CN1998091A - 硅光电倍增器(变型)及硅光电倍增器单元 - Google Patents

硅光电倍增器(变型)及硅光电倍增器单元 Download PDF

Info

Publication number
CN1998091A
CN1998091A CNA2005800192481A CN200580019248A CN1998091A CN 1998091 A CN1998091 A CN 1998091A CN A2005800192481 A CNA2005800192481 A CN A2005800192481A CN 200580019248 A CN200580019248 A CN 200580019248A CN 1998091 A CN1998091 A CN 1998091A
Authority
CN
China
Prior art keywords
unit
dopant
conductive layer
concentration
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800192481A
Other languages
English (en)
Other versions
CN1998091B (zh
Inventor
艾莲娜·V·波波娃
谢尔盖·N·克莱曼
列昂尼德·A·菲拉托夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Original Assignee
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Planck Gesellschaft zur Foerderung der Wissenschaften eV filed Critical Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Publication of CN1998091A publication Critical patent/CN1998091A/zh
Application granted granted Critical
Publication of CN1998091B publication Critical patent/CN1998091B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及高效率光记录检测器,并可用于核工程和激光工程,以及用于工业和医学断层摄影术等。本发明的硅光电倍增器(变型1)包括掺杂浓度是在1018-1020cm-3范围内的p++型导电基片,并由多个单元构成,每个单元包含p-导电型外延层,掺杂浓度是在1018-1014cm-3范围内逐渐变化,并生长在基片上;掺杂浓度是在1015-1017cm-3范围内的p-导电型层;和掺杂浓度是在1018-1020cm-3范围内的n+导电型层,其中连接n+层与馈送条的多晶硅电阻安排在每个单元的二氧化硅层上,和分隔元件设置在各个单元之间。所述硅光电倍增器(变型2)包括n-型导电基片,在该基片上施加掺杂浓度是在1018-1020cm-3范围内的p++型导电层,并由多个单元构成,其中每个单元的多晶硅电阻设置在二氧化硅层上,和分隔元件设置在各个单元之间。

