用を持ち、波長 の長 、K a線は透過させるように作用を有するため、波長の長 、K a線の割合が際 立って高くなり、単色性の高い特性 X線 121を放出させることができる。
[0084] このように、 X線発生点を変えることなぐ異なるエネルギの特性 X線 121を選んで 放出させることが可能で、かつ単色性の高い特性 X線 121が得られる小形の X線源 1 11を提供できる。
[0085] 次に、図 12A, 12Bに第 10の実施の形態を示す。
[0086] この実施の形態では、第 1の実施の形態と同様の X線源 111の構成の中で、真空 容器 112内に回転可能に配置されたターゲット体 141を備えている。このターゲット 体 141は、異なる 1次ターゲット 118a, 118b, 118c, 118dと適切な 2次ターゲット 1 19a, 119b, 119c, 119dとを重ねて組み合わせた複数組のターゲット部 142a, 14 2b, 142c, 142dを有し、これら 1次ターゲット 118a〜118dと 2次ターゲット 119a〜 119dとが回転軸 143を中心として回転する回転体 144, 145の同一円周上の同一 位置に等間隔に設けられている。回転体 144と回転体 145とは一体ィ匕した円盤とさ れても、別体の円盤でもよい。
[0087] 真空容器 112の外部から真空容器 112内のターゲット体 141を回転させる移動機 構としての回転機構 146が設けられて 、る。
[0088] そして、ターゲット体 141は、回転軸 143を中心として、複数組のターゲット部 142a
〜142dのうちのいずれ力 1つを電子銃 114から電子ビーム 115が入射する電子ビー ム入射位置に対して回転させて配置することにより、電子ビーム入射位置に配置され たターゲット部 142a〜142dの 1次ターゲット 118a〜118dが電子ビーム 115の入射 によって連続 X線 120を透過させて放出するとともに 2次ターゲット 119a〜 119dが 1 次ターゲット 118a〜118dから放出される連続 X線 120によって励起された特性 X線
121を透過させて X線透過窓 113から放出する。
[0089] ターゲット部 142a〜142dの選択により、選択したエネルギの特性 X線 121を容易 に取り出せ、その選択の際に、 X線源 111を交換することが不要になり、 X線発生点 を一定することができる利点がある。
[0090] また、真空隔壁の機能は、独立した X線透過窓 113によって持たす構成としている ため、 1次ターゲット 118a〜118d、 2次ターゲット 119a〜119dの厚さは任意に選ぶ ことが可能となる。
[0091] このように、 X線発生点を変えることなぐ幾つかの特性 X線 121を選んで放出させ ることが可能な小形の X線源 111を提供できる。
[0092] 次に、図 13に第 11の実施の形態を示す。
[0093] この実施の形態では、第 10の実施の形態の X線源 111において、 2次ターゲット体 131の外側に配置されるフィルタ体 148を備えている。このフィルタ体 148は、各ター ゲッ卜部 142a〜142dに対応した Kエッジフィルタ 122a, 122b, 122c, 122dを有し 、これら Kエッジフィルタ 122a〜 122dが回転軸 143を中心として回転可能とする回 転体 149の同一円周上であって各 2次ターゲット 119a〜119dに対応した位置に設 けられて 、る。回転軸 143は X線透過窓 113を貫通して設けられて 、る。
[0094] そして、 Kエッジフイノレタ 122a〜122dを備え、 1次ターゲット 118a〜118dと重ねた 2次ターゲット 119a〜119dと Kエッジフィルタ 122a〜122dとが一体に回転すること により、単色性を高めた幾つかの特性 X線 121を選んで放出させることができる利点 がある。
[0095] このように、 X線発生点を変えることなぐ単色性の高い幾つかの特性 X線 121を選 んで放出させることが可能な小形の X線源 111を提供できる。
[0096] 次に、図 14に第 12の実施の形態を示す。
[0097] この実施の形態では、第 10の実施の形態の X線源 111において、ターゲット体 141 は、異なる 1次ターゲット 118a, 118b, 118c, 118dと適切な 2次ターゲット 119a, 1 19b, 119c, 119dと適切な Kエッジフイノレタ 122a, 122b, 122c, 122dとを重ねて 組み合わせた複数組のターゲット部 142a, 142b, 142c, 142dを有する。
[0098] そして、 1次ターゲット 118a〜118dと重ねた 2次ターゲット 119a〜119dと Kエッジ フィルタ 122a〜122dとが一体に回転することにより、異なるエネルギで単色性の高 い特性 X線 121が得られるとともに、一体で回転させることにより、 X線源 111の外に 駆動部が無くなるため、より信頼性が高く試料に X線源 111を近接設置できる利点が ある。
[0099] このように、 X線発生点を変えることなぐ単色性の高い幾つかの特性 X線 121を選 んで放出させることが可能であり、かつ信頼性の高!、小形の X線源 111を提供できる
[0100] なお、上記各実施の形態にお!、て、電子ビーム入射位置に対する各ターゲット部 1
42a〜142d移動は、回転に限らず、スライドでもよい。
[0101] 次に、図 15に第 13の実施の形態を示す。
[0102] この実施の形態では、第 8の実施の形態と同様の X線源 111の構成の中で、真空 容器 112に対して X線透過窓 113を回転可能に構成する。 X線透過窓 113の内面に は、異なる 1次ターゲット 118a, 118b, 118c, 118dと適切な 2次ターゲット 119a, 1 19b, 119c, 119dとを重ねて組み合わせた複数組のターゲット部 142a, 142b, 14 2c, 142dを有するターゲット体 141を形成する。
[0103] そして、ターゲット体 141は、 X線透過窓 113の回転により、複数^ aのターゲット部 1
42a〜142dのうちの!/、ずれ力 1つを電子銃 114から電子ビーム 115が入射する電子 ビーム入射位置に対して配置することができ、電子ビーム入射位置に配置されたタ 一ゲット部 142a〜 142dの 1次ターゲット 118a〜 118dが電子ビーム 115の入射によ つて連続 X線 120を透過させて放出するとともに 2次ターゲット 119a〜119dが 1次タ 一ゲット 118a〜118dから放出される連続 X線 120によって励起された特性 X線 121 を透過させて X線透過窓 113から放出する。
[0104] ターゲット部 142a〜142dの選択により、選択したエネルギの特性 X線 121を容易 に取り出すことができるとともに、ターゲット体 141を一体で回転させることにより、電 子ビーム 115により加熱した 1次ターゲット 118a〜 118dが X線透過窓 113への熱伝 導によって冷却され、寿命が延びる利点がある。
[0105] このように、 X線発生点を変えることなぐ単色性の高い幾つかの特性 X線 121を選 んで放出させることが可能であり、かつ、寿命の長い小形の X線源 111を提供できる
[0106] 次に、図 16に第 14の実施の形態を示す。
[0107] この実施の形態では、第 13の実施の形態の X線源 111において、ターゲット体 141 は、異なる 1次ターゲット 118a, 118b, 118c, 118dと適切な 2次ターゲット 119a, 1 19b, 119c, 119dと適切な Kエッジフイノレタ 122a, 122b, 122c, 122dとを重ねて 組み合わせた複数組のターゲット部 142a, 142b, 142c, 142dを有する。
