CN1464868A - 透光性稀土金属氧化物烧结体及其制造方法 - Google Patents

透光性稀土金属氧化物烧结体及其制造方法 Download PDF

Info

Publication number
CN1464868A
CN1464868A CN02802294A CN02802294A CN1464868A CN 1464868 A CN1464868 A CN 1464868A CN 02802294 A CN02802294 A CN 02802294A CN 02802294 A CN02802294 A CN 02802294A CN 1464868 A CN1464868 A CN 1464868A
Authority
CN
China
Prior art keywords
weight
sintered compact
ppm
rare
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN02802294A
Other languages
English (en)
Other versions
CN1267379C (zh
Inventor
八木秀喜
柳谷高公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Publication of CN1464868A publication Critical patent/CN1464868A/zh
Application granted granted Critical
Publication of CN1267379C publication Critical patent/CN1267379C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/728Silicon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/87Grain boundary phases intentionally being absent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Abstract

使用一种纯度为99.9%或以上、铝含量以金属重量计为5-100重量ppm、硅含量以金属重量计为10重量ppm或更低的高纯度稀土金属氧化物材料粉末和粘合剂制作成型密度为理论密度的58%或以上的成型体。通过热处理除去粘合剂,然后在氢或稀有气体或其混合物气氛下或在真空中,于不低于1450℃和不高于1700℃的温度下将成型体烧结0.5小时或以上,制作一种由通式R2O3(R为Y、Dy、Ho、Er、Tm、Yb和Lu中的至少一种元素)表示的透光性稀土金属氧化物烧结体。