Description

硅光电倍增器(变型)及硅光电倍增器单元
技术领域
本发明涉及半导体器件领域,尤其涉及高效率光发射检测的检测器,该光发射包括可见光谱部分,本发明可用于核技术和激光技术,以及用于工业和医学断层摄影术等。
背景技术
单光子检测的装置是众所周知的[“Avalanche photodiodes andquenching circuits for single-photon detection”,S.Cova,M.Ghioni,A.Lacaita,C.Samori and F.Zappa,APPLIED OPTICS,Vol.35 No.12,20 April 1996],已知的装置包括:硅基片,和在该基片上制作的外延层,所述外延层在表面上有一个导电型的小(10-200微米)区域(单元),该导电型是与给定层导电型相反。给这个单元提供大于击穿电压的反向偏置。当这个区域中的光子被吸收时,就发生Geiger放电,所述放电是受外部衰减电阻的限制。这种单光子检测器有高的光检测效率,然而,它有非常小的灵敏区,而且,它不能测量光通量强度。为了消除这些缺陷,需要使用位于共同基片上的大量(≥103)这种单元,该单元是≥1mm2的正方形。在这种情况下,每个单元的工作如同以上描述的光子检测器,该装置的整体检测与工作单元数目成正比的光强。
在1997年7月27日出版的RU 2086047 C1中描述的装置可以作为最新现有技术的硅光电倍增器。已知装置包括硅基片,多个单元,其尺寸为20-40微米并位于所述基片表面上的外延层中。一种特殊材料层用作衰减电阻器,这种装置的缺陷是如下所述:
●由于光在电阻层中被吸收,它可以降低短波光检测效率;
●由于灵敏区的很小深度,它没有足够高的长波光检测效率;
●相邻单元之间光连接可能导致这样的情况,当一个单元工作时,二次光子出现在Geiger放电中,所述光子可以起动相邻单元的激励(发光)。由于这种光子的数目是与放大系数成正比,这个现象限制该装置的放大系数,效率,和单电子分辨率。此外,光学连接产生多余的噪声因素,它使理想的泊松统计特征和记录少量光子的能力退化。
●电阻层涂敷的技术复杂性。
由于增大的单元灵敏度,该技术效应可以提高宽带波长的光检测效率,其放大系数高达107,可以实现高的单电子分辨率,和抑制多余的噪声因素。
制作在薄外延层上单个单元结构(尺寸约为20微米)在约1微米深的耗尽层中提供均匀的电场,这在最新现有技术的硅光电倍增器单元中是可接受的。该单元结构提供低的工作电压(M.Ghioni,S.Cova,C.Samori,G.Ripamonti“New epitaxial diode forsingle-photon timing at room temperature”,Electronics Letters,24,No.24(1998)1476)。已知单元的缺陷是没有足够高的光谱长波部分(≥450微米)的检测效率。
由于增大的单元灵敏度,该技术效应可以提高宽带波长的检测效率,实现高的单电子分辨率。
发明内容
研究两个实施例的硅光电倍增器和硅光电倍增器单元的结构。
我们得到的技术效应(第一个实施例)是借助于一种硅光电倍增器,包括:掺杂剂浓度为1018-1020cm-3的p++导电型基片,该倍增器是由互相独立的相同单元构成,每个单元包含生长在基片上的p导电型外延层,所述外延层的掺杂剂浓度是在1018-1014cm-3的范围内逐渐变化;掺杂剂浓度为1015-1017cm-3的p导电型层;掺杂剂浓度为1018-1020cm-3的n+导电型层,所述n+导电型层形成p-n边界的施主部分,多晶硅电阻是在每个单元的二氧化硅层上,所述多晶硅电阻连接n+导电型层与电压分布母线,和分隔单元设置在各个单元之间。
我们得到的技术效应(第二个实施例)是借助于一种硅光电倍增器,包括:n导电型基片;掺杂剂浓度为1018-1020cm-3的P++导电型层,所述导电型层加在所述n导电型基片上,所述倍增器是由互相独立的相同单元构成,每个单元包含掺杂剂浓度是在1018-1014cm-3范围内逐渐变化的p导电型外延层,所述p导电型外延层生长在P++导电型层上;掺杂剂浓度为1015-1017cm-3的p导电型层;掺杂剂浓度为1018-1020cm-3的n+导电型层,多晶硅电阻是在每个单元的二氧化硅层上,所述多晶硅电阻连接n+导电型层与电压分布母线,和分隔元件设置在各个单元之间。
