WO2014166083A1 - 包含新型固态透明荧光材料的白光led及其制备方法 - Google Patents

包含新型固态透明荧光材料的白光led及其制备方法 Download PDF

Info

Publication number
WO2014166083A1
WO2014166083A1 PCT/CN2013/074025 CN2013074025W WO2014166083A1 WO 2014166083 A1 WO2014166083 A1 WO 2014166083A1 CN 2013074025 W CN2013074025 W CN 2013074025W WO 2014166083 A1 WO2014166083 A1 WO 2014166083A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
phosphor
fluorescent material
temperature
ceramic
Prior art date
Application number
PCT/CN2013/074025
Other languages
English (en)
French (fr)
Inventor
曹永革
刘著光
邓种华
郭旺
李军庭
陈剑
陈东川
兰海
Original Assignee
中国科学院福建物质结构研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院福建物质结构研究所 filed Critical 中国科学院福建物质结构研究所
Priority to PCT/CN2013/074025 priority Critical patent/WO2014166083A1/zh
Publication of WO2014166083A1 publication Critical patent/WO2014166083A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Definitions

  • White LED comprising novel solid transparent fluorescent material and preparation method thereof
  • the present invention provides a transparent fluorescent material, particularly a transparent ceramic phosphor, a transparent glass phosphor, and a transparent composite phosphor, and a white LED using the three transparent phosphors.
  • LED Light Emi t t ing Diode
  • the LED chip consists of two parts, a part of which is a P-type semiconductor, in which the hole dominates, and the other end is an N-type semiconductor, mainly an electron.
  • P-N junction When the two semiconductors are connected, a "P-N junction" is formed between them.
  • a current is applied to the wafer through the wire, the electrons are pushed toward the P region. In the P region, the electrons recombine with the holes, and then the energy is emitted in the form of photons. This is the principle of LED illumination.
  • LED As a new type of light source, LED has achieved unprecedented development due to its unparalleled advantages such as energy saving, environmental protection, long life, fast start-up speed, control of luminescence spectrum and prohibition of the size of the band, which makes the color more high.
  • LEDs typically have two main methods of producing white light. One is to use three monochromatic diodes that emit red, green, and blue to form a white light. The other is to use a fluorescent material to convert monochromatic light from a blue or ultraviolet LED into a broad spectrum of white light.
  • the white light produced by the former method is mainly applied to large-screen display technology, and the white light generated by the latter method is mainly applied to illumination and backlight.
  • Japan Nichia Corporation has a pioneering invention in this field (US5998925A):
  • White light is obtained by exciting a YAG yellow phosphor with a blue GaN chip, and the invention is based on a yttrium aluminum garnet phosphor.
  • the phosphor absorbs blue light at a wavelength of 450 nm to 470 nm, and generates yellow light having a wavelength of 550 nm to 560 nm, which has the advantages of low cost and high efficiency.
  • the photoelectric conversion efficiency is generally less than 30%. Even the best LED chips at present, the photoelectric conversion efficiency will not be higher than 50%.
  • the LED will be accompanied by a large amount of heat when it emits light.
  • the temperature will reach 150 degrees Celsius to 200 degrees Celsius.
  • Such a temperature will cause the efficiency of the phosphor to drop by 20-30%, resulting in a shift in the color temperature and color coordinates of the source. It also affects the light efficiency and stability of the LED light source.
  • the yttrium aluminum garnet (YAG) phosphor degrades at temperatures above 120 degrees Celsius and is non-transparent due to the coated phosphor material.
  • the material when the light emitted by the blue light or the ultraviolet chip passes, the scattering absorption phenomenon occurs, so that the light extraction efficiency is not high; and the unevenness of the coating thickness seriously affects the spot and white color temperature. For example, problems such as yellow aperture, blue light spot, and white light color temperature are inconsistent due to uneven coating. Summary of the invention
  • the present invention aims to solve the aforementioned problems of the prior art, and provides a fluorescent ceramic material having a simple structure, high light efficiency and reliable performance, and an LED chip including the same, and a white light which generates white light by using a LED chip to emit a fluorescent ceramic.
  • the invention provides a transparent ceramic phosphor, which comprises the following technical solutions:
  • a transparent ceramic phosphor characterized in that the phosphor has the following chemical formula: Re 3 Al 5 0 12 , wherein the rare earth element Re is selected from the group consisting of Ce, Eu, Er, Nd, Tb, Sm, Tm, Dy , Y, Gd, Pr, Lu, Ho, Pm, La or Yb, or a mixture of any of several.
  • the transparent ceramic phosphor according to (1) wherein the transparent phosphor has a linear transmittance in a range of from 250 nm to 480 nm of more than 5%, preferably a transmittance of more than 50%, at 480 nm to 780 nm.
  • the linear transmittance in the range is more than 5%, and the transmittance is preferably greater than 80%.
  • the present invention also provides a method for producing a transparent ceramic phosphor according to any one of (1) to (5) above, which comprises the following technical solutions:
  • a method for preparing a transparent ceramic phosphor characterized in that the method comprises the following steps: a. Powder preparation: Weighing A1 2 0 3 and Re 2 according to a stoichiometric ratio of Re 3 Al 5 0 12 0 3 powder, and add certain sintering aids, binders, plasticizers, dispersants,
  • the Re 2 O 3 powder is selected from the group consisting of Ce 2 0 3 , Eu 2 0 3 , Er 2 0 3 , Nd 2 0 3 , Tb 2 0 3 , Sm 2 0 3 , Tm 2 0 3 , Dy 2 One or more of 0 3 , Y 2 0 3 , Gd 2 0 3 , Pr 2 0 3 , Lu 2 0 3 , Ho 2 0 3 , Pm 2 0 3 , La 2 0 3 or Yb 2 0 3 mixture;
  • the fluorescent ceramic powder raw material obtained in the step (1) is formed by a conventional wet method or dry method, and dried to form a green body.
  • step (2) the raw material obtained in step (2) is calcined in a high temperature furnace at 900-1500 °C for 20 min-20 h to discharge the organic components in the green body;
  • the ceramic green body of step (4) is sintered in a high temperature sintering furnace, the sintering temperature is 800-2100 ° C, preferably the temperature is 1000-1900 ° C, more preferably 1200-1850 ° C, and the temperature is raised.
  • the rate is 0.5-10 o C/min o sintering time 2-20 hours, preferably: 12-30 hours;
  • Annealing The sintered densified ceramic is placed in an annealing furnace for annealing.
  • the annealing temperature is 900-1500 ° C, preferably the temperature is 1200 ° C -1500 ° C, and the annealing time is lh-20 h.
  • the rate of temperature increase is 0.5-10 e C/min.
  • the sintering aid is MgO or CaO or TEOS or S) 2 in an amount of 0 to 2% by weight, preferably 0.5 to 1% by weight, based on the mass of the mixed powder of the A1 2 0 3 and Re 2 0 3 .
  • the binder is selected from the group consisting of polyvinyl butyral, polyethylene glycol, polyvinyl alcohol, gum arabic, alginate, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, One or more of hydroxyethyl cellulose, methacrylamide, methylene bis acrylamide, hydroxypropyl cellulose, polyoxyethylene.
  • the binder is added in an amount of from 0.1 to 10% by mass based on the mass of the mixed oxide.
  • the plasticizer is selected from one or more of a fatty acid, a polyhydric alcohol, a fatty acid ester, a citric acid ester, a polyester plasticizer, and an epoxy plasticizer.
  • the plasticizer is added in an amount of from 0.1 to 10% by mass based on the mass of the mixed oxide.
  • the dispersing agent is selected from the group consisting of polyacrylic acid, polypropylene, polyacrylamine, polyethylene, polyvinylidene, polyethylene glycol, gum arabic, gelatin, salmon oil, fish oil, oleic acid, castor oil. One or more of them.
  • the amount of the dispersant added is adjusted according to the particle size of the original powder.
  • the molding method of the step (2) includes a conventional dry pressing method, an isostatic pressing method, a casting method, a grouting method, a casting method, an extrusion method, an injection molding method, a gel injection molding method, and the like.
  • the invention also provides a transparent glass phosphor comprising the following technical solutions:
  • a transparent glass phosphor characterized by a molar percentage group of the transparent glass phosphor Become: Mixture of one or more of AF, BF 2 , A 2 0 or BO: 0-25°/. a mixture of one or more of Re 2 0 3 or ReF 3 : 0.001-25%;
  • A is selected from the group consisting of alkali metals Li, Na, K, Rb, Cs;
  • B is selected from the group consisting of alkaline earth metals Be, Mg, Ca, Sr, Ba;
  • Re is selected from the group consisting of rare earth elements: Ce, Eu, Er, Nd, Tb, Sm, Tm, Dy, Y, Gd, Pr, Lu, Ho, Pm, La or Yb.
  • the transparent glass phosphor according to (1) characterized in that the linear transmittance of the phosphor in the range of 250 nm to 480 nm is more than 5%, preferably the transmittance is more than 50%, and is in the range of 480 nm to 780 nm.
  • the linear transmittance in the range is more than 5%, and the transmittance is preferably greater than 80%.
  • the present invention also provides a method for producing a transparent glass phosphor according to any one of the above (1) to (5), which comprises the following technical solutions:
  • the raw materials are uniformly mixed, poured into a crucible for melting, and the melting temperature is 1400-1700 ° C. After 2-15 hours of heat preservation, the glass melt is poured into a cast iron mold, and then placed in a high temperature furnace for annealing, and the annealing temperature is 400- The temperature is 1500 ° C, the annealing time is 2-10 hours, and then cooled to room temperature with the furnace.
  • the invention also provides a transparent composite phosphor comprising the following technical solutions:
  • a transparent composite phosphor characterized in that the phosphor is a composite material comprising the transparent ceramic phosphor and a transparent glass phosphor, wherein a mass ratio of the transparent ceramic phosphor to the transparent glass phosphor is : 45: 55-95: 5, preferably 60: 40-80: 20.
  • the proportion of the transparent ceramic phosphor is 45 to 95%, preferably 60% to 90%, more preferably 70% to 80%.
  • the transparent composite phosphor according to (1) or (2), wherein the stimulated emission spectrum of the transparent composite phosphor may cover the entire visible light range, that is, 380 to 780 nm, preferably 480 to 780 nm.
  • the present invention also provides a method for producing a transparent composite phosphor according to any one of the above (1) to (3), characterized in that the method comprises the steps of:
  • a transparent ceramic phosphor is prepared, the preparation steps of which are as described for the transparent ceramic phosphor.
  • the present invention also provides a transparent ceramic phosphor for use in a white LED, characterized in that the transparent ceramic phosphor is as described above.
  • the present invention also provides a transparent glass phosphor for use in a white LED, characterized in that the transparent glass phosphor is as described above.
  • the present invention also provides a transparent composite phosphor for use in a white LED, characterized in that the transparent composite phosphor is as described above.
  • the transparent composite phosphor is as described above.
  • the invention provides a white light LED package light source using a fluorescent material, which comprises the following technical solutions:
  • a white LED package light source using a transparent fluorescent material comprising a package substrate 12, more than one blue or ultraviolet LED chip 20, and a transparent fluorescent material 11, wherein the transparent fluorescent material 11 is selected from the group consisting of The transparent ceramic phosphor, the transparent glass phosphor and the transparent composite phosphor are invented.
  • the transparent fluorescent material 11 is located at the uppermost portion of the packaged light source.
  • the blue or ultraviolet LED chip 20 is located on the upper portion of the package substrate 12 and is secured to the package substrate 12 by silicone or silver paste (commercially available) 50.
  • the chip 20 is connected to an electrode 30 mounted at the bottom of the holder.
  • the transparent fluorescent material 11 is coated on the blue or ultraviolet LED chip 20.
  • the transparent fluorescent material 11 and the chip 20 are fixed on the package substrate 12 through a transparent colloid 40 (commercially available).
