CN1849260B - 金属纳米粒子及其制造方法、金属纳米粒子分散液及其制造方法、以及金属细线和金属薄膜及其制造方法 - Google Patents

金属纳米粒子及其制造方法、金属纳米粒子分散液及其制造方法、以及金属细线和金属薄膜及其制造方法 Download PDF

Info

Publication number
CN1849260B
CN1849260B CN2004800259542A CN200480025954A CN1849260B CN 1849260 B CN1849260 B CN 1849260B CN 2004800259542 A CN2004800259542 A CN 2004800259542A CN 200480025954 A CN200480025954 A CN 200480025954A CN 1849260 B CN1849260 B CN 1849260B
Authority
CN
China
Prior art keywords
acid
metal
metal nanoparticle
amine
mentioned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2004800259542A
Other languages
English (en)
Other versions
CN1849260A (zh
Inventor
厚木勉
小田正明
林年治
清岛礼子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Jemco Inc
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jemco Inc, Ulvac Inc filed Critical Jemco Inc
Publication of CN1849260A publication Critical patent/CN1849260A/zh
Application granted granted Critical
Publication of CN1849260B publication Critical patent/CN1849260B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0043Preparation of sols containing elemental metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49883Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials the conductive materials containing organic materials or pastes, e.g. for thick films
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/16Amines or polyamines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12181Composite powder [e.g., coated, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及金属纳米粒子及其制造方法,金属纳米粒子分散液及其制造方法、以及金属细线和金属薄膜及其制造方法。该金属纳米粒子在各个金属的周围附着有作为分散剂的有机金属化合物。该金属有机化合物包含选自贵金属和过渡金属的至少1种的金属或由这些金属的至少2种形成的合金,是脂肪酸的有机金属化合物、胺的金属配位化合物或脂肪酸的有机金属化合物与胺的金属配位化合物的混合物。通过将该有机金属化合物和胺的金属配合物混合,接着进行还原处理,得到包含5重量%~90重量%的浓度的金属纳米粒子的分散液。通过将该分散液涂布在基材上,并在干燥后低温焙烧,形成具有导电性的金属细线或金属薄膜。

