DE1665042A1 - Halbleiter - Google Patents

Halbleiter

Info

Publication number
DE1665042A1
DE1665042A1 DE19661665042 DE1665042A DE1665042A1 DE 1665042 A1 DE1665042 A1 DE 1665042A1 DE 19661665042 DE19661665042 DE 19661665042 DE 1665042 A DE1665042 A DE 1665042A DE 1665042 A1 DE1665042 A1 DE 1665042A1
Authority
DE
Germany
Prior art keywords
substrate
silicon
metallized
glass
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE19661665042
Other languages
English (en)
Inventor
Pomerantz Daniel Ira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duracell Inc USA
Original Assignee
PR Mallory and Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PR Mallory and Co Inc filed Critical PR Mallory and Co Inc
Publication of DE1665042A1 publication Critical patent/DE1665042A1/de
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/02Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing by fusing glass directly to metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/326Application of electric currents or fields, e.g. for electroforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4822Beam leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/485Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/062Oxidic interlayers based on silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/403Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/408Noble metals, e.g. palladium, platina or silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/52Pre-treatment of the joining surfaces, e.g. cleaning, machining
    • C04B2237/525Pre-treatment of the joining surfaces, e.g. cleaning, machining by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/62Forming laminates or joined articles comprising holes, channels or other types of openings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/86Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02129Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92142Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92144Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01044Ruthenium [Ru]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01052Tellurium [Te]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01084Polonium [Po]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12036PN diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S228/00Metal fusion bonding
    • Y10S228/903Metal to nonmetal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ceramic Products (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Die Bonding (AREA)
  • Pressure Sensors (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