  • the white LED package light source according to (1) above characterized in that: the transparent fluorescent material 11 is excited by light emitted from the blue or ultraviolet LED chip 20, and the transparent fluorescent material 11 is selected from the transparent ceramic phosphor according to the present invention. Transparent glass phosphor and transparent composite phosphor.
  • the transparent fluorescent material replaces the use of the phosphor in the conventional white LED package, and the light emitted from the chip 20 excites the fluorescent material to form white light.
  • the emitted light of the LED chip 20 is visible light having a peak wavelength of 400-500 nm or ultraviolet light having a peak wavelength of 250-400 nm.
  • Light (4) The white LED package light source according to any one of (1) to (3) above, wherein the LED chip is a vertical structure, a horizontal structure, and a flip-chip LED chip.
  • a double-sided light emitting LED package light source using a transparent fluorescent material is provided.
  • the present invention also provides a double-sided light emitting LED package light source using a transparent fluorescent material, which comprises the following technical solutions:
  • a white LED package light source using a transparent fluorescent material comprising a transparent fluorescent material package substrate 10, one or more blue or ultraviolet LED chips 20, and a transparent fluorescent material 11, characterized in that the transparent fluorescent material packaging substrate
  • the transparent fluorescent material 11 and the transparent fluorescent material 11 are selected from the above-mentioned transparent ceramic phosphors, transparent glass phosphors and transparent composite phosphors.
  • the blue or ultraviolet LED chip 20 is located on the upper portion of the package substrate 10, and is transparent.
  • a gelatin (commercially available) 51 is attached to the package substrate 10.
  • the chip 20 is connected to an electrode 30 mounted at the bottom of the holder.
  • the transparent fluorescent material 11 is coated on the blue or ultraviolet LED chip 20.
  • the transparent fluorescent material 11 and the chip 20 are fixed on the package substrate 12 through a transparent colloid 40 (commercially available).
  • light emitted from the back surface of the LED chip 20 can be directly emitted from the LED package structure through the transparent fluorescent material, thereby forming a LED package light source that emits light on both sides.
  • the white LED package light source according to (1) or (2) above characterized in that the light emitted from the blue or ultraviolet LED chip 20 excites the transparent fluorescent material package 10 on the back side thereof and the transparent fluorescent material on the front side thereof 11.
  • the transparent fluorescent materials 10 and 11 are selected from the group consisting of the transparent ceramic phosphors, the transparent glass phosphors, and the transparent composite phosphors as described above.
  • the transparent fluorescent material replaces the use of the phosphor in the conventional white LED package, and the light emitted from the chip 20 excites the fluorescent material to form white light, thereby making the transparent fluorescent material replace the use of the phosphor in the conventional white LED package.
  • the white LED package light source according to any one of (1) to (3) above, characterized in that the emission spectrum of the LED chip is visible light having a peak wavelength of 400-500 nm or ultraviolet having a peak wavelength of 250-400 nm. Light.
  • the invention utilizes a transparent phosphor to replace the phosphor in the conventional white LED light source, a white LED. Due to the high thermal conductivity, high stability and high crystallinity of the transparent phosphor, the color temperature drift caused by the high temperature of the white LED light source is avoided, the stability of the white LED light source is improved, and the light effect of the white LED light source is improved.
  • 1 is a white LED package light source using transparent ceramic phosphors in Examples 1, 3, and 5;
  • FIG. 2 is an XRD pattern of (Ce ⁇ Y ⁇ AlsOu transparent ceramic phosphor sintered in Example 1;
  • FIG. 3 is a light language of the white LED light source of Example 1;
  • 4 is a white light LED package light source of Embodiment 2 using a transparent glass phosphor;
  • Figure 5 is a light language of the white LED light source of Embodiment 2;
  • Example 6 is an XRD pattern of 3 Al 5 0 12 transparent ceramic phosphor after sintering (Ce.. 6% Gd ie% Y 89 . 94% ) of Example 3;
  • Embodiment 8 is a white light LED package light source using a transparent composite phosphor in Embodiment 4;
  • Figure 10 is an XRD pattern of the sintered Example 3 (Ce.. 1% Gd ie% Y 29 .9% Tb 6 %) 3 Al 5 0 12 transparent ceramic phosphor;
  • Figure 11 is a light language of the white LED light source of Embodiment 5.
  • Figure 13 is an XRD pattern of (Ceo.o Yoo. /o AlsOu transparent ceramic phosphor after sintering in Example 6;
  • Figure 14 is a light language of the white light LED source of Example 6;
  • Figure 15 is a white light LED package light source of Embodiment 7.
  • Figure 16 is a spectrum of a white light LED light source of Example 7.
  • Figure 17 is a white light LED light source of Embodiment 8.
  • FIG. 18 is an XRD pattern of (Ce ⁇ Yg ⁇ o/JsAlsOu transparent ceramic phosphor sintered in Example 8;
  • FIG. 19 is a light language of the white light LED light source of Example 8;
  • Figure 20 is a white light LED light source of Embodiment 9;
  • Figure 21 is a spectrum of a white light LED light source of Example 9;
  • Figure 22 is a white light LED light source of Embodiment 10.
  • FIG. 23 is a schematic diagram of a white light LED light source of Embodiment 10.
  • Example 1 Press (Ce.. 6% Y 99 . 94% ) 3 Al 5 0 12 Chemical composition Weighing ⁇ - ⁇ 1 2 0 3 powder, ⁇ 2 0 3 powder, Ce 2 0 3 powder raw material, mixed powder Add 0.1200 TEOS, 0.5400 polyvinyl butyrate into a high-purity agate ball mill, add 80g of high-purity agate ball, 12g of absolute ethanol, ball mill for 20 hours, and then dry in an oven for 15h.
  • the sieve powder was used to obtain a powder of 45 to 75 ⁇ m, which was pressed in one direction by a pressure axis of lOMpa, and pressed into an original piece, and then subjected to cold isostatic pressing at 200 MPa. 900 under normal pressure.
  • C is drained for 20 hours, and the discharged green body is sintered in a vacuum at a heating rate of 10 ° C / min, a sintering temperature of 1850 ° C, a heating rate of 10 ° C / min, and a sintering time of 15 hours.
  • the sintered sample was annealed at 1500 e C for 10 hours, and finally the sample was polished, and the thickness of the polished sample was 0.64 mm.
  • Figure 2 shows (Xe.. 6% Y 99 . 94% ) 3 X 5 12 12 transparent ceramic phosphor XRD pattern after sintering, each peak in the figure is consistent with the standard peak position of the ResAlsC porcelain garnet phase, There is no peak, indicating that the sample has completely transformed into a garnet phase through this sintering process.
  • the LED chip 20 having a peak wavelength of 460 nm was fixed to the solid crystal position of the alumina ceramic counter 12 by using a commercially available silica gel 50, and baked in an oven to cure the silica gel 50.
  • the electrode of the LED chip 20 is connected to the electrode 30 of the alumina ceramic substrate 12 by a gold wire.
  • a transparent silica gel 40 is placed on the chip 20 of the alumina ceramic substrate 12 and covered with a transparent ceramic phosphor 11, which is baked in an oven to cure the transparent silicone 40.
  • the optical language diagram of the test is shown in Figure 3.
  • the raw materials are uniformly mixed by ball milling, poured into platinum crucible, melted, and the melting temperature is 1650 ° C. After 2 hours of heat preservation, the glass melt is poured into a cast iron mold, and then placed in a high temperature furnace for annealing at an annealing temperature of 750 ° C. The annealing time was 2 hours, and then cooled to room temperature with the furnace to obtain a transparent glass phosphor having a thickness of 0.8 mm.
  • the LED chip 20 having a peak wavelength of 460 nm was fixed to the solid crystal position of the alumina ceramic counter 12 by using a commercially available silica gel 50, and baked in an oven to cure the silica gel 50.
  • the electrode of the LED chip 20 is connected to the electrode 30 of the alumina ceramic substrate 12 by a gold wire.
  • the transparent gel 40 is placed on the chip 20 at a position and covered with a transparent glass phosphor 13, which is baked in an oven to cure the transparent silica gel 40.
  • the optical language diagram of the test is shown in Figure 5.
  • the powder After drying in an oven for 15 h, the powder was ground with a mortar and sieved to obtain a powder of 45-75 ⁇ m, which was pressed in one direction with a pressure axis of lOMpa, and then pressed into an original piece, and then subjected to cold isostatic pressing at 200 MPa. Press 1500 ° C for 20 minutes, and then extrude the green body in vacuum, the heating rate is 10 ° C / min, the sintering temperature is 1200 ° C, the sintering time is 20 h. The sample after sintering is 1500 Annealing at °C for 1 hour, and finally polishing the sample, the thickness of the polished sample is 0.66 mm. The visible light transmittance can reach 81%.
  • Figure 6 is (Ceo.o6«/ practiceGdioo/ 0 Y 8 9.94 «/ practice) 3Al 5 Oi XRD pattern of the second transparent sintered ceramic phosphor, each peak in the bitmap 15 012 1 ⁇ ceramic garnet phase consistent with the standard peak, and no peaks heteroaryl, This sample has been completely converted into a garnet phase through this sintering process.
  • the LED chip 20 having a peak wavelength of 460 nm was fixed to the solid crystal position of the alumina ceramic counter 12 by using a commercially available silica gel 50, and baked in an oven to cure the silica gel 50.
  • the electrode of the LED chip 20 is connected to the electrode 30 of the alumina ceramic substrate 12 by a gold wire.
  • a transparent silica gel 40 is placed on the chip 20 of the alumina ceramic substrate 12 and covered with a transparent ceramic phosphor 11, which is baked in an oven to cure the transparent silicone 40.
  • the optical language diagram of the test is shown in Figure 7.
  • First step press ( €6., 6% 0 (1 1 .% ⁇ 89 . 94% ) 3 1 5 0 12 chemical composition weighing ⁇ - ⁇ 1 2 0 3 powder, ⁇ 2 0 3 powder, Gd 2 0 3 and Ce 2 0 3 powder raw materials, mixed powder added 0.1200 g of TEOS, 0.5400 polyvinyl butyrate into a high-purity agate ball mill, 80 g of high-purity agate ball, absolute ethanol 12g, ball milled for 20 hours, and then dried in an oven for 15 hours.
  • Step 2 Weigh the following powder materials according to the table 2 mole percent:
  • the raw materials are uniformly mixed by ball milling, poured into a cypress crucible, melted at a temperature of 1700 ° C, and after 15 hours of incubation, the glass melt is poured onto a cast iron mold, and the pre-placement in the cast iron mold has been completed in the first step ( Ceo.06 «/ diligentGdloo/ 0 Y 8 9.94 «/ Struktur) 3Al 5 Ol 2 transparent ceramic phosphor. Then, the whole was placed in a high temperature furnace for annealing, the annealing temperature was 1500 ° C, the annealing time was 10 hours, and then cooled to room temperature with the furnace to obtain a transparent composite phosphor having a thickness of 0.7 mm.
  • the LED chip 20 having a peak wavelength of 455 nm is fixed to the solid crystal position of the alumina ceramic substrate 12 by using a commercially available silica gel 50, and baked in an oven to cure the silica gel 50.
  • the electrode of the LED chip 20 is connected to the electrode 30 of the alumina ceramic substrate 12 by means of a gold wire.
  • a transparent silica gel 40 is placed on the chip 20 of the alumina ceramic substrate 12 and covered with a transparent composite phosphor 14, which is baked in an oven to cure the transparent silica gel 40.
  • the optical language diagram of the test is shown in Figure 9.
  • the powder After grinding with a mortar, the powder was obtained to obtain a powder of 45 to 75 ⁇ m, which was pressed in one direction by a pressure axis of lOMpa, and pressed into an original piece, and then subjected to cold isostatic pressing at 200 MPa.
  • the rubber was discharged at 1300 ° C for 5 hours under normal pressure, and the discharged green body was sintered in a vacuum at a heating rate of 0.5 ° C / min, a sintering temperature of 1200 ° C, and a sintering time of 20 h.
  • the sintered sample was annealed at 1200 ° C, the heating rate was 10 ° C / min, and the annealing time was 20 hours.
  • Figure 10 is an XRD pattern of (Ce 0 . 1% Gd 10% Y 29 . 9% Tb 60% ) 3 Al 5 O 12 transparent ceramic phosphor after sintering, each peak in the figure and Re 3 Al 5 0 12 Ceramic garnet phase The standard peak position is consistent, and there is no peak, indicating that the sample has completely transformed into a garnet phase through this sintering process.