Description

金属纳米粒子及其制造方法、金属纳米粒子分散液及其制造方法、以及金属细线和金属薄膜及其制造方法
技术领域
本发明涉及金属纳米粒子及其制造方法、金属纳米粒子分散液及其制造方法、以及金属细线和金属薄膜及其制造方法。
背景技术
迄今为止,作为由100nm或以下的金属纳米粒子形成的导电性金属纳米粒子的制造方法,通过还原贵金属或铜的离子,得到贵金属或铜的胶体的方法是已知的(参阅例如专利文献1)。此外,包含具有至少1个氨基和羧基的化合物的金属胶体液体是已知的(参阅例如专利文献2)。但是,在上述任何一种情形中,都难以制造在高浓度下稳定的金属胶体。
专利文献1:特开平11-319538号公报(权利要求书)
专利文献2:特开平2002-245854号公报(权利要求书)
发明内容
在电气电子工业领域所使用的配线的形成方法中,近年来,正在不断低温化。此外,作为涂布·干燥·焙烧金属纳米粒子的基材,一般使用玻璃、聚酰亚胺等各种材料,除了这些基材之外,最近,还要求即使对于在玻璃上搭载TFT(薄膜晶体管)的基板也适用金属纳米粒子、以及成膜温度的低温化。焙烧温度根据该基材的性质的不同而不同,较低的焙烧温度一般要求为200℃下的焙烧。
在这种情况下,对于通过低温焙烧、且尽可能地减少涂布次数和成膜次数以形成具有所希望的厚度的配线的要求很强烈。因此,希望获得即使通过低温焙烧也能够得到电阻率低的配线、且金属浓度高的分散金属纳米粒子。迄今为止,为了形成由能够用于这些用途的金属纳米粒子构成的薄膜,却存在如下问题:虽然能够实现低电阻,但必需进行高温烧结,虽然能够进行低温处理,但涂布次数增多等。此外,为了减少涂布次数,还存在如下问题:不管通过怎样的方法增加涂布液的固体成分的浓度,所得到的液体都会变得不稳定,引起2次凝聚并导致金属粒子沉降等。
本发明的目的在于解决上述现有技术的问题,提供一种以能够减少涂布次数或者成膜次数为目的实现金属固体成分的高浓度化、同时能够通过低温焙烧处理实现充分的导电率的、稳定的金属纳米粒子及其制造方法,金属纳米粒子分散液及其制造方法、以及使用该分散液得到的金属细线和金属薄膜及其制造方法。
本发明的金属纳米粒子的特征在于:在各个金属的周围附着有作为分散剂的有机金属化合物。
其特征在于:该有机金属化合物包含选自贵金属和过渡金属的至少1种的金属或者由这些金属的至少2种构成的合金。
其特征在于:上述有机金属化合物为脂肪酸的有机金属化合物、胺的金属配位化合物、脂肪酸的有机金属化合物与胺的金属配位化合物的混合物。
其特征在于:上述脂肪酸为选自具有直链或支链结构的C6~C22的饱和脂肪酸和不饱和脂肪酸的至少1种脂肪酸,例如选自己酸、庚酸、辛酸、壬酸、癸酸、十一烷酸、十二烷酸、十四烷酸、二十烷酸、二十二烷酸、2-乙基己酸、油酸、亚油酸、亚麻酸的至少1种脂肪酸。
其特征在于:上述胺为具有直链或支链结构的C6~C13脂肪胺,例如选自己胺、庚胺、辛胺、癸胺、十二烷胺、2-乙基己胺、1,3-二甲基正丁胺、1-胺基十一烷、1-胺基十三胺的至少1种胺。
本发明的金属纳米粒子的制造方法的特征在于:将上述脂肪酸的有机金属化合物、上述胺的金属配位化合物、或者该有机金属化合物与金属配位化合物的混合物溶解于非极性溶剂中,通过向该液体中加入还原剂进行还原处理,得到金属纳米粒子。
进而,上述还原处理的特征在于:通过导入氢气一氧化碳气、含有氢气的气体、或者含有一氧化碳的气体进行还原处理。
其特征在于:在上述制造方法中,在还原处理后,进一步加入去离子水,搅拌、静置,将杂质转移到极性溶剂中,降低非极性溶剂中的杂质浓度。
本发明的金属纳米粒子分散液的特征在于:浓缩含有通过上述制造方法得到的金属纳米粒子的分散液,并通过将该金属纳米粒子再分散,使得金属纳米粒子的浓度范围达到5重量%~90重量%。
本发明的金属纳米粒子分散液的制造方法的特征在于:浓缩含有通过上述制造方法得到的金属纳米粒子的分散液,并通过将该金属纳米粒子再分散,得到金属纳米粒子的浓度范围为5重量%~90重量%的金属纳米粒子分散液。
其特征在于:上述金属纳米粒子的大小为1nm~100nm。
本发明的金属细线或金属薄膜的形成方法的特征在于:将上述包含金属纳米粒子的分散液、通过上述制造方法得到的包含金属纳米粒子的分散液、上述分散液、或者通过上述制造方法得到的金属纳米粒子分散液涂布在基材上,干燥后焙烧,形成具有导电性的金属细线或金属薄膜。
本发明的金属细线或金属薄膜是通过上述方法得到的。
其特征在于:上述焙烧温度为140~300℃,优选为140~220℃。
根据本发明,可以提供高浓度的稳定的金属纳米粒子分散液,因此能够减少其涂布次数、成膜次数,并且能够通过在220℃左右的低温下的焙烧处理,实现充分实用的导电率。
附图说明
[图1]实施例5制造的本发明的银纳米粒子的TOF-SIMS分析结果图。
具体实施方式
本发明的金属纳米粒子的构成金属选自Ag、Au、Cu、Pt、Pd、W、Ni、Ta、In、Sn、Zn、Cr、Fe、Co、和Si等构成的组的至少1种或2种或多种金属或者由这些金属的至少2种形成的合金,并且可以根据目的·用途适当地进行选择,在这些金属中,优选选自Ag、Au等贵金属、以及Cu的至少1种金属,或者由这些金属的至少2种形成的合金。也可以混有来源于还原剂的B、N、P等。通过上述金属构成的金属纳米粒子具有在该金属的周围附着有作为分散剂的有机金属化合物的结构。其中所谓的“附着”是指有机酸金属盐、金属胺配位化合物处于通过金属离子吸附在金属粒子表面、并有助于金属粒子稳定地分散于有机分散体中的状态。