[0108] そして、 1次ターゲット 118a〜118dと重ねた 2次ターゲット 119a〜119dと Kエッジ フィルタ 122a〜122dとが一体に回転することにより、異なるエネルギで単色性の高 い特性 X線 121が得られるとともに、一体で回転させることにより、電子ビーム 115に より加熱した 1次ターゲット 118a〜118dが X線透過窓 113への熱伝導によって冷却 され、寿命が延びる利点がある。
[0109] このように、 X線発生点を変えることなぐ単色性の高い幾つかの特性 X線 121を選 んで放出させることが可能であり、かつ、寿命の長い小形の X線源 111を提供できる
[0110] 次に、図 17に上記各実施の形態の X線源 111を用いた蛍光 X線分析装置 161を 示す。
[0111] 蛍光 X線分析装置 161は、 X線源 111から放出される特性 X線 121を試料 162に 照射し、この試料 162の表面の元素が励起されて発する蛍光 X線 163をコリメータ 16 4を通してエネルギ弁別型の X線検出器 165でとらえ、元素分析を行う構成である。
[0112] そして、蛍光 X線分析装置 161に適用する X線源 111は、そのエネルギスペクトル が、 2次ターゲット 119a〜l l 9dの特性 X線 (Κ α線、 K j8線) 121が主成分となつて おり、それによつて試料 162の表面の元素が励起されて発する蛍光 X線 163をとらえ
、元素組成を分析することができる。
[0113] このとき、励起する特性 X線 121のスペクトルを予め分析機器に記憶させておき、そ れによって得られる蛍光信号 Z励起強度の関係をとらえておけば、蛍光信号強度か ら、試料 162の表面の元素の定量分析を精度良く行うことができる。
[0114] また、回転する 1次ターゲット 118a〜118dと 2次ターゲット 119a〜119dや Kエッジ フィルタ 122a〜 122dを用 V、た X線源 111を適用すれば、 X線源 111を交換すること なぐ対象とする試料 162の含有元素の原子番号によって励起に使用する特性 X線
121のエネルギを選択することが可能となる。
[0115] このように、特性 X線 121を効率良く放出できる X線源 111により、高分解能の蛍光
X線分装置 161を提供できる。
[0116] 次に、図 18に蛍光 X線分析装置 161の他の例を示す。
[0117] この蛍光 X線分析装置 161では、複数台の X線源 111を備え、そのいずれカゝ 1つか ら放出される特性 X線 121を試料 162に照射し、コリメータ 164を通してエネルギ弁 別型の X線検出器 165で蛍光 X線 163をとらえ、元素分析を行う構成である。
[0118] そして、上記蛍光 X線分析装置 161と同様に、使用する一方の X線源 111の特性 X 線 (Κ α線、 K |8線) 121によって試料 162の表面の元素が励起されて発する蛍光 X 線 163をとらえ、元素組成を分析することができる力 他方の X線源 111からの特性 X 線 121に切り替えて分析を行うことにより、広い範囲の原子番号の元素組成を短時間 で分析することが可能となる。
[0119] このように、特性 X線 121を効率良く放出できる X線源 111により、短時間で高分解 能の元素分析を可能とした蛍光 X線分析装置 161を提供できる。
[0120] 図 19ないし図 21に第 15の実施の形態を示す。
[0121] X線源 211は、内部が真空保持される真空容器 212を有し、この真空容器 212の 一端側の側面に X線を外部に放出する X線透過窓 213が配設されている。 [0122] 真空容器 212の他端には電子銃 214が配設され、真空容器 212内に位置する電 子銃 214の端部に、真空容器 212内の一端側へ向けて電子ビーム 215を放出する ェミッタであるフィラメント 216が設けられている。フィラメント 216は、ライン状に形成さ れ、細長いライン形状の電子ビーム 215を放出することができる。電子銃 214は、駆 動電源 217によって電子ビーム 215を発生、加速する。
[0123] 真空容器 212内の一端側には、ボックス形の X線発生部 221が区画されて形成さ れている。
[0124] この X線発生部 221には、真空容器 212内を区画する壁部 222によって区画部 22 3が形成されている。壁部 222の電子銃 214に対向する面には、電子銃 214が発生 するライン状の電子ビーム 215の形状に対応させてその電子ビーム 215が容易に通 過可能とするスリット状の電子ビーム通過孔 224が形成されて 、る。区画部 223の電 子ビーム通過孔 224が設けられた面に対して交差する面に X線透過窓 213が配設さ れている。
[0125] 区画部 223内の電子ビーム通過孔 224に対向する内面には 1次ターゲット 226が 設けられ、区画部 223内の内面で 1次ターゲット 226を除く大部分の内面にボックス 形の 2次ターゲット 227が設けられている。
[0126] 1次ターゲット 226は、電子ビーム通過孔 224を通過した電子ビーム 215が入射し て X線である 1次 X線としての連続 X線 228を 2次ターゲット 227へ向けて放出する。
[0127] 2次ターゲット 227は、 1次ターゲット 226から放出された連続 X線 228が入射して 2 次 X線である K線としての特性 X線 229を放出する。 2次ターゲット 227には、電子銃 214が発生するライン状の電子ビーム 215の形状に対応させてその電子ビーム 215 が容易に通過可能とするスリット状の電子ビーム通過孔 230が形成され、この電子ビ ーム通過孔 230が形成された面に対して交差する面であって X線透過窓 213に対向 する面に特性 X線 229を放出する X線通過孔 231が形成されている。 X線通過孔 23 1は、連続 X線 228が混入せず、シートビーム形状の特性 X線 229を取り出せるように 、細長いスリット状の孔形状に形成する。
[0128] 2次ターゲット 227は、電子ビーム 215の通過方向であって 1次ターゲット 226と 2次 ターゲット 227との対向方向の間隔の狭い形状として、電子ビーム通過孔 230から 1 次ターゲット 226までの距離を短いものとする。この構成によって、 1次ターゲット 226 力も放出される連続 X線 228を広い角度で 2次ターゲット 227に入射させることが可 能になり、 2次ターゲット 227の励起効率を高めることができる。
[0129] 2次ターゲット 227の電子ビーム通過孔 230を通過する電子ビーム 215の形状に合 わせて 1次ターゲット 226も細長いライン形状とし、高い強度の電子ビーム入射を行う 場合には、水冷ジャケット 232を備えた力ソード構造物に 1次ターゲット 226を取り付 けて除熱できる構成とする。
[0130] そして、電子銃 214に駆動電源 217から電圧を印加することによって放出された電 子ビーム 215は、ボックス状の 2次ターゲット 227の電子ビーム通過孔 230を通過し、 それに対向して設置された 1次ターゲット 226に入射する。このとき、 1次ターゲット 22 6から放出された連続 X線 228が対向する 2次ターゲット 227を照射することによって 、 2次ターゲット 227が励起されて特性 X線 229を放出する。 2次ターゲット 227の表 面から浅い角度で放出される特性 X線 229の成分だけを X線通過孔 231を通過する とともに X線透過窓 213を通して外部に放出する。