Die Erfindung betrifft Halbleitergeräte, insbesondere ein neu es Verfahren zum Verbinden von Halbleitern mit Isolatoren.
Es 1st bekannt, daß bei Halbleitergeräten mit verstreuten p-n-Übergängen die freiliegenden Begrenzungsflächen außerordentlich empfindlich hinsichtlich der Umgebungsbedingungen eind, und es wurde allgemein üblich, einen Schutz in Form ge regelter Umgebung durch überzüge vorzusehen. Um Halbleiterp-n-Übergangngeräten diesen fJohutz zu verschaffen, führte die technische Entwicklung zu teuren und komplizierten (jtehäusen oder Behältern,
Hub/M;/
vmlohe
welche den p-n-Übergang schützen, aber eine volle Verwirklichung der ganzen Vorzüge von Halbleitergeräten verhindern. Bekannt ist auch die Verwendung von Halbleitermaterial als integraler Bestandteil der Einkapselung. Diese Bauart führt jedoch zu Schwierigkeiten hinsichtlich der Anbringung der Außenleitungen und zur Anwendung von Metallteilen, welche die Kosten und den Herstellungsaufwand für derartige Geräte erhöhen. Auch ist es bekannt, die planen Oberflächen von Silicium-Halbleitergeräten durch Herstellung einer Schichtstruktur,bei der ein Ring aus Hartglas zwischen die Siliciumscheibe oder Oblate, welche die verstreuten Übergänge enthält und einer als Abdeckung zu verwendenden gewöhnlichen Siliciumscheibe eingebracht wird, die zur verbindenden Oberfläche metallisiert werden,und eine Bindung erzeugt wird, indem der Verbund Temperaturen ausgesetzt wird, die zur Erzeugung einer Hitzebindung ausreichen, einzuschließen. Hierbei wird eine dichte Verbindung von Glas zu Halbleiter geschaffen, indem ein ausreichendes Schmelzen der Stoffe verursacht wird, so daß eine Bindung eintritt. Die zu verbindenden Oberflächen müssen jedoch zuerst mit einem Metall, gewöhnlich Gold, plattiert werden,und die erhaltene Bindung ist-tatsächlich eine Glas auf Metall Versiegelung. Dieses Verfahren beseitigt zwar die Stufe des Verlötens der metallisierten Oberflächen, es ist jedoch immer noch beschwerlich und erfordert eine Anzahl komplizierter Schritte.
Ziel
009841/1476
ORIGINAL
Ziel der Erfindung ist daher die Schaffung eines verbesserten Verfahrens zur Einkapselung der planen Oberflächen von Silicium-Halbleitergeräten und monolithischen Kreisen, die verstreute p-n-Übergänge aufweisen, welches die Nachteile der bisherigen Verfahren beseitigt.
Ein Ziel der Erfindung ist es ferner, die Zahl der Seile, die in p-n-Übergangshalbleitergeräten und monolithischen Kreisen verwendet werden, zu verringern.
Ferner ist es ein Ziel der Erfindung, die Zahl der Verfahrensstufen und damit auch die Dauer der Herstellung von p-n-Übergangshalbleitergeräten und monolithischen Kreisen zu verringern.
Ziel der Erfindung ist schließlieh auch die Schaffung eines Verfahrens zum Verbinden eines Isoliermaterials direkt mit einem Leitermaterial, einem Halbleitermaterial, einem Halbleitergerät oder einem monolithischen Kreis, welches die Stufen der Metallplattierung der zu verbindenden Oberflächen und der Verlötung oder Heißverschmelzung der metallisierten Oberflächen zur Herstellungen von Verbindungen zwischen ihnen beseitigt.
Die folgende Beschreibung erläutert in Verbindung mit der beigefügten Zeichnung, in der gleiche Bezugszahlen Elemente ähnli
cher
0098*1 / U76 ßA0
eher Punktion bedeuten, die Erfindung.
In der beigefügten Zeichnung, die nur zur Verarischaulichung dient, bedeuten:
Pig. 1 eine Schnitt Einsicht des einfachen. Yerf.-tiirci-is ^α:α Varbiadeyi eir.es Halbleiters mit einem Isolator;
Pig. 2 eine Querschnittansicht einer planen Diode, die durch anodisches Verbindungen eingekapselt ist;
Pig. 3 eine bildhafte .Ansicht eines Sransistorscheibchens und des metallisierten Isolierungsblocks vor dem Zusammenlegen und anodischen Verbinden;
Pig. 4 eine Querschnittansicht eines Silicium-'fransistorscheibchens und eines metallisierten Isolators vor dem anodischen Verbinden auf- der Linie 4-4 von Pig. 3; ■
Pig. 5 eine Querschnittaiisicht des vervollständigen eingekapselten Transistors;
Fig. 6 eine Quersclmittansicht einer planen Diode und eines Transistors, die eingekapselt und durch anodische Verbindung mit einander verbunden sind;
i£. 7
009841/1476
BAD ORIGiMAk
Pig. 7 eine Querschnittansicht der planen Diode und des !Transistors von Pig. 6 gemäß einer Ausführungsformj.
Fig. 8 eine ähnliche Ansieht wie Pig. 7, welche einen anfänglichen Schritt "bei der Herstellung des Gegenstands von Pig. 6 unter Verwendung einer etwas unterschiedlichen Ausführungsform erläutert.
Allgemein ausgedrückt, schafft die Erfindung ein neuartiges Verfahren zur Verbindung elektrisch leitfähigen Materials mit einem Isolator, indem die zu verbindenden Oberflächen miteinander in Berührung gebracht, die beiden in Berührung stehenden Stoffe miteinander erhitzt v/erden, bis der Isolator schwach leitfähig ist und ein geringer positiver Strom aus dem elektrisch leitfähigen Material zum Isolator geschickt wird. Der Strom fließt durch Druckkontakte, die an die äußeren Oberflächen der beiden Stoffe angelegt werden. Wenn beispielsweise ein Strom geringer Stärke im Bereicü von wenigen jxA/mm vom elektrisch leitenden Material zum Isolator für eine kurze Zeitdauer geschickt wird, bildet sich, eine Verbindung. In einem typischen Beispiel mit einem Halbleiter aus Silicium und einem Isoliermaterial aus Pyrexglas wird die Bindung durch einen Strom von. 10 /λΑ/mm innerhalb etwa 1 Minute bewirkt. Das Verfahren unterscheidet sich klar vom elektrischen Verschweißen, da die entwickelte Joule-Warme nicht ausreicht, um irgendein Schmelzen der Stoffe hervorzurufen» 3b
wird
0098417U7-6
wird "besonders darauf hingewiesen, daß keines der beteiligten Materialien-schmilzt. Die Stoffe werden lediglich-erhitzt, um den Isolator elektrisch leitfähig zu machen. Die Verbindung selbst wird einzig durch das Passieren eines positiven elektrischen Stroms vom leitfähigen Material zum"isolierenden Material erzeugt. Mach dem Abkühlen kehrt der Isolator in seinen ursprünglichen, nicht-leitfähigen Zustand zurück. Die Bindung stellt einen gleichmäßigen sauberen Film dar, der als Fortsetzung des Isolators erscheint, von dem jedoch angenommen wird, daß es sich um ein anodisches Wachstum von Oxyd des elektrisch leitenden Material handelt. Zwar werden Werte von 10 jiA/mm während 1 Minute zur Beschreibung der Erfindung angegeben, Stromstärke und Zeit können jedoch unbeschränkt verändert 'werden, solange bis das Strom-Zeitprodukt für ein Bindungswachstum ausreicht. Die genauen Werte von Stromdichte und Zeit verändern sich in Abhängigkeit von den zu verbindenden Stoffen. Wenn man jedoch bestimmte Stoffkombinationen annimmt, läßt sich eine allgemeine Relation von Strom-Zeitprodukt anwenden. Wenn beispielsweise in einem bestimmten Fall ein Bruchteil eines JoA verhältnismäßig lange durch das System geschickt wird, so wird genau so ein Bindungsfilm erzeugt, wie mit einem mA, welches 0,6 Sekunden durchgeleitet wird. Me Zeiten schwanken je nach dem Strom. Ähnlich würde, wenn zur Erzeugung einer Bindung mit einem Strom von 1 jiA ein ungefähr löminütiges Durchleiten des Stroms erforderlich wäre, ein Strom von 20 pA lediglich etwa 30 Sekunden zur Herstellung der Bindung durchgeleitet werden .
...«.; -- Müssen
00984T/1476
BAOPRlGiNAL
müssen. Die Verbindung von Halbleiter-Siliciini zu Quarz und Pyrexglas stellt gute Beispiele dar. Ein positiver Strom von einem Silicium-Plättchen, "welches als Anode dient, zu einer Kathode gILeitet, führt zur Bildung eines anodischen Films auf dem Plättchen, von dem man annimmt, daß es sich um ein Oxyd handelt. Bei der Ausführung der Erfindung wird Silicium mit Quarz verbunden, indem ein positiver Strom von ungefähr 1OpA/
2
mm vom Silicium-Plättchen zum Quarz während ungefähr 1 Minute bei !Temperaturen zwischen 700 und 1200 C geschickt wird. Die Bindung bildet sich unabhängig davon, ob die Siliclum-Oberfläche vorher oxydiert wurde oder nicht. Wenn als Isolator Pyrekglas verwendet wird, liegt der lemperaturbereich zwischen 300 und -7OQ0C* Die Temperatur für Weichglas liegt ungefähr im gleichen Bereich, und ähnlich ist es bei keramischen Stoffen, wie Porzellan. Wie oben bereits ausgeführt, muß die Temperatur so hoch sein, daß das normalerweise hoch widerstandsfähige Material geringfügig elektrisch leitfähig wird und ein niederer Strom passieren kann. Gewöhnlich ist eine beträchtliche Spannung im Bereich von einigen 100 bis zu vielleicht mehr als 1000 T erforderlich, auch wenn der Isolator sich auf erhöhter Seaperatur befindet, um die gewünschte Stromstärke zu erhalten, in Abhängigkeit natürlich von derartigen Faktoren, wie der Art dieses Isolators und seiner Dicke.
Das
009841/U76
Das erfindungsgemäße Verfahren ist beträchtlich einfacher als das= frühere Verfahren, welches aus dem Metallisieren der beiden Oberflächen und ihrer Verbindung durch Verlöten oder Heißverschmelzen besteht. Bei einigen Formen iron hybrid-integrierten Kreisen ist es erwünscht, eine Anzahl von getrennten Halbleiter-Plättchen an einem isolierendenSubstrat zu befestigen und anschließend diese zu verbinden oder eine Mehrzahl von monolithischen Silicium-Kreisen auf einem einzigen Substrat zu verbinden und einzukapseln. Die Erfindung schafft ein einfaches Mittel, um beide Schritte auszuführen. Ferner kann das Verfahren zur Einkapselung von Silicium-Halbleitergeräten, insbesondere der planen Art, durch Verbindung einer isolierenden Platte mit der planen Oberfläche des Gerätes angewendet werden. Die Beschreibung der Erfindung erfolgt zwar anhand von Halbleiter-Isolefcarverbindungen, nach dem gleichen Verfahren lassen sich jedoch auch leiter-Isolatorbindungen erzielen, und dieses findet speziell Anwendung auf dem Gebiet der Verbindung von Glas mit Metall. '_
Fig. 1 zeigt die Erfindung in einfachster Art, wobei ein HaIbleiterplättchen 10 auf einen widerstandsbeheizten Streifen 11 gebracht wird. Auf das Halbleiterplä/ttchen 10 wird eine Isolatorplatte 12 gelegt, und ein leichter Druckkontakt 13 wird auf den Isolator 12 gelegt. Der Druckkontakt 13 ist mit dem negativen Pol einer Gleichstromquelle 15 verbunden, una de-r wider- standsbeheizte streifen 11 ist mit dem positiven Pol 16 der
Gl ei oliB tromquelle
■:., ,-_·..... 0098A.1/U76
SAO ORIGINAL