  • the LED chip 20 having a peak wavelength of 460 nm was fixed to the solid crystal position of the alumina ceramic counter 12 by using a commercially available silica gel 50, and baked in an oven to cure the silica gel 50.
  • the electrode of the LED chip 20 is connected to the electrode 30 of the alumina ceramic substrate 12 by a gold wire.
  • a transparent silica gel 40 is placed on the chip 20 of the alumina ceramic substrate 12 and covered with the above-prepared transparent ceramic phosphor 11, which is baked in an oven to cure the transparent silica gel 40.
  • the optical language diagram of the test is shown in Figure 11.
  • the sieve powder was used to obtain a powder of 45 to 75 ⁇ m, which was pressed in one direction by a pressure axis of lOMpa, and pressed into an original piece, and then subjected to cold isostatic pressing at 200 MPa. 1300 under normal pressure.
  • C is drained for 10 hours, and the degreased green body is sintered in a vacuum at a heating rate of 10 ° C / min, a sintering temperature of 1850 ° C, a sintering time of 15 hours, and the sintered sample is annealed at 1600 ° C. After 10 hours, the sample was finally polished, and the thickness of the polished sample was 0.64 mm.
  • the visible light transmittance can reach 82%.
  • Figure 13 is (Xe.. 6% Y 99. 94% ) XRD pattern of 3 Al 5 0 12 transparent ceramic phosphor after sintering, each peak in the figure is in phase with Re 3 Al 5 0 12 ceramic garnet The standard peak position is consistent, and there is no peak, indicating that the sample has completely transformed into a garnet phase through this sintering process.
  • the LED chip 20 having a peak wavelength of 460 nm was fixed to the solid crystal position of the transparent ceramic phosphor 10 by using a commercially available transparent silica gel 51, and baked in an oven to cure the transparent silica gel 51.
  • the electrode of the LED chip 20 is connected to the electrode 30 of the transparent ceramic phosphor 10 by a gold wire.
  • the transparent silica gel 40 is placed on the chip 20 of the transparent ceramic phosphor 10 and covered with a transparent ceramic phosphor 11, which is baked in an oven to cure the transparent silica gel 40.
  • the optical language diagram of the test is shown in Figure 14.
  • First step press ( €6., 6% 0 (1 1 .% ⁇ 89 . 94% ) 3 1 5 0 12 chemical composition weighing ⁇ - ⁇ 1 2 0 3 powder, ⁇ 2 0 3 powder, Gd 2 0 3 and Ce 2 0 3 powder raw materials, mixed powder added 0.2400 g of TEOS, 1.0800 gum arabic and alginic acid amine into a high-purity agate ball mill, 160 g of high-purity agate ball, absolute ethanol 24 g, ball milled for 20 hours and then dried in an oven for 15 h.
  • the sieve powder was used to obtain a powder of 45 to 75 ⁇ m, which was pressed in one direction by a pressure axis of lOMpa, and pressed into an original piece, and then subjected to cold isostatic pressing at 200 MPa. 1500 under normal pressure. C is drained for 20 hours, and the discharged green body is sintered in a vacuum at a heating rate of 10 ° C / min, a sintering temperature of 1600 ° C, and a sintering time of 18 h.
  • the polished sample thickness was 0.66 mm.
  • Step 2 Weigh the following powder materials according to the table 4 mole percent:
  • the raw materials are uniformly mixed by ball milling, poured into a cypress crucible, melted at a temperature of 1700 ° C, and after 15 hours of incubation, the glass melt is poured onto a cast iron mold, and the pre-placement in the cast iron mold has been completed in the first step ( Ceo.06 «/ diligentGdloo/ 0 Y 8 9.94 «/ Struktur) 3Al 5 Ol 2 transparent ceramic phosphor. Then, the whole was placed in a high temperature furnace for annealing, the annealing temperature was 1500 ° C, the annealing time was 10 hours, and then cooled to room temperature with the furnace to obtain a composite transparent phosphor having a thickness of 0.83 mm.
  • the LED chip 20 having a peak wavelength of 455 nm was fixed to the solid crystal position of the transparent composite phosphor 15 by using a commercially available transparent silica gel 51, and baked in an oven to cure the silica gel 51.
  • the electrode of the LED chip 20 is connected to the electrode 30 of the alumina ceramic substrate 12 by a gold wire.
  • a transparent silica gel 40 is placed on the chip 20 of the alumina ceramic substrate 12 and covered with a transparent composite phosphor 14, which is baked in an oven to cure the transparent silica gel 40.
  • the optical language diagram of the test is shown in Figure 16.
  • the first step is a first step:
  • the ball milled slurry was added with 0.5 wt% of I hair per ammonium persulfate (APS) and 0.1 wt% of catalyst tetramethylethylenediamine (TEMED) in a vacuum tank, and vacuum treated to a vacuum of -O.lMpa or less. , no bubbles escape from the slurry.
  • the defoamed slurry is injected into the mold, placed in a 60 ° C oven to initiate a monomer reaction, and the slurry is in-situ solidified and the mold is separated, and the mold is released.
  • the formed green body has the transparent ceramic phosphor of FIG. The shape of 16. The formed green body is dried in stages from room temperature to 100 ° C.
  • the initial set temperature is 30 ° C and the humidity is 90%.
  • the temperature is gradually increased to reduce the humidity and slowly rise to 100 ° C.
  • the dried green body is placed in a tube furnace and heated to 700 ° C at an oxygenation rate of rC/min under an oxygen atmosphere for 2 hours.
  • the oxygen flow rate is 50 to 100 ml per minute, and the furnace is naturally cooled after the heat preservation.
  • the degreased green body is placed in a vacuum furnace, sintered in a vacuum atmosphere (vacuum degree 1.5xlO-4Pa), raised to 1200 ° C at a heating rate of 10 ° C / min, and then heated at a heating rate of 5 ° C / min
  • the transparent ceramic phosphor 16 of Fig. 17 was obtained by holding at 1830 ° C for 20 hours at 1830 ° C, dropping to 1200 ° C at a temperature drop rate of 5 ° C / min, and naturally cooling to room temperature.
  • the third step As shown in FIG. 17, the LED chip 20 having a peak wavelength of 450 nm is fixed in the middle of the prepared transparent ceramic phosphor 10 by using commercially available transparent silica gel, and baked in an oven to cure the transparent silica gel.
  • the transparent ceramic phosphor 16 prepared in the second step is overlaid on the chip, and the chip 20 is bonded to the ceramic phosphor by a transparent colloid and solidified in an oven.
  • the optical language diagram of the test is shown in Figure 19.
  • 900 C is drained for 20 hours, and the discharged green body is sintered in a vacuum at a heating rate of 10 ° C / min, a sintering temperature of 1800 ° C, and a sintering time of 15 h.
  • the sintered sample is passed through 1200 ° C. After annealing for 20 hours, the sample was finally polished, and the thickness of the polished sample was 0.66 mm.
  • Step 2 Press ( €6., 6% 0 (1 1 .% ⁇ 89 . 94% ) 3 1 5 0 12
  • Chemical composition Weighing ⁇ - ⁇ 1 2 0 3 powder, ⁇ 2 0 3 powder, Gd 2 0 3 and Ce 2 0 3 powder raw materials, adding 0.5 at% of MgO sintering aid, 0.5 wt% dispersant polyammonium carbonate, 15 wt% methacrylamide (MAM) organic monomer, 1:20 times ( Organic monomer: crosslinker) N, ⁇ '-methylenebisacrylamide (MBAM), 0.8wt 0 /. Plasticizer polyvinyl alcohol (PEG), 0.5wt 0 /.
  • the ball milled slurry was added with 0.5 wt% initiator ammonium persulfate ( APS) and 0.1wt% catalyst tetradecylethylenediamine (TEMED) t vacuum tank, vacuum treatment until the vacuum degree reaches -O.lMpa or less, no bubbles escape from the slurry.
  • APS initiator ammonium persulfate
  • TEMED catalyst tetradecylethylenediamine
  • the slurry after defoaming is injected into the mold In the 60 ° C oven, the monomer reaction is initiated, and the slurry is in-situ solidified and the mold is separated, and the mold is released, and the formed green body has the shape of the transparent ceramic phosphor 16 in Fig. 13.
  • the molded green body is from room temperature. Step to 100 °C Dry, initial set temperature 30 ° C, humidity 90%, slowly increase the temperature, reduce the humidity slowly to 100 ° C.
  • the dried green body is placed in a tube furnace and heated to a temperature of rC / min at an oxygen temperature to 700 ° C, 2 hours of heat preservation, oxygen flow rate of 50 ⁇ 100ml per minute, after the end of the heat preservation with the furnace naturally cooled.
  • the degreased green body is placed in a vacuum furnace, under vacuum atmosphere (vacuum degree 1.5xlO-4Pa) for sintering Increase to 1200 ° C at a heating rate of 10 ° C / min, then raise the temperature to 1830 ° C at a heating rate of 5 ° C / min and keep warm at 1830 ° C for 20 hours, down to 1200 ° at 5 ° C / min cooling rate C, naturally cooled to room temperature, and the transparent ceramic phosphor 16 in Fig. 20 was obtained.
  • vacuum degree 1.5xlO-4Pa vacuum degree 1.5xlO-4Pa
  • a flip-chip LED chip 20 having a peak wavelength of 455 nm was soldered to the pad 30 of the transparent ceramic phosphor 10 prepared in the first step described above by a eutectic soldering technique.
  • the transparent ceramic phosphor 16 prepared in the second step is overlaid on the chip 20, and the chip 20 is bonded to the ceramic phosphor by a transparent silica gel and placed in an oven to be solidified.
  • the optical language diagram of the test is shown in Figure 21.
  • First step press ( €6., 6% 0 (1 1 .% ⁇ 89 . 94% ) 3 1 5 0 12 chemical composition weighing ⁇ - ⁇ 1 2 0 3 powder, ⁇ 2 0 3 powder, Gd 2 0 3 and Ce 2 0 3 powder raw materials, mixed powder was added to 0.1200 TEOS, 0.5400 PVB t ⁇ high purity agate ball mill jar, 80 g of high-purity agate ball, 12 g of absolute ethanol, 20 hours after ball milling It was dried in an oven for 15 h.
  • a powder of 45-75 ⁇ m was obtained, which was pressed in one direction with a pressure axis of lOMpa, and then pressed into an original piece, and then cooled at 200 MPa to be isostatically pressed.
  • the next 900 ° C is glued for 20 hours, and the degreased green body is sintered in a vacuum at a heating rate of 10 ° C / min, a sintering temperature of 1800 ° C, and a sintering time of 15 h.
  • the sintered sample is passed through 1200 °. C was annealed for 20 hours, and finally the sample was polished, and the thickness of the polished sample was 0.66 mm.
  • Step 2 Press ( €6., 6% 0 (1 1 .% ⁇ 89 . 94% ) 3 1 5 0 12
  • Chemical composition Weighing ⁇ - ⁇ 1 2 0 3 powder, ⁇ 2 0 3 powder, Gd 2 0 3 and Ce 2 0 3 powder raw materials, adding 0.5 at% of MgO sintering aid, 0.5 wt% dispersant polyammonium carbonate, 15 wt% methacrylamide (MAM) organic monomer, 1:20 times ( Organic monomer: crosslinker) N, ⁇ '-methylenebisacrylamide (MBAM), 0.8wt% plasticizer polyvinyl alcohol (PEG), 0.5wt% defoamer n-butanol; raw materials, grinding
  • the ball milled slurry was added with 0.5 wt% initiator ammonium persulfate (APS) and 0.1. % catalyst tetramethylethylenediamine (TEMED) t vacuum tank, vacuum treatment until the vacuum level reaches -O.lMpa or less, no bubbles escape from the slurry.
  • APS ammonium persulfate
  • TEMED catalyst tetramethylethylenediamine
  • the slurry after defoaming is injected into the mold, t ⁇ 60
  • the monomer reaction is initiated in the °C oven, and the slurry is in-situ solidified and the mold is separated, and the mold is released, and the formed green body has the shape of the transparent ceramic phosphor 16 in Fig. 13.
  • the molded green body is from room temperature to 100°.
  • the initial setting temperature is 30 ° C
  • the humidity is 90%
  • the temperature is slowly increased.
  • the humidity is slowly increased to 100 ° C.
  • the dried green body is placed in a tube furnace and heated to 700 ° at a heating rate of rC/min under an oxygen atmosphere. C, keep warm for 2 hours, the oxygen flow rate is 50 ⁇ 100ml per minute, and naturally cool with the furnace after the heat preservation.
  • the degreased green body is placed in a vacuum furnace and sintered under vacuum atmosphere (vacuum degree 1.5xlO-4Pa)
  • the temperature rise rate of 10 ° C / mi rose to 1200 ° C, then the temperature was raised to 1830 ° C at 5 ° C / min heating rate and held at 1830 ° C for 20 hours, at 5 ° C / min cooling rate dropped to 1200 ° C, Naturally cooled to room temperature, the transparent ceramic phosphor 17 in Fig. 22 was obtained.
  • a flip-chip LED chip 20 having a peak wavelength of 455 nm is bonded to the pad 30 of the transparent ceramic phosphor 10 prepared in the first step by a eutectic soldering technique.
  • the transparent ceramic phosphor 16 prepared in the second step is overlaid on the chip 20, and the chip 20 is bonded to the ceramic phosphor by a transparent silica gel and placed in an oven to be solidified.
  • the optical language diagram of the test is shown in Figure 23.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种透明荧光体,尤其是透明陶瓷荧光体、透明玻璃荧光体和透明复合荧光体,以及应用这三种透明荧光体的白光LED。利用所述透明荧光体代替传统白光LED光源中的荧光粉,实现白光LED。由于透明荧光体具有高热导、高稳定性与高结晶度的优势,避免白光LED光源由于高温造成的色温漂移,提高了白光LED光源的稳定性,并提高了白光LED光源的光效。