在第二个实施例中,使用n导电型基片(它代替在第一个实施例装置中使用的基片1),所述基片与各个单元的p导电型层一起形成反向n-p边界。
附图说明
图1表示按照本发明硅光电倍增器单元的结构。
图2表示第一个实施例的硅光电倍增器。
图3表示第二个实施例的硅光电倍增器。
图4表示按照本发明的硅光电倍增器单元结构(相反实施例)
图5表示第一个实施例的硅光电倍增器(相反实施例)。
图6表示第二个实施例的硅光电倍增器(相反实施例)。
具体实施方式
第一个实施例的硅光电倍增器包括:p++导电型基片1,生长在基片1上的外延层2(EPI),p导电型层3,n+导电型层4,连接导电型层4与电压分布母线6的多晶硅电阻5,二氧化硅层7,分隔元件10。除了以上指出的元件和连接以外,第二个实施例的硅光电倍增器还包括:p++导电型层8和n导电型基片9(代替p++导电型基片1)。
硅光电倍增器单元包括:掺杂剂浓度是在1018-1014cm-3范围内逐渐变化的p导电型外延层2;掺杂剂浓度为1015-1017cm-3的p导电型层3;形成p-n边界施主部分的n+层,其掺杂剂浓度是在1018-1020cm-3范围内,多晶硅电阻5是在每个单元的二氧化硅层7上,二氧化硅层7是在外延层的光敏表面上,所述电阻5连接n+层4与电压分布母线6。
由于在外延层中特别形成的掺杂剂分布梯度轮廓建立的内置电场,在这种结构中可以实现宽光谱(300-900nm)的高效率光检测,以及低的工作电压和高度均匀的电场。
在从光电倍增器的基片到光敏表面的方向上,抑制外延层中的掺杂剂浓度,所述光敏表面是远离基片的外延层表面(外延层的光敏表面)。二氧化硅层7加到硅光电倍增器的光敏表面上,即,外延层的光敏表面上。连接n+层4与电压分布母线6的多晶硅电阻5是在每个单元的二氧化硅层7上。具体执行光阻挡功能的分隔元件10设置在各个单元之间。
外延层(第二个实施例的硅光电倍增器)生长在p++导电型层8上,导电型层8是在导电型基片9上(掺杂剂浓度为1015-1017cm-3)。在p导电型层3与基片9之间制作第二个(相反)n-p边界,所述边界可以防止Geiger放电中二次光子产生的光电子穿透进入相邻单元的灵敏区。此外,通过非均匀蚀刻有取向<100>的硅,由于在各个单元(例如,它们可以是三角形(V型槽))之间充满分隔元件(光阻挡层),可以防止二次Geiger光子穿透进入相邻单元。
硅光电倍增器包括尺寸约为20-100微米的独立单元。所有的单元是与铝母线连接,大于击穿电压的相同偏置电压加到各个单元上,从而可以工作在Geiger模式。当光子到达时,猝熄的Geiger放电是在单元的激活区中发展。由于在每个单元中有多晶硅电阻5(限流电阻),当p-n边界上的电压下降时,电荷载流子数目的起伏高达零,就发生猝熄现象,即,停止放电。来自工作单元的电流信号集中到共同的负载上。每个单元的放大倍数可以达到107。放大值的扩展定义为单元容量和单元击穿电压的技术扩展,它的数值小于5%。因为所有的单元是相同的,检测器对轻微闪光的响应是与工作单元的数目成正比,即,它与光强成正比。工作在Geiger模式下的一个特征是单元放大倍数与偏置电压的线性关系,它可以降低对功率源电压稳定性和热稳定性的要求。
给共同母线6(阳极)提供正电压,它的数值应当提供Geiger模式(典型的数值是在U=+20-60V的范围内),还提供等于1-2微米的耗尽层深度。在吸收光量子时,产生的电荷载流子聚集不仅来自耗尽区,而且还来自未耗尽瞬时区,其中内置电场是由于掺杂剂的梯度,所述电场迫使电子移动到阳极。因此,实现电荷聚集的更大深度,该深度远远超过低工作电压下限定的耗尽区深度。在固定的单元布局和固定的工作电压下,它提供最大的光检测效率。
多晶硅电阻5数值的选取是根据足以消除雪崩放电的条件。该电阻的制造技术是简单的。重要的特征是,电阻加在单元的周边,不能遮挡激活部分,即,不能降低光检测效率。
为了阻挡各个单元之间的连接,分隔元件设置在各个单元之间的硅光电倍增器结构中,例如,分隔元件是三角形(例如,在KOH基的液体蚀刻中,非均匀蚀刻有取向<100>的硅)。
我们允许在p-n边界和n-p边界上的过程是按照完全相同的方式进行(允许相反符号的电荷载流子),在相反实施例中实现申请的装置(有确定导电型的各层改变成相反的类型),如图4-6所示,它们的工作是按照类似方式实现的,如同在本发明说明书和权利要求书中所描述的。因此,相反实施例的申请装置特征等同于本发明说明书和权利要求书中所描述的特征。