[0131] このように、利用しょうとする特性 X線 229以外のノイズ成分の混入が抑制されたシ 一トビーム形状の特性 X線 229が得られる X線源 211を提供できる。
[0132] なお、ボックス状の 2次ターゲット 227は、全ての構成材を 2次ターゲット材とする必 要は無ぐ例えば、ステンレスのような一般的な材料を主構成材として、連続 X線 228 が入射する内表面部分だけに 2次ターゲット材の箔を貼り付けたものやコーティング したもので対応することができる。
[0133] 次に、図 22に第 16の実施の形態を示す。
[0134] この実施の形態で、第 1の実施の形態の X線源 211において、 1次ターゲット 226a , 226b, 226cに複数の材質 (元素)を用いて構成し、同時に連続 X線 228の照射を 受ける対向する 2次ターゲット 227a, 227b, 227cに複数の材質 (原子)を用いたも のとする。
[0135] X線による励起を利用する場合、 2次ターゲット 227を励起する連続 X線 228を放出 する 1次ターゲット 226 &〜 226cは、 2次ターゲット 227 &〜 227cよりも原子番号で 2 程度大きな元素を用いて、それにより放出される特性 X線 229を利用することが最も 効率良く、 2次ターゲット 227を励起することを可能とする。
[0136] そのため、 目的とする特性 X線 229を得るため、複数の 2次ターゲット 227a〜227c を用いる場合には、それぞれの元素を励起するのに最適な元素の 1次ターゲット 226 a〜226cを選定する必要がある。
[0137] 一例として 2次ターゲット 227a〜227cとしてチタン (Ti:特性 X線 Κ αエネルギ 4. 5 keV)に対する 1次ターゲット 226a〜226cとしてはクロム(Cr:特性 X線 Κ αエネルギ 5. 4keV)、 2次ターゲットとしてモリブデン(Mo :特性 X線 Κ αエネルギ 17. 5keV) に対する 1次ターゲット 226a〜226cとしてはロジウム(Rh:特性 X線 Κ αエネルギ 20 . 2keV)、 2次ターゲット 227a〜227cとしてガドリニウム(Gd:特性 X線 Κ αエネルギ 43keV)の対する 1次ターゲット 226a〜226cとしてはタンタル (Ta:特性 X線 Κ αェ ネルギ 57. 5keV)等の組合せを採ることができ、これにより、 Cr、 Mo、 Gdの 3本の特 性 X線 (4. 5keV、 17. 5keV、 43keV) 29を同時に含んだ X線ビームを放出させるこ とがでさる。
[0138] これにより、蛍光 X線分析において、単一エネルギの X線によって励起する場合に は、それによつて励起できる元素の種類は限られてしまうことになる力 低エネルギか ら高工ネルギの領域までカバーした複数の単色エネルギ成分を含む X線を使用する ことができ、元素分析の領域を広く採ることが可能となる。
[0139] このように、ノイズ成分が少なぐかつ複数のエネルギの特性 X線スペクトルを含ん だ特性 X線 229を放出できる X線源 211を提供できる。
[0140] 次に、図 23A, 23B, 23C, 23Dに第 17の実施の形態を示す。
[0141] この実施の形態では、第 16の実施の形態の X線源 211において、複数の 1次ター ゲット 226a〜226cと複数の 2次ターゲット 227a〜27cとの組み合せを含んだ構成の
X線源 211の動作方法についてのものである。
[0142] 1次ターゲット 226a〜226cから放出される連続 X線 228が組合せとして選んだ 2次 ターゲット 227a〜27cを最も効率良く励起しょうとした場合、 1次ターゲット 226a〜2
26cを照射する電子ビーム 215は、 1次ターゲット 226a〜226cから連続 X線 228が 十分放出されるのに十分なエネルギを有したものであることが重要となる。
[0143] 一般的には、 1次ターゲット 226a〜226cの K線エネルギの 2ないし 3倍のエネルギ の電子ビーム 215で励起した場合、最も効率良く 1次ターゲット 226a〜226cの連続
X線 228を放出させることができ、これによつて 2次ターゲット 227a〜227cの特性 X 線 229も最も効率良く放出されることになる。
[0144] また、反対に、 1次ターゲット 226a〜226c力らの連続 X線 228力 次ターゲット 227 a〜227cの K殻吸収端エネルギに達しない場合には、 2次ターゲット 227a〜227c 力も特性 X線 229は放出できなくなる。
[0145] このような特徴を利用し、選択する特性 X線 229のエネルギに合わせて電子ビーム
215の加速電圧つまり電子ビーム 215のエネルギを調整するような動作方法が可能 となる。
[0146] 図 23A, 23B, 23C, 23Dは、放出する特性 X線 229のスペクトル分布の制御方法 を示したものである。電源電圧を高くし、高工ネルギの電子ビーム 215で励起した場 合、ターゲット D等に示すように、高原子番号の 1次ターゲット 226a〜226cの励起が 最も効率良く行われ、それによる 2次ターゲット 227a〜227cから放出される特性 X線 229の強度を高くすることができ、逆に、ターゲット A等に示すように、低原子番号の 1 次ターゲット 226a〜226cからの放出される連続 X線 228は強度が低くなるので、組 み合わせた 2次ターゲット 227a〜227cからの特性 X線 229の強度は低くなる。
[0147] 電源電圧を減少させていくことにより、今度は、ターゲット Dや C等に示すように、高 エネルギ側の特性 X線 229のスペクトル強度が低下し、ターゲット Cや Bに示すように 、低エネルギ側の特性 X線 229のスペクトル強度が増加してくる。さら〖こ、電源電圧を 低下し続けていくと、ターゲット D及び Cに示すように、やがて高工ネルギ側のスぺタト ルが消え、ターゲット Bや Aに示すように、低エネルギ側だけの X線スペクトルを放出 させることがでさる。
[0148] 蛍光 X線分析においては、このような X線スペクトルの分布を制御ですることによつ て、低原子番号の元素から高原子番号の元素までを含む試料からの蛍光 X線の信 号を判別し、正確な分析結果を得るのに有効となる。
[0149] このように、ノイズ成分が少なぐかつ複数のエネルギの特性 X線スペクトルを含ん だ特性 X線 229を放出できる X線源 211を用いて、放出する特性 X線 229のスぺタト ル分布を調整できる X線源 211を提供できる。 [0150] 次に、図 24及び図 25に第 18の実施の形態を示す。
[0151] 第 16の実施の形態の X線源 211では、複数の 1次ターゲット 226a〜226c及び 2次 ターゲット 227a〜227cからの特性 X線 229を同時に放出させることが可能であるが 、電子ビーム 215は、設置した数の 1次ターゲット 226a〜226cに分散して照射され るため、それぞれの特性 X線 229の強度を大きくする上では不利となる。
[0152] この第 18の実施の形態では、 1次ターゲット 226a〜226dと 2次ターゲット 227a〜2 27dを組み合わせた複数組のユニットである複数の X線発生部 221a〜221dを用い 、それらを回転機構 241によって回転するターンテーブル 242の同一円周上に設置 する。回転機構 241により、任意の X線発生部 221a〜221dを選択して電子ビーム 2 15が入射する電子ビーム入射位置に対して移動させることにより、放出する特性 X線 229を変えることを可能としたものである。