构成作为上述有机金属化合物的脂肪酸的有机金属化合物的脂肪酸选自C6~C22的饱和脂肪酸和不饱和脂肪酸的至少1种脂肪酸,例如选自下述至少1种脂肪酸:己酸、庚酸、辛酸、壬酸、癸酸、十一烷酸、十二烷酸、十四烷酸、二十烷酸、二十二烷酸、2-乙基己酸、油酸、亚油酸、亚麻酸。
此外,构成作为上述有机金属化合物的胺的金属配位化合物的胺只要是选自例如烷基胺的至少1种即可。
作为可以用于本发明的烷基胺,并没有特别的限制,可以是伯~叔胺,并且可以是单胺、二胺、三胺等多元胺。特别优选具有碳原子数为4~20的主骨架的烷基胺,从稳定性、操作性的观点出发,更优选具有碳原子数为8~18的主骨架的烷基胺。此外,虽然伯、仲、叔烷基胺均能有效发挥作为分散剂的作用,但从稳定性、操作性的观点出发,优选使用伯烷基胺。如果烷基胺的主链碳原子数少于4,则胺的碱性过强,存在腐蚀金属纳米粒子的倾向,并存在最终溶解该纳米粒子的问题。此外,如果烷基胺的主链的碳原子数大约20,则当提高金属纳米分散液的浓度时,分散液的粘度上升,操作性变差,并且,还存在焙烧后的金属细线或薄膜中容易残留碳、电阻率上升等问题。
作为可以用于本发明的烷基胺的具体实例,包括例如丁胺、己胺、辛胺、壬胺、十二烷基胺、十六烷基胺、十八烷基胺、椰油胺、牛脂胺、氢化牛脂胺、油胺、月桂胺、以及硬脂胺等伯胺;二椰油胺、双氢化牛脂胺、以及二硬脂基胺等仲胺;以及十二烷基二甲基胺、双十二烷基一甲基胺、十四烷基二甲基胺、十八烷基二甲基胺、椰油基二甲基胺、十二烷基十四烷基二甲基胺、以及三辛基胺等叔胺;此外,还包括萘二胺、硬脂基丙二胺、辛二胺、以及壬二胺等二胺。在这些胺中,优选己胺、庚胺、辛胺、癸胺、十二烷基胺、2-乙基己基胺、1,3-二甲基正丁基胺、1-氨基十一烷、1-氨基十三烷。
根据本发明,包含金属纳米粒子的分散液中的烷基胺的含量,以金属纳米粒子金属重量为基准,为0.1重量%~10重量%,优选为1重量%~5重量%。当不足0.1重量%时,脂肪酸金属化合物之间出现结合或增粘作用,还原后的分散性恶化,另一方面,如果超过10重量%,则会开始出现由于氮与金属之间的牢固结合所产生的效果、即使在焙烧热分解过程中氮也不会除去从而妨碍低温焙烧特性。
根据本发明,上述有机金属化合物还可以是任意比例的脂肪酸的有机金属化合物与胺金属配位化合物的混合物。
通过本发明的金属纳米粒子的制造方法,通过使脂肪酸的有机金属化合物和/或胺的金属配位化合物溶于非极性溶剂中,并向该溶液中加入还原剂进行还原处理,得到金属纳米粒子。
作为上述还原剂,优选使用例如硼氢化钠、二甲基胺基硼烷、叔丁基胺基硼烷等。作为还原剂,并不限于这些,只要是具有相同的还原作用的即可,可以使用其他的已知的还原剂。优选通过向反应体系中导入氢气、一氧化碳气、含有氢气的气体、含有一氧化碳的气体进行该还原反应。
上述还原处理是在搅拌处理中进行鼓泡,在诸如室温或加热回流等条件下进行的。
如上所述,通过在非极性溶剂中进行还原处理形成金属胶体,但是在反应液中却存在杂质(例如还原剂中的硼等)。因此,向反应液中添加去离子水,搅拌后,静置规定的时间,回收上清液。这时,由于存在于反应液中的杂质中的亲水性的杂质向水层方向移动,因而可以减少杂质。也可以使用碳原子数少的极性溶剂代替去离子水。进而,为了除去过剩的脂肪酸或脂肪酸酯或氨等,提高纯度和金属浓度,可以通过超滤等过滤进行浓缩,其结果是,可以得到含有5重量%~90重量%的金属纳米粒子的分散液。
根据本发明,在如上所述制造的金属纳米粒子分散液的情形中,即使是90重量%的高浓度,也不会引起纳米粒子之间的凝聚,此外,分散液的流动性也不会丧失。当将90重量%的金属纳米粒子分散液用于例如用于IC基板等的多层配线或用于IC的内部配线中时,该分散液不会丧失流动性,此外,也不会引起金属纳米粒子的凝聚,因而能够形成导电性均匀无缺陷的细微配线图型。
本发明所使用的非极性溶剂为例如弱极性溶剂,并优选使用主链的碳原子数为6~18的有机溶剂。如果碳原子数不足6,溶剂极性强不会分散,或者过早干燥,在分散液制品的操作性方面存在问题。如果碳原子超过18,则存在粘度上升和焙烧时碳原子容易残留的问题。作为这些溶剂,可以使用例如己烷、庚烷、辛烷、癸烷、十一烷、十二烷、十三烷、三甲基戊烷等长链烷烃;或环己烷、环庚烷、环辛烷等环烷烃;苯、甲苯、二甲苯、三甲苯、十二烷基苯等芳香烃;己醇、庚醇、辛醇、癸醇、环己醇、萜品醇等的醇。这些溶剂可以单独使用,也可以混合溶剂的形式使用。例如,可以是作为长链烷烃的混合物的矿物油精。
此外,极性溶剂优选为碳原子数少的溶剂,例如甲醇、乙醇、丙酮等。
可以通过本发明提供的金属纳米粒子的大小为100nm或更小。在IC基板等的多层配线或半导体的内部配线等情形中,近年来越来越向精细化发展,并要求为1μm或更小的配线,因此,希望金属纳米粒子的大小为所要求的配线的线宽的1/10或更小,即,1nm~100nm,优选1nm~10nm。本发明的金属纳米粒子充分满足该要求。此外,大于100nm的粒子由于自重而产生沉降现象,不能得到良好的分散性。
通过本发明的具有导电性的金属细线或金属薄膜的形成方法,使用例如旋转涂布法等涂布法将上述金属纳米粒子分散液涂布在各种基材上,干燥后焙烧。这时的干燥温度只要是涂布液不能流动的温度即可,例如在50~100℃下是足够的。此外,焙烧温度为例如140~300℃,优选140℃~220℃,能够实现充分实用的导电率。
实施例1
选择油酸银作为有机酸盐、辛胺的银配位化合物作为胺配位化合物。首先,将28g油酸银、12g辛胺的银配位化合物加入到非极性溶剂中,得到均匀的液体。然后,向上述油酸银与辛胺银配位化合物的溶液中加入0.1g还原剂溶液(其中,该还原剂溶液是通过在甲醇中溶解10%的二甲基胺基硼烷得到的),使其发生反应。在添加还原剂溶液后,液体的颜色从透明变成茶色,确认形成了金属胶体。由于此时存在硼等杂质,因而向该反应液中加入去离子水,激烈搅拌后静置一晚,仅回收上清液。进而,为了除去对热分解产生影响的过量的油酸或辛胺,通过超滤进行浓缩,使用甲苯作为非极性溶剂进行浓度调整,制备成浓度为35重量%的Ag的分散液。该Ag纳米粒子的粒径为5nm。
