WO2021248445A1 - 一种透明复相荧光陶瓷及其制备方法 - Google Patents

一种透明复相荧光陶瓷及其制备方法 Download PDF

Info

Publication number
WO2021248445A1
WO2021248445A1 PCT/CN2020/095794 CN2020095794W WO2021248445A1 WO 2021248445 A1 WO2021248445 A1 WO 2021248445A1 CN 2020095794 W CN2020095794 W CN 2020095794W WO 2021248445 A1 WO2021248445 A1 WO 2021248445A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
fluorescent
sintering
transparent
phase
Prior art date
Application number
PCT/CN2020/095794
Other languages
English (en)
French (fr)
Inventor
邾强强
周天亮
倪国琴
Original Assignee
苏州君诺新材科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州君诺新材科技有限公司 filed Critical 苏州君诺新材科技有限公司
Priority to PCT/CN2020/095794 priority Critical patent/WO2021248445A1/zh
Publication of WO2021248445A1 publication Critical patent/WO2021248445A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals

Definitions

  • the invention relates to the field of solid-state lighting materials, in particular to a design of a transparent multiphase fluorescent ceramic microstructure for laser lighting applications and a preparation method thereof.
  • the luminous efficiency of laser chips performs well under conditions of high current density, and high-power excitation light sources can be obtained by increasing the input current density. Therefore, the use of laser chips to excite fluorescent materials is an inevitable choice to achieve high-brightness and high-power white light illumination.
  • the current white light LED lighting technology usually uses organic resin mixed with phosphors to complete the conversion of the light emitted by the chip.
  • the working temperature of fluorescent materials will rise significantly due to the excitation of higher luminous flux density lasers, while the thermal conductivity of organic resins is low, generally only 0.1-0.4Wm -1 K -1 , which cannot be fast Dissipate the heat generated during the operation of the device, thereby causing the deterioration of the device itself and the phosphor contained.
  • Fluorescent ceramic material is a kind of fluorescent material with dense structure. Its thermal conductivity is between 10-50Wm -1 K -1 , which is more than 100 times the thermal conductivity of organic resin, which can greatly improve its performance in laser excitation.
  • the lower heat dissipation effect maintains the stability of long-term light emission.
  • most of the laser energy is not fully absorbed when excited by high-collimation, strong penetrating, and low-scattering lasers, but directly passes through the fluorescent ceramics.
  • the luminous efficiency of the material is low, and the uniformity of luminescence is also poor.
  • the current technology generally adopts the introduction of microporous structures (such as patent CN201710801901.4) or a second phase with large structural differences (such as patent CN101080823A) into fluorescent ceramic materials to increase the scattering of incident light, improve excitation efficiency and luminescence uniformity .
  • micro-porous structure will seriously affect the thermal conductivity and mechanical strength of fluorescent ceramics, and reduce the high-temperature luminescence stability of lighting devices; and the introduction of the second phase with large structural differences will seriously affect the permeability of fluorescent ceramics, limiting its Application in the field of white light lighting.
  • the present invention provides a transparent multiphase fluorescent ceramic and a preparation method thereof.
  • the multi-phase fluorescent ceramic is composed of a fluorescent phase and a ceramic matrix with the same or similar structure, the refractive index of the two phases has a slight difference, and the two phases are uniformly distributed in the multi-phase ceramic structure.
  • the chemical composition of the fluorescent phase in the transparent multiphase fluorescent ceramic provided by the present invention is Y 3-xyz Ce x Lu y Gd z Al 5-a Ga a O 12 , where 0 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 3, 0 ⁇ z ⁇ 3, 0 ⁇ a ⁇ 5, x+y+z ⁇ 3; the chemical composition of the ceramic matrix is Y 3 Al 5 O 12 ; the mass percentage of the fluorescent phase is between 1 to 99%, preferably 30 to 50 %.
  • the present invention also provides a method for preparing transparent multiphase fluorescent ceramics, which includes: ball milling and mixing the fluorescent powder, ceramic matrix raw materials, and sintering aids, drying and sieving, tablet molding, high-temperature sintering, annealing treatment, and the final Grinding and polishing to obtain transparent multiphase fluorescent ceramics.
  • the ceramic matrix raw materials are Y 2 O 3 and Al 2 O 3 powders
  • the sintering aids are ZnO 2 , La 2 O 3 , MgO, HfO 2 , ortho silicon
  • TEOS tetraethyl acid
  • the tableting molding includes two steps of dry pressing molding and cold isostatic pressing, wherein the dry pressing molding pressure is 10-40Mpa, and the cold isostatic pressing molding pressure is 150-250Mpa .
  • one of the high-temperature sintering is preferably vacuum sintering
  • the vacuum sintering temperature is 1700-1900°C