[0153] また、真空容器 212には、 X線発生部 221a〜221dを交換可能とするターゲット交 換ロ 243が設けられているとともに、真空容器 212内を排気する真空ポンプ 244が配 設されている。そのため、必要とする X線エネルギが変わった場合にも、 X線発生部 2 21 a〜2 Idを交換して使用することができる。
[0154] この構成を採ることによって、放出される特性 X線 229を選んで順番に利用すること が可能となる。蛍光 X線分析において、このように特性 X線 229を 1つずつ照射して 分析を行うことは、試料中の元素の同定を正確に行う上で効果的なものとなる。
[0155] このように、ノイズ成分が少なぐ強度の高 、複数の特性 X線 229を、任意に選択し て取り出すことができる X線源 211を提供できる。
[0156] 次に、図 26に第 19の実施の形態を示す。
[0157] この実施の形態では、第 16の実施の形態の X線源 211において、アノードである区 画部 223の壁部 222の電子ビーム通過孔 224及び 2次ターゲット 227a〜227cの電 子ビーム通過孔 230の電子ビーム通過方向の上流部に、電子ビーム偏向手段 251 の偏向磁石 252を設置した構成とする。
[0158] この構成において、偏向磁石 252として電磁石を適用した場合には、磁場強度を 制御することにより電子ビーム 215の軌道を、電子ビーム 215a、電子ビーム 215b、 電子ビーム 215cのように変えることができ、それぞれ異なる 1次ターゲット 226a〜22 6cを照射することが可能となる。
[0159] また、偏向磁石 252として永久磁石を適用した場合には、通過する電子ビーム 215 のエネルギを変更することによって、同様に電子ビーム 215a〜215cのように軌道を 変えることが可能となる。
[0160] 駆動電源 217の電圧を下げ、低エネルギの電子ビーム 215を利用するとき、同じ磁 場強度では、電子ビーム 215cのように大きく曲がる軌道となり、その終端に目的の 1 次ターゲット 226cを設置する。同様に、高いエネルギの電子ビーム 215に対しては、 電子ビーム 215b、電子ビーム 215aのように軌道の偏向度は小さくなり、それぞれの 終端に 1次ターゲット 226b, 226aを設置する。このような構成を採ることによって、駆 動電源 217の電圧に応じて、電子ビームが異なる 1次ターゲットを照射できるので、 数種類の 1次ターゲットに同時に電子ビームを照射する実施例 2の構成よりも強度の 高い連続 X線 228を放出することが可能となる。したがって、第 17の実施の形態で示 した電圧を制御して得られる X線スペクトルの分布を、さらに強弱を強調して行えるこ とが可能となる。
[0161] このように、ノイズ成分が少なぐ電圧によって複数の特性 X線 229を含むスペクトル 分布を制御しながら取り出すことを可能とする X線源 211を提供できる。
[0162] 次に、図 27に第 20の実施の形態を示す。
[0163] この実施の形態では、第 19の実施の形態の X線源 211の構成において、さらに 1 次ターゲット 226a〜226c及び 2次ターゲット 227a〜27cを 1つずつ独立したュ-ッ トである X線発生部 221a〜221cに別けた構成とする。電子ビーム 215は、偏向磁石 252によって軌道を曲げられ、任意の X線発生部 221a〜221cの 1次ターゲット 226 a〜226cに入射する。
[0164] 例えば、 X線発生部 221aの 1次ターゲット 226aに電子ビーム 215aが入射するよう に、電子ビーム 215aのエネルギと偏向磁石 252の磁場強度とが設定された場合、 X 線発生部 221aの 1次ターゲット 226aに入射した連続 X線 228は独立したボックス状 の 2次ターゲット 227aを励起し、他の X線発生部 221b, 221cの 2次ターゲット 227b , 227cに入射'励起しない構成とする。これにより、それぞれの X線発生部 221a〜2 21cのいずれか 1つ力も特性 X線 229を放出させているときには、他の特性 X線 229 が放出されることはなぐ単一の特性 X線 229だけを利用することが可能となる。
[0165] したがって、蛍光 X線分析にぉ 、て、低エネルギから高工ネルギまでの特性 X線 22 9を、順をおつて試料に照射、励起することができるため、試料中の元素の判別が容 易となる。
[0166] このように、ノイズ成分が少なぐ電圧と磁場強度の制御によって複数の特性 X線 2 29を、任意に 1つずつ取り出すことを可能とする X線源 211を提供できる。
[0167] 次に、図 28に上記各実施の形態の X線源 211を用いた蛍光 X線分析装置 61を示 す。
[0168] 蛍光 X線分析装置 261は、 X線源 211から放出されるシートビーム形状の特性 X線 229を試料 262に照射し、この試料 262の表面の元素が励起されて発する蛍光 X線 263を X線検出器 265でとらえ、元素分析を行う構成である。
[0169] 試料 262としての半導体ウェハの表面汚染検査を目的とする場合には、特性 X線 2 29は、半導体ウェハ表面に対してできるだけ一定角度で、しかも 0. 1° 以下の非常 に浅い角度で入射する必要があるため、例えば扇状のファンビームのようなものも含 むシートビーム形状として 、る。
[0170] そして、蛍光 X線分析装置 261に適用する X線源 211は、そのエネルギスペクトル 1S 2次ターゲット 227, 227a〜227dの特'性 X線 229力 S主成分となっており、それに よって試料 262の表面の元素が励起されて発する蛍光 X線 63をとらえ、元素組成を 分析することができる。
[0171] このとき、励起する特性 X線 229のスペクトルを予め分析機器に記憶させておき、そ れによって得られる蛍光信号 Z励起強度の関係をとらえておけば、蛍光信号強度か ら、試料 262の表面の元素の定量分析を精度良く行うことができる。
[0172] このように、シートビーム形状の特性 X線 229を効率良く放出できる X線源 211によ り、高分解能の蛍光 X線分析装置 261を提供できる。
産業上の利用可能性
[0173] 本発明によれば、 1次ターゲットと 2次ターゲットとを重ねることにより、 1次ターゲット 力も放出される X線を 2次ターゲットの励起に効率良く利用でき、特性 X線を効率良く 発生できる X線源及びこの X線源を用いた蛍光 X線分析装置が提供することができる [0174] また、本発明によれば、真空容器内に 1次ターゲットと 2次ターゲットとを配置したこ とで、 1次ターゲットと 2次ターゲットとの距離を短くすることが可能となり、 1次ターゲッ トから放出される X線を 2次ターゲットの励起に効率良く利用でき、特性 X線を効率良 く発生でき、さらに、電子ビームを 1次ターゲットで反射方向に X線を放出するため、 X 線の透過方式に比べて耐熱衝撃に優れたものとなり、大出力化のための電子ビーム の電流量の増加にも対応できる X線源及びこの X線源を用いた蛍光 X線分析装置が 提供することができる。
[0175] また、本発明によれば、真空容器内に 1次ターゲット及び 2次ターゲットを内蔵して 高効率で特性 X線を放出させることができる X線源であり、放出する特性 X線へのノィ ズ成分の混入が抑えられ、かつ、例えば全反射蛍光 X線分析に適するようなシートビ ーム形状の特性 X線を容易に得ることができる X線源及びこの X線源を用いた蛍光 X 線分析装置が提供することができる。