Gleichstromquelle 15 verbunden. Zur Herstellung einer Bindung zwischen dem Halbleiter und dem Isolator wird das System erhitzt, bis der Isolator -schwach leitfähig ist. Ein schwacher positiver Strom wird dann vom Halbleiter zum Isolator geschickt, wobei sich die anodisch gewachsene Oxydbindung 17 bildet. Keines der Materialien schmilzt hierbei, weder durch die Hitze noch durch den Strom. Das Erhitzen dient lediglich dazu, den Isolator leitfähig zu machen. Die Verbindung wird allein dadurch bewirkt, daß ein positiver elektrischer Strom vom Leiter oder Halb leiter zum Isolator geschickt wird.
Iia speziellen Beispiel erfolgt das Erhitzen durch eine Widerstandsplatte 11, die mit einer geeigneten elektrischen Stromquelle Io verbunden ist. Es können jedoch auch andere übliche Erhitzungsmittel, wie Gas oder ein Elektroofen zu diesem Zweck angewendet werden. Gewöhnlich wird die Erhitzung aufrecht erhalten, während die Bindung durch die Stromquelle 15 bewirkt wird, insbesondere wenn die angewandten Bedingungen eine niedere Stromstärke und eine beträchtliche Zeitdauer aufweisen. In der schematischen Darstellung gemäß I1Ig. 1 wird der verbindende Stromkreis als eine Energiequelle angegeben, die einen gleichmäßigen Gleichstrom liefert. Es ist jedoch auch ein pulsierender Gleichstrom wirksam, vorausgesetzt, daß der Strom in der Eichtung vom Halbleiter zum Isolator fließt, d.h. daß der Halbleiter mit dem positiven EoI verbunden ist und, wie oben beschrieben,
die 0 0 9841/H 7 6
die Anode darstellt. Auch wurde gefunden, daß eine Wechselstromquelle unter "bestimmten begrenzten Bedingungen verwendet werden kann, einschließlich insbesondere einer niedrigen Frequenz unter etwa 50 Hz. Eine Verbindung unter Anwendung von Wechselstrom wird leicht erhalten bei einem nicht-oxydierten Halbleiter im Gegensatz zu einem, eine oxydierte Oberfläche aufweisenden, die von der Bildung des Halbleiterelementes stammt. Aus verschiedenen Versuchen scheint sich zu ergeben, daß das filmbildende Phänomen nicht umkehrbar ist und daher ein Wechselstrom oder irgendein Strom in der entgegengesetzten Richtung die Bindung nicht zerstört oder verschlechtert. Aus dem Vorstehenden ergibt sich, daß der hier verwendete Ausdruck "einen positiven elektrischen Strom" von einer ersten Komponente zu einer anderen Komponente durchleiten bedeutet, daß die erste Komponente die Anode darstellt und der Strom kontinuierlich oder intermittierend sein kann.
TJm sicherzustellen, daß die Bindung und die hermetische Versiegelung sich über die gesamte Berührungsfläche erstrecken, ist es wichtig, daß die gemeinsamen Oberflächen an allen Stellen dicht anliegen. Daher sollten sie bei planen Oberflächen so flach wie möglich sein mit einem guten Finish. Vorzugsweise sollte der Halbleiter oder das Metall und der Isolator einen ähnlichen thermischen Koeffizienten aufweisen, um die Gefahr einer ülrennung beim Abkühlen der Einheit zu verringern. Silicium
und
0Ö9841/U76
BAD ORIGINAL.
1685042
und "bestimmte Gläser einschließlich insbesondere Pyrexglas ' stellen in dieser Hinsicht eine ideale Kombination dar und haben ganz ähnliche Koeffizienten. Im allgemeinen ist eine Abtrennung bei einem duktilen Metall weniger zu befürchten. Auch hilft in jedem Falle eine langsame Abkühlung, eine !rennung zu vermeiden.
Wenn im Beispiel, wie in S1Ig. 1 gezeigt wird, Silicium und Quarz als Halbleiter bzw. Isolator verwendet werden, wird das System auf eine Temperatur zwischen TOO G und 12ÖO°G erhitzt,
und ein positiver Strom von ungefähr 10 uA/mm wird etwa 1 Minute lang vom Silicium zum Quarz geleitet. In einem speziellen Jail würde das System auf ungefähr 90O0G erhitzt. Der anodisch gewachsene Film, von dem angenommen wird, daß er aus Siliciumoxyd besteht; oder dieses enthält, bildet ^Lne außerordentlich feste Verbindung zwischen dem Silicium und dem Quarz.
In einem anderen typischen Beispiel, in dem der Halbleiter aus Silicium und der "Isolator aus Quarz bestanden, wurde ein Yer-
bindungsstrom von 4 fiA/mm und eine Zeitdauer von 20 Minuten angewendet, wobei die Temperatur im oben angegebenen Bereich von 700 bis 12000G lag.
Wenn, wie bereits angegeben, als Isolator Pyrexglas verwendet wird, liegt der Temperaturbereich zwischen 5000G und 7000G.
In
009841 /H76 . .. .
In einem speziellen Beispiel betrug der Verbindungsstrom
2 '
mm während eines Zeitraums von 20 Minuten, und die temperatur war etwa 400 0.
Die allgemeine Anwendung der Prinzipien der Erfindung wird durch weitere Beispiele erläutert, die unter den vielen Ausführ ungsformen gewählt wurden, welche ausgeführt worden sind und wobei sich in jedem Fall eine starke hermetisch abgedichtete Bindung ergab.
Ein Germanium-Halbleiter wurde nach der in I'ig. 1 allgemein dargestellten Methode mit Pyrexglas verbunden, wobei, die Bedingungen ungefähr ein Verbindungs strom von 3 tiA/mm^ während 2 Minuten bei 45O0O waren.
Als Beispiele für andere Isolierstoffe wurde ein Silicium-Halbleiter mit einem Weichglas-Isolator verbunden unter Anwendung von 5 fiA/mm .während 4 Minuten bei 450 C. Auch wurde ein Silicium-Leiter mit einem Saphir-Isolator verbunden unter iminütiger Anwendung von 1 μλ bei 650 C
In einem anderen Beispiel wurde ein Halbleiter aus Galliumarsenid .mit Weicliglas verbunden unter 3minütiger Anwendung von 25 μΑ bei 45O0C.
In
009841/1476
BAD ORIGINAL
IiJ- Pig. 2 v;ircl eine plane Diode 20 gezeigt, die nach dem erf indungsgemäi3en Verfahren eingekapselt wurde. Die Herstellung dieses "Geräts stellt ungefähr das Äußerste an Einfachheit dar. Ein geeigneter Halbleiter, wie z.B. ein SiIieium-Einkristall, wird in bekannter "Vfeise in Plättchenform hergestellt. Das Plättchen 21,aus dem die plane Diode 20 hergestellt werden soll, wird einer Diffusionswärmebehandlung unter Anwendung einer merklichen Verunreinigung zur Erzeugung eines p-n-Übergangs 23 in ■vorgeschriebener Entfernung von einer Oberfläche unterworfen. Der untere oder größere Teil 21a des Plattchens 21 , der als Kathode dient, besteht aus Silicium vom Leitfähigkeitstyp n. Eine Verunreinigung vom ρ-ΐνρ, wie Bor, wird in eine Oberfläche des Plättchens diffundiert, um einen Oberflächeiiteil 21b in den leitfähigkeitstyp ρ umzuwandeln. Der Leitfähigkeitsteil 21b vom p-i'yp dient * als Anode. Eine Isolatorplatte 24 wird auf die oxydierte Oberfläche 26 des Sillcium-Plättchens 21 gelegt. Die Isolatorplatte 24 wird durch geeignete Mittel, wie in Fig. 1 gezeigt, vorerhitzt, und der VerbindungsStromkreis wird quer durch die Komponenten, ähnlich wie in fig. 1 gezeigt, eingerichtet, wobei die positive Klemme der Stromquelle mit dem Plättchen 21 verbunden wird. Sobald ein positiver Strom vom Plättchen 21 zum Isolator
24 fließt, bildet sich das anodisch gewachsene Oxyd 26· und verbindet Plättchen 21 und Isolator 24.
Eine
009841/1476 BW>offl®NM.
Eine Anodenleitung wird auf die Außenseite des Geräts gebracht vermittels eines Metallfilms 25» der durch eine öffnung in der Isolatorplatte 24 nach der "Verbindung verdampft wird. Die Öffnungen in der Isolatorplatte können vor oder nach Herstellung der Verbindung gebildet werden. Der Metallfilm 25 bedeckt zusammenhängend die Oberfläche der Isolatorplatte und dient auch als Anodenkontakt. Ein Kathoden-Kontakt 22 wird durch einen Me-■ballfilm, der auf den η-Teil 21a des Plättchens 21 aufgedampft wird, hergestellt.
Die erhaltene Packung stellt eine außerordentlich einfache und leicht herstellbare Art eines "pellet"-Gerätes mit folgenden. Vorteilen dar: Der Übergang ist hermetisch in Quarz und/oder Glas eingeschlossen bzw. versiegelt. Lediglieh zwei l'eile sind erforderlieh» Volumen, Fläche und Gewicht sind minimal. Das Silicium kann direkt mit einem Heizkanal zum besseren Wärmeübergang verbunden werden.
In Fig. 3 wird das Verhältnis zwischen einem Silicium-iDransistorscheibehen, dem metallisierten Substrat und den Außenleitungen deutlich gezeigt. Das Silicium-Scheibchen 30 weist metallisierte Verbindungen 34» 35 und 36 auf, die auf entsprechende metallisierte Verbindungen 39 > 40 und 41 auf dem isolierenden Substrat 38 gebracht werden sollen. Die metallisierten Verbindungen 39, 40 und 41 verlaufen auf dem Substrat 38 unter Bildung der Außenleitungen 39f » 40' bzw. 41'. -.
In
0.0 9 841/14 7-6
BAD ORIGINAL
In Fig. 4 wird das Silicium-Transistorplättchen 30 vor der Verbindung mit dem isolierenden Substrat 38 gezeigt. Das Transistorscheibchen 30 ist mit metallisierten Kontakten 34» 35 und 36 hergestellt', welche die Kollektorregion 31» die Basisregion 32 und die Emitterregion 33 berühren. Die verbleibenden Flächen sind gewöhnlich durch eine Isolierschicht 37 aus Siliciumdioxyd geschützt, die während der Herstellung des Geräts gewachsen ist. Das isolierende Substrat 38 weist% metallisierte Kontakte 39» 40 und 41 auf, welche aufgedampft wurden. Mit Aluminium metallisiertes Pyrexglas erwies sich als hervorragende Kombination* Das Transistorscheibchen 30 wird auf das isolierende Substrat 38 gelegt, so daß die metallisierten Flächen 34» 35 und 36 des Plättcheiis die entsprechend metallisierten Flächen 39» 40 und 41 des Substrats berühren. Das Transistorplättchen 30 und de„s isolierende Substrat 38 werden dann durch anodische Bindung versiegelt, in gleicher Weise wie dies in den einfacheren Kombinationen der Fig. 1 und 2 gezeigt wurde. Obwohl die metallisierten Verbindungspaare 34, 39 und· 35, 40 und 36, 41 in direktem Kontakt stehen, stellte sich beim Betrieb heraus, daß dies keinen Kurzschluß des Verbindungsstromkreises zur Folge hat, mindestens nicht in dem Ausmaß, daß die Bildung des Verbindungsfilmes !verhindert wird, wahrscheinlich infolge des höheren Widerstands des Glases, der zur Folge hat, daß der elektrische Strom auf der
ganzen
09Ö41/1476
ganzen Fläche der direkten Berührung zwischen dem Glas 38 und dem Silicium-Plättchen 30 verteilt wird.
Fig. 5 gibt eine Schnittansicht des eingekapselten SiIiciumtransistors 43. Die Flächen 42, 42', .42" und 42'" stellen das anodisch gewachsene Oxyd dar, welches den Transistor mit dem Substraten=-verbindet. Man erkennt, daß sie aus dem bei der Herstellung gewachsenen Oxyd 37 herausragen. Die Verbindung kann auf einer vorher oxydierten Oberfläche oder auf einer oxydfreien Oberfläche ausgeführt werden. Die metallisierten Teile 39, 40 und 41 auf dem Substrat 38 erstrecken sich über den Transistor 30 hinaus und schaffen damit die Außenkontakte. Bei der Ausführung der Erfindung ist es nicht- notwendig, das ■üalbleiter-Plättchen zu metallisieren. Es reicht aus, bestimmte Öffnungen im Oxyd zu lassen, welche--entsprechende Silieiumflachen freilegen. Das Aluminium des Substrates kommt in Berührung mit den Siliciumflachen, so daß eine Stufe, das Metallisieren des Halbleiter-ocxieibcliens, weggelassen werden kann.