  • the holding time is 4-10 hours
  • the vacuum degree is 1 ⁇ 10 -3 Pa, preferably Keep warm at 1800°C for 5 hours.
  • another preferred high-temperature sintering is pre-sintering in a reducing atmosphere followed by hot isostatic pressing
  • the pre-sintering temperature in the reducing atmosphere is 1600-1700°C
  • the holding time is 1-4 hours
  • the temperature is 1650°C
  • the temperature is kept for 2 hours
  • the hot isostatic pressing temperature is 50-100°C lower than the pre-sintering temperature
  • the holding time is 1-2 hours, preferably 1600°C, and the temperature is 1 hour.
  • the annealing treatment is annealing under air conditions, the annealing temperature is 700-1000°C, the annealing time is 5-10 hours, preferably 900°C, and the annealing is 8 hours.
  • the multiphase fluorescent ceramic obtained by the present invention is composed of two phases of a fluorescent phase and a ceramic matrix, and the refractive index of the two phases has a slight difference.
  • the excitation light can be effectively scattered at the ceramic grain boundary and the excitation efficiency can be improved. And the uniformity of light.
  • the refractive index difference between the fluorescent phase and the ceramic matrix is small, and no pores and defects are introduced into the ceramic structure, the high transmittance and thermal conductivity of the fluorescent ceramic sample are guaranteed, which can meet the application of high-power white light illumination devices. need.
  • Figure 1 is a comparison diagram of the luminescence uniformity of fluorescent ceramics in Example 1 of the present invention.
  • Figure 2 is a comparison diagram of the luminescence uniformity of fluorescent ceramics in Comparative Example 1 of the present invention.
  • Figure 3 is the transmittance curve of the transparent multiphase fluorescent ceramic prepared in Example 1 of the present invention.
  • Figure 4 is the fluorescence spectrum of the transparent multiphase fluorescent ceramic prepared in Example 1 of the present invention.
  • Figure 5 is the transmittance curve of the transparent multiphase fluorescent ceramic prepared in Example 2 of the present invention.
  • Figure 6 is the fluorescence spectrum of the transparent multiphase fluorescent ceramic prepared in Example 2 of the present invention.
  • the chemical composition of the fluorescent phase in the transparent multiphase fluorescent ceramic provided by the present invention is Y 3-xyz Ce x Lu y Gd z Al 5-a Ga a O 12 , where 0 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 3, 0 ⁇ z ⁇ 3, 0 ⁇ a ⁇ 5, x+y+z ⁇ 3; the chemical composition of the ceramic matrix is Y 3 Al 5 O 12 ; the mass percentage of the fluorescent phase is between 1 and 99%.
  • the present invention also provides a method for preparing transparent multiphase fluorescent ceramics, which includes the following steps:
  • the phosphor raw materials can be self-prepared or purchased from commercial sources; the ceramic matrix raw materials are oxide-based raw materials Y 2 O 3 and Al 2 O 3 , which can be self-prepared or commercial raw materials; sintering
  • the auxiliary agent is one or more of ZnO 2 , La 2 O 3 , MgO, HfO 2 , and tetraethylorthosilicate (TEOS).
  • TEOS tetraethylorthosilicate
  • the mass percentage of the fluorescent phase is between 1 to 99%, and the content of the sintering aid is 0.001 to 10% of the weight of the ceramic matrix raw material;
  • Tablet press molding includes two steps: dry press molding and cold isostatic pressing, in which the dry press molding pressure is 10-40Mpa, and the cold isostatic press molding pressure is 150-250Mpa;
  • the ceramic green body is sintered at a high temperature to obtain multiphase fluorescent ceramics.
  • the high-temperature sintering method can be high-temperature vacuum sintering, the vacuum sintering temperature is 1700-1900°C, the holding time is 4-10 hours, the vacuum degree is 1 ⁇ 10 -3 Pa, preferably 1800°C, the holding time is 5 hours; the high-temperature sintering method is also available Pre-sintering in reducing atmosphere plus subsequent hot isostatic pressing treatment, wherein the pre-sintering temperature in reducing atmosphere is 1600-1700°C, the holding time is 1-4 hours, preferably 1650°C, holding for 2 hours; the hot isostatic pressing temperature is higher than the pre-sintering temperature The sintering temperature is 50-100°C lower, and the holding time is 1-2 hours, preferably 1600°C, and the holding time is 1 hour;
  • the annealing treatment is annealing under air conditions, the annealing temperature is 700-1000°C, the annealing time is 5-10 hours, preferably 900°C, and the annealing is 8 hours;
  • Y 2.94 Ce 0.06 Al 5 O 12 weigh 32g of Y 2 O 3 powder, 24.7g of Al 2 O 3 powder, 1g of CeO 2 and 0.29g of tetraethylorthosilicate into oxidation
  • the mixed slurry was obtained by ball milling in an aluminum ball mill tank for 24 hours.
  • the mixed slurry was dried at 80° C. for 24 hours and then passed through a 200-mesh sieve to obtain mixed powder raw materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