Description

透光性稀土金属氧化物烧结体及其制造方法
发明领域
本发明涉及由R2O3(R为Y、Dy、Ho、Er、Tm、Yb和Lu中的至少一种元素)表示的透光性稀土金属氧化物烧结体及其制造方法。本发明的烧结体可以令人满意地用作,例如红外线透射窗、偏振板、放电灯外壳、光学部件和激光振荡器的材料。
现有技术
由通式R2O3(R为Y、Dy、Ho、Er、Tm、Yb和Lu中的至少一种元素)表示的稀土金属氧化物具有立方晶体结构并且无双折射。因此,当从它们中完全消除气孔和杂质的偏析时,它们可以提供具有优良透光性的烧结体。
其中,三氧化二钇(Y2O3)的熔点为2415℃,为那些稀土金属氧化物中的最高值,其具有优良的耐热性和优良的耐碱性,并且在红外区显示出高透光性。此外,因为三氧化二钇具有高导热性,预计它可作为固态激光的基质材料。然而,因为三氧化二钇具有很高的熔点并且会在2280℃附近发生相变(在立方晶体和六方晶体之间),因此难以用现有的单晶合成技术合成出具有优良光学性质的大晶体。另一方面,因为可以在低于其熔点的较低的温度下合成陶瓷(多晶体),人们已经进行了广泛的努力以将其陶瓷用于红外高温窗材料、放电灯外壳、耐腐蚀构件等等。
在透光性烧结体的制备中,不限于稀土金属氧化物烧结体,最重要的是在烧结阶段晶粒生长期间是否可以很好地消除气孔。加入烧结添加剂的技术通常用于控制晶粒生长速度。在到目前为止已经报道的大多数三氧化二钇的制造方法中,均加入烧结添加剂。
以下方法是已知的使用烧结添加剂制造透明三氧化二钇的方法:
(1)加入ThO2并在2100℃或更高温度的氢气气氛下进行烧结的方法(Ceramic Bulletin,第52卷,第5期(1973));
(2)Y2O3粉末的烧结方法,其中通过真空热压向其中加入AlF3(日本临时专利昭53-120707);
(3)类似的热压Y2O3粉末的方法,其中加入了LiF或KF(日本临时专利平4-59658);和
(4)加入La2O3或Al2O3并在低O2气氛下烧结的方法(日本临时专利昭54-17911,日本临时专利昭54-17910)。
在方法(1)中,加入放射性二氧化钍作为烧结添加剂,它不易于获得和处理,尽管其加入将会提供具有比较高透光性的烧结体。此外,当烧结在高温下进行长时间时,平均粒度达到100μm或以上,材料强度极低。因此,所述烧结体不适于日常使用。热压法(2)允许在较低的温度下烧结,可是,它只能提供在可见区直线光透过率为约60%的烧结体。
根据方法(3),通过在1500℃或更高的温度下进行热压可以制造出在波长为2μm或以上的红外区内的直线光透过率为约80%的烧结体。在可见区中的透过率不明确,因为在该文献中没有指出。然而,作为烧结添加剂加入的氟化物的熔点低(LiF:842℃;KF:860℃)并且在烧结过程中可能会蒸发,从而样品的周围部分和内部的晶粒生长速度间产生差值。因此,预计当样品厚时,难以生成均质烧结体。根据Majima等人的报道(Journal of Japan Inst.Metals,第57卷,第10期,1221-1226页(1993)),当LiF用作添加剂并使用热压时,即使添加剂的量最佳,氟也将会留在样品的中心部分,其透过率将比样品的周围部分低。因此,使用氟化物作为烧结添加剂不易于生成大型和厚的烧结体。
根据方法(4),加入了约6-14mol%的La2O3,不能固溶的La2O3倾向于形成偏析相(例如,在Journal of Materials Science,24(1989),863-872中所述),因此它不易于制作光学均质的烧结体。根据加入了Al2O3的方法,添加剂的量为0.05重量%-5重量%,致密体是通过在不低于Y4Al3O9和Y2O3之间的共晶温度(1920℃)的温度下经液相烧结制作的。然而,尽管烧结是在高温下进行的,但这样获得的烧结体的透过率最高只有理论透过率的80%。
另一方面,在日本专利2773193和日本临时专利平6-211573中公开了没有烧结添加剂的三氧化二钇的制造方法。根据日本专利2773193,BET值为10m2/g或以上的三氧化二钇粉末被热压以获得最大密度,它是理论密度的95%或以上,然后,进行HIP处理。这样得到的烧结体的透过率在波长为3-6μm的红外区高达约80%,但是在波长为0.4-3μm的区域内其透过率平均保持为大约75%。尽管进行了HIP处理,但在短波区域内不充分的透光性可能归因于使用了难以处理的超细粉末作为原材料;虽然通过热压增加了烧结体的表面密度,但是即使通过HIP处理,难以除去的大空隙也倾向于保留在样品的内部。
根据日本临时专利平6-211573的方法,透明体是通过对平均粒径为0.01-1μm的易烧结粉末进行CIP成型后,在1800℃或更高温度下进行真空烧结或在1600℃或更高温度下进行HIP处理制得的。据说,通过这种方法得到的烧结体在可见区的平均直线光透过率高达80%或更高,而且有可能通过加入发光元素而制作可进行激光振荡的烧结体。然而,为了制作高透明度样品,在真空烧结或者HIP处理中,必须在约2000℃的高温下进行烧结。在工业连续生产情况下,烧结炉过度劣化,而炉子的维修很是麻烦。而且,当波长变短时,透过率显著下降(当波长从1000nm减少到400nm时,透过率降低10%或更高)。因此,这种方法不适合于制作重视可见区透光性的光学部件。
通常,用于常规方法中的稀土金属氧化物材料粉末的母盐是草酸盐。通过煅烧草酸盐得到的材料粉末由高度聚集的次级粒子组成,其粒度分布是不均匀的。因此,通过成型不能充分地填密(packing),并且它不易于制作致密体。为改善这一点,近年来公开了使用易烧结材料粉末和低温烧结制作透明体的方法,(例如,日本临时专利平9-315865,10-273364,11-189413和11-278933)。
根据这些方法,碳酸盐用作母盐,并且煅烧碳酸盐得到粒度分布相对均匀且表现出较少聚集的粉末。这些粉末用作制作烧结体的原料。然而,通过这些方法得到的烧结体在可见区的直线光透过率最高为约70%,而且当将这一值与理论透过率(=82%)相比时,很难说它们是可与单一晶体匹敌的透明体。
以上说明了现有的制造透光性三氧化二钇的方法。应该注意到,没有方法可以很容易地并且能大规模制造从可见区到红外区内具有可与单一晶体匹敌的优良透光性的烧结体。对于使用三氧化二钇以外的稀土元素来制造透光性稀土金属氧化物烧结体几乎没有报道,因为稀土元素相对昂贵并且它们没有特定的用途,虽然生产条件几乎与三氧化二钇的条件等同。
发明概述
本发明的一个目的是通过使用工业上可行的技术而提供在从可见区到红外区内均显示出优良透过率的稀土金属氧化物烧结体,以及其制造方法。
本发明的透光性稀土金属氧化物烧结体由通式R2O3(R为Y、Dy、Ho、Er、Tm、Yb和Lu中的至少一种元素)表示,对于波长范围为500nm-6μm来说,在特异吸收波长以外的、在1mm厚烧结体上的直线光透过率是80%或以上,并且烧结体中铝的含量,以铝金属的量计,为5重量ppm或以上、100重量ppm或以下。5重量ppm或以上的铝是增加烧结体的密度所需要的,特别是,完全除去气孔以得到直线光透过率为80%或以上所需要的。铝超过100重量ppm时会导致铝在晶界上偏析并生成异相,从而使直线光透过率降低。
当烧结体的平均粒径大时,即使铝含量相同,异相也倾向于沉积在晶界上。因此,烧结体的平均粒径优选为2μm或以上、20μm或以下。
因为硅会增加烧结体的平均粒径,因此将烧结体中的硅含量保持在10重量ppm或更低(以金属重量计)是所希望的,这样平均粒径就会处于2-20μm。
在本发明中,烧结体的透明度是通过加入5-100重量ppm的铝而得到提高的,而现有技术却是通过利用CaO或MgO来提高烧结体的透明度。因此,将CaO含量或MgO含量保持在5重量ppm以下是所希望的。当CaO或MgO固溶于Y2O3中时,烧结体将倾向于着色。这归因于三价Y离子和二价Ca离子或二价Mg离子之间的电荷差倾向于产生导致颜色吸收的缺陷。