通过旋转涂布法将该分散液涂布在基板(玻璃)上,通过100℃干燥、250℃焙烧,制成银的薄膜。测定该薄膜的表面电阻,在0.3μm的膜厚下得到电阻率为3.6×10-6Ω·cm。
实施例2
除了使用亚油酸银作为有机酸盐、并且使用辛胺的银配位化合物作为胺配位化合物之外,通过与实施例1相同的方法进行银纳米粒子的合成、成膜、评价。这时的电阻值在0.3μm的膜厚下的电阻率为3.6×10-6Ω·cm。
使用下表1所示的原料,通过与实施例1相同的方法进行金属纳米粒子的合成、成膜,评价。
(表1)
   实施例 有机酸盐 还原剂     金属浓度(%)     膜厚(μm)     电阻值(Ω·cm)
   3     癸酸银   己胺-银  叔丁基胺基硼烷     35     0.30     3.2×10-6
   4     癸烯酸银   辛胺-银  硼氢化钠     35     0.35     4.8×10-6
   5     油酸银   十二烷基胺-银  二甲基胺基硼烷     35     0.35     4.2×10-6
   6     庚酸银   庚胺-银  二甲基胺基硼烷     35     0.35     3.5×10-6
   7     辛酸银   己胺-银  叔丁基胺基硼烷     35     0.25     4.0×10-6
   8     壬酸银   癸胺-银  硼氢化钠     35     0.30     3.3×10-6
   9     油酸银   2-乙基己基胺-银  CO气体     35     0.25     3.6×10-6
   10     癸酸银   1-氨基十一烷-银  H2气体     35     0.30     4.0×10-6
   11     癸烯酸银   己胺-银  CO+N2气体     35     0.25     3.8×10-6
   12     亚油酸银   辛胺-银  H2+N2气体     35     0.25     3.5×10-6
   13     亚麻酸银   庚胺-银  叔丁基胺基硼烷     35     0.30     3.2×10-6
   14     己酸银   己胺-银  硼氢化钠     35     0.30     3.8×10-6
   15     十二烷酸银   癸胺-银  二甲基胺基硼烷     35     0.25     3.5×10-6
   16     油酸银   庚胺-银  叔丁基胺基硼烷     35     0.25     3.9×10-6
   17     癸酸金   己胺-金  CO+N2气体     35     0.30     4.0×10-6
   18     癸烯酸金   1-氨基十一烷-金  H2气体     35     0.25     3.4×10-6
   19     亚油酸金   庚胺-金  二甲基胺基硼烷     35     0.25     3.6×10-6
   20     亚麻酸金   辛胺-金  叔丁基胺基硼烷     35     0.30     3.9×10-6
   21     己酸金   癸胺-金  叔丁基胺基硼烷     35     0.30     3.5×10-6
   22     十二烷酸金   己胺-金  H2+N2气体     35     0.25     3.8×10-6
   23     油酸金   庚胺-金  硼氢化钠     35     0.25     3.2×10-6
使用实施例5所示的油酸银、十二烷基胺银配位化合物制造的银纳米粒子的TOF-SIMS分析的结果如图1所示。从该结果可以确认在金属表面附着了油酸银(Oleic acid+Ag)或十二烷基胺银(Dodecylamine+Ag)。
比较例1
相对于10%的硝酸盐水溶液,使用高分子类的Sorsperse 24000(ソルスパ一ス,商品名,Zeneka公司制造)作为分散剂,使用二乙醇胺作为还原剂,通过与实施例1相同的方法制成银纳米粒子分散液。在反应后,将最终的浓度调整到35%。
通过旋转涂布法将该分散液涂布在基板上,通过100℃干燥、250℃焙烧,制成银的薄膜。测定该薄膜的表面电阻,在0.3μm的膜厚下电阻率为7×10-2Ω·cm。
比较例2
将0.44g合成甘氨酸和3.2g硫酸亚铁七水合物溶于90mL离子交换水中,使用氢氧化钠水溶液(和光纯药工业公司制,使用离子交换水将特级试剂调整到适当浓度的溶液)将pH调整为7后,加入离子交换水使得总量达到128mL。接着,在室温下使用磁力搅拌器搅拌,同时向其中滴加2mL包含1g硝酸银的水溶液,制成金属含量为大约5g/L的银胶体液。这时,相对于1g银的甘氨酸的量为0.69g。
为了降低上述银胶体液的浓度,通过超滤进行高浓度化,在此过程中发生凝聚。此外,为了得到充分的导电性,必须获得必要的膜厚,在该浓度下,必须进行10次或更多次的涂布。
工业实用性
包含本发明的金属纳米粒子的分散液的金属浓度非常高,因此能够减少成膜次数,同时通过低温焙烧处理可实现充分实用的导电率。该金属纳米粒子分散液,例如,可以用于电气电子工业等领域的平板显示器等显示设备或印刷线路领域的金属配线等的制造。