提供一种透明复相荧光陶瓷及其制备方法。该复相荧光陶瓷由荧光相和具有相同或相似结构的陶瓷基质组成,两相折射率具有微小差别,且两相在复相陶瓷结构中均匀分布。在激发光源的激发下,利用复相陶瓷中两相折射率的差别,可以实现激发光在陶瓷晶界处的有效散射,提高激发效率和出光均匀性。同时,由于荧光相与陶瓷基质之间折射率差别较小,且没有在陶瓷结构中引入气孔和缺陷,保证了荧光陶瓷样品高的透过率和热导率,可以满足大功率白光照明器件的应用需求。

Description

一种透明复相荧光陶瓷及其制备方法 技术领域
本发明涉及固态照明材料领域,具体涉及一种激光照明应用透明复相荧光陶瓷微结构设计及其制备方法。
背景技术
自白光LED照明技术问世以来,就以其高效、环保、长寿命等优点,迅速占领固态照明及显示市场,已被公认为是21世纪的新型绿色光源。但是,LED芯片的发光效率只有在低电流密度下才具有最大值,即存在所谓的效率下降现象,导致目前单颗白光LED的功率和流明都相对较小,大大限制了其在诸如汽车前照大灯、便携式高亮度投影仪、影院放映机等高度集成产品中得到广泛应用。与LED芯片不同,激光芯片的发光效率在大电流密度条件下表现良好,可以通过加大输入电流密度的方式来获得高功率激发光源。因此,采用激光芯片激发荧光材料是实现高亮度和大功率白光照明的必然选择。
当前白光LED照明技术通常使用有机树脂混合荧光粉来完成对芯片发射光的转换。而在激光照明技术中,荧光材料由于受更高光通亮密度激光的激发,工作温度会显著上升,而有机树脂的热导率较低,一般只有0.1-0.4Wm -1K -1,不能快速耗散掉器件工作时所产生的热量,从而导致其器件自身及包含荧光粉的劣化。荧光陶瓷材料是一种具有致密结构的荧光材料,其热导率在10-50Wm -1K -1之间,达到了有机树脂热导率的100倍以上,可以极大的提高其在激光激发下的散热效果,保持长时间发光的稳定性。但是单一相荧光陶瓷材料结构中由于缺少适量的散射中心,在受到高准直、强穿透、低散射激光激发时,大部分的激光能量都没有被充分吸收,而是直接穿过了荧光陶瓷,从而导致材料的发光效率较低,同时发光的均匀性也较差。
当前技术一般是采用在荧光陶瓷材料中引入微气孔结构(如专利CN201710801901.4)或者具较大结构差异的第二相(如专利CN101080823A)来增加入射光的散射,提高激发效率和发光均匀性。但微气孔结构的引入会严重影响荧光陶瓷的导热性能和机械强度,降低照明器件高温发光稳定性;而具较大结构差异第二相的引入会严重影响荧光陶瓷的透过性能,限制了其在白光照明领域的应用。
发明内容
为解决上述问题,本发明提供一种透明复相荧光陶瓷及其制备方法。该复相荧光陶瓷由 荧光相和具有相同或相似结构的陶瓷基质组成,两相折射率具有微小差别,且两相在复相陶瓷结构中均匀分布。
本发明提供的透明复相荧光陶瓷中荧光相的化学组成为Y 3-x-y-zCe xLu yGd zAl 5-aGa aO 12,其中0<x<0.3,0≤y<3,0≤z<3,0≤a<5,x+y+z≤3;陶瓷基质的化学组成为Y 3Al 5O 12;其中荧光相的质量百分比在1~99%之间,优选为30~50%。