Claims (3)

1.一种硅光电倍增器,包括掺杂剂浓度为1018-1020cm-3的p++导电型基片,其特征是,所述光电倍增器是由多个单元构成,每个单元包含
掺杂剂浓度是在1018-1014cm-3范围内逐渐变化的p导电型外延层,所述外延层生长在基片上,
掺杂剂浓度为1015-1017cm-3的p导电型层,
掺杂剂浓度为1018-1020cm-3的n+导电型层,
多晶硅电阻是在每个单元的二氧化硅层上,所述多晶硅电阻连接n+导电型层与电压分布母线,和分隔单元设置在各个单元之间。
2.一种硅光电倍增器,包括n导电型基片,掺杂剂浓度为1018-1020cm-3的p++导电型层,所述导电型层加在所述基片上,其特征是,所述光电倍增器是由多个单元构成,每个单元包含:掺杂剂浓度是在1018-1014cm-3范围内逐渐变化的p导电型外延层,所述p导电型层生长在p++导电型层上,
掺杂剂浓度为1015-1017cm-3的p导电型层,
掺杂剂浓度为1018-1020cm-3的n+导电型层,
多晶硅电阻是在每个单元的二氧化硅层上,所述多晶硅电阻连接n+导电型层与电压分布母线,和分隔单元设置在各个单元之间。
3.一种硅光电倍增器单元,包括掺杂剂浓度是在1018-1014cm-3范围内逐渐变化的p导电型外延层,
掺杂剂浓度为1015-1017cm-3的p导电型层,
形成p-n边界的施主部分和掺杂剂浓度为1018-1020cm-3的n+层,多晶硅电阻是在每个单元的二氧化硅层上,所述多晶硅电阻连接n+层与电压供电母线。
CN2005800192481A 2004-05-05 2005-05-05 硅光电倍增器及硅光电倍增器单元 Expired - Fee Related CN1998091B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2004113616 2004-05-05
RU2004113616/28A RU2290721C2 (ru) 2004-05-05 2004-05-05 Кремниевый фотоэлектронный умножитель (варианты) и ячейка для кремниевого фотоэлектронного умножителя
PCT/RU2005/000242 WO2005106971A1 (fr) 2004-05-05 2005-05-05 Multiplicateur photoelectronique au silicium (variantes) et cellule pour multiplicateur photoelectronique au silicium

Publications (2)

Publication Number Publication Date
CN1998091A true CN1998091A (zh) 2007-07-11
CN1998091B CN1998091B (zh) 2010-09-29

Family

ID=35241944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800192481A Expired - Fee Related CN1998091B (zh) 2004-05-05 2005-05-05 硅光电倍增器及硅光电倍增器单元

Country Status (9)

Country Link
US (1) US7759623B2 (zh)
EP (2) EP2144287B1 (zh)
JP (1) JP2007536703A (zh)
KR (1) KR101113364B1 (zh)
CN (1) CN1998091B (zh)
AT (1) ATE451720T1 (zh)
DE (1) DE602005018200D1 (zh)
RU (1) RU2290721C2 (zh)
WO (1) WO2005106971A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101861527B (zh) * 2007-08-08 2013-08-14 皇家飞利浦电子股份有限公司 硅光电倍增器触发网络
CN105122470A (zh) * 2013-04-17 2015-12-02 马克斯-普朗克科学促进协会 具有非常低的光学串扰以及改进的读出的硅光电倍增器
CN111202536A (zh) * 2018-11-21 2020-05-29 京东方科技集团股份有限公司 射线探测器及其制造方法、电子设备
CN112567214A (zh) * 2018-08-14 2021-03-26 莱比锡大学 用于确定辐射波长的设备和方法
CN114093962A (zh) * 2021-11-22 2022-02-25 季华实验室 单光子雪崩二极管和光电探测器阵列