Claims

請求の範囲
[1] 電子ビームを発生する電子銃と、
前記電子銃力 電子ビームが入射して X線を透過させて放出する 1次ターゲットと、 前記 1次ターゲットに重ねて配置され、前記 1次ターゲットから放出される X線によつ て励起された特性 X線を透過させて放出する 2次ターゲットと
を具備して 、ることを特徴とする X線源。
[2] 2次ターゲットから放出される特性 X線に含まれる Κ β線及び K a線のうち、 K |8線 を減弱させ、 K a線を透過させて放出するフィルタを具備して ヽる
ことを特徴とする請求項 1記載の X線源。
[3] X線透過窓を有する真空容器と、
前記真空容器内で電子ビームを発生する電子銃と、
前記真空容器内に配置され、前記電子銃力 電子ビームが入射して反射方向に X 線を放出する 1次ターゲットと、
前記真空容器内で前記 1次ターゲットを中心とする周囲に対向して配置され、前記 1次ターゲットから放出される X線によって励起された特性 X線を前記 X線透過窓へ 向けた反射方向に放出する 2次ターゲットと
を具備して 、ることを特徴とする X線源。
[4] X線透過窓を有する真空容器と、
前記真空容器内でリング状の電子ビームを発生する電子銃と、
前記真空容器内でリング状に配置され、前記電子銃からリング状の電子ビームが 入射して反射方向に X線を放出する 1次ターゲットと、
前記真空容器内で前記 1次ターゲットの中心に対向して配置され、前記 1次ターゲ ットから放出される X線によって励起された特性 X線を前記 X線透過窓へ向けた反射 方向に放出する 2次ターゲットと
を具備して 、ることを特徴とする X線源。
[5] X線透過窓を有する真空容器と、
前記真空容器内に配置された電子ビームを発生する接地電位の電子銃と、 前記真空容器内に配置され、前記電子銃力 電子ビームが入射して反射方向に X 線を放出する 1次ターゲットと、
前記真空容器内で X線透過窓の位置に配置され、前記 1次ターゲットから放出され る X線によって励起された特性 X線を透過させて放出する 2次ターゲットと
を具備して 、ることを特徴とする X線源。
[6] X線透過窓の位置に、 2次ターゲットから放出される特性 X線に含まれる Κ β線及び K a線のうち、 Κ β線を減弱させ、 K a線を透過させて放出するフィルタを具備して 、 ることを特徴とする請求項 3な 、し 5 、ずれか記載の X線源。
[7] 電子ビームを発生する電子銃と、
前記電子銃力 電子ビームが入射して X線を透過させて放出する 1次ターゲットと、 前記 1次ターゲットに重なりかつ 1次ターゲットの X線発生位置に対して移動可能と する複数の 2次ターゲットを有し、前記 X線発生位置に配置された 2次ターゲットが、 前記 1次ターゲットから放出される X線によって励起された特性 X線を透過させて放 出する 2次ターゲット体と
を具備して 、ることを特徴とする X線源。
[8] X線発生位置に対して移動可能とする複数のフィルタを有し、前記 X線発生位置に 配置されたフィルタ力 2次ターゲットから放出される特性 X線に含まれる Κ |8線及び K a線のうち、 Κ β線を減弱させ、 K a線を透過させて放出するフィルタ体を具備して V、ることを特徴とする請求項 7記載の X線源。
[9] X線透過窓を有する真空容器と、
前記真空容器内で電子ビームを発生する電子銃と、
前記真空容器内に配置され、異なる 1次ターゲットと 2次ターゲットとを重ねて組み 合わせた複数組のターゲット部を有し、これら複数組のターゲット部を前記電子銃か ら電子ビームが入射する電子ビーム入射位置に対して移動可能とし、前記電子ビー ム入射位置に配置されたターゲット部の 1次ターゲットが電子ビームの入射によって X 線を透過させて放出するとともに 2次ターゲットが 1次ターゲットから放出される X線に よって励起された特性 X線を透過させて前記 X線透過窓から放出するターゲット体と 前記真空容器内のターゲット体を移動させる移動機構と を具備して 、ることを特徴とする X線源。
[10] 複数組のターゲット部に対応した複数のフィルタを有し、真空容器の X線透過窓の 外側でターゲット体と一体に移動可能に設けられ、前記電子ビーム入射位置に配置 されたターゲット部に対応するフィルタが、 2次ターゲットから放出される特性 X線に含 まれる Κ β線及び K a線のうち、 Κ β線を減弱させ、 K a線を透過させて放出するフ ィルタ体を具備している
ことを特徴とする請求項 9記載の X線源。
[11] X線透過窓を有する真空容器と、
前記真空容器内で電子ビームを発生する電子銃と、
前記真空容器内に配置され、異なる 1次ターゲットと 2次ターゲットとフィルタとを重 ねて組み合わせた複数組のターゲット部を有し、これら複数組のターゲット部を前記 電子銃から電子ビームが入射する電子ビーム入射位置に対して移動可能とし、その 電子ビーム入射位置に配置されたターゲット部の 1次ターゲットが電子ビームの入射 によって X線を透過させて放出し、 2次ターゲットが 1次ターゲットから放出される X線 によって励起された特性 X線を透過させて放出し、フィルタが 2次ターゲットから放出 される特性 X線に含まれる Κ β線及び K a線のうち、 Κ β線を減弱させ、 K a線を透 過させて前記 X線透過窓力 放出するターゲット体と、
前記真空容器内のターゲット体を移動させる移動機構と
を具備して 、ることを特徴とする X線源。
[12] 移動可能に設けられた X線透過窓を有する真空容器と、
前記真空容器内で電子ビームを発生する電子銃と、
前記真空容器内で X線透過窓に設けられ、異なる 1次ターゲットと 2次ターゲットとを 重ねて組み合わせた複数組のターゲット部を有し、前記 X線透過窓の移動により複 数組のターゲット部が前記電子銃力 電子ビームを入射する電子ビーム入射位置に 対して移動可能とし、その電子ビーム入射位置に配置されたターゲット部の 1次ター ゲットが電子ビームの入射によって X線を透過させて放出するとともに 2次ターゲット 力 次ターゲットから放出される X線によって励起された特性 X線を透過させて前記 X 線透過窓から放出するターゲット体と を具備して 、ることを特徴とする X線源。