Claims (18)

1.金属纳米粒子,其特征在于:是在各个金属的周围附着有作为分散剂的有机金属化合物的金属纳米粒子,该有机金属化合物包含选自贵金属和过渡金属的至少1种的金属或者由这些金属的至少2种构成的合金,上述有机金属化合物为胺的金属配位化合物、或脂肪酸的有机金属化合物与胺的金属配位化合物的混合物,上述胺为选自己胺、庚胺、辛胺、癸胺、十二烷胺、2-乙基己胺、1,3-二甲基正丁胺、1-氨基十一烷、1-氨基十三烷的至少1种胺。
2.如权利要求1所述的金属纳米粒子,其特征在于:上述脂肪酸为选自具有直链或支链结构的C6~C22的饱和脂肪酸和不饱和脂肪酸的至少1种脂肪酸。
3.如权利要求2所述的金属纳米粒子,其特征在于:上述脂肪酸为选自己酸、庚酸、辛酸、壬酸、癸酸、十一烷酸、十二烷酸、十四烷酸、二十烷酸、二十二烷酸、2-乙基己酸、油酸、亚油酸、亚麻酸的至少1种脂肪酸。
4.如权利要求1~3任一项所述的金属纳米粒子,其特征在于:上述金属纳米粒子的大小为1nm~100nm。
5.金属纳米粒子的制造方法,其特征在于:将具有直链或支链结构的脂肪胺的金属配位化合物、或者脂肪酸的有机金属化合物与该金属配位化合物的混合物溶解于非极性溶剂中,向该液体中加入还原剂,向该液体中导入氢气、一氧化碳气、含有氢气的气体、或者含有一氧化碳的气体的同时进行还原处理,其后,加入去离子水,搅拌、静置,将杂质转移到极性溶剂中,降低非极性溶剂中的杂质浓度,上述胺为选自己胺、庚胺、辛胺、癸胺、十二烷胺、2-乙基己胺、1,3-二甲基正丁胺、1-氨基十一烷、1-氨基十三烷的至少1种胺。
6.如权利要求5所述的金属纳米粒子的制造方法,其特征在于:上述金属纳米粒子的大小为1nm~100nm。
7.如权利要求5所述的金属纳米粒子的制造方法,其特征在于:进一步将含有上述金属纳米粒子的混合物浓缩,然后将该金属纳米粒子再分散,使得金属纳米粒子的浓度范围达到5重量%~90重量%。
8.权利要求5所述的金属纳米粒子的制造方法,其特征在于:在各个金属纳米粒子的周围附着有作为分散剂的有机金属化合物,上述有机金属化合物为胺的金属配位化合物、或脂肪酸的有机金属化合物与胺的金属配位化合物的混合物。
9.权利要求8所述的金属纳米粒子的制造方法,其特征在于:上述脂肪酸为选自具有直链或支链结构的C6~C22的饱和脂肪酸和不饱和脂肪酸的至少1种脂肪酸。
10.权利要求8所述的金属纳米粒子的制造方法,其特征在于:上述脂肪酸为选自己酸、庚酸、辛酸、壬酸、癸酸、十一烷酸、十二烷酸、十四烷酸、二十烷酸、二十二烷酸、2-乙基己酸、油酸、亚油酸、亚麻酸的至少1种脂肪酸。
11.金属细线或金属薄膜的形成方法,其特征在于:将含有金属纳米粒子的分散液涂布在基材上,然后干燥后焙烧,形成具有导电性的金属细线或金属薄膜,上述金属纳米粒子通过如下进行制造:将具有直链或支链结构的脂肪胺的金属配位化合物、或者选自具有直链或支链结构的C6~C22的饱和脂肪酸和不饱和脂肪酸的至少1种脂肪酸的有机金属化合物与该金属配位化合物的混合物溶解于非极性溶剂中,向该液体中加入还原剂,向该液体中导入氢气、一氧化碳气、含有氢气的气体或者含有一氧化碳的气体的同时进行还原处理,得到金属纳米粒子,其后,加入去离子水,搅拌、静置,将杂质转移到极性溶剂中,降低非极性溶剂中的杂质浓度。
12.如权利要求11所述的金属细线或金属薄膜的形成方法,其特征在于:上述焙烧温度为140~300℃。
13.通过如权利要求11所述的形成方法得到的金属细线。
14.通过如权利要求11所述的形成方法得到的金属薄膜。
15.金属细线或金属薄膜的形成方法,其特征在于:将金属纳米粒子分散液涂布在基材上,然后干燥后焙烧,形成具有导电性的金属细线或金属薄膜,上述分散液通过如下进行制造:将具有直链或支链结构的脂肪胺的金属配位化合物、或者选自具有直链或支链结构的C6~C22的饱和脂肪酸和不饱和脂肪酸的至少1种脂肪酸的有机金属化合物与该金属配位化合物的混合物溶解于非极性溶剂中,向该液体中加入还原剂,向该液体中导入氢气、一氧化碳气、含有氢气的气体或者含有一氧化碳的气体的同时进行还原处理,得到金属纳米粒子,其后,加入去离子水,搅拌、静置,将杂质转移到极性溶剂中,降低非极性溶剂中的杂质浓度,然后使金属纳米粒子分散,使得金属纳米粒子的浓度范围达到5重量%~90重量%。
16.如权利要求15所述的金属细线或金属薄膜的形成方法,其特征在于:上述焙烧温度为140~300℃。
17.通过如权利要求15所述的形成方法得到的金属细线。
18.通过如权利要求15所述的形成方法得到的金属薄膜。
CN2004800259542A 2003-09-09 2004-09-07 金属纳米粒子及其制造方法、金属纳米粒子分散液及其制造方法、以及金属细线和金属薄膜及其制造方法 Active CN1849260B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP317161/2003 2003-09-09
JP2003317161A JP2005081501A (ja) 2003-09-09 2003-09-09 金属ナノ粒子及びその製造方法、金属ナノ粒子分散液及びその製造方法、並びに金属細線及び金属膜及びその形成方法
PCT/JP2004/012968 WO2005023702A1 (ja) 2003-09-09 2004-09-07 金属ナノ粒子及びその製造方法、金属ナノ粒子分散液及びその製造方法、並びに金属細線及び金属膜及びその形成方法