本发明还提供一种透明复相荧光陶瓷的制备方法,包括:将荧光粉体、陶瓷基质原料以及烧结助剂进行球磨混料、干燥过筛、压片成型、高温烧结、退火处理及最后的研磨抛光,得到透明复相荧光陶瓷。
优选的,所述透明复相荧光陶瓷的制备方法中,陶瓷基质原料为Y 2O 3和Al 2O 3粉体,烧结助剂为ZnO 2、La 2O 3、MgO、HfO 2、正硅酸四乙酯(TEOS)中的一种或几种,烧结助剂的含量为陶瓷基质原料重量的0.001~10%。
优选的,所述透明复相荧光陶瓷的制备方法中压片成型包括干压成型和冷等静压成型两步,其中干压成型压力为10-40Mpa,冷等静压成型压力为150-250Mpa。
所述透明复相荧光陶瓷的制备方法中,高温烧结的一个优选为真空烧结,真空烧结温度为1700-1900℃,保温时间为4-10小时,真空度为1×10 -3Pa,优选为1800℃,保温5小时。
所述透明复相荧光陶瓷的制备方法中,高温烧结的另一个优选为还原气氛预烧结加后续热等静压处理,还原气氛预烧结温度为1600-1700℃,保温时间为1-4小时,优选为1650℃,保温2小时;热等静压处理温度比预烧结温度低50-100℃,保温时间为1-2小时,优选为1600℃,保温1小时。
所述透明复相荧光陶瓷的制备方法中退火处理为空气条件下退火,退火温度为700-1000℃,退火时间为5-10小时,优选为900℃,退火8小时。
本发明的技术效果:
本发明获得的复相荧光陶瓷由荧光相和陶瓷基质两相组成,两相折射率具有微小差别,当在激发光源的激发下,可以实现激发光在陶瓷晶界处的有效散射,提高激发效率和出光均匀性。同时,由于荧光相与陶瓷基质之间折射率差别较小,且没有在陶瓷结构中引入气孔和缺陷,保证荧光陶瓷样品高的透过率和热导率,可以满足大功率白光照明器件的应用需求。
附图说明
图1为本发明中实施例1中荧光陶瓷发光均匀性对比图。
图2为本发明中对比例1中荧光陶瓷发光均匀性对比图。
图3为本发明中实施例1制备的透明复相荧光陶瓷透过率曲线。
图4为本发明中实施例1制备的透明复相荧光陶瓷荧光光谱。
图5为本发明中实施例2制备的透明复相荧光陶瓷透过率曲线。
图6为本发明中实施例2制备的透明复相荧光陶瓷荧光光谱。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供的透明复相荧光陶瓷中荧光相的化学组成为Y 3-x-y-zCe xLu yGd zAl 5-aGa aO 12,其中0<x<0.3,0≤y<3,0≤z<3,0≤a<5,x+y+z≤3;陶瓷基质的化学组成为Y 3Al 5O 12;其中荧光相的质量百分比在1~99%之间。
本发明还提供一种透明复相荧光陶瓷的制备方法,包括以下步骤:
1)将荧光粉体、陶瓷基质原料以及烧结助剂进行球磨混料。荧光粉原料可以是自行制备的,也可以是从商业途径购买的产品;陶瓷基质原料为氧化物类原料Y 2O 3和Al 2O 3,可以是自行制备的,也可以是商业原料;烧结助剂为ZnO 2、La 2O 3、MgO、HfO 2、正硅酸四乙酯(TEOS)中的一种或几种。在所述复相荧光陶瓷中,荧光相的质量百分比在1~99%之间,烧结助剂含量为陶瓷基质原料重量的0.001~10%;
2)对球磨后的浆料进行干燥过筛;
3)将干燥过筛后的粉体原料压片成所需形状及尺寸,获得复相荧光陶瓷素坯。压片成型包括干压成型和冷等静压成型两步,其中干压成型压力为10-40Mpa,冷等静压成型压力为150-250Mpa;
4)对陶瓷素坯体进行高温烧结获得复相荧光陶瓷。高温烧结方式可以为高温真空烧结,真空烧结温度为1700-1900℃,保温时间为4-10小时,真空度为1×10 -3Pa,优选为1800℃,保温5小时;高温烧结方式也可以为还原气氛预烧结加后续热等静压处理,其中还原气氛预烧结温度为1600-1700℃,保温时间为1-4小时,优选为1650℃,保温2小时;热等静压处理温度比预烧结温度低50-100℃,保温时间为1-2小时,优选为1600℃,保温1小时;
5)将复相荧光陶瓷进行退火处理。退火处理为空气条件下退火,退火温度为700-1000℃,退火时间为5-10小时,优选为900℃,退火8小时;
6)对退火后的陶瓷样品进行双面抛光,获得最终透明复相陶瓷。
实施例1
分别称取60g的YAG:Ce黄色荧光粉,35g的Y 2O 3粉体,25g的Al 2O 3粉体,0.3g的正硅酸四乙酯放入氧化铝球磨罐中球磨24小时得到混合浆料。混合浆料经80℃干燥24小时后过200目网筛获得混合粉体原料。称取5g混合粉体原料预压成圆形片,然后进行210MPa冷等静压处理获得陶瓷素坯;将陶瓷素坯在真空烧结炉中1800℃煅烧5小时获得陶瓷样品;将陶瓷样品在900℃条件下进行8小时的退火处理并进行双面抛光,获得厚度0.5mm的黄色透明复相荧光陶瓷样品。
对比例1:单一相荧光陶瓷
根据化学组成Y 2.94Ce 0.06Al 5O 12分别称取32g的Y 2O 3粉体,24.7g的Al 2O 3粉体,1g的CeO 2和0.29g的正硅酸四乙酯放入氧化铝球磨罐中球磨24小时得到混合浆料。混合浆料经80℃干燥24小时后过200目网筛获得混合粉体原料。称取5g混合粉体原料预压成圆形片,然后进行210MPa冷等静压处理获得陶瓷素坯;将陶瓷素坯在真空烧结炉中1800℃煅烧5小时获得陶瓷样品;将陶瓷样品在900℃条件下进行8小时的退火处理并进行双面抛光,获得厚度0.5mm的黄色透明单一相荧光陶瓷样品。
实施例2
分别称取30g的YAGG:Ce绿色荧光粉,35g的Y 2O 3粉体,25g的Al 2O 3粉体,0.06g的MgO放入氧化铝球磨罐中球磨24小时得到混合浆料。混合浆料经干燥后过200目网筛获得混合粉体原料。称取5g混合粉体原料预压成圆形片,然后进行210MPa冷等静压处理获得陶瓷素坯;将陶瓷素坯在气氛炉中氮气气氛下1650℃煅烧2小时获得预烧结坯体;将预烧结陶瓷坯体放入热等静压炉中,加压至200Mpa,然后以5℃/min的升温速率升温至1600℃并在该温度下保温保压1小时,最后以10℃/min的速率降温至室温获得陶瓷样品;将陶瓷样品在1000℃条件下进行5小时的退火处理并进行双面抛光,获得厚度0.5mm的绿色透明复相荧光陶瓷样品。

Claims (10)

  1. 一种透明复相荧光陶瓷,其特征在于,所述荧光陶瓷由荧光相和具有相同或相似结构的陶瓷基质组成,两相折射率具有微小差别,且两相在透明复相陶瓷结构中均匀分布。
  2. 根据权利要求1所述的透明复相荧光陶瓷,其特征在于,所述荧光相的化学组成为Y 3-x-y-zCe xLu yGd zAl 5-aGa aO 12,其中0<x≤0.3,0≤y<3,0≤z<3,0≤a<5,x+y+z≤3。
  3. 根据权利要求1所述的透明复相荧光陶瓷,其特征在于,所述陶瓷基质的化学组成为Y 3Al 5O 12
  4. 根据权利要求1所述的透明复相荧光陶瓷,其特征在于,荧光相的质量百分比在1~99%之间。
  5. 根据权利要求1~4中任一项透明复相荧光陶瓷的制备方法,其特征在于,所述方法包括:将荧光粉体、陶瓷基质原料以及烧结助剂进行球磨混料、干燥过筛、压片成型、高温烧结、退火处理及最后的研磨抛光,得到透明复相荧光陶瓷。
  6. 根据权利要求5所述透明复相荧光陶瓷的制备方法,其特征在于,烧结助剂为ZnO 2、La 2O 3、MgO、HfO 2、正硅酸四乙酯(TEOS)中的一种或几种,烧结助剂的含量为陶瓷基质原料重量的0.001~10%。
  7. 根据权利要求5所述透明复相荧光陶瓷的制备方法,其特征在于,所述压片成型包括干压成型和冷等静压成型两步。
  8. 根据权利要求5至7中任一项所述的制备方法,其特征在于,所述高温烧结为真空烧结,真空烧结温度为1700~1900℃,保温时间为4~10小时,真空度为1×10 -3Pa。
  9. 根据权利要求5至7中任一项所述的制备方法,其特征在于,所述高温 烧结也可以为还原气氛预烧结加后续热等静压处理,还原气氛预烧结温度为1600~1700℃,保温时间为1~4小时;热等静压处理温度比预烧结温度低50~100℃,保温时间为1~2小时。
  10. 根据权利要求5至7中任一项所述的制备方法,其特征在于,所述退火处理为空气条件下退火,退火温度为700~1000℃,退火时间为5~10小时。
PCT/CN2020/095794 2020-06-12 2020-06-12 一种透明复相荧光陶瓷及其制备方法 WO2021248445A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095794 WO2021248445A1 (zh) 2020-06-12 2020-06-12 一种透明复相荧光陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095794 WO2021248445A1 (zh) 2020-06-12 2020-06-12 一种透明复相荧光陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
WO2021248445A1 true WO2021248445A1 (zh) 2021-12-16

Family

ID=78846763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095794 WO2021248445A1 (zh) 2020-06-12 2020-06-12 一种透明复相荧光陶瓷及其制备方法

Country Status (1)

Country Link
WO (1) WO2021248445A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804931A (zh) * 2022-05-11 2022-07-29 北京理工大学 一种AlON透明陶瓷低温腐蚀方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083907A1 (en) * 2006-01-17 2007-07-26 Lucimea Co., Ltd. Sheet type phosphors, preparation method thereof, and light emitting devices using these phosphors
CN101697367A (zh) * 2009-09-30 2010-04-21 烁光特晶科技有限公司 一种利用透明陶瓷制备led的方法
CN107384399A (zh) * 2017-07-25 2017-11-24 中国科学院福建物质结构研究所 Yag型荧光粉及制备方法、其制备的yag型透明陶瓷荧光体和应用
CN107540369A (zh) * 2017-02-28 2018-01-05 江苏罗化新材料有限公司 发光陶瓷、led封装结构及发光陶瓷的制备方法
CN108069710A (zh) * 2016-11-15 2018-05-25 深圳市光峰光电技术有限公司 一种发光陶瓷及发光装置
CN108997014A (zh) * 2018-09-28 2018-12-14 成都东骏激光股份有限公司 一种高显色荧光陶瓷及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083907A1 (en) * 2006-01-17 2007-07-26 Lucimea Co., Ltd. Sheet type phosphors, preparation method thereof, and light emitting devices using these phosphors
CN101697367A (zh) * 2009-09-30 2010-04-21 烁光特晶科技有限公司 一种利用透明陶瓷制备led的方法
CN108069710A (zh) * 2016-11-15 2018-05-25 深圳市光峰光电技术有限公司 一种发光陶瓷及发光装置
CN107540369A (zh) * 2017-02-28 2018-01-05 江苏罗化新材料有限公司 发光陶瓷、led封装结构及发光陶瓷的制备方法
CN107384399A (zh) * 2017-07-25 2017-11-24 中国科学院福建物质结构研究所 Yag型荧光粉及制备方法、其制备的yag型透明陶瓷荧光体和应用
CN108997014A (zh) * 2018-09-28 2018-12-14 成都东骏激光股份有限公司 一种高显色荧光陶瓷及其制备方法与应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804931A (zh) * 2022-05-11 2022-07-29 北京理工大学 一种AlON透明陶瓷低温腐蚀方法
CN114804931B (zh) * 2022-05-11 2022-12-20 北京理工大学 一种AlON透明陶瓷低温腐蚀方法

Similar Documents

Publication Publication Date Title
CN109467453B (zh) 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
JP6834491B2 (ja) 焼結蛍光体、発光装置、照明装置、車両前照灯、及び焼結蛍光体の製造方法
CN108863317B (zh) 一种荧光复合陶瓷及其制备方法和应用
CN110240468B (zh) 荧光陶瓷及其制备方法
WO2019223023A1 (zh) 一种yag荧光陶瓷及其制备方法和应用
CN104844217B (zh) 一种用于暖色温白光LED封装光源的AlON透明陶瓷荧光体的制备方法
CN108503352B (zh) 一种石榴石基红色荧光陶瓷材料及其制备方法
WO2018028265A1 (zh) 一种波长转换装置及其制备方法、发光装置和投影装置
CN106145922A (zh) 一种led用yag透明荧光陶瓷的制备方法
JPWO2009154193A1 (ja) セラミックス組成物、蛍光体セラミックス及びその製造方法、並びに発光素子
US10591137B2 (en) Wavelength converter and light-emitting device having same
CN112939578A (zh) 荧光陶瓷及其制备方法、发光装置以及投影装置
CN111205081A (zh) 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用
CN106887486B (zh) 用于白光led器件的条形码结构荧光陶瓷及其制备方法与应用
CN104609848A (zh) 一种用于白光led荧光转换的复合相透明陶瓷及其制备方法
CN111285682A (zh) 用于激光照明与显示的全光谱复相荧光陶瓷及制备方法
CN111285680A (zh) 用于激光照明的包边复合结构荧光陶瓷及制备方法
WO2021248445A1 (zh) 一种透明复相荧光陶瓷及其制备方法
CN111517804A (zh) 一种氮化物红色复相荧光陶瓷及其制备方法
WO2021248446A1 (zh) 一种纳米倍半氧化物荧光陶瓷及其制备方法
CN113603462B (zh) 一种陶瓷-玻璃复合结构荧光色轮及其制备方法和在激光显示源中的应用
CN110981481B (zh) 一种高光效白光led用阶梯式复相荧光陶瓷的制备方法
WO2014166083A1 (zh) 包含新型固态透明荧光材料的白光led及其制备方法
CN114031400A (zh) 单相暖白光荧光陶瓷及其制备方法和应用
CN113087527B (zh) 一种Eu3+激活的红色透明荧光陶瓷及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940043

Country of ref document: EP

Kind code of ref document: A1