Fig. 6 zeigt jede von zwei Methoden zur Verbindung verschiedener Silicium-Elemente mit einem Substrat. Einerseits können die Silicium-Elemente 20 und 30 einzeln montiert werden, wie gezeigt. Andererseits kann ein Halbleiter-Plättchen 50, welches mehrere Geräte enthält, mit einem isolierenden Substrat 51 verbunden werden, auf dem ein metallisiertes Muster abgeschie-
den
009841/1476 bad ORlGtHAu
den wurde, um die verschiedenen Geräte entsprechendxeinem bestimmten Stromkreis zu verbinden, lach .der Verbindung werden die Kalbleiterregionen zwischen verschiedenen Geräten durch Atzen oder nach einem anderen geeigneten Verfahren entfernt, um die verschiedenen Halbleitergeräte voneinander zu isolieren. Hierdurch wird die !Notwendigkeit beseitigt, jedes Gerät einzein zu montieren und aufzulegen. Dieses Schema wurde auch dazu verwendet, mehrere monolithische Silicium-Stromkreise miteinander zu verbinden und sie einzukapseln.
Zur Veranschaulichung, wird in" Fig. 6 eine ö-chnittansicht eines Teils eines vollständigen integrierenden, Silicium-Stromkreises 50 gezeigt, der aus einer planen Diode 20, wie in Fig. 2 gezeigt, und einem Transistor 30, wie in Fig. 3 gezeigt, besteht, die miteinander verbunden und eingekapselt wurden. Das isolierende Substrat 51 weist Öffnungen 60 auf, so daß die metallisierten Teile des Substrates 51 entsprechende Abschnitte des Siliciums auf den verschiedenen Geräten berühren können. Der äk Metallkontakt 52 verbindet die Kathode 21a der Diode 20 mit dem Emitter 33 &es Transistors 30. Der Metallkontakt 35 schafft einen Außenkontakt für die Basis 32 des Transistors 30, und der Eontakt 57 liefert einen Außenkontakt für den Kollektor 31 des Transistors 30. Ähnlich liefert der Kontakt 58 einen Außenkontakt für die Anode 25 der Diode 20. Anodisch gewachsenes Oxyd 59 verbindet die Kreise mit dem Substrat.
Das
009841/14-76
Ί665042
Das Metallisieren und Isolieren der verschiedenen Geräte auf dem Plättchen wird nach dein Verbindungs verfahr en ausgeführt.
Wie o"ben beschrieben, veranschaulicht l?ig. 6 jede der beiden Methoden zur Verbindung verschiedener Halbleiter mit einem Substrat. i"ig. 7 veranschaulicht den ersten Schritt bei einer derartigen Technik. Das Isolator-Substrat 51 weist die vorgebildeten Öffnungen 60 des Endprodukts von Hg- 6 auf. Bs steht in engem planarem Kontakt mit den einzelnen Halbleitern 20 und 50. Das Substrat 21 weist vorzugsweise eine darauf angebrachte Glasplatte 70 zur Verteilung des elektrischen Stroms auf die verschiedenen Teile des Substrats 51 auf,und auf der Platte 70 ist der Widerstaridsheizstreifen 71 angebracht mit seiner elektrischen Energiequelle 72. Die einzelnen Halbleiter 20 und 30 weisen jeweils unabhängige elektrische Stromquellen für die Verbindung auf, wie bei 74 bzw. 75 angedeutet ist. Gegebenenfalls können sie eine gemeinsame negative Leitung 76 aufweisen. Die .Leitung 76 wird in H1Xg. 7 als mit dem Widerständeheizstreifen 71 verbunden gezeigt, der wiederum elektrisch mit dem Substrat 51 durch die Stromverteilungsplatte 70 in Verbindung steht. Wie oben in Zusammenhang mit Pig. 6 beschrieben, erzeugt die Anwendung der Verbindungs ströme auf die jeweiligen Halbleiter den anodisch gewachsenen Verbindungsfilm 59· In den Zeichnungen- kann der Film 59 als aus dem anodisch gebildeten Verbindungsfilm zusammen mit allem anfänglich vorhandenen Oxyd
film
009841/U76
BADORIGINÄL
film auf dem Silicium betrachtet werden. Im Anschluß an den Verbindungsarbeitsgang werden der Heizstreifen 71 und die Glasplatte 70 natürlich entfernt und das metallisierte Muster 52 mit den Kontakten 58, 35 und 57, wie in Fig. 6 gezeigt^wird aufgebracht. . ■ " ■
Fig. 8 veranschaulicht den ersten Schritt für eine andere Ausführungsform des Verfahrens zur Herstellung des Gerätes von Fig. 6. In diesem Fall stellt das bei 51! gezeigte Substrat eine feste, zusammenhängende Platte dar, ohne anfänglich die Öffnungen 60 aufzuweisen,und aaher wird die Glasverteilungsplatte 70 weggelassen. Ansonsten ist das System ähnlich dem von Fig. 7 und ähnliche 'ieile weisen ähnliche Bezugszahlen auf. Im Anschluß an die Bildung des Verbindungsfilms 59 "werden die Öffnungen 60 beispielsweise durch Ätzen oder andere geeignete Mittel gebildet, und das metallisierte Muster 52, welches die Kontakte oder Leitungen 58, 35 und 57 von Fig. 6 aufweist, wird aufgebracht.
In einer Abänderung der Ausführungsformen der Fig. 7 und 8 kann der Halbleiter, wie beispielsweise die Silicium-Elemente 20 und 30, anfänglich aus einem einzigen integralen Plättchen bestehen. Die anfangliche Anordnung kanu dann entweder ahnlich wie in Fig. 7 oder wie in Fig. 8 je nach Wunsch sein, abgesehen davon, daß lediglich ein Verbindungskreis (74 oder 75) erforderlich wäre. !lach dem Verbinden wird die Fläche des Silicon-Plattchens 009841/U76
Plä-fctchens, die, die Elemente 20 und 30 miteinander verMndet, durch. Ätzen oder andere Mittel entfernt, so daß diese voneinander elektrisch isoliert werden» Die v/eiteren Schritte werden je nachdem, wie in Verbindung mil; den "Pig. 7 oder 8 "beschrieben, durchgeführt.
Die -vorstehend angegebenen Beispiele betreffen das Verbinden eines Isolators mit einer Komponeiitenart, die im allgemeinen als Halbleiter bezeichnet wurde und die normalerweise einen Leitungswiderstand gegenüber dem elektrischen Strom aufweist, der beträchtlich höher ist als beispielsweise der von Metallen. Außer der Anwendung bei Halbleitergeräten erwies sich das anodische Verbindungsverfahren auch zur Verbindung von Aluminium und Platin mit Glas zusammen mit einer Anzahl von anderen Metallen, insbesondere den Ventilmetallen, als geeignet. Das Verfahren wurde unter Verwendung einer Anzahl von Isolierstoffen einschließlich von Glas, Quarz und Tonerde * aus ge führ* t. Das Verfahren kann in Luft oder in verschiedenen oxydierenden Atmosphären ausgeführt werden. Eine oxydierende Atmosphäre ist jedoch nicht notwendig, da der Isolator auch Sauerstoff zur Verfugung stellt.
Die folgenden Beispiele erläutern das Verbinden von elektrisch leitenden Metallen mit einem Isolator, wobei in jedem Pail ein System angewendet wird, welches in Anordnung und Bauweise dem von Fig. 1 ähnlich ist, wobei die angegebenen Werte ungefähr sind». =
Aluminiumblech QQ9841/U76
BAD ORIGINAL
Aluminiumblech wurde mit Pyrexglas sinter Anwendung einer Verhindungstromdichte von 1 jiA/mm während 10 Minuten bei einer lemperatur von 400 C verbunden.
Platinfolie wurde mit Weichglas unter Anwendung eines Verbindungs Stroms von 5 μΑ/mm während 7 Minuten bei einer Temperatur von 400 C verbunden.
Berylliumblech v/urde mit Glas unter Anwendung eines Verbindungsstroms von 25 uA/mm während 3 Minuten bei 400 C verbunden. iitanblech wurde mit G-läs bei- ähnlichen Werten für Strom, Dauer und ΐemperatur verbunden.
In der Klasse der keramischen Isolatoren wurde Palladium mit Porzellan unter Anwendung eines Verbindungsstroms vöii 100 pX/ mm während 5 Minuten bei 400 G verbunden* :
Die vorliegende Erfindung weist eine Anzahl von Vorteilen auf, von denen die wichtigsten folgende .sinä:
1. Verbindungen und hermetische Abdichtungen zwischen unähnlichen Stoffen können bei niedrigeren liiemperaturen hergestellt werden als mit den konkurrierenden Verfahren, beispielsweise einer Glas auf Metall Versiegelung. :
Q09841/U76
Ί665042
2. War keine Schmelzphase vorhanden, werden Verzerrungen "vermindert, und die Dimensionstoleranzen werden verbessert.
3. Da die Verbindung bei verhältnismäßig niedrigen Temperaturen hergestellt werden kann, können Stoffe mit unterschiedlichen Wärmeausdehnungskoeffizienten mit geringerer Rißbildungsgefahr verbunden werden, da sie nicht von so hohen Temperaturen abgekühlt werden müssen. So wurde Aluminium mit Glas verbunden, obwohl seine Wärmedehnung etwa viermal so groß ist. Viele andere Metalle, von denen man gewöhnlich nicht annimmt, daß sie mit Glas versiegelt oder verbunden werden können, sind infolge dieses Faktors für diese Anwendungen brauchbar.
die oben beschriebene ".·Erfindung gibt es viele Anwendungen. Auf dem Gebiet der SiIieium-Halbleitergeräte wurde sie z.B. angewendet: : ■ '.
,1. Zur Einkapselung und Herstellung von leitungen von der planaren Oberfläche eines einzelnen Gerätes.
2. Zur Montierung» Einkapselung der planaren Oberflächen, Verbindung und Schaffung der leitungen einer Mehrzahl getrennter Geräte auf einem einzigen Substrat, und
3. Zur Montierung, Einkapselung der planaren Oberflächen, Verbindung und Herstellung von leitungen für eine Hehrzahl von monolithischen integrierten Siliciura^Kreisen auf einem einzigen Substrat.
009341/1476
»AD ORIGINAL
-. 23 -
Zwei wahlweise anwendbare Ausführungsformen zur Herstellung der Verbindungen und Leitungen wurden beschrieben. Das eine Verfahren test ent z.B. darin, daß im Substrat "bestimmte Öffnungen gebildet werden, das Substrat so aufgelegt wird, daß die Öffnungen entsprechende Kontakiereiche auf den planaren Oberflächen des Gerätes, der Geräte oder Kreise freiliegen und Aufdampfen der Metallkontakte und der Leitungen nach dem Yerbindungsverfahren. Ein zweites .Verfahren besteht in der Herstellung metallisierter Eontakte auf den Kontaktflächen der planaren Oberflächen oder freiliegenden bestimmten Stellen des Siliciums, Herstellung entsprechender metallisierter Kontakte auf dem Substrat, Aufeinanderlüegen des Gerätes, oder der Geräte und des Substrats vor dem Verbinden, so daß die entsprechenden Kontakte öder Kqntakt-Silieiumflachen aufeinahderliegen und Herstellung der Verbindung, um die Einkapselung und aen elektrischen Kontakt zu bewirken. In letzterem J?all ist das Substrat beträchtlich größer als das SiIicium-Scheibchen,und die.Kontakte auf dem Substrat enden in Außenleitungen auf der Fläche des Substrats, die sich über das Scheibehen hinaus erstreckt»
Palis erforderlich, wird die nicht planare Oberfläche des Ge- . rätes metallisiert, um einen zusätzlichen Kontakt zu schaffen. Wenn eine Mehrzahl von getrennten Geräten oder Kreisen miteinander verbunden und eingekapselt werden sollen, Minnen sie ent
weder
weder auf einem einzigen Plättchen gebildet und durch Ätzen, maschinelle Bearbeitung oder andere geeignete Mittel nach der. Verbindung isoliert werden, oder sie können einzeln auf das Substrat aufgebracht v/erden.
Man erkennt, daß die Erfindung einen weiten Anwendungsbereich aufweist und die hier anhand einer beispieleweisen Ausführungsform gegebene Beschreibung lediglich zum besserenVerständnis dient.
Patentansprüche
009841/1476
BAD ORIGINAL