Description

说明书 包含新型固态透明荧光材料的白光 LED及其制备方法 技术领域
本发明提供一种透明荧光材料, 尤其是透明陶瓷荧光体、 透明玻璃荧光体、 和 透明复合荧光体, 以及应用这三种透明荧光体的白光 LED。 背景技术
发光二极管 (Light Emi t t ing Diode-LED )可以直接把电能转化为光能。 LED芯 片由两部分组成, 一部分是 P型半导体, 在它里面空穴占主导地位, 另一端是 N型 半导体, 主要是电子。 当这两种半导体连接起来的时候, 它们之间就形成一个 "P-N 结" 。 当电流通过导线作用于这个晶片的时候, 电子就会被推向 P区, 在 P区里电 子跟空穴复合, 然后就会以光子的形式发出能量, 这就是 LED发光的原理。
LED作为一种新型光源, 由于具有节能、 环保、 寿命长、 启动速度快、 能控制发 光光谱和禁止带幅的大小使色彩度更高等传统光源无可比拟的优势而得到了空前的 发展。
一般而言, LED通常有两种产生白光的主要方法, 一种是使用发射红、 绿、 蓝的 三个单色二极管 , 混色形成白光。 另一种是使用荧光材料将蓝或紫外 LED发出的单 色光转换成宽频谱的白色光。 其中前一种方法产生的白光主要应用于大屏幕显示技 术, 而后一种方法产生的白光主要应用于照明与背光源。
对于后一种白光技术, 日本日亚公司拥有该领域的开创性发明 (US5998925A ): 采用蓝色 GaN芯片激发 YAG黄色荧光粉而获得白光, 该专利的发明点在于钇铝石榴 石荧光粉, 该荧光粉吸收 450nm至 470nm波长蓝光, 激发产生 550nm至 560nm波长 黄光, 具有成本低、 效率高的优点。 但对于普通蓝光或紫外 LED 芯片, 其光电转换 效率一般低于 30%, 即使是目前最好的 LED芯片, 其光电转换效率也不会高于 50%。 因此 LED在发光时将伴随产生大量的热。 一般在点亮的芯片周围, 温度会到达 150 摄氏度至 200摄氏度。 这样的温度将造成荧光粉的效率下降 20-30%, 从而产生光源 的色温与色坐标的偏移。同时也影响了 LED光源的光效与稳定性。而钇铝石榴石( YAG ) 荧光粉在 120摄氏度以上的温度会发生退化, 同时由于涂敷的荧光粉材料为非透明 材料, 在蓝光或紫外芯片发出的光通过时会发生散射吸收等现象, 使得出光效率不 高; 同时由于涂敷厚度的不均匀会严重影响其光斑和白光色温。 例如由于涂敷不均 匀造成的黄色光圈、 蓝色光斑、 白光色温不一致等问题。 发明内容
本发明旨在解决现有技术的前述问题, 提供一种结构简单, 光效高而且性能可 靠的荧光陶瓷材料以及包含该陶瓷材料的 LED芯片, 以及利用 LED芯片发光激发荧 光陶瓷, 产生白光的白光 LED的制备方法, 同时还提供一种白光 LED芯片结构。
本发明通过如下技术方案实现:
一、透明荧光材料
本发明提供一种透明陶瓷荧光体, 其中包括如下方面的技术方案:
( 1 )一种透明陶瓷荧光体,其特征在于,所述荧光体具有如下化学式: Re3Al5012, 其中稀土元素 Re选自 Ce, Eu, Er, Nd, Tb, Sm, Tm, Dy, Y, Gd, Pr, Lu, Ho, Pm, La或 Yb中的一种或任意几种的混合物。
(2)根据( 1)的透明陶瓷荧光体,其特征在于,所述透明荧光体在 250nm-480nm 范围内的直线透过率大于 5%, 优选透过率为大于 50%, 在 480nm-780nm范围内的 直线透过率大于 5%, 优选透过率为大于 80%。
(3)根据(1)或 (2) 的透明陶瓷荧光体, 其特征在于, 所述透明陶瓷荧光体 激发谱的峰值波长在 250nm-480nm范围内,发射谱的峰值波长在 480-780nm范围内。
(4)根据(1) - (3)任一项的透明陶瓷荧光体, 其特征在于, 所述透明陶瓷荧 光体的厚度为 0.5-2mm。
(5)根据(1) - (4)任一项的透明陶瓷荧光体, 其特征在于, 所述透明陶瓷荧 光体可以根据需要制备为片状、 盒状、 半球状等。
本发明还提供一种如上(1) - (5)任一项的透明陶瓷荧光体的制备方法, 其包 括如下技术方案:
(6)—种透明陶瓷荧光体的制备方法, 其特征在于, 所述方法包括如下步骤: a.粉体制备: 按 Re3Al5012的化学计量比称量 A1203与 Re203粉末, 并添加一定 的烧结助剂、 粘结剂、 增塑剂、 分散剂,
其中所述 Re为稀土元素。 根据本发明, 所述 Re203粉末选自 Ce203, Eu203, Er203, Nd203, Tb203, Sm203, Tm203, Dy203, Y203, Gd203, Pr203, Lu203, Ho203, Pm203, La203或 Yb203中的一种 或几种的混合物;
b. 陶瓷素坯成型: 将步骤(1 )获得的荧光陶瓷粉体原料通过传统的湿法或干 法成型, 干燥后制成素坯。
c. 排胶: 将步骤(2 )获得的素坯^ 900-1500 °C 的高温炉中煅烧, 时间为 20min-20h, 以排出素坯中的有机成份;
d. 烧结: 将步骤(4 ) 的陶瓷素坯放入高温烧结炉中烧结, 所述烧结温度为 800-2100°C , 优选温度为 1000-1900 °C , 更优选 1200-1850 °C , 升温速率为 0.5-10oC/mino 烧结时间 2-20小时, 优选: 12-30小时;
e. 退火: 将烧结致密化后的陶瓷放入退火炉中进行退火处理, 退火温度为 900-1500°C,优选温度为 1200 °C -1500 °C, 退火时间为 lh-20h。 升温速率为 0.5-10eC/min。
根据本发明, 所述烧结助剂为 MgO或 CaO或 TEOS或 S )2, 添加量为所述 A1203与 Re203混合粉末质量的 0~2wt%, 优选 0.5-lwt%。
根据本发明, 所述粘结剂选自聚乙烯醇缩丁醛、 聚乙二醇、 聚乙烯醇、 阿拉伯 树胶、 海藻酸胺、 甲基纤维素、 羟甲基纤维素、 乙基纤维素、 羟乙基纤维素、 甲基 丙烯酰胺、 亚甲基双丙烯酖胺、 羟丙基纤维素、 聚氧乙烯中的一种或多种。
根据本发明, 所述粘结剂的添加量为上述混合氧化物质量的 0.1~10%。
根据本发明, 所述增塑剂选自脂肪酸、 多元醇、 脂肪酸脂、 柠檬酸脂、 聚酯增 塑剂、 环氧增塑剂中的一种或多种。
根据本发明, 所述增塑剂的添加量为混合氧化物质量的 0.1~10%。
才艮据本发明, 所述分散剂选自聚丙烯酸、 聚丙烯、 聚丙烯胺、 聚乙烯、 聚乙二 烯、 聚乙二醇、 阿拉伯树胶、 明胶、 鲱鱼油、 鱼油、 油酸、 蓖麻油中的一种或多种。
根据本发明, 所述分散剂的添加量根据原始粉料的粒径大小调节用量。
根据本发明, 所述步骤(2 )的成型方法包括传统的干压法、 等静压法、 流延法、 注浆法、 浇铸法、 挤出法、 注塑法与凝胶注模成型法等。 本发明还提供一种透明 玻璃荧光体, 其包括如下技术方案:
( 1 )一种透明玻璃荧光体, 其特征在于, 所述透明玻璃荧光体的摩尔百分比组 成为: AF、 BF2、 A20或 BO中的一种或几种的混合物: 0-25°/。; Re203或 ReF3中的一种或几种的混合物: 0.001-25 %;
A1203 : 20-40 %;
Si02 : 20-70 %;
其中 A选自碱金属 Li、 Na、 K、 Rb、 Cs;
B选自碱土金属 Be、 Mg、 Ca、 Sr、 Ba;
Re选自稀土元素: Ce, Eu, Er, Nd, Tb, Sm, Tm, Dy, Y, Gd, Pr, Lu, Ho, Pm, La或 Yb中的一种或几种。
(2)根据(1)的透明玻璃荧光体, 其特征在于, 所述荧光体在 250 nm-480 nm 范围内的直线透过率大于 5%, 优选透过率大于 50%, 在 480nm-780nm范围内的直 线透过率大于 5%, 优选透过率大于 80%。
(3)根据(1)或 (2) 的透明玻璃荧光体, 其特征在于, 所述透明玻璃荧光体 激发谱的峰值波长在 250 nm-480 nm范围内, 发射谱的峰值波长在 480-780nm范围 内。
( 4 )根据( 1 ) - ( 3 )任一项的透明玻璃荧光体, 其特征在于, 所述透明玻璃荧 光体的厚度为 0.5-2mm。
(5)根据(1) - (4)任一项的透明玻璃荧光体, 其特征在于, 所述透明玻璃荧 光体的形状为片状、 盒状、 半球状等。
本发明还提供上述(1) - (5)任一项的透明玻璃荧光体的制备方法, 其包括如 下技术方案:
(6)一种上述(1) - (5)任一项的透明玻璃荧光体的制备方法, 其特征在于, 所述方法包括如下步骤:
按上述(1) - (5)任一项的摩尔百分比的配方:
AF、 BF2、 A20或 BO中的一种或几种的混合物: 0-20 %;
Re203: 0.001-25%、 A1203: 21-40 %;
Si02: 25-70 % , 称量原料,
将原料混合均匀后倒进坩埚中熔化, 熔制温度 1400-1700°C, 保温 2-15 小时后 将玻璃熔体倒入铸铁模上, 然后置于高温炉中进行退火, 退火温度为 400-1500°C, 退火时间为 2-10 小时, 然后随炉冷却至室温。 本发明还提供一种透明复合荧光体, 其包括如下技术方案:
(1)一种透明复合荧光体, 其特征在于, 所述荧光体为复合材料, 包含上述透 明陶瓷荧光体与透明玻璃荧光体, 其中所述透明陶瓷荧光体与透明玻璃荧光体的质 量比为: 45: 55-95: 5, 优选 60: 40-80: 20。
根据本发明的复合荧光体, 所述透明陶瓷荧光体所占比例为 45-95%, 优选为 60%-90%, 更优选为 70%-80%。
(2)根据(1)所述的透明复合荧光体, 其特征在于该透明复合荧光体为透明 陶瓷荧光体与透明玻璃荧光体的叠层结构, 两种材料的厚度分别为 0.5-2mm。
(3)根据(1)或 (2)所述的透明复合荧光体, 其特征在于, 所述透明复合荧 光体的受激发射谱可以涵盖整个可见光范围, 即 380-780nm, 优选 480-780nm。