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2416840C2 (ru) * 2006-02-01 2011-04-20 Конинклейке Филипс Электроникс, Н.В. Лавинный фотодиод в режиме счетчика гейгера
US20080012087A1 (en) * 2006-04-19 2008-01-17 Henri Dautet Bonded wafer avalanche photodiode and method for manufacturing same
EP3002794B1 (en) 2006-07-03 2020-08-19 Hamamatsu Photonics K.K. Photodiode array
US7652257B2 (en) * 2007-06-15 2010-01-26 General Electric Company Structure of a solid state photomultiplier
DE102007037020B3 (de) * 2007-08-06 2008-08-21 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Avalanche-Photodiode
ITTO20080046A1 (it) 2008-01-18 2009-07-19 St Microelectronics Srl Schiera di fotodiodi operanti in modalita' geiger reciprocamente isolati e relativo procedimento di fabbricazione
ITTO20080045A1 (it) 2008-01-18 2009-07-19 St Microelectronics Srl Schiera di fotodiodi operanti in modalita' geiger reciprocamente isolati e relativo procedimento di fabbricazione
KR100987057B1 (ko) * 2008-06-12 2010-10-11 한국과학기술원 광검출 효율이 향상된 실리콘 광전자 증배관 및 이를포함하는 감마선 검출기
DE102009017505B4 (de) * 2008-11-21 2014-07-10 Ketek Gmbh Strahlungsdetektor, Verwendung eines Strahlungsdetektors und Verfahren zur Herstellung eines Strahlungsdetektors
IT1392366B1 (it) * 2008-12-17 2012-02-28 St Microelectronics Rousset Fotodiodo operante in modalita' geiger con resistore di soppressione integrato e controllabile, schiera di fotodiodi e relativo procedimento di fabbricazione
WO2010080048A1 (en) * 2009-01-11 2010-07-15 Popova Elena Viktorovna Semiconductor geiger mode microcell photodiode (variants)
IT1393781B1 (it) 2009-04-23 2012-05-08 St Microelectronics Rousset Fotodiodo operante in modalita' geiger con resistore di soppressione integrato e controllabile ad effetto jfet, schiera di fotodiodi e relativo procedimento di fabbricazione
KR101148335B1 (ko) * 2009-07-23 2012-05-21 삼성전기주식회사 실리콘 반도체를 이용한 광전자 증배관 및 그 구조 셀
CA2769121C (en) * 2009-08-03 2016-07-26 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Highly efficient cmos technology compatible silicon photoelectric multiplier
KR101084940B1 (ko) * 2009-09-28 2011-11-17 삼성전기주식회사 실리콘 광전자 증배관
KR20110068070A (ko) 2009-12-15 2011-06-22 삼성전기주식회사 실리콘 광전자 증배 소자를 이용한 저조도용 촬영 장치
WO2011122856A2 (ko) * 2010-03-30 2011-10-06 이화여자대학교 산학협력단 실리콘 광증배 소자