Claims (1)

  1. Patentansprüche
    1) Verfahren zur "Verbindung eines Isoliermaterials mit einem leitfähigen Material, dadurch gekennzeichnet, daß die zu verbindenden Stoffe so aufeinandergelegt werden, daß sie in inniger Berührung stehen, das Isoliermaterial auf eine Temperatur erhitzt wird, bei der es elektrisch leitfähig ist, die jedoch unter dem Schmelzpunkt der zu verbindenden Elemente liegt,und ein positiver elektrischer Strom quer · Jm über die aufeinanderliegenden Kontaktflächen vom ,leitfähigen Material zum Isoliermaterial geschickt wird.
    2) Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Isoliermaterial auf eine Temperatur zwischen 300 und 12000O erhitzt wird.
    3) Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet,
    daß als Isoliermaterial Glas, Quarz, Keramik oder Saphir ^ •verwendet wird und als 1extfähiger Stoff ein Halbleiterelement aus Silicium, Germanium oder Galliumarsenid.
    4) Verfahren nach Anspruch 3» dadurch gekennzeichnet, daß zur Verbindung eines Silicium-Halbleiters mit einem Pyrexglas-Substrat das Substrat auf eine Temperatur von 3OQ0C bis 7OQ0O erhitzt wird.
    009841/1476
    -26- 1-6650Λ2
    5) Verfahren nach Anspruch 3» dadurch gekennzeichnet, daß zur Verbindung eines Silicium-Plättchens mit einem Quarz-Substrat auf 70O0G bis 120O0C erhitzt wird und etwa 1 Minute
    2 lang ein positiver Strom von etwa 10 jaA/mm vom SiIi ciui»- Plättchen zum Quarzsubstrat geschickt wird.
    6) Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß zur Einkapselung des p-n-Übergangs sines Silicium-HaTbleitergerätes mit planarer Oberfläche ein isolierendes Substrat verwendet wird, welches bestimmte Öffnungen aufweist und nach dem Verbinden von Halbleiter und Isolator bestimmte flächen des Substrats so metallisiert werden,--daß sich die Metallisierung auf die durch die Öffnungen^ fiägelegten Kontaktflächen des G-erätes erstreckt.
    7) Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß zur Einkapselung des p-n—Übergangs eines. Silicium-Halbleitergerätes mit planarer Oberfläche auf einem isolierenden Substrat nach Herstellung der Verbindungen Öffnungen in das Substrat eingearbeitet werden und bestimmte) (?:· Flächen des Substrats so metallisiert werden, daß-sieh 4Ae Metallisierung auf die durch die Öffnungen freigelegten, ?- Stellen der Kontaktfläche des G-erätes erstreckt«
    8j Verfahren nach einein der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß zur Einkapselung der p-n-p planeren Oberfläche eines Silicium-Halbleitergerätes auf jede der p-n-p Flächen
    009*41/1-476 ein
    ,. .-. . %" BAD ORIGINAL
    ein elektrischer Kontakt aufmetallisiert wird und entsprechende Verbindungen auf die Oberfläche eines isolierenden Substrates, welches.größer ist als das Gerät, aufmetallisiert werden, Substrat und Gerät mit den metallisierten !"lachen passend aufeinandergelegt werden, so daß sich die Verbindungsleitungen auf dem Substrat über das Gerät hinaus erstrecken und dsnn die Verbindung durch Erhitzen und Durchsenden eines, positiven Stroms vorgenommen wird.
    9) Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Verbindung eines Aluminiumgerätes mit einem Glassubstrat auf eine Temperatur zwischen 200Qö und 700 C erhitzt wird
    und etwa 1 Minute lang ein Strom von etwa TO uA/mm vom Aluminium zum Glas geschickt wird.
    10) Aus einem elektrisch leitfähigen Material und einem Isoliermaterial bestehender Gegenstand, dadurch gekennzeichnet, daß er nach einem der vorhergehenden Ansprüche hergestellt wurde*
    11) Gegenstand nach Anspruch 10, dadurch gekennzeichnet, daß das leitfähige Element aus Aluminium, Platin, Beryllium, Titan oder Palladium und der Isolator aus Glas, Quarz, Keramik oder Saphir besteht.
    12) Gegenstand nach Anspruch 11, dadurch, gekennzeichnet, daß er aus Aluminium und Pyrexglas besteht.
    0098«t/H76
DE19661665042 1965-05-06 1966-05-04 Halbleiter Pending DE1665042A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US45360065A 1965-05-06 1965-05-06
US51177165A 1965-12-06 1965-12-06
US583907A US3397278A (en) 1965-05-06 1966-10-03 Anodic bonding