Publications (2)

Publication Number Publication Date
CN1849260A CN1849260A (zh) 2006-10-18
CN1849260B true CN1849260B (zh) 2011-12-14

Family

ID=34269849

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800259542A Active CN1849260B (zh) 2003-09-09 2004-09-07 金属纳米粒子及其制造方法、金属纳米粒子分散液及其制造方法、以及金属细线和金属薄膜及其制造方法

Country Status (7)

Country Link
US (1) US7628840B2 (zh)
EP (1) EP1666408A4 (zh)
JP (1) JP2005081501A (zh)
KR (1) KR100764535B1 (zh)
CN (1) CN1849260B (zh)
TW (1) TW200510060A (zh)
WO (1) WO2005023702A1 (zh)

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724789B1 (en) 2004-03-10 2010-12-22 Asahi Glass Company, Limited Metal-containing fine particle, liquid dispersion of metal-containing fine particle, and conductive metal-containing material
US7270694B2 (en) 2004-10-05 2007-09-18 Xerox Corporation Stabilized silver nanoparticles and their use
KR100773534B1 (ko) * 2005-07-15 2007-11-05 삼성전기주식회사 혼합 분산제, 이를 이용한 페이스트 조성물 및 분산방법
JP4822783B2 (ja) * 2005-09-22 2011-11-24 株式会社日本触媒 金属ナノ粒子の製法および当該製法により得られた粒子のコロイド
JP4699156B2 (ja) * 2005-09-29 2011-06-08 大日本印刷株式会社 ガスバリアフィルム
US7981327B2 (en) 2005-10-14 2011-07-19 Toyo Ink Mfg. Co. Ltd. Method for producing metal particle dispersion, conductive ink using metal particle dispersion produced by such method, and conductive coating film
US8110510B1 (en) 2005-10-17 2012-02-07 Merck Patent Gmbh Low temperature synthesis of nanowires in solution
KR101167733B1 (ko) * 2005-11-16 2012-07-23 삼성전기주식회사 캡핑 리간드가 표면에 결합되어 있는 나노입자용 분산제, 이를 이용한 나노입자의 분산방법 및 이를 포함하는 나노입자 박막
US20090053469A1 (en) * 2006-01-11 2009-02-26 Kimitaka Sato Silver Conductive Film and Production Method Thereof
JP5084145B2 (ja) * 2006-01-25 2012-11-28 株式会社日本触媒 ナノ粒子分散体の保存方法及び輸送方法
JP4983150B2 (ja) * 2006-04-28 2012-07-25 東洋インキScホールディングス株式会社 導電性被膜の製造方法
US20100075137A1 (en) * 2006-05-17 2010-03-25 Lockheed Martin Corporation Carbon nanotube synthesis using refractory metal nanoparticles and manufacture of refractory metal nanoparticles
DE112007001519B4 (de) 2006-06-22 2022-03-10 Mitsubishi Paper Mills Limited Verfahren zum Herstellen eines leitfähigen Materials
KR100790457B1 (ko) * 2006-07-10 2008-01-02 삼성전기주식회사 금속 나노입자의 제조방법
JP2008019461A (ja) * 2006-07-11 2008-01-31 Fujifilm Corp 金属ナノ粒子の製造方法、金属ナノ粒子及び金属ナノ粒子分散物
CN101495580A (zh) * 2006-07-28 2009-07-29 旭硝子株式会社 含金属微粒的分散液、其制造方法及具有金属膜的物品
KR101375488B1 (ko) 2006-07-28 2014-03-18 후루카와 덴키 고교 가부시키가이샤 미립자 분산액, 및 미립자 분산액의 제조방법
US8277693B2 (en) 2006-07-28 2012-10-02 Furukawa Electric Co., Ltd. Method for producing fine particle dispersion and fine particle dispersion
JP5139659B2 (ja) * 2006-09-27 2013-02-06 Dowaエレクトロニクス株式会社 銀粒子複合粉末およびその製造法
JP5096735B2 (ja) 2006-12-05 2012-12-12 Jx日鉱日石エネルギー株式会社 ワイヤグリッド型偏光子及びその製造方法、並びにそれを用いた位相差フィルム及び液晶表示素子
KR100818195B1 (ko) 2006-12-14 2008-03-31 삼성전기주식회사 금속 나노입자의 제조방법 및 이에 따라 제조된 금속나노입자
EP2177294B1 (en) * 2007-07-06 2017-12-13 M Technique Co., Ltd. Method for production of metal microparticle, and metal colloid solution comprising metal microparticle
US8555491B2 (en) 2007-07-19 2013-10-15 Alpha Metals, Inc. Methods of attaching a die to a substrate
KR20090012605A (ko) * 2007-07-30 2009-02-04 삼성전기주식회사 금속 나노입자의 제조방법
JP5686598B2 (ja) * 2007-09-27 2015-03-18 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 分離可能な及び再分散可能な遷移金属ナノ粒子、それらの製造方法、並びにir吸収体としての使用
KR20090032841A (ko) * 2007-09-28 2009-04-01 삼성전기주식회사 로드 형태를 포함하는 금속 나노입자의 제조방법
KR101239563B1 (ko) 2007-10-24 2013-03-05 도와 일렉트로닉스 가부시키가이샤 미소 은 입자 함유 조성물 및 미소 은 입자를 갖는 페이스트
KR20090041964A (ko) * 2007-10-25 2009-04-29 재단법인서울대학교산학협력재단 침철광 나노튜브 및 그 제조 방법
KR101247431B1 (ko) 2007-12-18 2013-03-26 히타치가세이가부시끼가이샤 구리 도체막 및 그 제조방법, 도전성 기판 및 그 제조방법, 구리 도체 배선 및 그 제조방법, 및 처리액
EP2687365B1 (en) 2007-12-27 2019-02-20 Lockheed Martin Corporation Method for fabricating refractory metal carbides
WO2009111488A2 (en) * 2008-03-04 2009-09-11 Lockheed Martin Corporation Tin nanoparticles and methodology for making same
FI20085229L (fi) * 2008-03-18 2009-09-19 Keskuslaboratorio Uudet materiaalit ja menetelmät
WO2009120151A1 (en) * 2008-03-28 2009-10-01 Nanyang Technological University Membrane made of a nanostructured material
WO2010001496A1 (ja) * 2008-06-30 2010-01-07 Dowa エレクトロニクス 株式会社 微小金属粒子含有組成物及びその製造方法
JP4454673B2 (ja) * 2008-08-01 2010-04-21 株式会社新川 金属ナノインクとその製造方法並びにその金属ナノインクを用いるダイボンディング方法及びダイボンディング装置
US8900704B1 (en) 2008-08-05 2014-12-02 Lockheed Martin Corporation Nanostructured metal-diamond composite thermal interface material (TIM) with improved thermal conductivity
KR20100016821A (ko) * 2008-08-05 2010-02-16 삼성전기주식회사 니켈 나노입자 제조방법
US8419822B2 (en) * 2008-08-18 2013-04-16 Xerox Corporation Methods for producing carboxylic acid stabilized silver nanoparticles
US8486305B2 (en) 2009-11-30 2013-07-16 Lockheed Martin Corporation Nanoparticle composition and methods of making the same
US9095898B2 (en) 2008-09-15 2015-08-04 Lockheed Martin Corporation Stabilized metal nanoparticles and methods for production thereof
US8105414B2 (en) * 2008-09-15 2012-01-31 Lockheed Martin Corporation Lead solder-free electronics
JP5667558B2 (ja) * 2009-02-27 2015-02-12 日産化学工業株式会社 有機スイッチング素子及びその製造方法
JP5526578B2 (ja) * 2009-04-01 2014-06-18 三菱マテリアル株式会社 粒子分散体の製造方法並びにこの粒子分散体を用いた酸化物半導体粒子、金属粒子及び半金属粒子の製造方法
JP5574761B2 (ja) * 2009-04-17 2014-08-20 国立大学法人山形大学 被覆銀超微粒子とその製造方法
US9072185B2 (en) 2009-07-30 2015-06-30 Lockheed Martin Corporation Copper nanoparticle application processes for low temperature printable, flexible/conformal electronics and antennas
US9011570B2 (en) 2009-07-30 2015-04-21 Lockheed Martin Corporation Articles containing copper nanoparticles and methods for production and use thereof