IT1399690B1 (it) 2010-03-30 2013-04-26 St Microelectronics Srl Fotodiodo a valanga operante in modalita' geiger ad elevato rapporto segnale rumore e relativo procedimento di fabbricazione
RU2524917C1 (ru) 2010-04-23 2014-08-10 Макс-Планк-Гезелльшафт Цур Фердерунг Дер Виссеншафтен Е.Ф. Кремниевый фотоэлектронный умножитель
EP2603931B1 (en) 2010-08-10 2016-03-23 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Silicon photoelectric multiplier with multiple "isochronic" read-out
CN102024863B (zh) * 2010-10-11 2013-03-27 湘潭大学 高速增强型紫外硅选择性雪崩光电二极管及其制作方法
KR101711087B1 (ko) 2010-12-07 2017-02-28 한국전자통신연구원 실리콘 포토멀티플라이어 및 그 제조 방법
KR101749240B1 (ko) 2010-12-17 2017-06-21 한국전자통신연구원 반도체 포토멀티플라이어의 상부 광학 구조 및 그 제작 방법
EP2656400B1 (en) 2010-12-21 2017-05-31 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Silicon photoelectric multiplier with optical cross-talk suppression due to special properties of the substrate
KR101648023B1 (ko) * 2010-12-21 2016-08-12 한국전자통신연구원 트렌치 분리형 실리콘 포토멀티플라이어
US8368159B2 (en) 2011-07-08 2013-02-05 Excelitas Canada, Inc. Photon counting UV-APD
KR101283534B1 (ko) * 2011-07-28 2013-07-15 이화여자대학교 산학협력단 실리콘 광전자 증배 소자의 제조방법
US8871557B2 (en) 2011-09-02 2014-10-28 Electronics And Telecommunications Research Institute Photomultiplier and manufacturing method thereof
JP5791461B2 (ja) * 2011-10-21 2015-10-07 浜松ホトニクス株式会社 光検出装置
JP5984617B2 (ja) 2012-10-18 2016-09-06 浜松ホトニクス株式会社 フォトダイオードアレイ
JP5963642B2 (ja) 2012-10-29 2016-08-03 浜松ホトニクス株式会社 フォトダイオードアレイ
US20140159180A1 (en) * 2012-12-06 2014-06-12 Agency For Science, Technology And Research Semiconductor resistor structure and semiconductor photomultiplier device
KR101395102B1 (ko) 2013-02-14 2014-05-16 한국과학기술원 Pcb 기판을 이용한 실리콘 광전자증배관의 패키징 방법
JP5925711B2 (ja) 2013-02-20 2016-05-25 浜松ホトニクス株式会社 検出器、pet装置及びx線ct装置
US9410901B2 (en) * 2014-03-17 2016-08-09 Kla-Tencor Corporation Image sensor, an inspection system and a method of inspecting an article
TW202243228A (zh) * 2014-06-27 2022-11-01 日商半導體能源研究所股份有限公司 攝像裝置及電子裝置
US11428826B2 (en) * 2019-09-09 2022-08-30 Semiconductor Components Industries, Llc Silicon photomultipliers with split microcells
RU2770147C1 (ru) * 2021-06-21 2022-04-14 Садыгов Зираддин Ягуб оглы Микропиксельный лавинный фотодиод