(4)根据(1) - (3)任一项的透明复合荧光体, 其特征在于, 所述荧光体在 250 nm-480 nm 范围内的直线透过率大于 5%, 优选透过率为大于 50%, 在 480nm-780nm范围内的直线透过率大于 5%, 优选透过率为大于 80%。
(5)根据(1) - (4)任一项的透明复合荧光体, 其特征在于, 所述透明复合荧 光体的形状为片状、 盒状或半球状等。
(6)本发明还提供上述(1) - (3)任一项的透明复合荧光体的制备方法, 其特 征在于, 所述方法包括如下步骤:
a. 制备透明陶瓷荧光体, 其制备步骤如透明陶瓷荧光体所述。
b.按所述玻璃荧光体的配方摩尔百分比称量原料, 将原料混合均匀后倒进坩埚中熔 化, 熔制温度 1400-1700°C, 保温 2-15 小时后将玻璃熔体倒入铸铁模上, 该铸铁模 的底部放置了上述制备完成的陶瓷荧光体。 然后将整体置于高温炉中进行退火, 退 火温度为 400-1500°C, 退火时间为 2-10 小时, 然后随炉冷却至室温, 脱模并得到透 明复合荧光体。
本发明还提供一种透明陶瓷荧光体用于白光 LED的应用, 其特征在于, 所述透 明陶瓷荧光体如上所述。
本发明还提供一种透明玻璃荧光体用于白光 LED的应用, 其特征在于, 透明玻 璃荧光体如上所述。
本发明还提供一种透明复合荧光体用于白光 LED的应用, 其特征在于, 透明复 合荧光体如上所述。 二、 应用透明荧光体的白光 LED
1、 一种应用透明荧光材料的白光 LED封装光源
本发明提供一种应用荧光材料的白光 LED封装光源, 包括如下技术方案:
( 1 )一种应用透明荧光材料的白光 LED封装光源, 包括封装基板 12, —颗以 上的蓝光或紫外光 LED 芯片 20和透明荧光材料 11, 其特征在于, 所述透明荧光材 料 11选自如本发明前述的透明陶瓷荧光体, 透明玻璃荧光体和透明复合荧光体。
根据本发明, 所述透明荧光材料 11位于封装光源的最上部。
根据本发明, 所述蓝光或紫外光 LED 芯片 20位于封装基板 12的上部,通过硅 胶或银胶(可市售获得) 50固定于封装基板 12上。 所述芯片 20与支架底部安装的 电极 30连接。
根据本发明, 所述透明荧光材料 11覆盖在蓝光或紫外光 LED 芯片 20上。优选 地, 所述透明荧光材料 11与所述芯片 20通过透明胶体 40 (可市售获得 ) 固定在封 装基板 12上。
( 2 )根据上述( 1 )的白光 LED封装光源, 其特征在于: 利用蓝光或紫外 LED 芯片 20发出的光激发透明荧光材料 11所述透明荧光材料 11选自如本发明前述的透 明陶瓷荧光体, 透明玻璃荧光体和透明复合荧光体。
本发明中, 透明荧光材料替代了常规白光 LED封装中荧光粉的使用, 通过芯片 20发出的光激发荧光材料形成白光。
( 3 )根据上述( 1 )或( 2 )的白光 LED封装光源, 其特征在于: 所述的 LED 芯片 20的发射光语为峰值波长在 400-500nm的可见光或峰值波长在 250-400nm的紫 外光。 ( 4 )根据上述( 1 ) - ( 3 )任一项的白光 LED封装光源, 其特征在于: 所述的 LED芯片可以为垂直结构、 水平结构与倒装结构 LED芯片。
2、 一种应用透明荧光材料的双面发光 LED封装光源 本发明还提供一种应用透 明荧光材料的双面发光 LED封装光源, 其包括如下技术方案:
( 1 )一种应用透明荧光材料的白光 LED封装光源, 包括透明荧光材料封装基 板 10、一颗以上的蓝光或紫外光 LED 芯片 20和透明荧光材料 11, 其特征在于所述 透明荧光材料封装基板 10与透明荧光材料 11选自如本发明前述的透明陶瓷荧光体, 透明玻璃荧光体和透明复合荧光体。
根据本发明, 所述蓝光或紫外光 LED 芯片 20位于封装基板 10的上部,通过透 明胶体(可市售获得) 51固定于封装基板 10上。 所述芯片 20与支架底部安装的电 极 30连接。
根据本发明, 所述透明荧光材料 11覆盖在蓝光或紫外光 LED 芯片 20上。优选 地, 所述透明荧光材料 11与所述芯片 20通过透明胶体 40 (可市售获得 ) 固定在封 装基板 12上。
( 2 )根据上述( 1 )的白光 LED封装光源, 其特征在于, 所述 LED芯片 20的 正面和背面均可以发光。
根据本发明, 由 LED芯片 20背面发出的光可以透过透明荧光材料 反 10直接 射出该 LED封装结构, 从而形成了一个正反两面发光的 LED封装光源。
( 3 )根据上述( 1 )或 (2 )的白光 LED封装光源, 其特征在于, 利用蓝光或 紫外 LED芯片 20发出的光激发位于其背面的透明荧光材料封装 10和位于其正 面的透明荧光材料 11, 所述透明荧光材料 10和 11选自如本发明前述的透明陶瓷荧 光体, 透明玻璃荧光体和透明复合荧光体。
本发明中, 透明荧光材料替代了常规白光 LED封装中荧光粉的使用, 通过芯片 20发出的光激发荧光材料形成白光,从而使透明荧光材料替代了常规白光 LED封装 中荧光粉的使用。
( 4 )根据上述( 1 ) - ( 3 )任一项的白光 LED封装光源, 其特征在于, 所述 LED 芯片的发射光谱为峰值波长在 400-500nm的可见光或峰值波长在 250-400nm的紫外 光。
( 5 )根据上述( 1 ) - ( 4 )任一项的白光 LED封装光源, 其特征在于: 所述的 LED芯片选自水平结构、 垂直结构、 或倒装结构 LED芯片。
本发明利用透明荧光体代替传统白光 LED光源中的荧光粉, 白光 LED。 由于透明 荧光体具有高热导、 高稳定性与高结晶度的优势, 避免白光 LED光源由于高温造成 的色温漂移, 提高了白光 LED光源的稳定性, 并提高了白光 LED光源的光效。 附图说明:
图 1为实施例 1、 3、 5应用透明陶瓷荧光体的白光 LED封装光源;
图 2为实施例 1的 (Ce^^Y^^ AlsOu透明陶瓷荧光体烧结后的 XRD图谱; 图 3为实施例 1的白光 LED光源的光语; 图 4为实施例 2应用透明玻璃荧光体的白光 LED封装光源;
图 5为实施例 2的白光 LED光源的光语;
图 6为实施例 3的 (Ce。.。6%Gdie%Y89.94%)3Al5012透明陶瓷荧光体烧结后的 XRD 图谱;
图 7为实施例 3的白光 LED光源的光语;
图 8为实施例 4应用透明复合荧光体的白光 LED封装光源;
图 9为实施例 4的白光 LED光源的光潘;
图 10为实施例 5的 (Ce。.1%Gdie%Y29.9%Tb6。%)3Al5012透明陶瓷荧光体烧结后的 XRD图谱;
图 11为实施例 5的白光 LED光源的光语;
图 12为实施例 6的白光 LED封装光源;
图 13为实施例 6的 (Ceo.o Yoo. /o AlsOu透明陶瓷荧光体烧结后的 XRD图谱; 图 14为实施例 6的白光 LED光源的光语;
图 15为实施例 7的白光 LED封装光源;
图 16为实施例 7的白光 LED光源的光谱;
图 17为实施例 8的白光 LED光源;
图 18为实施例 8的 (Ce^^Yg^o/JsAlsOu透明陶瓷荧光体烧结后的 XRD图谱; 图 19为实施例 8的白光 LED光源的光语;
图 20为实施例 9的白光 LED光源;
图 21为实施例 9的白光 LED光源的光谱;
图 22为实施例 10的白光 LED光源;
图 23为实施例 10的白光 LED光源的光语; 具体实施方式
本发明通过如下具体实施方式进行详细说明。 但本领域技术人员了解, 下述实 施例不是对本发明保护范围的限制, 任何在本发明基础上做出的改进和变化都在本 发明的保护范围之内。 实施例 1 按 (Ce。.。6%Y99.94%)3Al5012化学组成称量 α-Α1203粉体, Υ203粉体, Ce203粉体原 料, 混合粉体加入 0.1200 的 TEOS, 0.5400 的聚乙烯醇缩丁酪放入高纯度玛瑙球 磨罐中,加入 80g的高纯玛瑙球,无水乙醇 12g,球磨 20小时后放入烘箱中干燥 15h。 用研钵研磨后筛粉得到 45~75μπι的粉体,分别用 lOMpa的压力轴单向加压,压制成 原片后, 于 200Mpa下冷等静压。 在常压下 900。C排胶 20小时, 并将排胶后的素坯 在真空中烧结, 升温速率为 10°C/min, 烧结温度为 1850°C, 升温速率为 10°C/min, 烧结时间为 15小时, 烧结后的样品经 1500eC退火 10小时, 最后对样品进行抛光, 抛光后的样品厚度为 0.64mm。 可见光透过率可达到 83%。 图 2 为 (Ce。.。6%Y99.94%)3Al5012透明陶瓷荧光体烧结后的 XRD 图谱, 图中的每个峰位与 ResAlsC 瓷石榴石相的标准峰位相吻合, 且没有杂峰, 说明该样品经过此烧结过 程已经完全转变为石榴石相。
如图 1所示,利用市售硅胶 50将峰值波长为 460nm的 LED芯片 20固定于氧化 铝陶瓷 反 12的固晶位置上, 在烘箱中烘烤使硅胶 50固化。 再利用金线将 LED芯 片 20的电极与氧化铝陶瓷基板 12的电极 30相连接。 最后在氧化铝陶瓷基板 12的 芯片 20位置点上透明硅胶 40并覆盖上透明陶瓷荧光体 11, 在烘箱中烘烤使透明硅 胶 40 固化。 该白光 LED 光源的光电测试结果为: 色温为 Tc=5261K, 显色指数 Ra=69.5, 光效 η=911πι/\¥。 其测试的光语图如图 3所示。 实施例 2
按表 1摩尔百分比称量以下粉体材料:
表 1
Figure imgf000010_0001
将原料经球磨混合均匀后倒进铂金坩埚中熔化, 熔制温度 1650°C, 保温 2小时 后将玻璃熔体倒入铸铁模上, 然后置于高温炉中进行退火, 退火温度为 750°C, 退火 时间 2小时, 然后随炉冷却至室温, 得到透明玻璃荧光体, 厚度为 0.8mm。