[13] 移動可能に設けられた X線透過窓を有する真空容器と、
前記真空容器内で電子ビームを発生する電子銃と、
前記真空容器内で X線透過窓に設けられ、異なる 1次ターゲットと 2次ターゲットとフ ィルタとを重ねて組み合わせた複数組のターゲット部を有し、前記 X線透過窓の移動 により複数組のターゲット部が前記電子銃力 電子ビームを入射する電子ビーム入 射位置に対して移動可能とし、その電子ビーム入射位置に配置されたターゲット部の 1次ターゲットが電子ビームの入射によって X線を透過させて放出し、 2次ターゲット 力 次ターゲットから放出される X線によって励起された特性 X線を透過させて放出し 、フィルタが 2次ターゲットから放出される特性 X線に含まれる Κ β線及び K a線のう ち、 Κ β線を減弱させ、 K a線を透過させて前記 X線透過窓カゝら放出するターゲット 体と
を具備して 、ることを特徴とする X線源。
[14] 特性 X線を試料に照射する請求項 1な ヽし 12 ヽずれか記載の X線源と、
前記特性 X線の照射にて試料の表面の元素が励起して発する蛍光 X線を検出する X線検出器と
を具備して ヽることを特徴とする蛍光 X線分析装置。
[15] X線源として異なる特性 X線を照射する複数の X線源を備えて ヽることを特徴とする 請求項 14記載の蛍光 X線分析装置。
[16] 真空容器と、
前記真空容器内で電子ビームを発生する電子銃と、
前記真空容器内を区画する壁部、及びこの壁部に設けられ前記電子銃が発生す る電子ビームが通過する電子ビーム通過孔を有する区画部と、
前記区画部内に設けられ、前記電子ビーム通過孔を通過した電子ビームが入射し て X線を放出する 1次ターゲットと、
前記区画部内に設けられ、前記 1次ターゲットから放出された X線が入射して特性 X線を放出する 2次ターゲットと、
前記区画部に臨んで真空容器に設けられ、前記 2次ターゲットから放出される特性 X線を外部に放出する X線透過窓と
を具備して 、ることを特徴とする X線源。
[17] 2次ターゲットは、ボックス形で、電子ビームが通過する電子ビーム通過孔が設けら れるとともに、特性 X線をシートビーム形状に規制して放出する X線通過孔が設けら れたことを特徴とする請求項 16記載の X線源。
[18] 1次ターゲット及び 2次ターゲットは、複数のスペクトル分布の特性 X線を放出可能と するように異なる種類の材料を使用して複数設けられたことを特徴とする請求項 16ま たは 17記載の X線源。
[19] 電子銃が発生する電子ビームの加速電圧を調整して 2次ターゲットから放出する特 性 X線のスペクトル分布を制御する
ことを特徴とする請求項 18記載の X線源。
[20] 異なる種類の材料を使用した複数の 1次ターゲットと複数の 2次ターゲットとを組み 合せた複数の X線発生部を備え、これら複数の X線発生部を前記電子銃から電子ビ ームが入射する電子ビーム入射位置に対して移動可能とし、その電子ビーム入射位 置に配置された X線発生部カゝら特性 X線を放出させることを特徴とする請求項 16な いし 18 、ずれか記載の X線源。
[21] 電子銃が発生する電子ビームを偏向させて複数の 1次ターゲットのうちの任意の 1 次ターゲットに対して入射させる電子ビーム偏向手段を具備していることを特徴とす る請求項 18記載の X線源。
[22] 異なる種類の材料を使用した複数の 1次ターゲットと複数の 2次ターゲットとを組み 合せた複数の X線発生部を備え、
電子銃が発生する電子ビームを偏向させて複数の X線発生部のうちの任意の X線 発生部に対して入射させる電子ビーム偏向手段を具備している
ことを特徴とする請求項 18記載の X線源。
[23] 特性 X線を試料に照射する請求項 16な ヽし 22 ヽずれか記載の X線源と、
前記特性 X線の照射にて試料の表面の元素が励起して発する蛍光 X線を検出する X線検出器と
を具備して ヽることを特徴とする蛍光 X線分析装置。
PCT/JP2007/051710 2006-02-01 2007-02-01 X線源及び蛍光x線分析装置 WO2007088934A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07707896A EP1988564A4 (en) 2006-02-01 2007-02-01 X-RAY SOURCE AND FLUORESCENCE X-RAY ANALYSIS DEVICE
US11/905,911 US7809113B2 (en) 2006-02-01 2007-10-05 X-ray source and fluorescent X-ray analyzing apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-024261 2006-02-01
JP2006024261A JP4738189B2 (ja) 2006-02-01 2006-02-01 X線源および蛍光x線分析装置
JP2006024071A JP2007207539A (ja) 2006-02-01 2006-02-01 X線源および蛍光x線分析装置
JP2006-024071 2006-02-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/905,911 Continuation US7809113B2 (en) 2006-02-01 2007-10-05 X-ray source and fluorescent X-ray analyzing apparatus

Publications (1)

Publication Number Publication Date
WO2007088934A1 true WO2007088934A1 (ja) 2007-08-09

Family

ID=38327504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051710 WO2007088934A1 (ja) 2006-02-01 2007-02-01 X線源及び蛍光x線分析装置

Country Status (4)

Country Link
US (1) US7809113B2 (ja)
EP (1) EP1988564A4 (ja)
KR (2) KR100974119B1 (ja)
WO (1) WO2007088934A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519090A (ja) * 2010-02-03 2013-05-23 リガク イノベイティブ テクノロジーズ インコーポレイテッド マルチビームx線システム
CN111403073A (zh) * 2020-03-19 2020-07-10 哈尔滨工程大学 一种基于电子加速器的多用途终端

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7634052B2 (en) * 2006-10-24 2009-12-15 Thermo Niton Analyzers Llc Two-stage x-ray concentrator
CN102484934A (zh) * 2009-04-16 2012-05-30 埃里克·H·西尔弗 单色x-射线方法和装置
WO2010141709A1 (en) * 2009-06-03 2010-12-09 Thermo Niton Analyzers Llc X-ray system and methods with detector interior to focusing element
US20120087467A1 (en) * 2010-10-12 2012-04-12 Roxar Flow Measurement As X-ray based densitometer for multiphase flow measurement
PT2533267E (pt) * 2011-06-10 2014-07-15 Outotec Oyj Tubo de raios-x e analisador de fluorescência de raios-x utilizando radiação de excitação seletiva
DE102011079179A1 (de) * 2011-07-14 2013-01-17 Siemens Aktiengesellschaft Monochromatische Röntgenquelle
JP5871528B2 (ja) 2011-08-31 2016-03-01 キヤノン株式会社 透過型x線発生装置及びそれを用いたx線撮影装置
CN103959048B (zh) * 2011-10-04 2018-04-06 株式会社尼康 X射线装置、x射线照射方法及构造物的制造方法
US20150117599A1 (en) 2013-10-31 2015-04-30 Sigray, Inc. X-ray interferometric imaging system
WO2013185826A1 (de) * 2012-06-14 2013-12-19 Siemens Aktiengesellschaft Röntgenstrahlungsquelle und deren verwendung und verfahren zum erzeugen von röntgenstrahlung
US9177755B2 (en) * 2013-03-04 2015-11-03 Moxtek, Inc. Multi-target X-ray tube with stationary electron beam position
GB2517671A (en) * 2013-03-15 2015-03-04 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, rotary target and rotary vacuum seal
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
US10416099B2 (en) 2013-09-19 2019-09-17 Sigray, Inc. Method of performing X-ray spectroscopy and X-ray absorption spectrometer system
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
US9976971B2 (en) * 2014-03-06 2018-05-22 United Technologies Corporation Systems and methods for X-ray diffraction
EP3136970B1 (en) * 2014-05-01 2020-11-04 Sigray Inc. X-ray interferometric imaging system
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
US10431414B2 (en) * 2015-04-17 2019-10-01 NanoRay Biotech Co., Ltd. Composite target and X-ray tube with the composite target
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
KR101716860B1 (ko) * 2016-05-30 2017-03-27 주식회사 아이에스피 엑스선 형광분석 장치
EP3261110A1 (en) * 2016-06-21 2017-12-27 Excillum AB X-ray source with ionisation tool
US10247683B2 (en) 2016-12-03 2019-04-02 Sigray, Inc. Material measurement techniques using multiple X-ray micro-beams
IT201600129994A1 (it) * 2016-12-22 2018-06-22 Dfp Tech S R L Spettometro a fluorescenza x
JP6849518B2 (ja) * 2017-04-28 2021-03-24 浜松ホトニクス株式会社 X線管及びx線発生装置
CA3098114A1 (en) 2017-05-19 2018-11-22 Imagine Scientific, Inc. Monochromatic x-ray imaging systems and methods
WO2019157386A2 (en) 2018-02-09 2019-08-15 Imagine Scientific, Inc. Monochromatic x-ray imaging systems and methods
US10818467B2 (en) * 2018-02-09 2020-10-27 Imagine Scientific, Inc. Monochromatic x-ray imaging systems and methods
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
WO2019236384A1 (en) 2018-06-04 2019-12-12 Sigray, Inc. Wavelength dispersive x-ray spectrometer
JP7117452B2 (ja) 2018-07-26 2022-08-12 シグレイ、インコーポレイテッド 高輝度反射型x線源
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
WO2020051061A1 (en) 2018-09-04 2020-03-12 Sigray, Inc. System and method for x-ray fluorescence with filtering
DE112019004478T5 (de) 2018-09-07 2021-07-08 Sigray, Inc. System und verfahren zur röntgenanalyse mit wählbarer tiefe
WO2020056281A1 (en) * 2018-09-14 2020-03-19 Imagine Scientific, Inc. Monochromatic x-ray component systems and methods
EP3664119A1 (en) * 2018-12-07 2020-06-10 Siemens Healthcare GmbH X-ray device and method of applying x-ray radiation
KR102187572B1 (ko) 2019-01-24 2020-12-07 한국원자력연구원 방사선을 이용하여 위험물의 검출 및 위치 탐지가 가능한 보안 검색 장치
EP3751594B1 (de) * 2019-06-11 2024-08-28 Siemens Healthineers AG Röntgenröhre
US11152183B2 (en) 2019-07-15 2021-10-19 Sigray, Inc. X-ray source with rotating anode at atmospheric pressure
WO2021046059A1 (en) 2019-09-03 2021-03-11 Sigray, Inc. System and method for computed laminography x-ray fluorescence imaging
US11175243B1 (en) 2020-02-06 2021-11-16 Sigray, Inc. X-ray dark-field in-line inspection for semiconductor samples
JP7395775B2 (ja) 2020-05-18 2023-12-11 シグレイ、インコーポレイテッド 結晶解析装置及び複数の検出器素子を使用するx線吸収分光法のためのシステム及び方法
DE112021004828T5 (de) 2020-09-17 2023-08-03 Sigray, Inc. System und verfahren unter verwendung von röntgenstrahlen für tiefenauflösende messtechnik und analyse
US11686692B2 (en) 2020-12-07 2023-06-27 Sigray, Inc. High throughput 3D x-ray imaging system using a transmission x-ray source
US11992350B2 (en) 2022-03-15 2024-05-28 Sigray, Inc. System and method for compact laminography utilizing microfocus transmission x-ray source and variable magnification x-ray detector
US11885755B2 (en) 2022-05-02 2024-01-30 Sigray, Inc. X-ray sequential array wavelength dispersive spectrometer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001008925A (ja) * 1999-06-30 2001-01-16 Hamamatsu Photonics Kk X線撮像装置
JP2001155670A (ja) * 1999-11-18 2001-06-08 Koninkl Philips Electronics Nv 単色のx線源