Publications (1)

Publication Number Publication Date
DE1665042A1 true DE1665042A1 (de) 1970-10-08

Family

ID=27412574

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19661665042 Pending DE1665042A1 (de) 1965-05-06 1966-05-04 Halbleiter

Country Status (13)

Country Link
US (1) US3397278A (de)
JP (1) JPS5328747B1 (de)
BE (1) BE680529A (de)
BR (1) BR6679299D0 (de)
CH (1) CH451273A (de)
DE (1) DE1665042A1 (de)
DK (1) DK127988B (de)
FR (1) FR1478918A (de)
GB (1) GB1138401A (de)
IL (1) IL25656A (de)
NL (1) NL153720B (de)
NO (1) NO119844B (de)
SE (1) SE351518B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19525388A1 (de) * 1994-07-12 1996-01-25 Mitsubishi Electric Corp Elektronikbauteil und Verfahren zu dessen Herstellung
US5900671A (en) * 1994-07-12 1999-05-04 Mitsubishi Denki Kabushiki Kaisha Electronic component including conductor connected to electrode and anodically bonded to insulating coating

Families Citing this family (180)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3470348A (en) * 1966-04-18 1969-09-30 Mallory & Co Inc P R Anodic bonding of liquid metals to insulators
US3506545A (en) * 1967-02-14 1970-04-14 Ibm Method for plating conductive patterns with high resolution
US3506424A (en) * 1967-05-03 1970-04-14 Mallory & Co Inc P R Bonding an insulator to an insulator
US3521128A (en) * 1967-08-02 1970-07-21 Rca Corp Microminiature electrical component having integral indexing means
US3577629A (en) * 1968-10-18 1971-05-04 Mallory & Co Inc P R Bonding oxidizable metals to insulators
US3722074A (en) * 1969-04-21 1973-03-27 Philips Corp Method of sealing a metal article to a glass article in a vacuum-tight manner
JPS4831507B1 (de) * 1969-07-10 1973-09-29
US3697917A (en) * 1971-08-02 1972-10-10 Gen Electric Semiconductor strain gage pressure transducer
US3783218A (en) * 1972-01-12 1974-01-01 Gen Electric Electrostatic bonding process
US3775839A (en) * 1972-03-27 1973-12-04 Itt Method of making a transducer
US3778896A (en) * 1972-05-05 1973-12-18 Bell & Howell Co Bonding an insulator to an inorganic member
US3781978A (en) * 1972-05-16 1974-01-01 Gen Electric Process of making thermoelectrostatic bonded semiconductor devices
BE792414A (fr) * 1972-06-21 1973-03-30 Siemens Ag Procede d'etablissement d'une liaison etanche aux gaz pour des pieces en silicium ou carbure de silicium cristallin
US4034181A (en) * 1972-08-18 1977-07-05 Minnesota Mining And Manufacturing Company Adhesive-free process for bonding a semiconductor crystal to an electrically insulating, thermally conductive stratum
US3803706A (en) * 1972-12-27 1974-04-16 Itt Method of making a transducer
US3951707A (en) * 1973-04-02 1976-04-20 Kulite Semiconductor Products, Inc. Method for fabricating glass-backed transducers and glass-backed structures
US3805377A (en) * 1973-04-18 1974-04-23 Itt Method of making a transducer
JPS5527120Y2 (de) * 1974-03-28 1980-06-28
US3902979A (en) * 1974-06-24 1975-09-02 Westinghouse Electric Corp Insulator substrate with a thin mono-crystalline semiconductive layer and method of fabrication
US3953920A (en) * 1975-05-14 1976-05-04 International Telephone & Telegraph Corporation Method of making a transducer
CA1063254A (en) * 1975-09-04 1979-09-25 Shu-Yau Wu Electrostatically bonded semiconductor-on-insulator mos device, and a method of making the same
CA1078217A (en) * 1976-03-31 1980-05-27 Robert C. Whitehead (Jr.) Force transducing cantilever beam and pressure transducer incorporating it
US4203128A (en) * 1976-11-08 1980-05-13 Wisconsin Alumni Research Foundation Electrostatically deformable thin silicon membranes
US4083710A (en) * 1977-01-21 1978-04-11 Rca Corporation Method of forming a metal pattern on an insulating substrate
US4109063A (en) * 1977-06-17 1978-08-22 General Electric Company Composite body
US4142946A (en) * 1977-06-17 1979-03-06 General Electric Company Method of bonding a metallic element to a solid ion-conductive electrolyte material element
US4197171A (en) * 1977-06-17 1980-04-08 General Electric Company Solid electrolyte material composite body, and method of bonding
US4142945A (en) * 1977-06-22 1979-03-06 General Electric Company Method of forming a composite body and method of bonding
US4179324A (en) * 1977-11-28 1979-12-18 Spire Corporation Process for fabricating thin film and glass sheet laminate
DE2943231A1 (de) * 1978-03-17 1980-12-11 Hitachi Ltd Semiconductor pressure sensors having a plurality of pressure-sensitive diaphragms and method of manufacturing the same
JPS54131892A (en) * 1978-04-05 1979-10-13 Hitachi Ltd Semiconductor pressure converter
US4216477A (en) * 1978-05-10 1980-08-05 Hitachi, Ltd. Nozzle head of an ink-jet printing apparatus with built-in fluid diodes
JPS5516228A (en) * 1978-07-21 1980-02-04 Hitachi Ltd Capacity type sensor
JPS5543819A (en) * 1978-09-22 1980-03-27 Hitachi Ltd Pressure detecting equipment
JPS5544786A (en) * 1978-09-27 1980-03-29 Hitachi Ltd Pressure sensor
US4230256A (en) * 1978-11-06 1980-10-28 General Electric Company Method of bonding a composite body to a metallic element
DE2909985C3 (de) * 1979-03-14 1981-10-22 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zur Herstellung eines Halbleiter-Glas-Verbundwerkstoffs und Verwendung eines solchen Verbundwerkstoffes
US4234361A (en) * 1979-07-05 1980-11-18 Wisconsin Alumni Research Foundation Process for producing an electrostatically deformable thin silicon membranes utilizing a two-stage diffusion step to form an etchant resistant layer
US4294602A (en) * 1979-08-09 1981-10-13 The Boeing Company Electro-optically assisted bonding
US4261086A (en) * 1979-09-04 1981-04-14 Ford Motor Company Method for manufacturing variable capacitance pressure transducers
US4386453A (en) * 1979-09-04 1983-06-07 Ford Motor Company Method for manufacturing variable capacitance pressure transducers
US4306243A (en) * 1979-09-21 1981-12-15 Dataproducts Corporation Ink jet head structure
US4322980A (en) * 1979-11-08 1982-04-06 Hitachi, Ltd. Semiconductor pressure sensor having plural pressure sensitive diaphragms and method
NL8003696A (nl) * 1980-06-26 1982-01-18 Philips Nv Werkwijze voor het vervaardigen van een elektrische ontladingsinrichting, welke een van een elektroden- patroon voorzien glazen substraat bevat en aldus ver- kregen elektrische ontladingsinrichting.
GB2090710B (en) * 1980-12-26 1984-10-03 Matsushita Electric Ind Co Ltd Thermistor heating device
US4393105A (en) * 1981-04-20 1983-07-12 Spire Corporation Method of fabricating a thermal pane window and product
US4390925A (en) * 1981-08-26 1983-06-28 Leeds & Northrup Company Multiple-cavity variable capacitance pressure transducer
US4384899A (en) * 1981-11-09 1983-05-24 Motorola Inc. Bonding method adaptable for manufacturing capacitive pressure sensing elements
US4475790A (en) * 1982-01-25 1984-10-09 Spire Corporation Fiber optic coupler
FI65674C (fi) * 1982-12-21 1984-06-11 Vaisala Oy Kapacitiv fuktighetsgivare och foerfarande foer framstaellningdaerav
US4527428A (en) * 1982-12-30 1985-07-09 Hitachi, Ltd. Semiconductor pressure transducer
US4501060A (en) * 1983-01-24 1985-02-26 At&T Bell Laboratories Dielectrically isolated semiconductor devices
JPS6051700A (ja) * 1983-08-31 1985-03-23 Toshiba Corp シリコン結晶体の接合方法
JPS60131746A (ja) * 1983-12-20 1985-07-13 Hitachi Ltd 荷電粒子線用加速管
US4543457A (en) * 1984-01-25 1985-09-24 Transensory Devices, Inc. Microminiature force-sensitive switch
US4525766A (en) * 1984-01-25 1985-06-25 Transensory Devices, Inc. Method and apparatus for forming hermetically sealed electrical feedthrough conductors
US4632871A (en) * 1984-02-16 1986-12-30 Varian Associates, Inc. Anodic bonding method and apparatus for X-ray masks
US4613891A (en) * 1984-02-17 1986-09-23 At&T Bell Laboratories Packaging microminiature devices
FI69211C (fi) * 1984-02-21 1985-12-10 Vaisala Oy Kapacitiv styckgivare
FI75426C (fi) * 1984-10-11 1988-06-09 Vaisala Oy Absoluttryckgivare.
US4625560A (en) * 1985-05-13 1986-12-02 The Scott & Fetzer Company Capacitive digital integrated circuit pressure transducer
US4741796A (en) * 1985-05-29 1988-05-03 Siemens Aktiengesellschaft Method for positioning and bonding a solid body to a support base
US4643532A (en) * 1985-06-24 1987-02-17 At&T Bell Laboratories Field-assisted bonding method and articles produced thereby
US4639631A (en) * 1985-07-01 1987-01-27 Motorola, Inc. Electrostatically sealed piezoelectric device
US4680243A (en) * 1985-08-02 1987-07-14 Micronix Corporation Method for producing a mask for use in X-ray photolithography and resulting structure
NL8600216A (nl) * 1986-01-30 1987-08-17 Philips Nv Werkwijze voor het vervaardigen van een halfgeleiderinrichting.
DE3621331A1 (de) * 1986-06-26 1988-01-14 Fraunhofer Ges Forschung Mikroventil
US4773972A (en) * 1986-10-30 1988-09-27 Ford Motor Company Method of making silicon capacitive pressure sensor with glass layer between silicon wafers
CH671653A5 (de) * 1986-11-03 1989-09-15 Landis & Gyr Ag
US4737756A (en) * 1987-01-08 1988-04-12 Imo Delaval Incorporated Electrostatically bonded pressure transducers for corrosive fluids
US4875750A (en) * 1987-02-25 1989-10-24 Siemens Aktiengesellschaft Optoelectronic coupling element and method for its manufacture
FI872049A (fi) * 1987-05-08 1988-11-09 Vaisala Oy Kondensatorkonstruktion foer anvaendning vid tryckgivare.
FI84401C (fi) * 1987-05-08 1991-11-25 Vaisala Oy Kapacitiv tryckgivarkonstruktion.
US5013396A (en) * 1987-06-01 1991-05-07 The Regents Of The University Of Michigan Method of making an ultraminiature pressure sensor
US5207103A (en) * 1987-06-01 1993-05-04 Wise Kensall D Ultraminiature single-crystal sensor with movable member
US4881410A (en) * 1987-06-01 1989-11-21 The Regents Of The University Of Michigan Ultraminiature pressure sensor and method of making same
JPS63304133A (ja) * 1987-06-05 1988-12-12 Hitachi Ltd 混合ガスを用いる分析計
US4852408A (en) * 1987-09-03 1989-08-01 Scott Fetzer Company Stop for integrated circuit diaphragm
US5343064A (en) * 1988-03-18 1994-08-30 Spangler Leland J Fully integrated single-crystal silicon-on-insulator process, sensors and circuits
JP2544435B2 (ja) * 1988-04-06 1996-10-16 株式会社日立製作所 多機能センサ
DE3943859B4 (de) * 1988-06-08 2005-04-21 Denso Corp., Kariya Verfahren zur Herstellung eines Halbleiterdrucksensors
US5017252A (en) * 1988-12-06 1991-05-21 Interpane Coatings, Inc. Method for fabricating insulating glass assemblies
US4996627A (en) * 1989-01-30 1991-02-26 Dresser Industries, Inc. High sensitivity miniature pressure transducer
DE3937529A1 (de) * 1989-11-08 1991-05-16 Siemens Ag Verfahren zum verbinden eines siliziumteiles mit einem glasteil
DE4101205A1 (de) * 1990-02-09 1991-08-14 Asea Brown Boveri Gekuehltes hochleistungshalbleiterbauelement
US5009690A (en) * 1990-03-09 1991-04-23 The United States Of America As Represented By The United States Department Of Energy Method of bonding single crystal quartz by field-assisted bonding
JP2527834B2 (ja) * 1990-07-20 1996-08-28 三菱電機株式会社 陽極接合法
US6164759A (en) * 1990-09-21 2000-12-26 Seiko Epson Corporation Method for producing an electrostatic actuator and an inkjet head using it