如图 4所示,利用市售硅胶 50将峰值波长为 460nm的 LED芯片 20固定于氧化 铝陶瓷 反 12的固晶位置上, 在烘箱中烘烤使硅胶 50固化。 再利用金线将 LED芯 片 20的电极与氧化铝陶瓷基板 12的电极 30相连接。 最后在氧化铝陶瓷基板 12的 芯片 20位置点上透明硅胶 40并覆盖上透明玻璃荧光体 13, 在烘箱中烘烤使透明硅 胶 40固化。该白光 LED光源的光电测试结果为:色温为 Tc=5400K,显色指数 Ra=69, 光效 η=831πι/\¥。 其测试的光语图如图 5所示。 实施例 3
按(€6。.。6%0(11。%¥89.94%)3 15012化学组成称量 α-Α1203粉体, Υ203粉体, Gd203 与 Ce203粉体原料, 混合粉体加入 0.1200 的 TEOS, 0.5400 的聚乙烯醇缩丁趁放 入高纯度玛瑙球磨罐中, 加入 80g的高纯玛瑙球, 无水乙醇 12g, 球磨 20小时后放 入烘箱中干燥 15h。 用研钵研磨后筛粉得到 45~75μπι的粉体, 分别用 lOMpa的压力 轴单向加压, 压制成原片后, 于 200Mpa下冷等静压。 在常压下 1500。C排胶 20分 钟, 并将排胶后的素坯在真空中烧结, 升温速率为 10°C/min, 烧结温度为 1200°C, 烧结时间为 20h。 烧结后的样品经 1500°C退火 1小时, 最后对样品进行抛光, 抛光 后 的样品厚度为 0.66mm。 可见光透过率可达到 81%。 图 6 为 (Ceo.o6«/„Gdioo/0Y89.94«/„)3Al5Oi2透明陶瓷荧光体烧结后的 XRD 图谱, 图中的每个峰位 与 1^ 15012陶瓷石榴石相的标准峰位相吻合, 且没有杂峰, 说明该样品经过此烧结 过程已经完全转变为石榴石相。
如图 1所示,利用市售硅胶 50将峰值波长为 460nm的 LED芯片 20固定于氧化 铝陶瓷 反 12的固晶位置上, 在烘箱中烘烤使硅胶 50固化。 再利用金线将 LED芯 片 20的电极与氧化铝陶瓷基板 12的电极 30相连接。 最后在氧化铝陶瓷基板 12的 芯片 20位置点上透明硅胶 40并覆盖上透明陶瓷荧光体 11, 在烘箱中烘烤使透明硅 胶 40 固化。 该白光 LED 光源的光电测试结果为: 色温为 Tc=4561K, 显色指数 Ra=75.5, 光效 η=851πι/\¥。 其测试的光语图如图 7所示。 实施例 4
第一步:按(€6。,。6%0(11。%¥89.94%)3 15012化学组成称量 α-Α1203粉体, Υ203粉体, Gd203与 Ce203粉体原料, 混合粉体加入 0.1200g的 TEOS, 0.5400 的聚乙烯醇缩 丁酪放入高纯度玛瑙球磨罐中, 加入 80g的高纯玛瑙球, 无水乙醇 12g, 球磨 20小 时后放入烘箱中干燥 15h。 用研钵研磨后筛粉得到 45~75μπι的粉体, 分别用 lOMpa 的压力轴单向加压, 压制成原片后, 于 200Mpa下冷等静压。 在常压下 1500。C排胶 20小时,并将排胶后的素坯在真空中烧结,升温速率为 10°C/min,烧结温度为 1800°C, 烧结时间为 15h。 抛光后的样品厚度为 0.66mm。
第二步: 按表 2摩尔百分比称量以下粉体材料:
表 2
Figure imgf000012_0001
将原料经球磨混合均匀后倒进柏金坩埚中熔化, 熔制温度 1700°C,保温 15小时 后将玻璃熔体倒入铸铁模上, 铸铁模内事先放置已经在第一步制备完成的 (Ceo.06«/„Gdloo/0Y89.94«/„)3Al5Ol2透明陶瓷荧光体。 然后将整体置于高温炉中进行退火, 退火温度为 1500°C,退火时间 10小时,然后随炉冷却至室温,得到透明复合荧光体, 厚度为 0.7mm。
第三步: 如图 8所示, 利用市售硅胶 50将峰值波长为 455nm的 LED芯片 20 固定于氧化铝陶瓷基板 12的固晶位置上, 在烘箱中烘烤使硅胶 50 固化。 再利用金 线将 LED芯片 20的电极与氧化铝陶瓷基板 12的电极 30相连接。 最后在氧化铝陶 瓷基板 12的芯片 20位置点上透明硅胶 40并覆盖上透明复合荧光体 14,在烘箱中烘 烤使透明硅胶 40固化。 该白光 LED光源的光电测试结果为: 色温为 Tc=3543K, 显 色指数 Ra=85.6, 光效 η=80 1πι/\¥。 其测试的光语图如图 9所示。 实施例 5
按( 6。.1%0(11。%¥29.9%6。%)3 15012化学组成称量 α-Α1203粉体, Tb203粉体, Y203粉体, Gd203与 Ce203粉体原料, 混合粉体加入 O.lSOOg的 SK)2, 0.8000g的聚 乙二醇与甲基纤维素的混合物 ^高纯度玛瑙球磨罐中, 加入 80g的高纯玛瑙球, 无水乙醇 12g,球磨 20小时后放入烘箱中干燥 15h。用研钵研磨后筛粉得到 45~75μπι 的粉体, 分别用 lOMpa的压力轴单向加压,压制成原片后, 于 200Mpa下冷等静压。 在常压下 1300°C 排胶 5 小时, 并将排胶后的素坯在真空中烧结, 升温速率为 0.5°C/min, 烧结温度为 1200°C, 烧结时间为 20h。 烧结后的样品经 1200°C退火, 升 温速率为 10°C/min, 退火时间为 20小时, 最后对样品进行抛光, 抛光后的样品厚度 为 0.66mm。 可见光透过率可达到 81%。 图 10为 (Ce0.1%Gd10%Y29.9%Tb60%)3Al5O12 透明陶瓷荧光体烧结后的 XRD图谱, 图中的每个峰位与 Re3Al5012陶瓷石榴石相的 标准峰位相吻合, 且没有杂峰, 说明该样品经过此烧结过程已经完全转变为石榴石 相。
如图 1所示,利用市售硅胶 50将峰值波长为 460nm的 LED芯片 20固定于氧化 铝陶瓷 反 12的固晶位置上, 在烘箱中烘烤使硅胶 50固化。 再利用金线将 LED芯 片 20的电极与氧化铝陶瓷基板 12的电极 30相连接。 最后在氧化铝陶瓷基板 12的 芯片 20位置点上透明硅胶 40并覆盖上上述制备完成的透明陶瓷荧光体 11, 在烘箱 中烘烤使透明硅胶 40固化。该白光 LED光源的光电测试结果为: 色温为 Tc=6561K, 显色指数 Ra=65.5, 光效 η=851πι/\¥。 其测试的光语图如图 11所示。 实施例 6
按 (Ce。.。6%Y99.94%)3Al5012化学组成称量 α-Α1203粉体, Υ203粉体, Ce203粉体原 料, 混合粉体加入 0.2400g的 TEOS, 0.5400g的 PVB ^T 高纯度玛瑙球磨罐中, 加 入 160g的高纯玛瑙球, 无水乙醇 24g, 球磨 20小时后 ^烘箱中干燥 15h。 用研钵 研磨后筛粉得到 45~75μπι的粉体,分别用 lOMpa的压力轴单向加压,压制成原片后, 于 200Mpa下冷等静压。 在常压下 1300。C排胶 10小时, 并将排胶后的素坯在真空 中烧结, 升温速率为 10°C/min, 烧结温度为 1850°C, 烧结时间为 15小时, 烧结后 的样品经 1600°C退火 10小时,最后对样品进行抛光,抛光后的样品厚度为 0.64mm。 可见光透过率可达到 82%。 图 13为 (Ce。.。6%Y99.94%)3Al5012透明陶瓷荧光体烧结后的 XRD 图谱, 图中的每个峰位与 Re3Al5012陶瓷石榴石相的标准峰位相吻合, 且没有 杂峰, 说明该样品经过此烧结过程已经完全转变为石榴石相。
如图 12所示, 利用市售透明硅胶 51将峰值波长为 460nm的 LED芯片 20固定 于透明陶瓷荧光体 10的固晶位置上, 在烘箱中烘烤使透明硅胶 51 固化。 再利用金 线将 LED芯片 20的电极与透明陶瓷荧光体 10的电极 30相连接。 最后在透明陶瓷 荧光体 10的芯片 20位置点上透明硅胶 40并覆盖上透明陶瓷荧光体 11,在烘箱中烘 烤使透明硅胶 40固化。 该白光 LED光源的光电测试结果为: 色温为 Tc=5179K, 显 色指数 Ra=69.3, 光效 η=1511πι/\¥。 其测试的光语图如图 14所示。 实施例 7
第一步:按(€6。,。6%0(11。%¥89.94%)3 15012化学组成称量 α-Α1203粉体, Υ203粉体, Gd203与 Ce203粉体原料, 混合粉体加入 0.2400g的 TEOS, 1.0800 的阿拉伯树胶 和海藻酸胺放入高纯度玛瑙球磨罐中, 加入 160g的高纯玛瑙球, 无水乙醇 24g, 球 磨 20小时后放入烘箱中干燥 15h。 用研钵研磨后筛粉得到 45~75μπι的粉体, 分别用 lOMpa的压力轴单向加压,压制成原片后,于 200Mpa下冷等静压。在常压下 1500。C 排胶 20小时, 并将排胶后的素坯在真空中烧结, 升温速率为 10°C/min, 烧结温度为 1600°C, 烧结时间为 18h。 抛光后的样品厚度为 0.66mm。
第二步: 按表 4摩尔百分比称量以下粉体材料:
表 4
Figure imgf000014_0001
将原料经球磨混合均匀后倒进柏金坩埚中熔化, 熔制温度 1700°C,保温 15小时 后将玻璃熔体倒入铸铁模上, 铸铁模内事先放置已经在第一步制备完成的 (Ceo.06«/„Gdloo/0Y89.94«/„)3Al5Ol2透明陶瓷荧光体。 然后将整体置于高温炉中进行退火, 退火温度为 1500°C,退火时间 10小时,然后随炉冷却至室温,得到复合透明荧光体, 厚度为 0.83mm。
第三步:
如图 15所示, 利用市售透明硅胶 51将峰值波长为 455nm的 LED芯片 20固定 于透明复合荧光体 15的固晶位置上, 在烘箱中烘烤使硅胶 51 固化。 再利用金线将 LED芯片 20的电极与氧化铝陶瓷基板 12的电极 30相连接。最后在氧化铝陶瓷基板 12的芯片 20位置点上透明硅胶 40并覆盖上透明复合荧光体 14, 在烘箱中烘烤使透 明硅胶 40固化。 该白光 LED光源的光电测试结果为: 色温为 Tc=3723K, 显色指数 Ra=87.6, 光效 η=1311πι/\¥。 其测试的光语图如图 16所示。 实施例 8