US10544483B2 (en) 2010-03-04 2020-01-28 Lockheed Martin Corporation Scalable processes for forming tin nanoparticles, compositions containing tin nanoparticles, and applications utilizing same
WO2011109660A2 (en) * 2010-03-04 2011-09-09 Lockheed Martin Corporation Compositions containing tin nanoparticles and methods for use thereof
KR101700615B1 (ko) * 2010-03-30 2017-01-31 주식회사 동진쎄미켐 금속 나노입자의 제조방법, 이에 의해 제조된 금속 나노입자 및 이를 포함하는 금속 잉크 조성물
KR20110139942A (ko) * 2010-06-24 2011-12-30 삼성전기주식회사 금속 잉크 조성물 및 이를 이용한 금속 배선 형성 방법, 그리고 상기 금속 잉크 조성물로 형성된 도전성 패턴
KR20110139941A (ko) * 2010-06-24 2011-12-30 삼성전기주식회사 금속 잉크 조성물 및 이를 이용한 금속 배선 형성 방법, 그리고 상기 금속 잉크 조성물로 형성된 도전성 패턴
SG190408A1 (en) * 2010-12-01 2013-06-28 Univ Singapore Method of preparing transparent conducting oxide films
TWI520990B (zh) 2011-01-26 2016-02-11 Maruzen Petrochem Co Ltd Metal nano particle composite and its manufacturing method
JP5624915B2 (ja) * 2011-03-03 2014-11-12 株式会社アルバック 金属ナノ粒子分散液
TWI464753B (zh) * 2011-07-26 2014-12-11 Univ Nat Sun Yat Sen 在室溫下形成導電薄膜之方法
KR20130031414A (ko) * 2011-09-21 2013-03-29 삼성전기주식회사 저온소성용 도전성 페이스트 조성물
WO2013061527A1 (ja) * 2011-10-24 2013-05-02 バンドー化学株式会社 接合用組成物
CN102371358A (zh) * 2011-11-18 2012-03-14 复旦大学 一种可再分散的纳米铜粒子的水相制备方法
KR101151366B1 (ko) * 2011-11-24 2012-06-08 한화케미칼 주식회사 도전성 입자 및 이의 제조방법
SG11201404758YA (en) 2012-02-10 2014-09-26 Lockheed Corp Photovoltaic cells having electrical contacts formed from metal nanoparticles and methods for production thereof
SG11201404728VA (en) 2012-02-10 2014-09-26 Lockheed Corp Nanoparticle paste formulations and methods for production and use thereof
JP6123054B2 (ja) 2012-02-21 2017-05-10 エム・テクニック株式会社 微粒子の製造方法
US8968824B2 (en) 2013-03-14 2015-03-03 Dowa Electronics Materials Co., Ltd. Method for producing silver conductive film
CN104145313A (zh) * 2013-04-05 2014-11-12 苏州诺菲纳米科技有限公司 带有融合金属纳米线的透明导电电极、它们的结构设计及其制造方法
JP6099472B2 (ja) * 2013-04-26 2017-03-22 Dowaエレクトロニクス株式会社 金属ナノ粒子分散体、金属ナノ粒子分散体の製造方法および接合方法
JP6676403B2 (ja) 2016-02-23 2020-04-08 エスアイアイ・クリスタルテクノロジー株式会社 圧電振動片、及び圧電振動子
CN109195731B (zh) * 2016-05-16 2021-07-06 Dic株式会社 金属纳米粒子水分散液
US9718842B1 (en) 2016-08-09 2017-08-01 Eastman Kodak Company Silver ion carboxylate primary alkylamine complexes
US9809606B1 (en) 2016-08-09 2017-11-07 Eastman Kodak Company Silver ion carboxylate N-heteroaromatic complexes
US10087331B2 (en) 2016-08-09 2018-10-02 Eastman Kodak Company Methods for forming and using silver metal
US10311990B2 (en) 2016-08-09 2019-06-04 Eastman Kodak Company Photosensitive reducible silver ion-containing compositions
US10186342B2 (en) 2016-08-09 2019-01-22 Eastman Kodak Company Photosensitive reducible silver ion-containing compositions
US10314173B2 (en) 2016-08-09 2019-06-04 Eastman Kodak Company Articles with reducible silver ions or silver metal
US10356899B2 (en) 2016-08-09 2019-07-16 Eastman Kodak Company Articles having reducible silver ion complexes or silver metal
CN106829887B (zh) * 2017-01-19 2019-05-24 南开大学 一种基于MOFs材料同步合成有机物和金属化合物纳米粒子的方法
JP7120890B2 (ja) * 2018-11-16 2022-08-17 田中貴金属工業株式会社 金属配線を備える導電基板及び該導電基板の製造方法、並びに金属配線形成用の金属インク
CN111438373B (zh) * 2020-05-27 2022-11-22 山西大同大学 一种铜银核壳结构双金属球状纳米粒子的制备方法
CN114226711A (zh) * 2021-12-31 2022-03-25 江苏纳美达光电科技有限公司 银纳米粒子及其制备方法
CN116403757A (zh) * 2023-05-23 2023-07-07 广东工业大学 一种纳米金属粉浆及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121606A (ja) * 2000-10-13 2002-04-26 Ulvac Corporate Center:Kk 金属超微粒子分散液及びその製造方法
JP2002317215A (ja) * 2001-04-19 2002-10-31 Mitsuboshi Belting Ltd 金属微粒子の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250101A (en) * 1991-04-08 1993-10-05 Mitsubishi Gas Chemical Company, Inc. Process for the production of fine powder
US5389122A (en) * 1993-07-13 1995-02-14 E. I. Du Pont De Nemours And Company Process for making finely divided, dense packing, spherical shaped silver particles
JP3205793B2 (ja) * 1996-12-19 2001-09-04 株式会社巴製作所 超微粒子及びその製造方法
US6103868A (en) * 1996-12-27 2000-08-15 The Regents Of The University Of California Organically-functionalized monodisperse nanocrystals of metals
JPH11269656A (ja) * 1998-03-20 1999-10-05 Kojundo Chem Lab Co Ltd 薄膜形成用組成物の製造法とそれを用いた薄膜
JPH11319538A (ja) 1998-05-20 1999-11-24 Nippon Paint Co Ltd 貴金属又は銅のコロイドの製造方法
WO2000076699A1 (en) * 1999-06-15 2000-12-21 Kimoto, Masaaki Ultrafine composite metal powder and method for producing the same
US6346136B1 (en) * 2000-03-31 2002-02-12 Ping Chen Process for forming metal nanoparticles and fibers
EP1339073B1 (en) * 2000-10-25 2011-09-21 Harima Chemicals, Inc. Electroconductive metal paste and method for production thereof
JP4627376B2 (ja) 2001-02-20 2011-02-09 バンドー化学株式会社 金属コロイド液及びその製造方法
KR100867281B1 (ko) * 2001-10-12 2008-11-06 재단법인서울대학교산학협력재단 크기분리 과정 없이 균일하고 결정성이 우수한 금속,합금, 금속 산화물, 및 복합금속 산화물 나노입자를제조하는 방법
US6676729B2 (en) * 2002-01-02 2004-01-13 International Business Machines Corporation Metal salt reduction to form alloy nanoparticles
EP1338361B1 (en) * 2002-02-18 2005-12-14 Fuji Photo Film Co., Ltd. Method of producing nanoparticle
US6974493B2 (en) * 2002-11-26 2005-12-13 Honda Motor Co., Ltd. Method for synthesis of metal nanoparticles
JP4747839B2 (ja) * 2003-06-10 2011-08-17 旭硝子株式会社 金属水素化物微粒子を含有する分散液及びその製造方法、並びに金属質材料
US7160525B1 (en) * 2003-10-14 2007-01-09 The Board Of Trustees Of The University Of Arkansas Monodisperse noble metal nanocrystals
US7335245B2 (en) * 2004-04-22 2008-02-26 Honda Motor Co., Ltd. Metal and alloy nanoparticles and synthesis methods thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121606A (ja) * 2000-10-13 2002-04-26 Ulvac Corporate Center:Kk 金属超微粒子分散液及びその製造方法
JP2002317215A (ja) * 2001-04-19 2002-10-31 Mitsuboshi Belting Ltd 金属微粒子の製造方法