在本发明的透光性稀土金属氧化物烧结体的制造方法中,铝的含量以金属重量计为5-100重量ppm、硅的含量以金属重量计为10重量ppm或更低、且纯度为99.9%或以上的高纯度稀土金属氧化物材料粉末用来制作成型密度为理论密度的58%或以上的成型体。通过热处理从成型体中除去粘合剂,然后在氢或稀有气体或其混合物气氛中或在真空下,于不低于1450℃和不高于1700℃的温度下将成型体烧结0.5小时或以上的时间。这一方法能产生这样的烧结体:对于波长范围500nm-6μm来说,特异吸收波长以外的直线光透过率,当在1毫米厚的烧结体上测定时为80%或更高。
烧结体的平均粒径优选为2-20μm,优选在烧结体的晶界上基本没有含铝的异相沉积,优选对材料粉末和成型工艺进行控制以将烧结体中CaO或MgO均保持低于5重量ppm。
在下文中,铝含量和硅含量均以金属重量表示。
为解决以上问题,本发明人研究了许多方面的问题并且发现能制造出这样的稀土金属氧化物烧结体:对于波长范围500nm-6μm来说,在特异吸收波长以外的直线光透过率,当在1毫米厚的烧结体上测定时为80%或以上。为此,控制材料纯度、铝含量和成型体密度制备成型体,然后通过热处理从成型体中除去粘合剂,并将成型体在氢或稀有气体或其混合物气氛中或在真空下,于不低于1450℃和不高于1700℃的温度下将成型体烧结0.5小时或以上的时间。
在本发明的稀土金属氧化物的烧结中,极微量的铝(5重量ppm-100重量ppm,以金属重量计)作为烧结添加剂发挥重要的作用。应当注意,在本说明书中,如果不特别说明,铝和硅的含量表示为以金属重量计的重量比。成型体的密度由相对于理论密度的比例表示。
如现有技术部分中提到的,已经揭示了各种加入烧结添加剂的技术,但是,在大部分这些情况中,烧结添加剂在晶界上偏析,从而降低晶界移动的速度,而这又会控制晶粒生长的速度和实现最大致密化。根据本发明,当包含有极微量的铝时通过烧结获得最大致密化的机理的详细情况不明确。然而,只有当烧结体的平均粒径在约2μm-20μm的范围内时,铝才发挥最大致密化促进剂的作用,当平均粒径比这一范围大时,会产生包含铝的异相。
当烧结温度低于1450℃时,不管是否存在铝,通过晶粒生长不能充分进行最大致密化。因此,只能得到不透明或半透明烧结体。在这种情况下,平均粒径通常小于2μm。当烧结温度不低于1450℃且不高于1700℃、铝含量为5-100重量ppm且成型体密度为理论密度的58%或以上时,根据所使用材料的可烧结性,产生的烧结体的平均粒径在2-20μm范围之内,且可以得到透光性优良的烧结体。当以按类似的方式烧结铝含量低于5重量ppm的样品时,平均粒径也为约2-20μm,但是得到的烧结体为半透明或不透明的。另一方面,在铝含量超过100重量ppm的样品的情况下,同铝含量为100重量ppm或更低的样品比较起来,烧结体显示出更快的晶粒生长,且平均粒径更大。然而,正如铝含量低于5重量ppm的那些烧结体一样,得到的烧结体为半透明或不透明的。当铝含量在5-100重量ppm范围中时,铝作为烧结添加剂起最大致密化促进剂的作用,并且只有在这种情况下才能得到满意的透明体。然而,当铝超过100重量ppm时,它主要用作晶粒生长促进剂,因为不能充分地除去气孔,所以不能得到满意的透明体。
另一方面,当在超过1700℃的温度下进行烧结时,不管是否存在铝,晶粒生长均显著进行。因为不能充分地除去气孔,所以很难产生有足够透光性的烧结体。在这种情况下,平均粒径为,例如25μm或以上。在烧结温度超过1700℃时,即使铝含量为5-100重量ppm的极微量,在晶界上也会产生铝的偏析相。铝的沉积取决于烧结体平均粒径,当平均粒径为20μm或更低时,在任何烧结气氛中均不会观察到铝的沉积。然而,当烧结体的平均粒径超过20μm时,开始在晶界上产生铝的偏析,并且当平均粒径为30μm或以上时,这种现象变得显著。
因此,只有当铝含量在5-100重量ppm范围内时,铝才发挥最大致密化促进剂的作用,且只有当在不产生沉积的1450℃或以上及1700℃或以下的温度范围内进行烧结时,才能产生透光性优良的烧结体,这样,平均粒径不小于2μm,且不大于20μm。应当注意,为保证极微量的铝充分发挥最大致密化促进剂的作用,制作透光性优良的烧结体,必须严格控制原料中硅的含量。必须将硅含量保持在不高于10重量ppm,将成型体密度保持在理论密度的58%或以上。
在市售的作为稀土元素的99.9%或以上的高纯度稀土金属氧化物粉末中,作为杂质包括在内的各元素的含量均为约几重量ppm,最高为约10重量ppm。例如,CaO或MgO的含量为5重量ppm或更低。然而,在很多情况下硅的含量为约10重量ppm,并且有时候会包含高达几十重量ppm或更多的硅。这归因于用来烧结稀土材料的坩埚通常是由石英制成的,附着的水与石英坩埚轻微反应,使得材料粉末中存在硅污染。而且,反应容器可能由玻璃制成或搪有玻璃,或有时候硅可能会包含在沉淀剂中。在高纯度稀土材料中作为杂质存在的铝的浓度为低于5重量ppm。在制造烧结体的过程中无意识的铝污染可以通过使用塑料球,如尼龙球而不是氧化铝球粉碎材料粉末,并且使用高纯度氧化铝坩埚进行煅烧以减少坩埚的反应性得以避免。当采用这些手段且无意加入铝时,可以将烧结体中铝的浓度保持在低于5重量ppm。
因为硅会在晶界上产生液相并且促进晶粒生长,当硅含量高时,它将抵消极微量铝的最大致密化促进作用。因此,存在于所使用的稀土金属氧化物材料粉末中的硅应该保持在不高于10重量ppm,并且优选不高于5重量ppm。因为材料中存在的大多数硅来自于煅烧坩埚,因此,通过使用例如氧化铝坩埚进行煅烧有可能获得硅含量较小的材料。硅也可能来自于去离子水或蒸馏水。因此,更优选使用超纯水。至于氧化铝坩埚,优选使用高纯度氧化铝坩埚,例如,使用99%的氧化铝坩锅以防止由于坩埚而造成铝污染。
根据本发明,必须制作内部没有大气孔和空隙的均质高密度成型体。一般的透光性陶瓷是在比其熔点低约100℃-300℃的温度下烧结的,它们的平均粒径为约50μm或以上。即为了通过晶粒生长除去成型体内部的气孔,当烧结具有许多气孔(成型体密度低)的成型体时,使晶粒显著生长以产生致密体。另一方面,根据本发明的烧结体是在不产生铝沉积的1700℃或以下的较低的温度下烧结的,并且它们的平均粒径比较小,为20μm或以下。因此,为了在不依靠用于消除气孔的过度晶粒生长的情况下制作透光性优良的烧结体,必须制作并烧结均质且高密度的成型体。
在成型密度不及58%的成型体内部,由于填密不充分会有许多气孔。在不高于1700℃的低温下不易实现这些成型体适当的最大致密化。另一方面,成型密度为58%或以上的成型体内部有相对较少的气孔,这些成型体可以在低温被充分致密化。因此,为制作透光性优良的烧结体(其中对于波长范围为500nm到6μm范围,在特异吸收波长以外的直线光透过率,当在1毫米厚的烧结体上测定时为80%或以上),必须将其成型密度设定为58%或以上,优选为60%或以上。
实施例
在下文中,将说明实施例的烧结体及其制造方法。
为制作烧结体,使用纯度为99.9%或以上,硅含量为10重量ppm或以下的高纯度易烧结材料粉末。通常,稀土材料元素是通过从包含多种稀土元素的矿石中分离、和经由溶剂萃取精制,以及煅烧其草酸盐沉淀而制备的。因此,没有进行充分分离和精制的材料粉末可能包含一些主要成分以外的稀土元素。有些情况下,作为杂质包含的稀土元素可能会显示出其特有的吸收并且恐怕会使烧结体着色,这不是所希望的。过渡元素如铁也不是所希望的,因为它们同样会起到着色源的作用。因此,必须选择充分精制的原材料。然而,在激光振荡器材料的情况下,添加激光活性元素如Nd或Yb,在有色玻璃的情况下,添加着色元素。
材料粉末的烧结性取决于其母盐。例如,在钇的情况下,烧结性通常按如下次序递减:(1)碳酸盐、(2)氢氧化物、(3)草酸盐、(4)硫酸铵、(5)硫酸盐(根据例如,L.R.Furlong,L.P.Domingues,Bull Am.Ceram.Soc,45,1051(1966))。可是,对这些母盐的种类没有特别的限制。任何易于得到的母盐均可使用。
所使用材料粉末的初级粒子大小没有特别限定。适于成型和烧结过程的任何粉末均可选择。超细粉末烧结活性高,可以在较低的温度下很好地致密化,但其不易处理。此外,超细粉末具有许多聚集颗粒,它不易于增加成型密度;在粗粉末情况下,填密容易但是烧结活性低,它不能在低温下致密化。因此,从易于烧结、填密和处理的观点出发,所使用材料的比表面积优选为约3-12m2/g,更优选约4-10m2/g。此外,最优选使用粒度分布均匀、聚集少的材料粉末。
其次,所需形状的成型体是通过使用稀土金属氧化物材料粉末制成的。陶瓷的成型法包括挤压成型、注射成型、加压成型和铸塑成型。在实施例中,成型不局限于任何特定的方法;可获得58%或以上成型密度和杂质污染少的任何方法均可使用。此时,如有必要,根据所使用的成型法,加入作为烧结添加剂的铝以均匀分散。例如,在加压成型的情况下,要向用于制作颗粒的浆液中加入适量的铝。浆液在例如球磨机中完全混合,然后通过喷雾干燥器等干燥,形成用于成型的颗粒。
至于加入铝的时机,没有特别的规定,只要铝可以均匀分散在整个成型体中即可。例如,可以在材料混合阶段或在煅烧阶段加入而不会产生问题。为使极微量的铝充分发挥其作用,最优选将铝混合在材料中。
其添加形式没有特别的规定,例如,如果铝在成型阶段混合,则加入适量的铝化合物,如氧化铝溶胶、Al2O3粉末或R3Al5O12粉末(R为Y、Dy、Ho、Er、Tm、Yb和Lu中的任意一种)。如果铝在材料混合阶段加入,则可以氯化铝或氢氧化铝的形式加入。至于添加剂的纯度,没有特别的规定,因为加入的量非常少。然而,像材料粉末一样,优选使用高纯度添加剂。如果添加剂以粉末形式加入,优选使用粒径可与材料粉末的初级粒径等同或比其小的粉末。
对成型体进行热处理以除去粘合剂。处理温度、持续时间和气氛根据加入的成型添加剂的种类而变化。如果样品表面上的气孔是封闭的,除去粘合剂将变得很困难。因此,除去粘合剂是通过在低于样品表面的气孔被封闭的温度下花费充分的时间进行的。后一温度取决于煅烧温度、所使用材料粉末的烧结性和成型体的填密,通常为约900℃-1400℃。因此,优选在低于这一温度的温度下除去粘合剂。至于气氛,氧气气氛是最常见的一种,但是如有必要,除去粘合剂可以在湿氢气氛或氩气气氛或减压下进行。
在完成粘合剂除去处理之后,将样品在氢或稀有气体或其混合物气氛中或在真空下,于不低于1450℃和不高于1700℃的温度下烧结0.5小时或以上的时间。此外,在粘合剂去除完成之后,通过一次烧结封闭样品的气孔,然后将样品进行HIP烧结也是有效的。至于烧结时间,需要0.5小时或以上的时间以均匀烧结整个成型体。烧结时间没有特别的规定,只要比上述时间长即可。当样品厚度为大约1-5毫米时,通常烧结约2-10小时就足够了。在加压烧结的情况下,烧结约0.5-2小时就足够了。
以下将说明实施例,但是本发明无论任何不局限于这些实施例。实施例1
根据日本临时专利平11-157933的方法,制作平均初级粒子大小为0.3μm、纯度为99.9%或以上,硅含量为3重量ppm的Y2O3材料粉末。更具体地,将钇的硝酸盐水溶液、尿素的水溶液和硫酸铵的水溶液混合得到钇∶尿素∶硫酸铵=1∶6∶1的摩尔比率。混合物在125℃的反应釜中水热反应2小时得到碳酸钇。用纯水洗涤得到的碳酸盐并将其干燥。然后,在1200℃的气氛下,在氧化铝坩埚中将干燥粉末煅烧3小时得到材料粉末。
向2公斤这种材料粉末中加入60克Ceramisol C-08增塑剂(NOFCorp.,Ceramisol为商品名)和300克用作粘合剂的甲基纤维素。向材料粉末中加入相当于铝金属量50重量ppm的氧化铝溶胶(NISSANCHEMICAL INDUSTRIES LTD.)作为烧结添加剂。再向材料粉末中加入4公斤纯水,将混合物在一使用尼龙筒(nylon pot)和尼龙球的球磨机中混合100小时。将所得浆液加热浓缩到可以挤出的粘度。将所述材料通过一个三辊磨机五次以提高其均匀性。这样得到的材料通过挤压机成型为60mm×200mm×3mm的成型体。
将该成型体充分干燥,然后将其温度以20℃/小时的速率升至600℃,将成型体在600℃下保持20小时将其脱脂。通过阿基米德法(Archimede’s method)测得该成型体的密度为59.8%。为将其充分脱脂,将成型体进一步升至1200℃并在此温度下保持10小时。然后,将成型体在1650℃的真空炉中烧结8小时。此时,升温速率为300℃/小时直到1200℃,之后升温速率为50℃/小时,炉内的真空度为10-1Pa或更低。
使用金刚石浆液对如此得到的烧结体进行镜面研磨,用分光光度计测定其直线光透过率。结果,在500nm和800nm波长下的直线光透过率分别为80.6%和82.1%(样品厚度:1毫米)。红外区的透过率在3μm和6μm的波长下分别为83.2%和84.1%。
在1500℃的气氛中对该样品进行热蚀2小时,通过光学显微镜观察其微观结构。结果,发现平均粒径为12.6μm。用SEM等通过在样品的高分辨率图像上任意画出一条线来确定其平均粒径。当线的长度为C,这条线上的颗粒数目为N,放大率为M时,平均粒径由公式:平均粒径=1.56C/(MN)求得。此外,当通过阿基米德法确定烧结体的密度时,发现其为理论密度的99.97%。通过反应釜将该烧结体溶解,通过ICP法确定铝和硅的量。铝为47重量ppm,硅为3重量ppm。实施例2-7
以类似于实施例1的方式制作各种稀土金属氧化物烧结体。对于每个样品,作为稀土元素的材料纯度为99.9%或以上,硅为10重量ppm或以下,成型密度为58%或以上。烧结条件、铝含量、1毫米厚样品的直线光透过率、及平均粒径列于表1。对于Yb2O3和Lu2O3来说,直线光透过率的测定波长为500nm。对于其他烧结体,选择对吸收率没有任何影响的波长。
                            表1:实施例2-实施例7
                                                      直线光透
                  烧结温度/℃    Al量    平均粒径
                                                       过率/%
                  ×时间/小时  /重量ppm   /μm
                                                    (测定波长/nm)实施例2    :Dy2O3   1675×8       90        16.9      81.2  (600)实施例3    :Ho2O3   1625×5       64        7.7       80.3  (580)实施例4    :Er2O3   1625×10      31        9.0       80.5  (600)实施例5    :Tm2O3   1650×7       25        13.2      81.1  (575)实施例6    :Yb2O3   1650×7       10        10.8      80.9  (500)实施例7    :Lu2O3   1680×10      52        19.3      81.5  (500)
实施例1-7中制作的烧结体的直线光透过率在波长1μm-6μm下测定(特异吸收波长以外),在所有情况下,它们中间的每一个均为82%或以上。这些结果表明,通过这些实施例可以制作从可见区到红外区均具有优良透光性的烧结体。比较例1-5
根据日本临时专利平11-157933的方法,制作Y2O3材料粉末。在煅烧材料粉末过程中,使用石英坩埚,并且通过改变坩埚中的样品位置得到硅含量不同的材料粉末。在煅烧用于比较例1和比较例5的材料时,使用高纯度氧化铝坩埚。以类似于实施例1的方式,将如此得到的材料粉末用于制作具有不同铝含量的三氧化二钇烧结体。材料中包含的硅量,烧结体中包含的铝量,以及500nm波长下的直线光透过率(样品厚度:1毫米)列于表2。以所有的情况下,成型密度均为58%或以上。
                        表2:比较例1-比较例5
            Si/重量ppm       Al/重量ppm     直线光透过率/%比较例1            3                 2               63比较例2            21                15              48比较例3            12                30              51比较例4            30                50              45比较例5            3                 115             57
象比较例1那样,当烧结体中包含的铝量少时,其作用不会充分发挥。因此,虽然平均粒径为11μm,基本上与实施例1等同,但透光性不高。象比较例5那样,当铝含量超过100重量ppm时,平均粒径为30μm,是实施例1平均粒径的两倍或以上,并且因为没有实现充分的最大致密化,透光性不高。在具有EDX(能量分散型X射线分析)的SEM下观察该样品。在晶界上发现有铝的偏析相。相反,比较例2-4表明,即使当烧结体中的铝含量在5-100重量ppm范围之内,但如果材料中包含的硅量超过10重量ppm的话,也不能得到足够的透光性。因此,根据这些比较例发现,要制作透光性优良的烧结体,必须严格控制材料中包含的硅量和烧结体中包含的铝量。实施例8、9和10以及对比例6、7和8
纯度为99.9%或以上、硅含量为3重量ppm以及初级粒子大小为0.35μm的Er2O3材料粉末进行CIP成型。通过改变成型压力,制作出具有不同成型密度的成型体。然后,以类似于实施例4的方式制作烧结体。成型密度及烧结体在波长为600nm下的直线光透过率(t=1.0毫米)示于表3。在所有的情况下,烧结体中包含的铝量均在55-60重量ppm范围之内。
                    表3:成型密度和透过率
           成型密度/%      透过率/%        平均粒径/μm比较例6          49.3              -                 25.2比较例7          53.2              45.3              17.3比较例8          57.6              67.5              18.6实施例8          58.2              80.2              13.2实施例9          60.5              80.6              12.7实施例10         64.4              81.1              10.8
在比较例6中,同其他情况相比,其晶粒生长显著,在烧结体内部保留有许多气孔,也能观察到铝的偏析。因为它是不透明体,所以不可能测定透过率。比较例7和8以及实施8、9和10表明,透过率随着成型密度的增加而增加,而且58%或以上的成型密度是得到具有80%或以上的优良透光性的烧结体所必需的。实施例11-14和比较例9-12
将氧化铝溶胶加入到材料纯度为99.9%或以上、硅含量为2重量ppm的Yb2O3材料粉末中,以将烧结体中的铝含量设定在50重量ppm,以类似于实施例1的方式制作成型密度为59.5%的成型体。将成型体在各种烧结温度下烧结10小时制作Yb2O3烧结体。烧结温度、得到的烧结体的平均粒径、和其在500nm波长下的直线光透过率列于表4。当烧结温度在1450-1700℃范围之内时,平均粒径为2-20μm,直线光透过率为80%或以上。当温度在这一范围之外时,直线光透过率极低。
              表4:烧结温度和直线光透过率
           烧结温度/℃     平均粒径/μm      直线光透过率/%比较例9          1400             1.2                 -比较例10         1430             1.7                 46.8实施例11         1460             2.0                 80.0实施例12         1600             7.8                 80.3实施例13         1650             11.0                80.9实施例14         1695             18.4                81.1比较例11         1720             28.2                54.3比较例12         1750             41.6                30.8实施例15
以类似于日本临时专利平11-189413的实施例2的方式制作易烧结的三氧化二钇材料粉末。更确切地,将氯化钇溶于纯水中。在将溶液保持冷却和搅拌的同时,向溶液中慢慢滴加入氨水以沉淀出氢氧化钇。然后,向溶液中加入硫酸铵水溶液,并将混合物搅拌3小时。将沉淀物过滤并用纯水洗涤并干燥。在1100℃下煅烧前体或氢氧化钇以制作材料粉末。为防止材料被硅污染,在一个聚四氟乙烯容器中而不是在玻璃烧杯中进行材料的混合,并且氧化铝坩埚用于煅烧前体。通过ICP发光分析法测定如此得到的材料粉末的纯度。纯度为99.9%或以上,硅为2重量ppm。
氧化铝粉(DAIMEI KAGAKU制备的TM-DAR;平均初级粒子大小为0.3μm,TM-DAR为商品名称)加入到该粉末中。在氧化铝乳钵中将它们充分混合并粉碎。将粉末投入直径为20毫米的金属模具中并在20MPa下进行一次成型。然后,在250MPa压力下进行CIP成型。测定成型体中包含的铝量和成型密度,分别为75重量ppm和59.6%。将该成型体以100℃/小时的速率加热到1650℃并在此温度下保持10小时,然后以200℃/小时的速率冷却。烧结时真空度为10-1Pa或更低。以类似于实施例1的方式评价这样得到的烧结体。其在500nm波长下的直线光透过率为80.3%,平均粒径为14.2μm。
也以类似的方式制作了没有加入铝的烧结体。其直线光透过率为48%,基本上可与日本临时专利平11-189413的实施例中得到的烧结体等同(在1700℃烧结后为约45%)。这些发现表明,在包含极微量铝时,不依赖于所使用材料粉末的制作方法,可以得到透光性优良的烧结体。比较例13
在实施例1中制备的三氧化二钇材料粉末中,CaO和MgO含量分别为低于5重量ppm。将相当于200重量ppm的CaO而不是氧化铝溶胶加入到这种材料粉末中。通过尼龙球和尼龙筒将其混合。然后,以类似于实施例1的方式对其进行处理,制作三氧化二钇烧结体。烧结体的两面均用金刚石浆液进行了镜面研磨。当样品厚度为1毫米时,烧结体在500nm波长处的直线光透过率大约为80%。
将实施例1的三氧化二钇烧结体和比较例13的三氧化二钇烧结体置于一个暴露于阳光下的位置上三个月。实施例的烧结体表明即使在三个月之后也没有变化。而比较例的烧结体在一个月之后微微发黄,三个月之后明显地带有黄色。为了证实这一点,制备CaO含量为50重量ppm的三氧化二钇烧结体,其他条件与比较例13类似,当它被置于一个暴露于阳光下的位置上三个月时,它同样带色。

Claims (9)

1.一种透光性稀土金属氧化物烧结体,由通式R2O3表示,其中R为Y、Dy、Ho、Er、Tm、Yb和Lu中的至少一种元素,对于厚度为1mm的烧结体来说,其在500nm-6μm波长范围内、特异吸收波长以外的直线光透过率不低于80%,并且所述的烧结体以金属重量计含有5-100重量ppm的铝。
2.权利要求1的透光性稀土金属氧化物烧结体,其特征在于烧结体的平均粒径为2-20μm。
3.权利要求2的透光性稀土金属氧化物烧结体,其特征在于烧结体的硅含量以金属重量计不超过10重量ppm。
4.权利要求1的透光性稀土金属氧化物烧结体,其特征在于烧结体的平均粒径为2-20μm,并且在烧结体的晶界上基本没有沉积包含铝的异相。
5.权利要求3的透光性稀土金属氧化物烧结体,其特征在于CaO和MgO各自的含量均低于5重量ppm。
6.权利要求3的透光性稀土金属氧化物烧结体,其特征在于所述的烧结体为包含激光活性元素的激光振荡器材料。
7.一种由通式R2O3表示的透光性稀土金属氧化物烧结体的制造方法,其中R为Y、Dy、Ho、Er、Tm、Yb和Lu中的至少一种元素,该方法包括:
从稀土金属氧化物材料粉末和粘合剂制作成型密度不低于理论密度的58%的成型体的步骤,其中稀土金属氧化物材料粉末的纯度不低于99.9%,铝含量以金属重量计为5-100重量ppm,硅含量以金属重量计不超过10重量ppm,和
在氢、稀有气体、或其混合物的气氛下或在真空中,在不低于1450℃和不高于1700℃的温度下烧结成型体不少于0.5小时,之后通过热处理从成型体中除去粘合剂的步骤。
8.权利要求7的透光性稀土金属氧化物烧结体的制造方法,其特征在于成型体被烧结到平均粒径为2-20μm。
9.权利要求8的透光性稀土金属氧化物烧结体的制造方法,其特征在于成型体被烧结到在晶界上基本没有沉积包含铝的异相。
CNB028022947A 2001-07-05 2002-06-24 透光性稀土金属氧化物烧结体及其制造方法 Expired - Lifetime CN1267379C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001205070 2001-07-05
JP205070/01 2001-07-05
JP205070/2001 2001-07-05