第一步:
按 (Ce。.。6%Y99.94%)3Al5012化学组成称量 α-Α1203粉体, Υ203粉体, Ce203粉体原 料, 混合粉体加入 0.2400g的 TEOS, 0.5400g的 PVB ^T 高纯度玛瑙球磨罐中, 加 入 160g的高纯玛瑙球, 无水乙醇 24g, 球磨 20小时后^烘箱中干燥 15h。 用研钵 研磨后筛粉得到 45~75μπι的粉体,分别用 lOMpa的压力轴单向加压,压制成原片后, 于 200Mpa下冷等静压。 在常压下 1300。C排胶 10小时, 并将排胶后的素坯在真空 中烧结, 升温速率为 10°C/min, 烧结温度为 1800°C, 烧结时间为 15小时, 烧结后 的样品经 1250°C退火 10小时,最后对样品进行抛光,抛光后的样品厚度为 0.64mm。 可见光透过率可达到 83%。 图 18为 (Ce。.。6%Y99.94%)3Al5012透明陶瓷荧光体烧结后的 XRD 图谱, 图中的每个峰位与 Re3Al5012陶瓷石榴石相的标准峰位相吻合, 且没有 杂峰, 说明该样品经过此烧结过程已经完全转变为石榴石相。
第二步:按 (€6。.。6%¥99.94%) 15012化学组成称量0141203粉体, Y203粉体, Ce203 粉体原料, 添加 0.5at%的 MgO烧结助剂, 0.5wt%^L剂聚碳酸铵, 15wt%曱基丙 烯酰胺(MAM )有机单体, 1:20倍(有机单体: 交联剂) N, Ν'-亚曱基双丙烯酰胺 (MB AM), 0.8wt%增塑剂聚乙烯醇(PEG ), 0.5wt%除泡剂正丁醇; 把原料、 磨球、 添加剂倒入 36克去离子水球磨混合 24小时, 球磨转速 350r/m, 料:球 =1:5。 把球磨 混合后的浆料添加 0.5wt% I发剂过硫酸铵 ( APS )和 0.1wt%催化剂四甲基乙二胺 (TEMED) ^真空罐中, 真空处理至真空度达到 -O.lMpa 以下, 浆料中没有气泡逸 出为止。 除泡后的浆料注入模具中, 放入 60°C烘箱中引发单体反应, 等浆料原位凝 固坯体和模具分离, 脱模, 成型后的生坯具有图 13中透明陶瓷荧光体 16的形状。 成型的生坯从室温到 100°C分阶段干燥, 初期设定温度 30°C、 湿度 90%, 慢慢增加 温度减少湿度緩慢升到 100°C。 干燥后的生坯放入管式炉中在氧气气氛下以 rC/min 升温速率升温到 700°C, 保温 2小时, 氧气流量为每分钟 50~100ml, 保温结束后随 炉自然冷却。 脱脂后的生坯放入真空炉中, 在真空气氛下 (真空度 1.5xlO-4Pa)进行烧 结, 以 10°C/min升温速率升到 1200°C, 然后以 5°C/min升温速率升温至 1830°C并在 1830°C保温 20小时, 以 5°C/min降温速率降到 1200°C, 自然冷却至室温, 获得图 17 中的透明陶瓷荧光体 16。
第三步: 如图 17所示, 利用市售透明硅胶将峰值波长为 450nm的 LED芯片 20 固定于步骤一制备完成的透明陶瓷荧光体 10的中间,在烘箱中烘烤使透明硅胶固化。 再将经步骤二制备完成的透明陶瓷荧光体 16覆于芯片上方, 并应用透明胶体将芯片 20与陶瓷荧光体粘结并放入烤箱中固化。 该白光 LED光源的光电测试结果为: 色温 为 Tc=5389K, 显色指数 Ra=70.3, 光效 η=1511πι/\¥。 其测试的光语图如图 19所示。 实施例 9 第一步:按(€6。,。6%0(11。%¥89.94%)3 15012化学组成称量 α-Α1203粉体, Υ203粉体, Gd203与 Ce203粉体原料, 混合粉体加入 0.1200 的 TEOS, 0.5400 的 PVB ^高 纯度玛瑙球磨罐中, 加入 80g的高纯玛瑙球, 无水乙醇 12g, 球磨 20小时后放入烘 箱中干燥 15h。 用研钵研磨后筛粉得到 45~75μπι的粉体, 分别用 lOMpa的压力轴单 向加压, 压制成原片后, 于 200Mpa下冷等静压。 在常压下 900。C排胶 20小时, 并 将排胶后的素坯在真空中烧结, 升温速率为 10°C/min, 烧结温度为 1800°C, 烧结时 间为 15h。 烧结后的样品经 1200°C退火 20小时, 最后对样品进行抛光, 抛光后的样 品厚度为 0.66mm。
第二步:按(€6。,。6%0(11。%¥89.94%)3 15012化学组成称量 α-Α1203粉体, Υ203粉体, Gd203与 Ce203粉体原料, 添加 0.5at%的 MgO烧结助剂, 0.5wt%分散剂聚碳酸铵, 15wt%甲基丙烯酰胺(MAM )有机单体, 1:20倍(有机单体: 交联剂) N, Ν'-亚甲 基双丙烯酰胺 (MBAM), 0.8wt0/。增塑剂聚乙烯醇(PEG ), 0.5wt0/。除泡剂正丁醇; 把原料、 磨球、 添加剂倒入 36克去离子水球磨混合 24小时, 球磨转速 350r/m, 料: 球 =1:5。把球磨混合后的浆料添加 0.5wt%引发剂过硫酸铵 ( APS )和 0.1wt%催化剂 四曱基乙二胺 (TEMED) t 真空罐中, 真空处理至真空度达到 -O.lMpa 以下, 浆料 中没有气泡逸出为止。 除泡后的浆料注入模具中, 60°C烘箱中引发单体反应, 等浆料原位凝固坯体和模具分离, 脱模, 成型后的生坯具有图 13中透明陶瓷荧光体 16的形状。 成型的生坯从室温到 100°C分阶段干燥, 初期设定温度 30°C、 湿度 90%, 慢慢增加温度减少湿度緩慢升到 100°C。干燥后的生坯放入管式炉中在氧气气氛下以 rC/min升温速率升温到 700°C , 保温 2小时, 氧气流量为每分钟 50~100ml, 保温 结束后随炉自然冷却。脱脂后的生坯放入真空炉中,在真空气氛下 (真空度 1.5xlO-4Pa) 进行烧结,以 10°C/min升温速率升到 1200°C ,然后以 5°C/min升温速率升温至 1830°C 并在 1830°C保温 20小时, 以 5°C/min降温速率降到 1200°C , 自然冷却至室温, 获得 图 20中的透明陶瓷荧光体 16。
第三步: 如图 20所示,将峰值波长为 455nm的倒装结构 LED芯片 20利用共晶 焊技术焊接于上述第一步制备完成的透明陶瓷荧光体 10的焊盘 30上。 再将经第二 步制备完成的透明陶瓷荧光体 16覆于芯片 20上方, 并利用透明硅胶将芯片 20与陶 瓷荧光体粘结并放入烤箱中固化。 该白光 LED 光源的光电测试结果为: 色温为 Tc=4561K, 显色指数 Ra=75.5, 光效 η=1651πι/\¥。 其测试的光语图如图 21所示。 实施例 10
第一步:按(€6。,。6%0(11。%¥89.94%)3 15012化学组成称量 α-Α1203粉体, Υ203粉体, Gd203与 Ce203粉体原料, 混合粉体加入 0.1200 的 TEOS, 0.5400 的 PVB t^高 纯度玛瑙球磨罐中, 加入 80g的高纯玛瑙球, 无水乙醇 12g, 球磨 20小时后放入烘 箱中干燥 15h。 用研钵研磨后筛粉得到 45~75μπι的粉体, 分别用 lOMpa的压力轴单 向加压, 压制成原片后, 于 200Mpa下冷等静压。 在常压下 900。C排胶 20小时, 并 将排胶后的素坯在真空中烧结, 升温速率为 10°C/min, 烧结温度为 1800°C, 烧结时 间为 15h。 烧结后的样品经 1200°C退火 20小时, 最后对样品进行抛光, 抛光后的样 品厚度为 0.66mm。
第二步:按(€6。,。6%0(11。%¥89.94%)3 15012化学组成称量 α-Α1203粉体, Υ203粉体, Gd203与 Ce203粉体原料, 添加 0.5at%的 MgO烧结助剂, 0.5wt%分散剂聚碳酸铵, 15wt%甲基丙烯酰胺(MAM )有机单体, 1:20倍(有机单体: 交联剂) N, Ν'-亚甲 基双丙烯酰胺 (MBAM), 0.8wt%增塑剂聚乙烯醇(PEG ), 0.5wt%除泡剂正丁醇; 把原料、 磨球、 添加剂倒入 36克去离子水球磨混合 24小时, 球磨转速 350r/m, 料: 球 =1:5。把球磨混合后的浆料添加 0.5wt%引发剂过硫酸铵( APS )和 0.1 %催化剂 四甲基乙二胺 (TEMED) t 真空罐中, 真空处理至真空度达到 -O.lMpa 以下, 浆料 中没有气泡逸出为止。 除泡后的浆料注入模具中, t^ 60°C烘箱中引发单体反应, 等浆料原位凝固坯体和模具分离, 脱模, 成型后的生坯具有图 13中透明陶瓷荧光体 16的形状。 成型的生坯从室温到 100°C分阶段干燥, 初期设定温度 30°C、 湿度 90%, 慢慢增加温度减少湿度緩慢升到 100°C。干燥后的生坯放入管式炉中在氧气气氛下以 rC/min升温速率升温到 700°C , 保温 2小时, 氧气流量为每分钟 50~100ml, 保温 结束后随炉自然冷却。脱脂后的生坯放入真空炉中,在真空气氛下 (真空度 1.5xlO-4Pa) 进行烧结,以 10°C/m i升温速率升到 1200°C,然后以 5°C/min升温速率升温至 1830°C 并在 1830°C保温 20小时, 以 5°C/min降温速率降到 1200°C, 自然冷却至室温, 获得 图 22中的透明陶瓷荧光体 17。
第三步: 如图 22所示,将峰值波长为 455nm的倒装结构 LED芯片 20利用共晶 焊技术悍接于上述第一步制备完成的透明陶瓷荧光体 10的焊盘 30上。 再将经第二 步制备完成的透明陶瓷荧光体 16覆于芯片 20上方, 并利用透明硅胶将芯片 20与陶 瓷荧光体粘结并放入烤箱中固化。 该白光 LED 光源的光电测试结果为: 色温为 Tc=4561K, 显色指数 Ra=75.5, 光效 η=1651πι/\¥。 其测试的光语图如图 23所示。

Claims

权利 要求
1、 一种透明陶瓷荧光体, 其特征在于其化学式为 Re3Al5012, 其中稀土元素 Re 选自 Ce, Eu, Er, Nd, Tb, Sm, Tm, Dy, Y, Gd, Pr, Lu, Ho, Pm, La或 Yb中的一种或任 意几种的混合物。
优选地, 所述透明荧光体在 250nm-480nm范围内的直线透过率大于 5%, 优选 透过率为大于 50%, 在 480nm-780nm范围内的直线透过率大于 5%, 优选透过率为 大于 80%。
优选地, 所述透明陶瓷荧光体激发谱的峰值波长在 250nm-480nm范围内, 发射 谱的峰值波长在 480-780nm范围内。
优选地, 所述透明陶瓷荧光体可以根据需要制备为片状、 盒状、 半球状等。
更优选地, 所述透明陶瓷荧光体的厚度为 0.5-2mm。
2、 一种权利要求 1的透明陶瓷荧光体的制备方法, 其特征在于采用包括以下步 骤的制备方法:
a.粉体制备: 按 Re3Al5012的化学计量比称量 A1203与 Re203粉末, 并添加一定 的烧结助剂、 粘结剂、 增塑剂、 分散剂, 所述 Re203粉末选自 Ce203, Eu203, Er203, Nd203, Tb203, Sm203, Tm203, Dy203, Y203, Gd203, Pr203, Lu203, Ho203, Pm203, La203或 Yb203中的一种或几种的混合物;
b. 陶瓷素坯成型: 将步骤(1 )获得的荧光陶瓷粉体原料通过传统的湿法或干 法成型, 干燥后制成素坯, 其中成型方法包括传统的干压法、 等静压法、 流延法、 注浆法、 浇铸法、 挤出法、 注塑法与凝胶注模成型法等;
c. 排胶: 将步骤(2 )获得的素坯^ 900-1500 °C 的高温炉中煅烧, 时间为 20min-20h,以排出素坯中的有机成份;
d. 烧结: 再将陶瓷素坯放入高温烧结炉中烧结, 所述烧结温度为 800-2100°C, 优选温度为 1000-1900 °C, 更优选 1200-1850 °C, 升温速率为 0.5-10°C/min。 烧结时 间 2-20小时, 优选: 12-30小时;
e. 退火: 将烧结致密化后的陶瓷放入退火炉中进行退火处理, 退火温度为 900-1500°C,优选温度为 1200 °C -1500 °C, 退火时间为 lh-20h。 升温速率为 0.5-10eC/min。
3、 一种透明玻璃荧光体, 其特征在于, 所述透明玻璃荧光体的摩尔百分比组成 为: AF、 BF2、 A20或 BO中的一种或几种的混合物: 0-25 %;
Re203或 ReF3中的一种或几种的混合物: 0.001-25 %;
A1203 : 20-40 %;
Si02 : 20-70 %;
其中 A选自碱金属 Li、 Na、 K、 Rb、 Cs;
B选自碱土金属 Be、 Mg、 Ca、 Sr、 Ba;
Re选自稀土元素: Ce, Eu, Er, Nd, Tb, Sm, Tm, Dy, Y, Gd, Pr, Lu, Ho, Pm, La或 Yb中的一种或几种。
优选地, 所述荧光体在 250 nm-480 nm范围内的直线透过率大于 5%, 优选透过 率大于 50%,在 480nm-780nm范围内的直线透过率大于 5%,优选透过率大于 80%。
优选地, 所述透明玻璃荧光体激发谱的峰值波长在 250 nm-480 nm范围内, 发 射谱的峰值波长在 480-780nm范围内。
优选地, 所述透明玻璃荧光体的厚度为 0.5-2mm。
4、 一种权利要求 3的透明玻璃荧光体的制备方法, 其特征在于, 所述方法包括 如下步骤:
按上述(1 ) - ( 5 )任一项的摩尔百分比的配方:
AF、 BF2、 A20或 BO中的一种或几种的混合物: 0-20 %;
Re203: 0.001-25 %、 A1203: 21-40 %;
Si02: 25-70 % , 称量原料,
将原料混合均匀后倒进坩埚中熔化, 熔制温度 1400-1700°C, 保温 2-15 小时后 将玻璃熔体倒入铸铁模上, 然后置于高温炉中进行退火, 退火温度为 400-1500°C, 退火时间为 2-10 小时, 然后随炉冷却至室温。
5、 一种透明复合荧光体, 其包括权利要求 1所述的一种透明复合荧光体和权利 要求 2所述的透明复合荧光体, 其特征在于, 该透明复合荧光体为透明陶瓷荧光体 与透明玻璃荧光体的叠层结构, 两种材料的厚度分别为 0.5-2mm。
优选地, 所述透明复合荧光体的受激发射谱可以涵盖整个可见光范围, 即 380-780nm, 优选 480-780nm。
优选地, 所述透明复合荧光体在 250 nm-480 nm范围内的直线透过率大于 5%, 优选透过率为大于 50%, 在 480nm-780nm范围内的直线透过率大于 5%, 优选透过 率为大于 80%。
6、 一种权利要求 5的透明复合荧光体的制备方法, 其特征在于, 所述方法包括 如下步骤:
a. 制备透明陶瓷荧光体, 其制备步骤如透明陶瓷荧光体所述。
b.按所述玻璃荧光体的配方摩尔百分比称量原料, 将原料混合均匀后倒进坩埚 中熔化, 熔制温度 1400-1700°C , 保温 2-15 小时后将玻璃熔体倒入铸铁模上, 该铸 铁模的底部放置了上述制备完成的陶瓷荧光体。 然后将整体置于高温炉中进行退火, 退火温度为 400-1500°C , 退火时间为 2-10 小时, 然后随炉冷却至室温, 脱模并得到 透明复合荧光体。
7、 一种权利要求 1的透明陶瓷荧光体用于白光 LED的应用。
8、 一种权利要求 3的透明玻璃荧光体用于白光 LED的应用。
9、 一种权利要求 5的透明复合荧光体用于白光 LED的应用。
10、 一种应用透明荧光材料的白光 LED封装光源, 包括封装基板 12, —颗以上 的蓝光或紫外光 LED 芯片 20和透明荧光材料 11, 其特征在于, 所述透明荧光材料 11选自权利要求 1的透明陶瓷荧光体, 权利要求 3的透明玻璃荧光体和权利要求 5 的透明复合荧光体。
优选地, 所述透明荧光材料 11位于封装光源的最上部。
优选地, 所述蓝光或紫外光 LED 芯片 20位于封装基板 12的上部, 通过硅胶或 银胶 50固定于封装 反 12上。 所述芯片 20与支架底部安装的电极 30连接。
优选地, 所述透明荧光材料 11覆盖在蓝光或紫外光 LED 芯片 20上。 优选地, 所述透明荧光材料 11与所述芯片 20通过透明胶体 40 固定在封装基板 12上。
11、 一种应用透明荧光材料的双面发光 LED光源, 包括透明荧光材料封装基板 10、 一颗以上的蓝光或紫外光 LED 芯片 20和透明荧光材料 11, 其特征在于所述透 明荧光材料封装基板 10与透明荧光材料 11选自权利要求 1的透明陶瓷荧光体,权利 要求 3的透明玻璃荧光体和权利要求 5的透明复合荧光体, 所述封装结构使由 LED 芯片正面与背面发出的光分别经由透明荧光材料封装 反 10与透明荧光材料 11混合 而成为白光, 形成一个双面发射白光的白光 LED。
优选地, 所述蓝光或紫外光 LED 芯片 20位于封装基板 10的上部, 通过透明胶 体 51固定于封装基板 10上。 所述芯片 20与支架底部安装的电极 30连接。
优选地, 所述透明荧光材料 11覆盖在蓝光或紫外光 LED 芯片 20上。 优选地, 所述透明荧光材料 11与所述芯片 20通过透明胶体 40 固定在透明荧光材料封装 反 10上。
优选地, 所述 LED芯片 20的正面和背面均可以发光。
PCT/CN2013/074025 2013-04-10 2013-04-10 包含新型固态透明荧光材料的白光led及其制备方法 WO2014166083A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/074025 WO2014166083A1 (zh) 2013-04-10 2013-04-10 包含新型固态透明荧光材料的白光led及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/074025 WO2014166083A1 (zh) 2013-04-10 2013-04-10 包含新型固态透明荧光材料的白光led及其制备方法

Publications (1)

Publication Number Publication Date
WO2014166083A1 true WO2014166083A1 (zh) 2014-10-16

Family

ID=51688858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074025 WO2014166083A1 (zh) 2013-04-10 2013-04-10 包含新型固态透明荧光材料的白光led及其制备方法

Country Status (1)

Country Link
WO (1) WO2014166083A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105081329A (zh) * 2015-07-29 2015-11-25 长沙鼎成新材料科技有限公司 一种led用碳氮化钛陶瓷基板
CN106064935A (zh) * 2016-04-07 2016-11-02 深圳市天宇华瑞科技开发有限公司 一种复合式氧化铝陶瓷玻璃
CN113135737A (zh) * 2020-01-17 2021-07-20 中国科学院福建物质结构研究所 一种装载荧光粉的透明陶瓷材料及其制备方法与应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040062699A1 (en) * 2002-09-25 2004-04-01 Matsushita Electric Industrial Co. Inorganic oxide and phosphor
CN1297629C (zh) * 2005-09-01 2007-01-31 太原理工大学 一种铈、钆激活的钇铝石榴石荧光粉的制取方法
CN1326790C (zh) * 2005-10-28 2007-07-18 宁波大学 稀土离子掺杂的yag微晶玻璃及其制备方法
JP2007197478A (ja) * 2006-01-23 2007-08-09 Harison Toshiba Lighting Corp 3波長蛍光体及び蛍光ランプ
CN100334184C (zh) * 2005-11-28 2007-08-29 常熟市江南荧光材料有限公司 白光led用钇铝石榴石发光材料的合成方法
CN101935208A (zh) * 2010-08-06 2011-01-05 中国科学院理化技术研究所 稀土铝酸盐单相或复相纳米晶透明陶瓷材料及其制备方法
CN102060442A (zh) * 2010-11-11 2011-05-18 浙江亿米光电科技有限公司 白光led用荧光微晶玻璃制备方法
CN101693596B (zh) * 2009-11-02 2011-06-22 北京科技大学 一种钕离子掺杂钠钙硅系激光玻璃陶瓷及其制备方法
CN102815948A (zh) * 2012-09-17 2012-12-12 长春理工大学 一种合成稀土掺杂yag纳米粉末的方法
CN202797057U (zh) * 2012-03-22 2013-03-13 曹永革 一种双面透明陶瓷白光led封装结构
CN103205254A (zh) * 2013-04-10 2013-07-17 中国科学院福建物质结构研究所 包含新型固态透明荧光材料的白光led及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040062699A1 (en) * 2002-09-25 2004-04-01 Matsushita Electric Industrial Co. Inorganic oxide and phosphor
CN1297629C (zh) * 2005-09-01 2007-01-31 太原理工大学 一种铈、钆激活的钇铝石榴石荧光粉的制取方法
CN1326790C (zh) * 2005-10-28 2007-07-18 宁波大学 稀土离子掺杂的yag微晶玻璃及其制备方法
CN100334184C (zh) * 2005-11-28 2007-08-29 常熟市江南荧光材料有限公司 白光led用钇铝石榴石发光材料的合成方法
JP2007197478A (ja) * 2006-01-23 2007-08-09 Harison Toshiba Lighting Corp 3波長蛍光体及び蛍光ランプ
CN101693596B (zh) * 2009-11-02 2011-06-22 北京科技大学 一种钕离子掺杂钠钙硅系激光玻璃陶瓷及其制备方法
CN101935208A (zh) * 2010-08-06 2011-01-05 中国科学院理化技术研究所 稀土铝酸盐单相或复相纳米晶透明陶瓷材料及其制备方法
CN102060442A (zh) * 2010-11-11 2011-05-18 浙江亿米光电科技有限公司 白光led用荧光微晶玻璃制备方法
CN202797057U (zh) * 2012-03-22 2013-03-13 曹永革 一种双面透明陶瓷白光led封装结构
CN102815948A (zh) * 2012-09-17 2012-12-12 长春理工大学 一种合成稀土掺杂yag纳米粉末的方法
CN103205254A (zh) * 2013-04-10 2013-07-17 中国科学院福建物质结构研究所 包含新型固态透明荧光材料的白光led及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105081329A (zh) * 2015-07-29 2015-11-25 长沙鼎成新材料科技有限公司 一种led用碳氮化钛陶瓷基板
CN106064935A (zh) * 2016-04-07 2016-11-02 深圳市天宇华瑞科技开发有限公司 一种复合式氧化铝陶瓷玻璃
CN113135737A (zh) * 2020-01-17 2021-07-20 中国科学院福建物质结构研究所 一种装载荧光粉的透明陶瓷材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN103205254B (zh) 包含新型固态透明荧光材料的白光led及其制备方法
JP5454473B2 (ja) 蛍光体セラミックス及びその製造方法、並びに発光素子
JP7056553B2 (ja) 蛍光体、発光装置、照明装置及び画像表示装置
CN109467453B (zh) 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
JP5575488B2 (ja) 合成モノリシックセラミック発光変換体を含む照明システム
CN104844217B (zh) 一种用于暖色温白光LED封装光源的AlON透明陶瓷荧光体的制备方法
JP6897387B2 (ja) 焼結蛍光体、発光装置、照明装置、画像表示装置および車両用表示灯
CN109896852B (zh) 用于蓝光激发的白光照明的复相荧光陶瓷、制备方法及光源装置
WO2018010233A1 (zh) 一种led芯片发光灯条基板材料及led球泡灯
TWI453277B (zh) 具有多相矽鋁氮氧化物為基的陶瓷材料之發光裝置
CN107540368A (zh) 复相半透明荧光陶瓷的制备方法和led模组
JP2009256558A (ja) 蛍光体及びその製造方法、並びにそれを用いた発光装置
US11245243B2 (en) Light-emitting ceramic and light-emitting device
TW201201420A (en) Phosphor ceramic and light-emitting device
CN112939578B (zh) 荧光陶瓷及其制备方法、发光装置以及投影装置
CN104609848B (zh) 一种用于白光led荧光转换的复合相透明陶瓷及其制备方法
CN106145922A (zh) 一种led用yag透明荧光陶瓷的制备方法
CN104177079B (zh) 用于白光LED荧光转换的含Sr的Ce:YAG基透明陶瓷及其制备方法
CN100565000C (zh) 利用yag透明陶瓷制备白光led的方法
CN208507721U (zh) 波长转换部件和波长转换元件以及使用它们的发光装置
CN106887486B (zh) 用于白光led器件的条形码结构荧光陶瓷及其制备方法与应用
US10591137B2 (en) Wavelength converter and light-emitting device having same
CN104449718A (zh) 用于白光LED封装的双层YAG:Ce/(Gd,Y)AG:Ce复合透明陶瓷荧光体及其制备方法
JP2014172940A (ja) 蛍光体分散セラミックプレート
CN104177078B (zh) 用于白光LED荧光转换的含Lu的Ce:YAG基透明陶瓷及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881883

Country of ref document: EP

Kind code of ref document: A1