Also Published As

Publication number Publication date
US20070134491A1 (en) 2007-06-14
KR20060069491A (ko) 2006-06-21
KR100764535B1 (ko) 2007-10-09
WO2005023702A1 (ja) 2005-03-17
EP1666408A4 (en) 2009-11-25
CN1849260A (zh) 2006-10-18
TW200510060A (en) 2005-03-16
EP1666408A1 (en) 2006-06-07
JP2005081501A (ja) 2005-03-31
US7628840B2 (en) 2009-12-08
TWI351982B (zh) 2011-11-11

Similar Documents

Publication Publication Date Title
CN1849260B (zh) 金属纳米粒子及其制造方法、金属纳米粒子分散液及其制造方法、以及金属细线和金属薄膜及其制造方法
KR100905214B1 (ko) 금속 박막의 형성 방법 및 금속 박막
US20080105853A1 (en) Conductive Metal Paste
JP5838541B2 (ja) 導電膜形成のための銀ペースト
TWI422709B (zh) 具有置換安定劑之含銀奈米粒子
EP1340568B1 (en) Dispersion of ultrafine metal particles and process for producing the same
CN1671805B (zh) 烧结温度低的导电纳米油墨及其制备方法
JP6404614B2 (ja) コアシェル型金属微粒子の製造方法、コアシェル型金属微粒子、導電性インクおよび基板の製造方法
JP2009515023A (ja) 金属インク、並びにそれを用いた電極形成方法及び基板
TWI783947B (zh) 導電性塗層複合體及其製造方法
TW200827412A (en) Dispersion containing metal fine particles, process for production of the dispersion, and articles having metal films
US9283618B2 (en) Conductive pastes containing silver carboxylates
TWI734797B (zh) 導電性糊及導電性圖案的形成方法
TWI744372B (zh) 接合用組成物及其製造方法、接合體以及被覆銀奈米粒子
JP7323944B2 (ja) 導電性ペースト
TWI744314B (zh) 導電性墨水
TWI754708B (zh) 凹版轉印用導電性糊劑、導電性圖案的形成方法以及導電性基板的製造方法
JP5944686B2 (ja) 金属めっき方法
JP2009185390A (ja) 金属ナノ粒子の製造方法、並びに金属細線及び金属膜及びその形成方法
TWI728166B (zh) 金屬銀微粒子的製造方法
JP2008016360A5 (zh)
JP2008016360A (ja) 導電性金属被膜の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant