WO2021248446A1 - 一种纳米倍半氧化物荧光陶瓷及其制备方法 - Google Patents

一种纳米倍半氧化物荧光陶瓷及其制备方法 Download PDF

Info

Publication number
WO2021248446A1
WO2021248446A1 PCT/CN2020/095796 CN2020095796W WO2021248446A1 WO 2021248446 A1 WO2021248446 A1 WO 2021248446A1 CN 2020095796 W CN2020095796 W CN 2020095796W WO 2021248446 A1 WO2021248446 A1 WO 2021248446A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent
sesquioxide
nano
ceramic
phase
Prior art date
Application number
PCT/CN2020/095796
Other languages
English (en)
French (fr)
Inventor
邾强强
周天亮
倪国琴
Original Assignee
苏州君诺新材科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州君诺新材科技有限公司 filed Critical 苏州君诺新材科技有限公司
Priority to PCT/CN2020/095796 priority Critical patent/WO2021248446A1/zh
Publication of WO2021248446A1 publication Critical patent/WO2021248446A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the invention relates to the field of solid-state lighting materials, in particular to a nano sesquioxide fluorescent ceramic that meets the application of high-power ultraviolet laser excitation and a preparation method thereof.
  • Fluorescent ceramic materials have good application prospects in the field of high-power laser white light illumination due to their excellent luminescence, high thermal conductivity and mechanical properties.
  • the current laser illumination method is mainly to use blue laser to excite yellow luminescent Y 3 Al 5 O 12 :Ce phosphor, and generate white light through the combination of blue and yellow light.
  • the final lighting device has a higher color temperature and a lower color rendering index (CRI), and the lighting effect is difficult to meet daily applications. Therefore, the use of ultraviolet lasers to excite blue, green and red luminescent fluorescent ceramic materials has become one of the effective ways to obtain high-quality white light illumination.
  • Rare-earth ion-doped sesquioxide materials have good absorption in the ultraviolet light band. At the same time, according to the difference of doped ions, it can produce blue, green and red luminescence, such as red luminescence Y 2 O 3 :Eu 3+ And green light-emitting Y 2 O 3 :Tb 3+ phosphor. Therefore, rare-earth-doped sesquioxide fluorescent ceramics also have good application potential in the field of ultraviolet laser illumination. However, due to the intrinsic properties of the material, the mechanical properties of sesquioxide ceramics decrease significantly under high temperature conditions, which seriously affects the stability of fluorescent materials under high temperature application conditions.
  • the thermal conductivity of the sesquioxide material is also low ( ⁇ 10Wm -1 K -1 ), and it is easy to produce fluorescence thermal quenching under high-power laser excitation, which leads to a decrease in luminescence performance.
  • the sesquioxide fluorescent ceramic lacks an effective scattering center, and it is difficult to obtain a uniform luminous effect. The above-mentioned problems severely limit the application of sesquioxide fluorescent ceramics in the field of high-power ultraviolet laser illumination.
  • the present invention proposes a nano-sesquioxide fluorescent ceramic with high mechanical strength, high thermal conductivity and high scattering characteristics and a preparation method thereof.
  • the fluorescent ceramic is composed of a sesquioxide fluorescent phase and a high thermal conductivity MgO second phase.
  • the fluorescent phase and the MgO second phase crystal grain size are both nanometers ( ⁇ 200nm), and the two phases are uniformly dispersed in the ceramic structure .
  • the chemical composition of the sesquioxide fluorescent phase in the nano sesquioxide fluorescent ceramic provided by the present invention is Y 2-xyz Re x Lu y Gd z O 3 , where 0 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 2, 0 ⁇ z ⁇ 2, x+y+z ⁇ 2, Re is one or more of Eu, Ce, Sm, Yb, Tb, Dy; the second phase is high thermal conductivity MgO nanophase; among them, sesquioxidation
  • the volume of the fluorescent phase accounts for 40-60% of the total volume of the ceramic.
  • the present invention also provides a preparation method of nano sesquioxide fluorescent ceramics, which includes: synthesis of sesquioxide fluorescent powder, ball milling mixture of fluorescent powder and nano MgO powder raw materials, drying, sieving, and sheeting forming , High temperature sintering, annealing treatment and final grinding and polishing.
  • the sesquioxide phosphor synthesized in the preparation method of the nano sesquioxide fluorescent ceramic is a nano powder, which can be synthesized by a liquid phase method or a solid phase method.
  • the tablet molding includes two steps of dry pressing molding and cold isostatic pressing, wherein the dry pressing molding pressure is 10-40Mpa, preferably 20Mpa, and cold isostatic pressing
  • the dry pressing molding pressure is 10-40Mpa, preferably 20Mpa
  • cold isostatic pressing The molding pressure is 150-250Mpa, preferably 200Mpa.
  • the high-temperature sintering in the preparation method of the nano-sesquioxide fluorescent ceramic is air atmosphere pre-sintering followed by hot isostatic pressing
  • the air atmosphere pre-sintering temperature is 1300-1500°C
  • the holding time is 1-4 hours
  • the temperature is 1400°C
  • the temperature is kept for 2 hours
  • the hot isostatic pressing temperature is 50-100°C lower than the pre-sintering temperature
  • the holding time is 1-2 hours, preferably 1350°C, and the temperature is 1 hour.
  • the annealing treatment is annealing under air conditions, the annealing temperature is 900-1100°C, the annealing time is 5-10 hours, preferably 1000°C, and the annealing is 5 hours.
  • the nano sesquioxide fluorescent ceramic obtained by the present invention is composed of a sesquioxide fluorescent phase and a high thermal conductivity MgO second phase. Since the sesquioxide fluorescent phase and MgO do not form a solid solution, they can inhibit each other under high-temperature sintering conditions.
  • the growth of crystal grains realizes the nanometerization of ceramic crystal grain size and improves the mechanical strength of the material.
  • the existence of the second phase of high thermal conductivity MgO can realize the improvement of the thermal conductivity of fluorescent ceramics and the effective scattering of excitation light at the ceramic grain boundaries.
  • the invention effectively solves the problems of decreased mechanical strength of the sesquioxide fluorescent ceramic at high temperature, low thermal conductivity and lack of scattering centers.
  • Figure 1 is a microstructure diagram of the fluorescent ceramic in Example 1 of the present invention.
  • Figure 2 is a microstructure diagram of the fluorescent ceramic in Comparative Example 1 of the present invention.
  • Figure 3 is the fluorescence spectrum of the nano-sesquioxide fluorescent ceramic prepared in Example 1 of the present invention.
  • Figure 4 is a microstructure diagram of the nano-sesquioxide fluorescent ceramic prepared in Example 2 of the present invention.
  • the chemical composition of the sesquioxide fluorescent phase in the nano sesquioxide fluorescent ceramic provided by the present invention is Y 2-xyz Re x Lu y Gd z O 3 , where 0 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 2, 0 ⁇ z ⁇ 2, x+y+z ⁇ 2, Re is one or more of Eu, Ce, Sm, Yb, Tb, Dy; the second phase is high thermal conductivity MgO nanophase; among them, sesquioxidation
  • the volume of the fluorescent phase accounts for 40-60% of the total volume of the ceramic.
  • the invention also provides a method for preparing nano-sesquioxide fluorescent ceramics, which includes the following steps:
  • Nitrate-based raw materials and nano-oxide raw materials can be products purchased from commercial sources, or they can be synthesized by themselves.
  • the sesquioxide phosphor and the nano-MgO powder are ball-milled and mixed.
  • the raw materials of the nano-MgO powder can be purchased from commercial sources or synthesized by oneself.
  • the volume of the sesquioxide fluorescent phase accounts for 40-60% of the total volume of the ceramic.
  • Tablet press molding includes two steps: dry press molding and cold isostatic pressing, wherein the dry press molding pressure is 10-40Mpa, preferably 20Mpa, and the cold isostatic press molding pressure is 150-250Mpa, preferably 200Mpa;
  • the ceramic green body is sintered at a high temperature to obtain nano-sesquioxide fluorescent ceramics.
  • the high-temperature sintering method is air atmosphere pre-sintering followed by hot isostatic pressing treatment, wherein the air atmosphere pre-sintering temperature is 1300-1500°C, the holding time is 1-4 hours, preferably 1400°C, holding 2 hours; hot isostatic pressing treatment The temperature is 50-100°C lower than the pre-sintering temperature, the holding time is 1-2 hours, preferably 1350°C, and the holding time is 1 hour;
  • the annealing treatment is annealing under air conditions, the annealing temperature is 900-1100°C, the annealing time is 5-10 hours, preferably 1000°C, and the annealing is 5 hours.
  • the mixed slurry was dried at 80°C for 24 hours and then passed through a 200-mesh sieve to obtain mixed powder raw materials.
  • Comparative example 1 Traditional sesquioxide fluorescent ceramics
  • the slurry was dried at 80°C for 24 hours and then passed through a 200-mesh sieve to obtain a powder raw material. Weigh 5g of powdered raw materials and pre-compress them into round pieces, and then perform 210MPa cold isostatic pressing to obtain ceramic green bodies; the ceramic green bodies are calcined in air atmosphere at 1400°C for 2 hours to obtain pre-sintered green bodies; the pre-sintered ceramic green bodies Put it in a hot isostatic pressing furnace, pressurize to 200Mpa, then heat up to 1350°C at a heating rate of 5°C/min and keep it at this temperature for 1 hour, and finally reduce the temperature to room temperature at a rate of 10°C/min Ceramic sample: The ceramic sample is annealed at 1000° C. for 5 hours and polished on both sides to obtain a traditional sesquioxide fluorescent ceramic sample with a thickness of 0.5 mm.
  • Table 1 shows the test results of the flexural strength and thermal conductivity of the fluorescent ceramics in the foregoing embodiments.
  • Example 2 Flexural strength (MPa) 231 174 197 Thermal conductivity (Wm -1 K -1 ) 17 8 13

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种纳米倍半氧化物荧光陶瓷及其制备方法。该荧光陶瓷由倍半氧化物荧光相和高热导率MgO第二相构成,所述倍半氧化物荧光相和MgO第二相晶粒尺寸均为纳米级(~200nm),同时两相均匀分散。

Description

一种纳米倍半氧化物荧光陶瓷及其制备方法 技术领域
本发明涉及固态照明材料领域,具体涉及一种满足大功率紫外激光激发应用纳米倍半氧化物荧光陶瓷及其制备方法。
背景技术
荧光陶瓷材料由于其优异的发光性能、高的热导率和力学性能,在大功率激光白光照明领域具有良好的应用前景。当前激光照明的方式主要是采用蓝色激光激发黄色发光的Y 3Al 5O 12:Ce荧光粉,通过蓝光和黄光的组合来产生白光。但是这种方式获得的白光光谱中由于缺少红光和绿光成分,导致最后的照明器件具有较高的色温和较低的显色指数(CRI),照明效果难以满足日常应用。因此采用紫外激光激发蓝色、绿色和红色发光荧光陶瓷材料成为获得高质量白光照明的有效途径之一。
稀土离子掺杂的倍半氧化物材料在紫外光波段具有良好的吸收,同时根据掺杂离子的不同,可以生产包括蓝色、绿色和红色的发光,如红色发光Y 2O 3:Eu 3+和绿色发光Y 2O 3:Tb 3+荧光粉。因此稀土掺杂的倍半氧化物荧光陶瓷在紫外激光照明领域也具有良好的应用潜力。但是由于材料本征特性的影响,倍半氧化物陶瓷在高温条件下力学性能下降明显,严重影响了荧光材料在高温应用条件下的稳定性。倍半氧化物材料的热导率也较低(<10Wm -1K -1),容易在高功率激光激发下产生荧光热猝灭,从而导致发光性能下降。同时,由于立方结构特性,倍半氧化物荧光陶瓷中缺少有效的散射中心,难以获得均匀的发光效果。上述问题严重限制了倍半氧化物荧光陶瓷在大功率紫外激光照明领域的应用。
发明内容
为解决上述问题,本发明提出了一种具有高力学强度、高热导率以及高散射特性的纳米倍半氧化物荧光陶瓷及其制备方法。该荧光陶瓷由倍半氧化物荧光相和高热导率MgO第二相构成,所述荧光相和MgO第二相晶粒尺寸均为纳米级(~200nm),同时两相均匀分散于陶瓷结构中。
本发明提供的纳米倍半氧化物荧光陶瓷中倍半氧化物荧光相的化学组成为Y 2-x-y-zRe xLu yGd zO 3,其中,0<x≤0.3,0≤y≤2,0≤z≤2,x+y+z≤2,Re为Eu,Ce,Sm,Yb,Tb,Dy元素中的一种或几种;第二相为高热导率MgO纳米相;其中倍半氧化物荧光相体积占陶瓷总体积的40-60%。
本发明还提供一种纳米倍半氧化物荧光陶瓷的制备方法,包括:倍半氧化物荧光粉体的 合成、荧光粉体与纳米MgO粉体原料的球磨混料、干燥过筛、压片成型、高温烧结、退火处理及最后的研磨抛光。
优选的,所述纳米倍半氧化物荧光陶瓷的制备方法中合成的倍半氧化物荧光粉为纳米粉体,可以使用液相法或固相法自行合成。
优选的,所述纳米倍半氧化物荧光陶瓷的制备方法中压片成型包括干压成型和冷等静压成型两步,其中干压成型压力为10-40Mpa,优选为20Mpa,冷等静压成型压力为150-250Mpa,优选为200Mpa。
优选的,所述纳米倍半氧化物荧光陶瓷的制备方法中高温烧结为空气气氛预烧结加后续热等静压处理,空气气氛预烧结温度为1300-1500℃,保温时间为1-4小时,优选为1400℃,保温2小时;热等静压处理温度比预烧结温度低50-100℃,保温时间为1-2小时,优选为1350℃,保温1小时。
所述纳米倍半氧化物荧光陶瓷的制备方法中退火处理为空气条件下退火,退火温度为900-1100℃,退火时间为5-10小时,优选为1000℃,退火5小时。
本发明的技术效果:
本发明获得的纳米倍半氧化物荧光陶瓷由倍半氧化物荧光相和高热导率MgO第二相构成,由于倍半氧化物荧光相和MgO不会形成固溶体,在高温烧结条件下可以相互抑制晶粒的生长,实现陶瓷晶粒尺寸纳米化,提升材料的力学强度。同时,高热导率MgO第二相的存在可以实现荧光陶瓷热导率的提升和激发光在陶瓷晶界处的有效散射。本发明有效解决了倍半氧化物荧光陶瓷高温力学强度下降、热导率过低和缺少散射中心的问题。
附图说明
图1为本发明中实施例1中荧光陶瓷微观结构图。
图2为本发明中对比例1中荧光陶瓷微观结构图。
图3为本发明中实施例1制备的纳米倍半氧化物荧光陶瓷荧光光谱。
图4为本发明中实施例2制备的纳米倍半氧化物荧光陶瓷微观结构图。
具体设施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供的纳米倍半氧化物荧光陶瓷中倍半氧化物荧光相的化学组成为Y 2-x-y-zRe xLu yGd zO 3,其中,0<x≤0.3,0≤y≤2,0≤z≤2,x+y+z≤2,Re为Eu,Ce,Sm,Yb,Tb,Dy元素中的一种或几种;第二相为高热导率MgO纳米相;其中倍半氧化物荧光相体积 占陶瓷总体积的40-60%。
本发明还提供一种纳米倍半氧化物荧光陶瓷的制备方法,包括以下步骤:
1)倍半氧化物纳米荧光粉体的合成,使用硝酸盐或纳米氧化物作为合成原料,采用液相法或固相法合成纳米荧光粉体。硝酸盐类原料和纳米氧化物类原料可以是从商业途径购买的产品,也可以自行合成。
2)将倍半氧化物荧光粉和纳米MgO粉体进行球磨混料,纳米MgO粉体原料可以从商业途径购买,也可以自行合成。在所述纳米倍半氧化物荧光陶瓷中,倍半氧化物荧光相体积占陶瓷总体积的40-60%。
3)对球磨后的浆料进行干燥过筛;
4)将干燥过筛后的粉体原料压片成所需形状及尺寸,获得纳米倍半氧化物荧光陶瓷素坯。压片成型包括干压成型和冷等静压成型两步,其中干压成型压力为10-40Mpa,优选为20Mpa,冷等静压成型压力为150-250Mpa,优选为200Mpa;
5)对陶瓷素坯体进行高温烧结获得纳米倍半氧化物荧光陶瓷。高温烧结方式为空气气氛预烧结加后续热等静压处理,其中空气气氛预烧结温度为1300-1500℃,保温时间为1-4小时,优选为1400℃,保温2小时;热等静压处理温度比预烧结温度低50-100℃,保温时间为1-2小时,优选为1350℃,保温1小时;
6)将纳米倍半氧化物荧光陶瓷在空气条件下进行退火处理。退火处理为空气条件下退火,退火温度为900-1100℃,退火时间为5-10小时,优选为1000℃,退火5小时。
7)对退火后的陶瓷样品进行双面抛光,获得最终高强度、高热导率、高散射纳米倍半氧化物荧光陶瓷。
实施例1
称取100g的Y(NO 3) 3·6H 2O和2g的Eu 2O 3粉体放入500ml的蒸馏水中,然后在磁力搅拌器上进行加热搅拌,加热温度保持在80℃,使溶剂不断蒸发直至其成为粘稠的胶状体;将胶状体放入氧化铝坩埚内在马弗炉中1000℃煅烧4小时获得纳米Y 2O 3:Eu纳米荧光粉体;称取28gY 2O 3:Eu纳米荧光粉体和20g纳米MgO粉体放入氧化锆球磨罐中球磨24小时得到混合浆料。混合浆料经80℃干燥24小时后过200目网筛获得混合粉体原料。称取5g混合粉体原料预压成圆形片,然后进行210MPa冷等静压处理获得陶瓷素坯;陶瓷素坯在空气气氛下1400℃煅烧2小时获得预烧结坯体;将预烧结陶瓷坯体放入热等静压炉中,加压至200Mpa,然后以5℃/min的升温速率升温至1350℃并在该温度下保温保压1小时,最后以10℃/min的速率降温至室温获得陶瓷样品;将陶瓷样品在1000℃条件下进行5小时的退火处理并进行双面抛光,获得厚度0.5mm的纳米倍半氧化物荧光陶瓷样品。
对比例1:传统倍半氧化物荧光陶瓷
称取100g的Y(NO 3) 3·6H 2O和2g的Eu 2O 3粉体放入500ml的蒸馏水中,然后在磁力搅拌器上进行加热搅拌,加热温度保持在80℃,使溶剂不断蒸发直至其成为粘稠的胶状体;将胶状体放入氧化铝坩埚内在马弗炉中1000℃煅烧4小时获得纳米Y 2O 3:Eu纳米荧光粉体;称取30g的Y 2O 3:Eu纳米荧光粉体放入氧化锆球磨罐中球磨24小时得到陶瓷浆料。浆料经80℃干燥24小时后过200目网筛获得粉体原料。称取5g粉体原料预压成圆形片,然后进行210MPa冷等静压处理获得陶瓷素坯;陶瓷素坯在空气气氛下1400℃煅烧2小时获得预烧结坯体;将预烧结陶瓷坯体放入热等静压炉中,加压至200Mpa,然后以5℃/min的升温速率升温至1350℃并在该温度下保温保压1小时,最后以10℃/min的速率降温至室温获得陶瓷样品;将陶瓷样品在1000℃条件下进行5小时的退火处理并进行双面抛光,获得厚度0.5mm的传统倍半氧化物荧光陶瓷样品。
实施例2
称取30g的纳米Y 2O 3和2g的Tb 4O 7粉体放入氧化锆球磨罐中球磨6小时进行混料,混料干燥后在马弗炉中1200℃煅烧4小时获得Y 2O 3:Tb纳米荧光粉体;称取28g的Y 2O 3:Tb纳米荧光粉体和20g的纳米MgO粉体放入氧化锆球磨罐中球磨24小时得到混合浆料。混合浆料经80℃干燥24小时后过200目网筛获得混合粉体原料。称取5g混合粉体原料预压成圆形片,然后进行210MPa冷等静压处理获得陶瓷素坯;陶瓷素坯在空气气氛下1450℃煅烧2小时获得预烧结坯体;将预烧结陶瓷坯体放入热等静压炉中,加压至200Mpa,然后以5℃/min的升温速率升温至1350℃并在该温度下保温保压1小时,最后以10℃/min的速率降温至室温获得陶瓷样品;将陶瓷样品在1000℃条件下进行5小时的退火处理并进行双面抛光,获得厚度0.5mm的纳米倍半氧化物荧光陶瓷样品。
上述实施例施例中荧光陶瓷抗弯强度和热导率测试结果如表1所示。
表1 不同实施例中荧光陶瓷抗弯强度和热导率测试结果
  实施例1 对比例1 实施例2
抗弯强度(MPa) 231 174 197
热导率(Wm -1K -1) 17 8 13
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地 解释各实施例的原理、实际应用或对市场中的技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (9)

  1. 一种纳米倍半氧化物荧光陶瓷,其特征在于,所述荧光陶瓷由倍半氧化物荧光相和高热导率第二相构成,其中荧光相和第二相晶粒尺寸均为纳米级(~200nm),同时两相均匀分散。
  2. 根据权利要求1所述的纳米倍半氧化物荧光陶瓷,其特征在于,所述荧光相的化学组成为Y 2-x-y-zRe xLu yGd zO 3,其中,0<x≤0.3,0≤y≤2,0≤z≤2,x+y+z≤2,Re为Eu,Ce,Sm,Yb,Tb,Dy元素中的一种或几种。
  3. 根据权利要求1所述的纳米倍半氧化物荧光陶瓷,其特征在于,所述高热导率第二相的化学组成为MgO。
  4. 根据权利要求1所述的纳米倍半氧化物荧光陶瓷,其特征在于,倍半氧化物荧光相体积占陶瓷总体积的40-60%。
  5. 根据权利要求1-4中任一项所述纳米倍半氧化物荧光陶瓷的制备方法,其特征在于,所述方法包括:倍半氧化物荧光粉体的合成、荧光粉与纳米MgO粉体原料的球磨混料、干燥过筛、压片成型、高温烧结、退火处理及最后的研磨抛光。
  6. 根据权利要求5所述的纳米倍半氧化物荧光陶瓷制备方法,其特征在于,所合成的倍半氧化物荧光粉为纳米粉体。
  7. 根据权利要求5和6所述的纳米倍半氧化物荧光陶瓷制备方法,其特征在于,所述压片成型包括干压成型和冷等静压成型两步。
  8. 根据权利要求5至7中任一项所述的纳米倍半氧化物荧光陶瓷制备方法,其特征在于,所述高温烧结为空气气氛预烧结加后续热等静压处理,空气气氛预烧结温度为1300-1500℃,保温时间为1-4小时;热等静压处理温度比预烧结温度低50-100℃,保温时间为1-2小时。
  9. 根据权利要求5至8中任一项所述的纳米倍半氧化物荧光陶瓷制备方法, 其特征在于,所述退火处理为空气条件下退火,退火温度为900-1100℃,退火时间为5-10小时。
PCT/CN2020/095796 2020-06-12 2020-06-12 一种纳米倍半氧化物荧光陶瓷及其制备方法 WO2021248446A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095796 WO2021248446A1 (zh) 2020-06-12 2020-06-12 一种纳米倍半氧化物荧光陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095796 WO2021248446A1 (zh) 2020-06-12 2020-06-12 一种纳米倍半氧化物荧光陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
WO2021248446A1 true WO2021248446A1 (zh) 2021-12-16

Family

ID=78846765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095796 WO2021248446A1 (zh) 2020-06-12 2020-06-12 一种纳米倍半氧化物荧光陶瓷及其制备方法

Country Status (1)

Country Link
WO (1) WO2021248446A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115215646A (zh) * 2022-07-12 2022-10-21 江苏师范大学 一种激光照明用高导热高热稳定性三相荧光陶瓷及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1464868A (zh) * 2001-07-05 2003-12-31 神岛化学工业株式会社 透光性稀土金属氧化物烧结体及其制造方法
CN101033142A (zh) * 2007-02-09 2007-09-12 上海大学 Lu2O3基透明陶瓷低温烧结制备方法
CN101697367A (zh) * 2009-09-30 2010-04-21 烁光特晶科技有限公司 一种利用透明陶瓷制备led的方法
CN111377713A (zh) * 2019-11-27 2020-07-07 中国科学院上海硅酸盐研究所 一种复相荧光陶瓷及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1464868A (zh) * 2001-07-05 2003-12-31 神岛化学工业株式会社 透光性稀土金属氧化物烧结体及其制造方法
CN101033142A (zh) * 2007-02-09 2007-09-12 上海大学 Lu2O3基透明陶瓷低温烧结制备方法
CN101697367A (zh) * 2009-09-30 2010-04-21 烁光特晶科技有限公司 一种利用透明陶瓷制备led的方法
CN111377713A (zh) * 2019-11-27 2020-07-07 中国科学院上海硅酸盐研究所 一种复相荧光陶瓷及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115215646A (zh) * 2022-07-12 2022-10-21 江苏师范大学 一种激光照明用高导热高热稳定性三相荧光陶瓷及其制备方法
CN115215646B (zh) * 2022-07-12 2023-09-05 江苏师范大学 一种激光照明用高导热高热稳定性三相荧光陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
WO2019223023A1 (zh) 一种yag荧光陶瓷及其制备方法和应用
CN111205081B (zh) 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用
Wang et al. YAG: Ce3+, Mn2+ transparent ceramics prepared by gel-casting for warm white LEDs
CN109467453B (zh) 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
CN107200588B (zh) 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN107207957A (zh) 烧结荧光体、发光装置、照明装置、车辆前照灯及烧结荧光体的制造方法
WO2019015227A1 (zh) 一种yag荧光粉及其制备方法和由其制备的yag荧光陶瓷
CN108863317A (zh) 一种荧光复合陶瓷及其制备方法和应用
CN110240468B (zh) 荧光陶瓷及其制备方法
CN108947516A (zh) 一种(Cu,Ce):YAG透明荧光陶瓷及其制备方法与应用
CN108753296B (zh) 一种可由近紫外或蓝光芯片激发的红光发光材料及其制备方法和应用
CN112939578B (zh) 荧光陶瓷及其制备方法、发光装置以及投影装置
JP2018021193A (ja) 焼結蛍光体、発光装置、照明装置、画像表示装置および車両用表示灯
CN109896852A (zh) 用于蓝光激发的白光照明的复相荧光陶瓷、制备方法及光源装置
CN109896851B (zh) 具有浓度梯度的陶瓷复合体、制备方法及光源装置
CN111285682A (zh) 用于激光照明与显示的全光谱复相荧光陶瓷及制备方法
CN106887486B (zh) 用于白光led器件的条形码结构荧光陶瓷及其制备方法与应用
WO2019200934A1 (zh) 一种复相荧光陶瓷及其制备方法
CN110642624A (zh) 一种蓝绿光发射的荧光透明陶瓷及其制备方法
CN104829236B (zh) 一种SiAlON透明陶瓷荧光体的制备方法
Dai et al. Fabrication and properties of transparent Tb: YAG fluorescent ceramics with different doping concentrations
WO2021248446A1 (zh) 一种纳米倍半氧化物荧光陶瓷及其制备方法
Tang et al. Novel multicolor-tunable Eu3+/Bi3+ co-doped Y2Zr2O7 transparent ceramics as potential white-light-emitting materials
Zuo et al. Fabrication and optical properties of Eu3+-doped Ba (Zr, Mg, Ta) O3 transparent fluorescent ceramics
WO2021248445A1 (zh) 一种透明复相荧光陶瓷及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940286

Country of ref document: EP

Kind code of ref document: A1