Publications (2)

Publication Number Publication Date
CN1464868A true CN1464868A (zh) 2003-12-31
CN1267379C CN1267379C (zh) 2006-08-02

Family

ID=19041440

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028022947A Expired - Lifetime CN1267379C (zh) 2001-07-05 2002-06-24 透光性稀土金属氧化物烧结体及其制造方法

Country Status (5)

Country Link
US (1) US6825144B2 (zh)
EP (1) EP1336596B1 (zh)
KR (1) KR100885199B1 (zh)
CN (1) CN1267379C (zh)
WO (1) WO2003004437A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1958512B (zh) * 2005-10-31 2010-05-12 科发伦材料株式会社 透光性稀土氧化物烧结体及其制造方法
CN102015577A (zh) * 2008-04-28 2011-04-13 飞罗得陶瓷股份有限公司 氧化钇烧结体和等离子体处理装置用构件
CN102674837A (zh) * 2012-05-22 2012-09-19 长春理工大学 Er3+:Lu2O3透明陶瓷
CN103502180A (zh) * 2011-03-16 2014-01-08 信越化学工业株式会社 透明陶瓷和其制造方法以及磁光器件
CN106588013A (zh) * 2016-10-27 2017-04-26 宁波大学 一种氧化镝透明陶瓷的制备方法
CN109678506A (zh) * 2019-03-06 2019-04-26 宁波大学 一种氧化铒透明陶瓷的制备方法
CN110511027A (zh) * 2019-08-30 2019-11-29 宁波大学 一种高光学质量的氧化铥透明陶瓷的制备方法
CN111302800A (zh) * 2020-03-11 2020-06-19 宁波大学 一种镍离子均匀掺杂技术制备高费尔德常数及高光学质量的氧化钬磁光透明陶瓷
WO2021248446A1 (zh) * 2020-06-12 2021-12-16 苏州君诺新材科技有限公司 一种纳米倍半氧化物荧光陶瓷及其制备方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005009919A1 (ja) * 2003-07-29 2005-02-03 Kyocera Corporation Y2o3質焼結体、耐食性部材およびその製造方法並びに半導体・液晶製造装置用部材
DE102004004259B3 (de) * 2004-01-23 2005-11-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Transparente polykristalline Sinterkeramik kubischer Kristallstruktur
WO2006003726A1 (ja) * 2004-07-02 2006-01-12 Konoshima Chemical Co., Ltd. 透光性酸化ルテチウム焼結体及びその製造方法
US7148480B2 (en) * 2004-07-14 2006-12-12 The Regents Of The University Of California Polycrystalline optical window materials from nanoceramics
JP2006282447A (ja) * 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd 透光性材料およびその製造方法
US7420331B2 (en) * 2005-06-24 2008-09-02 Osram Sylvania Inc. Doped dysprosia discharge vessel
US20060290285A1 (en) * 2005-06-24 2006-12-28 Osram Sylvania Inc. Rapid Warm-up Ceramic Metal Halide Lamp
JP2007108734A (ja) 2005-09-21 2007-04-26 Schott Ag 光学素子及び同光学素子から成る撮像光学素子
DE102006027958A1 (de) * 2006-06-14 2007-12-20 Schott Ag Optokeramiken, daraus hergestellte optische Elemente sowie Abbildungsoptiken
CN100587428C (zh) * 2006-09-13 2010-02-03 中国科学院沈阳自动化研究所 金属粉末激光成形过程中温度场检测方法及其系统装置
US20080108496A1 (en) * 2006-11-07 2008-05-08 Gratson Gregory M Composition Used to Make a Transparent Ceramic Material and Method of Manufacturing the Same
US8105509B2 (en) 2008-12-18 2012-01-31 The United States Of America As Represented By The Secretary Of The Navy Hot-pressed transparent ceramics and ceramic lasers
JP5393271B2 (ja) * 2009-06-09 2014-01-22 信越化学工業株式会社 酸化物及び磁気光学デバイス
US20110100548A1 (en) * 2009-10-30 2011-05-05 Leslie Brandon Shaw Functionally Doped Polycrystalline Ceramic Laser Materials
US20110104491A1 (en) * 2009-10-30 2011-05-05 The Government Of The United States Of America As Represented By The Secretary Of The Navy Functionally Doped Polycrystalline Ceramic Laser Materials
JP5819816B2 (ja) * 2010-03-30 2015-11-24 日本碍子株式会社 半導体製造装置用耐食性部材及びその製法
KR101899587B1 (ko) 2011-03-16 2018-11-02 신에쓰 가가꾸 고교 가부시끼가이샤 세라믹스 자기 광학 재료 및 그 선정 방법
US20130136909A1 (en) 2011-11-30 2013-05-30 John Christopher Mauro Colored alkali aluminosilicate glass articles
JP6119528B2 (ja) 2012-10-03 2017-04-26 信越化学工業株式会社 透明セスキオキサイド焼結体の製造方法
WO2015186656A1 (ja) 2014-06-04 2015-12-10 信越化学工業株式会社 透明セラミックスの製造方法及び透明セラミックス、磁気光学デバイス並びに焼結用希土類酸化物粉末
EP3251124B1 (en) * 2015-01-29 2019-01-09 Framatome GmbH Method of preparing irradiation targets for radioisotope production and irradiation target
WO2016120120A1 (en) 2015-01-29 2016-08-04 Areva Gmbh Irradiation target for radioisotope production, method for preparing and use of the irradiation target
KR102319885B1 (ko) * 2015-01-29 2021-11-02 프라마톰 게엠베하 방사성 동위원소 생성을 위한 조사 타겟을 제조하는 방법 및 조사 타겟
BR112017016212B1 (pt) 2015-02-09 2021-01-26 Framatome Gmbh sistema de processamento de alvos de irradiação e utilização do sistema de processamento de alvo de irradiação
CN106830047A (zh) * 2015-12-04 2017-06-13 常州市卓群纳米新材料有限公司 一种纳米氧化钬制备方法
JP6461833B2 (ja) * 2016-01-27 2019-01-30 信越化学工業株式会社 透明焼結体の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120707A (en) * 1977-03-30 1978-10-21 Nippon Telegraph & Telephone Process for manufacturing light permeable y203 ceramics
US4166831A (en) * 1977-07-11 1979-09-04 Gte Laboratories Incorporated Transparent yttria ceramics and method for producing same
US4098612A (en) * 1977-07-11 1978-07-04 Gte Laboratories Incorporated Transparent yttria ceramics and method for producing same
US4761390A (en) * 1987-02-02 1988-08-02 Raytheon Company Optically transparent yttrium oxide
JP2773193B2 (ja) * 1989-03-03 1998-07-09 住友電気工業株式会社 透光性イツトリア焼結体の製造方法
JPH0459658A (ja) * 1990-06-29 1992-02-26 Sumitomo Electric Ind Ltd 透光性イツトリア焼結体及びその製造方法
JP2952978B2 (ja) * 1990-07-13 1999-09-27 住友電気工業株式会社 透光性イツトリア焼結体及びその製造方法
JP3000685B2 (ja) 1990-12-28 2000-01-17 住友電気工業株式会社 透光性イットリア焼結体及びその製造方法
JPH05330913A (ja) * 1992-05-29 1993-12-14 Kurosaki Refract Co Ltd レーザ用多結晶透明y2o3セラミックス
JPH06211573A (ja) 1993-01-18 1994-08-02 Kurosaki Refract Co Ltd 透明なy2o3焼結体の製造方法
JP2843909B2 (ja) 1996-05-27 1999-01-06 科学技術庁無機材質研究所長 酸化イットリウム透明焼結体の製造方法
JP2939535B2 (ja) 1997-03-28 1999-08-25 科学技術庁無機材質研究所長 透明酸化イットリウム焼結体の製造法
US6093347A (en) * 1997-05-19 2000-07-25 General Electric Company Rare earth X-ray scintillator compositions
JPH11157933A (ja) 1997-11-21 1999-06-15 Konoshima Chemical Co Ltd 透光性セラミックス及びその製造方法と、透光性セラミックスを用いた発光管と高圧放電灯