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3229089A (en) * 1962-10-25 1966-01-11 Hayakawa Denki Kogyo Kabushiki An x-ray system for producing a specimen image in color
US4048496A (en) * 1972-05-08 1977-09-13 Albert Richard D Selectable wavelength X-ray source, spectrometer and assay method
US3919548A (en) * 1974-07-24 1975-11-11 David E Porter X-Ray energy spectrometer system
US3963922A (en) * 1975-06-09 1976-06-15 Nuclear Semiconductor X-ray fluorescence device
DE3716618A1 (de) * 1987-05-18 1988-12-08 Philips Patentverwaltung Strahlenquelle zur erzeugung einer im wesentlichen monochromatischen roentgenstrahlung
DE4017002A1 (de) * 1990-05-26 1991-11-28 Philips Patentverwaltung Strahlenquelle fuer quasimonochromatische roentgenstrahlung
JPH11288678A (ja) * 1998-02-10 1999-10-19 Siemens Ag 蛍光x線源
US6130931A (en) 1998-09-17 2000-10-10 Process Control, Inc. X-ray fluorescence elemental analyzer
US6781060B2 (en) * 2002-07-26 2004-08-24 X-Ray Optical Systems Incorporated Electrical connector, a cable sleeve, and a method for fabricating an electrical connection
JP2004028845A (ja) 2002-06-27 2004-01-29 Japan Science & Technology Corp 高輝度・高出力微小x線発生源とそれを用いた非破壊検査装置
US20040048496A1 (en) * 2002-09-10 2004-03-11 Chi-San Chi Electrical device connection port
KR100602638B1 (ko) * 2004-01-20 2006-07-19 삼성전자주식회사 음성 서비스 시스템 및 그 접속 방법
US7200203B2 (en) * 2004-04-06 2007-04-03 Duke University Devices and methods for targeting interior cancers with ionizing radiation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001008925A (ja) * 1999-06-30 2001-01-16 Hamamatsu Photonics Kk X線撮像装置
JP2001155670A (ja) * 1999-11-18 2001-06-08 Koninkl Philips Electronics Nv 単色のx線源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1988564A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519090A (ja) * 2010-02-03 2013-05-23 リガク イノベイティブ テクノロジーズ インコーポレイテッド マルチビームx線システム
CN111403073A (zh) * 2020-03-19 2020-07-10 哈尔滨工程大学 一种基于电子加速器的多用途终端
CN111403073B (zh) * 2020-03-19 2023-01-03 哈尔滨工程大学 一种基于电子加速器的多用途终端

Also Published As

Publication number Publication date
KR20080014736A (ko) 2008-02-14
EP1988564A1 (en) 2008-11-05
KR20090027746A (ko) 2009-03-17
EP1988564A4 (en) 2011-04-20
KR100974119B1 (ko) 2010-08-04
KR100958225B1 (ko) 2010-05-17
US20080084966A1 (en) 2008-04-10
US7809113B2 (en) 2010-10-05

Similar Documents

Publication Publication Date Title
WO2007088934A1 (ja) X線源及び蛍光x線分析装置
JP2007207539A (ja) X線源および蛍光x線分析装置
US6041095A (en) X-ray fluorescence analyzer
US7899154B2 (en) Small spot and high energy resolution XRF system for valence state determination
JP4738189B2 (ja) X線源および蛍光x線分析装置
US5940469A (en) Multi-chromatic x-ray source
JP6851107B2 (ja) X線分析装置
US20090161829A1 (en) Monochromatic x-ray micro beam for trace element mapping
JP2015513767A (ja) X線管陽極および単色化光学部品を使用して複数の励起エネルギー帯が生成されるx線分析器
US20220291155A1 (en) Hard x-ray photoelectron spectroscopy apparatus
JP2012524374A (ja) 単色x線の方法および装置
KR20020060705A (ko) X선 측정 및 검사용 복합체
US6493421B2 (en) Apparatus and method for generating a high intensity X-ray beam with a selectable shape and wavelength
US6141400A (en) X-ray source which emits fluorescent X-rays
CN112203587A (zh) 单色x射线成像系统及方法
KR20160067527A (ko) 미세패턴 측정용 Micro-XRF 장치 및 방법
KR101015903B1 (ko) 엑스선 발생기 및 이를 이용한 엑스선 분석장치
US9070530B2 (en) X-ray tube and X-ray fluorescence analyser utilizing selective excitation radiation
JP2010032341A (ja) X線分析装置
US20240044821A1 (en) Combined xrf analysis device
KR100686306B1 (ko) 균일하고 단일한 에너지를 갖는 x-선 발생방법 및 그 장치
US11315749B2 (en) X-ray tube and X-ray analysis system
JPH0362440A (ja) X線発生装置
JPH0434349A (ja) 蛍光x線分析装置
JP2500685Y2 (ja) X線照射型分析装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000164.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077022240

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007707896

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11905911

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097001747

Country of ref document: KR