DE4108304C2 (de) * 1991-03-14 1995-04-06 Fraunhofer Ges Forschung Vorrichtung zum anodischen Bonden von Silizium-Wafern mit Tragekörpern
JP2812405B2 (ja) * 1991-03-15 1998-10-22 信越半導体株式会社 半導体基板の製造方法
EP0539741B1 (de) * 1991-09-30 2003-01-15 Canon Kabushiki Kaisha Verfahren für anodische Bindung mit Lichtstrahlung
DE4136075C3 (de) * 1991-10-30 1999-05-20 Siemens Ag Verfahren zum Verbinden eines scheibenförmigen Isolierkörpers mit einem scheibenförmigen, leitfähigen Körper
JPH05169666A (ja) * 1991-12-25 1993-07-09 Rohm Co Ltd インクジェットプリントヘッドの製造方法
US5273827A (en) * 1992-01-21 1993-12-28 Corning Incorporated Composite article and method
DE4207951C2 (de) * 1992-03-10 1995-08-31 Mannesmann Ag Kapazitiver Druck- oder Differenzdrucksensor in Glas-Silizium-Technik
US5264820A (en) * 1992-03-31 1993-11-23 Eaton Corporation Diaphragm mounting system for a pressure transducer
DE4219132A1 (de) * 1992-06-11 1993-12-16 Suess Kg Karl Verfahren zum Herstellen von Silizium/Glas- oder Silizium/Silizium-Verbindungen
IL107120A (en) 1992-09-29 1997-09-30 Boehringer Ingelheim Int Atomising nozzle and filter and spray generating device
US6007676A (en) 1992-09-29 1999-12-28 Boehringer Ingelheim International Gmbh Atomizing nozzle and filter and spray generating device
JP3300060B2 (ja) * 1992-10-22 2002-07-08 キヤノン株式会社 加速度センサー及びその製造方法
JP3402635B2 (ja) * 1992-12-08 2003-05-06 キヤノン株式会社 微小流路素子
JPH06350376A (ja) * 1993-01-25 1994-12-22 Matsushita Electric Ind Co Ltd 気密封止された圧電デバイスおよび気密封止パッケージ
JP3188546B2 (ja) * 1993-03-23 2001-07-16 キヤノン株式会社 絶縁体と導電体との接合体並びに接合方法
DE4321804A1 (de) * 1993-06-30 1995-01-12 Ranco Inc Verfahren zur Herstellung von Kleinbauelementen
FI93059C (fi) * 1993-07-07 1995-02-10 Vaisala Oy Kapasitiivinen paineanturirakenne ja menetelmä sen valmistamiseksi
FI93579C (fi) * 1993-08-20 1995-04-25 Vaisala Oy Sähköstaattisen voiman avulla takaisinkytketty kapasitiivinen anturi ja menetelmä sen aktiivisen elementin muodon ohjaamiseksi
JPH07193294A (ja) * 1993-11-01 1995-07-28 Matsushita Electric Ind Co Ltd 電子部品およびその製造方法
EP0657900B1 (de) * 1993-12-06 1998-03-25 Matsushita Electric Industrial Co., Ltd. Hybrid Magnetstruktur und deren Herstellungsverfahren
EP0671372A3 (de) * 1994-03-09 1996-07-10 Seiko Epson Corp Anodisches Bindeverfahren und Verfahren zur Herstellung eines Tintenstrahlkopfes unter Verwendung des Bindeverfahrens.
JPH07263991A (ja) * 1994-03-18 1995-10-13 Fujitsu Ltd 導電性接着樹脂を用いた直列共振デバイスの製造方法
DE4423164A1 (de) * 1994-07-04 1996-01-11 Karl Suss Dresden Gmbh Anordnung von Elektroden zum anodischen Bonden
US5637458A (en) * 1994-07-20 1997-06-10 Sios, Inc. Apparatus and method for the detection and assay of organic molecules
US5479827A (en) * 1994-10-07 1996-01-02 Yamatake-Honeywell Co., Ltd. Capacitive pressure sensor isolating electrodes from external environment
DE4436561C1 (de) * 1994-10-13 1996-03-14 Deutsche Spezialglas Ag Verfahren zur Veränderung der Durchbiegung von anodisch gebondeten flächigen Verbundkörpern aus Glas und Metall oder Halbleitermaterialien
JPH08122359A (ja) * 1994-10-21 1996-05-17 Fuji Electric Co Ltd 半導体加速度センサとその製造方法および試験方法
DE4446704C1 (de) * 1994-12-12 1996-04-11 Mannesmann Ag Verfahren zum anodischen Bonden
DE4446703C2 (de) * 1994-12-12 1996-10-17 Mannesmann Ag Anordnung zum anodischen Bonden
JP3319912B2 (ja) * 1995-06-29 2002-09-03 株式会社デンソー 半導体センサ用台座およびその加工方法
JP3206467B2 (ja) * 1996-12-25 2001-09-10 トヨタ自動車株式会社 太陽電池セルの冷却液封止構造
US6554671B1 (en) * 1997-05-14 2003-04-29 Micron Technology, Inc. Method of anodically bonding elements for flat panel displays
US5980349A (en) * 1997-05-14 1999-11-09 Micron Technology, Inc. Anodically-bonded elements for flat panel displays
DE19742439C1 (de) * 1997-09-26 1998-10-22 Boehringer Ingelheim Int Mikrostrukturiertes Filter
US6004179A (en) * 1998-10-26 1999-12-21 Micron Technology, Inc. Methods of fabricating flat panel evacuated displays
JP3961182B2 (ja) * 1999-01-29 2007-08-22 セイコーインスツル株式会社 陽極接合方法
US6525462B1 (en) 1999-03-24 2003-02-25 Micron Technology, Inc. Conductive spacer for field emission displays and method
US6550337B1 (en) * 2000-01-19 2003-04-22 Measurement Specialties, Inc. Isolation technique for pressure sensing structure
IT1320381B1 (it) * 2000-05-29 2003-11-26 Olivetti Lexikon Spa Metodo per la fabbricazione di una testina di eiezione di gocce diliquido particolarmente adatta per operare con liquidi chimicamente
AU2002251690A1 (en) * 2000-12-13 2002-08-12 Rochester Institute Of Technology A method and system for electrostatic bonding
WO2002073673A1 (en) 2001-03-13 2002-09-19 Rochester Institute Of Technology A micro-electro-mechanical switch and a method of using and making thereof
US6660614B2 (en) 2001-05-04 2003-12-09 New Mexico Tech Research Foundation Method for anodically bonding glass and semiconducting material together
AU2002303933A1 (en) 2001-05-31 2002-12-09 Rochester Institute Of Technology Fluidic valves, agitators, and pumps and methods thereof
US7211923B2 (en) 2001-10-26 2007-05-01 Nth Tech Corporation Rotational motion based, electrostatic power source and methods thereof
US7378775B2 (en) 2001-10-26 2008-05-27 Nth Tech Corporation Motion based, electrostatic power source and methods thereof
JP2003229503A (ja) * 2002-01-31 2003-08-15 Nec Schott Components Corp 気密端子及びその製造方法
KR100446624B1 (ko) * 2002-02-27 2004-09-04 삼성전자주식회사 양극접합 구조체 및 그 제조방법
JP2003302299A (ja) * 2002-04-10 2003-10-24 Denso Corp 力学量検出装置の製造方法
US6939778B2 (en) * 2002-04-18 2005-09-06 The Regents Of The University Of Michigan Method of joining an insulator element to a substrate
US20070286773A1 (en) * 2002-05-16 2007-12-13 Micronit Microfluidics B.V. Microfluidic Device
EP1997772A3 (de) 2002-05-16 2011-01-26 Micronit Microfluidics B.V. Verfahren zur Herstellung einer Mikrofluid-Vorrichtung
US6724612B2 (en) 2002-07-09 2004-04-20 Honeywell International Inc. Relative humidity sensor with integrated signal conditioning
KR100480273B1 (ko) * 2002-11-07 2005-04-07 삼성전자주식회사 실리콘-유리 양극 접합 기술을 이용한 광섬유 블록의 제조방법
JP2004190977A (ja) * 2002-12-12 2004-07-08 Sony Corp 熱輸送装置、熱輸送装置の製造方法及び電子デバイス
US7217582B2 (en) 2003-08-29 2007-05-15 Rochester Institute Of Technology Method for non-damaging charge injection and a system thereof
US7287328B2 (en) 2003-08-29 2007-10-30 Rochester Institute Of Technology Methods for distributed electrode injection
US8529724B2 (en) * 2003-10-01 2013-09-10 The Charles Stark Draper Laboratory, Inc. Anodic bonding of silicon carbide to glass
US8581308B2 (en) 2004-02-19 2013-11-12 Rochester Institute Of Technology High temperature embedded charge devices and methods thereof
KR100821413B1 (ko) * 2004-03-23 2008-04-11 가시오게산키 가부시키가이샤 적층구조 및 그 제조방법
US7115182B2 (en) * 2004-06-15 2006-10-03 Agency For Science, Technology And Research Anodic bonding process for ceramics
US20060269847A1 (en) * 2005-05-25 2006-11-30 International Business Machines Corporaton Binding of hard pellicle structure to mask blank and method
JP2007281062A (ja) * 2006-04-04 2007-10-25 Hitachi Ltd 電子部品接合体、それを用いた電子回路モジュールおよびその製造方法
US20070249098A1 (en) * 2006-04-21 2007-10-25 Raymond Charles Cady Bonding plate mechanism for use in anodic bonding
US10031113B2 (en) * 2007-02-28 2018-07-24 Waters Technologies Corporation Liquid-chromatography apparatus having diffusion-bonded titanium components
EP2023121A1 (de) * 2007-07-06 2009-02-11 Bp Oil International Limited Optische Zelle
US8402831B2 (en) * 2009-03-05 2013-03-26 The Board Of Trustees Of The Leland Standford Junior University Monolithic integrated CMUTs fabricated by low-temperature wafer bonding
JP2011049324A (ja) * 2009-08-26 2011-03-10 Seiko Instruments Inc 陽極接合方法、及び圧電振動子の製造方法
US9873939B2 (en) 2011-09-19 2018-01-23 The Regents Of The University Of Michigan Microfluidic device and method using double anodic bonding
US20130199831A1 (en) * 2012-02-06 2013-08-08 Christopher Morris Electromagnetic field assisted self-assembly with formation of electrical contacts
US8895362B2 (en) 2012-02-29 2014-11-25 Corning Incorporated Methods for bonding material layers to one another and resultant apparatus
US9220852B2 (en) 2012-04-10 2015-12-29 Boehringer Ingelheim Microparts Gmbh Method for producing trench-like depressions in the surface of a wafer
US9154138B2 (en) 2013-10-11 2015-10-06 Palo Alto Research Center Incorporated Stressed substrates for transient electronic systems
WO2015173658A2 (en) 2014-05-14 2015-11-19 Mark Davis Microfluidic devices that include channels that are slidable relative to each other and methods of use thereof
US10930486B2 (en) 2014-11-14 2021-02-23 Danmarks Tekniske Universitet Device for extracting volatile species from a liquid
US9780044B2 (en) 2015-04-23 2017-10-03 Palo Alto Research Center Incorporated Transient electronic device with ion-exchanged glass treated interposer
WO2017006219A1 (fr) * 2015-07-06 2017-01-12 Cartier International Ag Procédé de fixation par assemblage anodique
CH711295B1 (fr) * 2015-07-06 2019-11-29 Cartier Int Ag Procédé de fixation par assemblage anodique.
US9577047B2 (en) 2015-07-10 2017-02-21 Palo Alto Research Center Incorporated Integration of semiconductor epilayers on non-native substrates
US10012250B2 (en) 2016-04-06 2018-07-03 Palo Alto Research Center Incorporated Stress-engineered frangible structures
US10224297B2 (en) 2016-07-26 2019-03-05 Palo Alto Research Center Incorporated Sensor and heater for stimulus-initiated fracture of a substrate
US10026579B2 (en) 2016-07-26 2018-07-17 Palo Alto Research Center Incorporated Self-limiting electrical triggering for initiating fracture of frangible glass
DE102016116499B4 (de) * 2016-09-02 2022-06-15 Infineon Technologies Ag Verfahren zum Bilden von Halbleiterbauelementen und Halbleiterbauelemente
US10903173B2 (en) 2016-10-20 2021-01-26 Palo Alto Research Center Incorporated Pre-conditioned substrate
US10026651B1 (en) 2017-06-21 2018-07-17 Palo Alto Research Center Incorporated Singulation of ion-exchanged substrates
IT201700103511A1 (it) 2017-09-15 2019-03-15 St Microelectronics Srl Dispositivo microelettronico dotato di connessioni protette e relativo processo di fabbricazione
US10626048B2 (en) 2017-12-18 2020-04-21 Palo Alto Research Center Incorporated Dissolvable sealant for masking glass in high temperature ion exchange baths
US10717669B2 (en) 2018-05-16 2020-07-21 Palo Alto Research Center Incorporated Apparatus and method for creating crack initiation sites in a self-fracturing frangible member
US11107645B2 (en) 2018-11-29 2021-08-31 Palo Alto Research Center Incorporated Functionality change based on stress-engineered components
US10947150B2 (en) 2018-12-03 2021-03-16 Palo Alto Research Center Incorporated Decoy security based on stress-engineered substrates
US10969205B2 (en) 2019-05-03 2021-04-06 Palo Alto Research Center Incorporated Electrically-activated pressure vessels for fracturing frangible structures
US12013043B2 (en) 2020-12-21 2024-06-18 Xerox Corporation Triggerable mechanisms and fragment containment arrangements for self-destructing frangible structures and sealed vessels
US11904986B2 (en) 2020-12-21 2024-02-20 Xerox Corporation Mechanical triggers and triggering methods for self-destructing frangible structures and sealed vessels