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2108781B1 (zh) * 1970-10-05 1974-10-31 Radiotechnique Compelec
JPS5252593A (en) * 1975-10-27 1977-04-27 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light receiving diode
CA1177148A (en) * 1981-10-06 1984-10-30 Robert J. Mcintyre Avalanche photodiode array
JPS59119772A (ja) * 1982-12-24 1984-07-11 Fujitsu Ltd 半導体受光素子
NL187416C (nl) 1983-07-14 1991-09-16 Philips Nv Stralingsgevoelige halfgeleiderinrichting.
US4586068A (en) 1983-10-07 1986-04-29 Rockwell International Corporation Solid state photomultiplier
JPS61154063A (ja) * 1984-12-26 1986-07-12 Toshiba Corp 光半導体装置およびその製造方法
JPH0799868B2 (ja) * 1984-12-26 1995-10-25 日本放送協会 固体撮像装置
JPS63124458A (ja) 1986-11-12 1988-05-27 Mitsubishi Electric Corp 受光素子
US5146296A (en) * 1987-12-03 1992-09-08 Xsirius Photonics, Inc. Devices for detecting and/or imaging single photoelectron
US5923071A (en) * 1992-06-12 1999-07-13 Seiko Instruments Inc. Semiconductor device having a semiconductor film of low oxygen concentration
JPH07240534A (ja) * 1993-03-16 1995-09-12 Seiko Instr Inc 光電変換半導体装置及びその製造方法
RU2105388C1 (ru) 1996-04-10 1998-02-20 Виктор Михайлович Горловин Лавинный фотоприемник
RU2086047C1 (ru) 1996-05-30 1997-07-27 Зираддин Ягуб-оглы Садыгов Лавинный фотоприемник
US5844291A (en) * 1996-12-20 1998-12-01 Board Of Regents, The University Of Texas System Wide wavelength range high efficiency avalanche light detector with negative feedback
JPH1126741A (ja) * 1997-07-04 1999-01-29 Toshiba Corp 固体撮像装置
US5880490A (en) * 1997-07-28 1999-03-09 Board Of Regents, The University Of Texas System Semiconductor radiation detectors with intrinsic avalanche multiplication in self-limiting mode of operation
IT246635Y1 (it) * 1999-04-09 2002-04-09 Claber Spa Solenoide di comando per elettrovalvola in particolare per il controllo di impianti di irrigazione
IT1317199B1 (it) * 2000-04-10 2003-05-27 Milano Politecnico Dispositivo fotorivelatore ultrasensibile con diaframma micrometricointegrato per microscopi confocali
US6541836B2 (en) * 2001-02-21 2003-04-01 Photon Imaging, Inc. Semiconductor radiation detector with internal gain
IES20010616A2 (en) 2001-06-28 2002-05-15 Nat Microelectronics Res Ct Microelectronic device and method of its manufacture
DE60322233D1 (de) * 2002-09-19 2008-08-28 Quantum Semiconductor Llc Licht-detektierende vorrichtung
US6838741B2 (en) * 2002-12-10 2005-01-04 General Electtric Company Avalanche photodiode for use in harsh environments
US20040245592A1 (en) 2003-05-01 2004-12-09 Yale University Solid state microchannel plate photodetector
WO2005048319A2 (en) 2003-11-06 2005-05-26 Yale University Large-area detector
US7160753B2 (en) * 2004-03-16 2007-01-09 Voxtel, Inc. Silicon-on-insulator active pixel sensors
JP4841834B2 (ja) 2004-12-24 2011-12-21 浜松ホトニクス株式会社 ホトダイオードアレイ
ATE514105T1 (de) 2005-04-22 2011-07-15 Koninkl Philips Electronics Nv Digitaler silicium-photovervielfacher für ein tof-pet
GB2426576A (en) 2005-05-27 2006-11-29 Sensl Technologies Ltd Light sensor module comprising a plurality of elements in a close-tiled arrangement
GB2426575A (en) 2005-05-27 2006-11-29 Sensl Technologies Ltd Photon detector using controlled sequences of reset and discharge of a capacitor to sense photons
US7268339B1 (en) * 2005-09-27 2007-09-11 Radiation Monitoring Devices, Inc. Large area semiconductor detector with internal gain
RU2416840C2 (ru) 2006-02-01 2011-04-20 Конинклейке Филипс Электроникс, Н.В. Лавинный фотодиод в режиме счетчика гейгера
EP3002794B1 (en) 2006-07-03 2020-08-19 Hamamatsu Photonics K.K. Photodiode array
US8188563B2 (en) 2006-07-21 2012-05-29 The Regents Of The University Of California Shallow-trench-isolation (STI)-bounded single-photon CMOS photodetector
GB2446185A (en) 2006-10-30 2008-08-06 Sensl Technologies Ltd Optical assembly and method of assembly
GB2447264A (en) 2007-03-05 2008-09-10 Sensl Technologies Ltd Optical position sensitive detector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101861527B (zh) * 2007-08-08 2013-08-14 皇家飞利浦电子股份有限公司 硅光电倍增器触发网络
CN105122470A (zh) * 2013-04-17 2015-12-02 马克斯-普朗克科学促进协会 具有非常低的光学串扰以及改进的读出的硅光电倍增器
US9853071B2 (en) 2013-04-17 2017-12-26 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. Silicon photoelectric multiplier with very low optical cross-talk and fast readout
CN112567214A (zh) * 2018-08-14 2021-03-26 莱比锡大学 用于确定辐射波长的设备和方法
CN111202536A (zh) * 2018-11-21 2020-05-29 京东方科技集团股份有限公司 射线探测器及其制造方法、电子设备
CN114093962A (zh) * 2021-11-22 2022-02-25 季华实验室 单光子雪崩二极管和光电探测器阵列
CN114093962B (zh) * 2021-11-22 2024-04-09 季华实验室 单光子雪崩二极管和光电探测器阵列

Also Published As

Publication number Publication date
JP2007536703A (ja) 2007-12-13
US7759623B2 (en) 2010-07-20
KR20070051782A (ko) 2007-05-18
EP1755171A1 (en) 2007-02-21
EP2144287A1 (en) 2010-01-13
EP1755171A4 (en) 2008-02-27
KR101113364B1 (ko) 2012-03-02
EP1755171B1 (en) 2009-12-09
RU2290721C2 (ru) 2006-12-27
CN1998091B (zh) 2010-09-29
EP1755171B8 (en) 2010-05-19
ATE451720T1 (de) 2009-12-15
EP2144287B1 (en) 2016-12-07
US20080251692A1 (en) 2008-10-16
DE602005018200D1 (de) 2010-01-21
WO2005106971A1 (fr) 2005-11-10

Similar Documents

Publication Publication Date Title
CN1998091B (zh) 硅光电倍增器及硅光电倍增器单元
US9728667B1 (en) Solid state photomultiplier using buried P-N junction
US7576371B1 (en) Structures and methods to improve the crosstalk between adjacent pixels of back-illuminated photodiode arrays
US9437630B2 (en) Semiconductor photomultiplier
JP2004319576A (ja) アバランシェ・フォトダイオード
CN106601859B (zh) 量子点宽谱单光子探测器及其探测方法
US5187380A (en) Low capacitance X-ray radiation detector
CN102024863A (zh) 高速增强型紫外硅选择性雪崩光电二极管及其制作方法
CN106960852B (zh) 具有漂移沟道的紫外雪崩光电二极管探测器及其探测方法
US20140159180A1 (en) Semiconductor resistor structure and semiconductor photomultiplier device
US20150285942A1 (en) Solid state photo multiplier device
US10043936B1 (en) Avalanche diode, and a process of manufacturing an avalanche diode
KR20120063323A (ko) 실리콘 포토멀티플라이어 및 그 제조 방법
US8766339B2 (en) Highly efficient CMOS technology compatible silicon photoelectric multiplier
Liu et al. Three-Dimensional Design of a 4H-SiC NPN Lateral Phototransistor for Micro-Pixel in Ultraviolet Optoelectronic Integration
CN211957666U (zh) 应用于高灵敏光耦隔离芯片传感前端的光电雪崩二极管
RU2142175C1 (ru) Лавинный фотоприемник
Shawkat et al. Fundamentals of perimeter gated single photon avalanche diodes used in silicon photomultipliers for nuclear imaging
Panda et al. Tuneable Breakdown Voltage in Amorphous Silicon PIN Photo-detectors for Single Photon Imaging
Metzler et al. Ultrathin, two-dimensional, multi-element Si pin photodiode array for multipurpose applications
DE112009004341B4 (de) Halbleiter-Geigermodus-Mikrozellenphotodioden
KR100835893B1 (ko) 발광변환기를 갖는 포토다이오드
Janeković et al. Optimization of floating guard ring parameters in separate-absorption-and-multiplication silicon avalanche photodiode structure
Sun et al. Novel silicon photomultiplier with vertical bulk-Si quenching resistors
EP2693463A1 (en) Semiconductor device having amplification factor with less dependence on current value

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C53 Correction of patent of invention or patent application
CB03 Change of inventor or designer information

Inventor after: Popova Elena Viktorovna

Inventor after: Klemin Sergey Nikolaevich

Inventor after: Filatov Leonid Anatolievich

Inventor after: Masahiro Tehima

Inventor after: Razmic Mirzoyan

Inventor after: Dolgoshein Boris Anatolievich

Inventor before: Popova Elena Viktorovna

Inventor before: Klemin Sergey Nikolaevich

Inventor before: Filatov Leonid Anatolievich

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: POPOVA ELENA VIKTOROVNA KLEMIN SERGEY NIKOLAEVICH FILATOV LEONID ANATOLIEVICH TO: POPOVA ELENA VIKTOROVNA KLEMIN SERGEY NIKOLAEVICH FILATOV LEONID ANATOLIEVICH MASACIRO JESSIMA REZMIC MILZOYONG BORIS KURYOKHIN DORGSHEIAN

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100929

Termination date: 20200505

CF01 Termination of patent right due to non-payment of annual fee