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1958512B (zh) * 2005-10-31 2010-05-12 科发伦材料株式会社 透光性稀土氧化物烧结体及其制造方法
CN102015577A (zh) * 2008-04-28 2011-04-13 飞罗得陶瓷股份有限公司 氧化钇烧结体和等离子体处理装置用构件
CN103502180A (zh) * 2011-03-16 2014-01-08 信越化学工业株式会社 透明陶瓷和其制造方法以及磁光器件
CN102674837A (zh) * 2012-05-22 2012-09-19 长春理工大学 Er3+:Lu2O3透明陶瓷
CN106588013A (zh) * 2016-10-27 2017-04-26 宁波大学 一种氧化镝透明陶瓷的制备方法
CN106588013B (zh) * 2016-10-27 2019-03-26 宁波大学 一种氧化镝透明陶瓷的制备方法
CN109678506A (zh) * 2019-03-06 2019-04-26 宁波大学 一种氧化铒透明陶瓷的制备方法
CN109678506B (zh) * 2019-03-06 2021-03-19 宁波大学 一种氧化铒透明陶瓷的制备方法
CN110511027A (zh) * 2019-08-30 2019-11-29 宁波大学 一种高光学质量的氧化铥透明陶瓷的制备方法
CN110511027B (zh) * 2019-08-30 2021-09-14 宁波大学 一种高光学质量的氧化铥透明陶瓷的制备方法
CN111302800A (zh) * 2020-03-11 2020-06-19 宁波大学 一种镍离子均匀掺杂技术制备高费尔德常数及高光学质量的氧化钬磁光透明陶瓷
CN111302800B (zh) * 2020-03-11 2022-02-01 宁波大学 一种镍离子均匀掺杂技术制备高费尔德常数及高光学质量的氧化钬磁光透明陶瓷
WO2021248446A1 (zh) * 2020-06-12 2021-12-16 苏州君诺新材科技有限公司 一种纳米倍半氧化物荧光陶瓷及其制备方法

Also Published As

Publication number Publication date
US20030183991A1 (en) 2003-10-02
WO2003004437A8 (fr) 2003-02-13
WO2003004437A1 (fr) 2003-01-16
KR100885199B1 (ko) 2009-02-24
US6825144B2 (en) 2004-11-30
EP1336596A4 (en) 2007-05-23
EP1336596B1 (en) 2012-11-14
EP1336596A1 (en) 2003-08-20
KR20030068126A (ko) 2003-08-19
CN1267379C (zh) 2006-08-02

Similar Documents

Publication Publication Date Title
CN1267379C (zh) 透光性稀土金属氧化物烧结体及其制造方法
TWI534246B (zh) Fluorescent particles and light-emitting diodes, and a lighting device using the same, and a backlight device for a liquid crystal panel
JP5862447B2 (ja) 蛍光体粒子及び発光ダイオード
Liu et al. Hard transparent AlON ceramic for visible/IR windows
KR20170088823A (ko) 알루미나 소결체 및 광학 소자용 하지 기판
JP4033451B2 (ja) 透光性希土類酸化物焼結体及びその製造方法
US20100048378A1 (en) Sintered polycrystalline yttrium aluminum garnet and use thereof in optical devices
Chiang et al. Effects of flux additives on the characteristics of Y2. 95Al5O12: 0.05 Ce3+ phosphor: particle growth mechanism and luminescence
CN111087235B (zh) 一种采用钇/助剂/铝三重核壳结构粉体制备yag透明陶瓷的方法
JP2939535B2 (ja) 透明酸化イットリウム焼結体の製造法
EP1518843A2 (en) Aluminum nitride sintered body and method of producing the same
JP4783560B2 (ja) 窒化アルミニウム焼結体及びその製造方法
KR100891952B1 (ko) 투명 도전막용 산화물계 타겟 및 그 제조방법, 그리고산화물계 투명 도전막
CN101269956A (zh) 掺杂钕的钇铝石榴石透明陶瓷制造方法
JPH11157933A (ja) 透光性セラミックス及びその製造方法と、透光性セラミックスを用いた発光管と高圧放電灯
JP3883106B2 (ja) 透光性酸化スカンジウム焼結体及びその製造方法
WO2018117162A1 (ja) 透明AlN焼結体及びその製法
JP2010126430A (ja) 透光性yag多結晶体とその製造方法
Li et al. Photoluminescence properties of (Y1− xCex) 3Al5O12 (x= 0.005–0.03) nanophosphors and transparent ceramic by a homogeneous co-precipitation method
JP6079175B2 (ja) 複合酸化物焼結体及び酸化物透明導電膜
JP3357910B2 (ja) 透明マグネシア焼結体の製造法
JP4666640B2 (ja) 透光性酸化マグネシウム焼結体及びその製造方法
JP3245234B2 (ja) 透光性イットリウム−アルミニウム−ガーネット焼結体の製造方法
CN117800712A (zh) 一种高致密度CaO透明陶瓷材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20060802