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2567877A (en) * 1947-07-11 1951-09-11 Ment Jack De Electrochemical bonding of aluminum with other materials
US3256598A (en) * 1963-07-25 1966-06-21 Martin Marietta Corp Diffusion bonding

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19525388A1 (de) * 1994-07-12 1996-01-25 Mitsubishi Electric Corp Elektronikbauteil und Verfahren zu dessen Herstellung
US5900671A (en) * 1994-07-12 1999-05-04 Mitsubishi Denki Kabushiki Kaisha Electronic component including conductor connected to electrode and anodically bonded to insulating coating
US6087201A (en) * 1994-07-12 2000-07-11 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing ball grid array electronic component
US6133069A (en) * 1994-07-12 2000-10-17 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing the electronic using the anode junction method
US6181009B1 (en) 1994-07-12 2001-01-30 Mitsubishi Denki Kabushiki Kaisha Electronic component with a lead frame and insulating coating
US6268647B1 (en) 1994-07-12 2001-07-31 Mitsubishi Denki Kabushiki Kaisha Electronic component with an insulating coating
US6310395B1 (en) 1994-07-12 2001-10-30 Mitsubishi Denki Kabushiki Kaisha Electronic component with anodically bonded contact
DE19525388B4 (de) * 1994-07-12 2005-06-02 Mitsubishi Denki K.K. Elektronikbauteil mit anodisch gebondetem Leiterrahmen

Also Published As

Publication number Publication date
GB1138401A (en) 1969-01-01
BR6679299D0 (pt) 1973-08-09
SE351518B (de) 1972-11-27
NL153720B (nl) 1977-06-15
DK127988B (da) 1974-02-11
CH451273A (de) 1968-05-15
FR1478918A (fr) 1967-04-28
IL25656A (en) 1970-09-17
NL6606217A (de) 1966-11-07
NO119844B (de) 1970-07-13
BE680529A (de) 1966-11-04
JPS5328747B1 (de) 1978-08-16
US3397278A (en) 1968-08-13

Similar Documents

Publication Publication Date Title
DE1665042A1 (de) Halbleiter
DE1955221A1 (de) Integrierte Halbleiter-Schaltkreise
DE1298630B (de) Integrierte Schaltungsanordnung
DE10208635A1 (de) Diffusionslotstelle und Verfahren zu ihrer Herstellung
DE2132939A1 (de) Verfahren zum Herstellen von Dickfilm-Hybridschaltungen
DE1789106A1 (de) Halbleiteranordnung
DE3328975A1 (de) Verfahren zum hartverloeten zweier bauteile mit unterschiedlichen waermeleitfaehigkeiten und hartgeloetetes schaltungsflachgehaeuse
DE1614148B2 (de) Verfahren zum herstellen einer elektrode fuer halbleiter bauelemente
DE2636580A1 (de) Oberflaechengeschuetzter, verkapselter halbleiter und verfahren zu seiner herstellung
DE2937050A1 (de) Flachpaket zur aufnahme von elektrischen mikroschaltkreisen und verfahren zu seiner herstellung
DE2920444A1 (de) Halbleiterbauelement und verfahren zu seiner herstellung
EP0557318B1 (de) Verfahren zur herstellung von halbleiterelementen, insbesondere von dioden
DE2643147A1 (de) Halbleiterdiode
DE2649935A1 (de) Referenzdiode
DE1639262A1 (de) Halbleiterbauelement mit einer Grossflaechen-Elektrode
DE2324030A1 (de) Thermo-elektrostatisch verbundene halbleitervorrichtung
DE1564356A1 (de) Verfahren zum Herstellen von photoelektrischen Zellen unter Verwendung von polykristallinen pulverfoermigen Stoffen
DE1300165B (de) Mikrominiaturisierte Halbleiterdiodenanordnung
DE1805261A1 (de) Temperaturkompensierte Referenzdiode und Verfahren zur Herstellung derselben
DE1904118A1 (de) Halbleitervorrichtung mit verbessertem Elektrodenanschlussaufbau
DE2408402A1 (de) Verfahren zur herstellung integrierter schaltungen bzw. nach einem solchen verfahren hergestellte integrierte halbleiterschaltungseinheit
DE2500206A1 (de) Metallisierungssystem fuer halbleiter
DE1514736A1 (de) Halbleiteranordnung
DE2608813A1 (de) Niedrigsperrende zenerdiode
DE2363269A1 (de) Verfahren zum herstellen einer mehrzahl von p-n uebergaengen in einem einzigen diffusionszyklus