CN111517804A - 一种氮化物红色复相荧光陶瓷及其制备方法 - Google Patents

一种氮化物红色复相荧光陶瓷及其制备方法 Download PDF

Info

Publication number
CN111517804A
CN111517804A CN202010343970.7A CN202010343970A CN111517804A CN 111517804 A CN111517804 A CN 111517804A CN 202010343970 A CN202010343970 A CN 202010343970A CN 111517804 A CN111517804 A CN 111517804A
Authority
CN
China
Prior art keywords
sintering
pressure
powder
nitride
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010343970.7A
Other languages
English (en)
Other versions
CN111517804B (zh
Inventor
刘学建
彭星淋
姚秀敏
黄政仁
刘欢
葛盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202010343970.7A priority Critical patent/CN111517804B/zh
Publication of CN111517804A publication Critical patent/CN111517804A/zh
Application granted granted Critical
Publication of CN111517804B publication Critical patent/CN111517804B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

本发明涉及一种氮化物红色复相荧光陶瓷及其制备方法,所述氮化物红色复相荧光陶瓷包括:氮化铝基质相,以及分散在氮化铝基质相中的氮化物红色荧光分散相;优选地,所述氮化物红色荧光分散相的含量为20~80wt%;优选地,所述氮化物红色荧光分散相选自CaAlSiN3:Eu2+、(Sr,Ca)AlSiN3:Eu2+和Sr2Si5N8:Eu2+中至少一种。

Description

一种氮化物红色复相荧光陶瓷及其制备方法
技术领域
本发明涉及一种高热导率的氮化物红色复相荧光陶瓷材料及其制备方法,属于发光材料技术领域。
背景技术
LED照明由于节能、绿色、环保,已成为新一代照明光源。然而LED在高功率密度下存在效率下降的问题,已经不能满足我们的需要,激光芯片LD为解决该问题提供了一条有效的途径。激光照明具有电光转化效率高、亮度高、照射距离远和体积小等优点,是目前公认的替代LED的下一代照明光源。目前已经在汽车大灯、激光电视、户外照明、海洋照明等许多领域得到广泛应用,其影响和带动的产业将达到万亿级规模。
作为激光照明技术的关键材料,荧光材料的主要作用是将入射的部分激光转化为其他颜色的光而实现白光照明,其性能直接影响照明器件的显色指数和稳定性等技术参数。由于LED采用热导率低的有机树脂封装,用于激光照明会存在黄化的问题。荧光陶瓷作为目前新兴的荧光材料在热学、力学、光学性能上表现优异且具有微观结构易于调控的优点,因此具有优异的性能和广阔的市场前景。
目前关于荧光陶瓷的研究主要存在显色指数偏低的问题,主要是由于缺少红色成分。因为氮(氧)化物共价键性较强,电子云膨胀效应和晶体场劈裂效应增强,5d能级激发能量降低,光谱红移,所以适合制备性能优异的红色荧光材料。
因此,亟待解决的一个问题是开发出一种具有高的热导率的红色荧光陶瓷,来提高器件的热稳定性以及显色指数,以满足高功率蓝光LD或LED光源的发光要求。
中国专利1(申请号201810257997.7)以及中国专利2(申请号201810259190.7)报道了一种石榴石基红色荧光陶瓷,具有较好的透过率,但是热导率很低,最大值仅为9.6W/m·K。中国专利3(申请号201810352648.3)虽然报道了一种以氮化铝为基质的复相荧光陶瓷,但是所述荧光粉为YAG:Ce荧光粉或LuAG:Ce荧光粉,其属于黄色或绿色荧光陶瓷。目前,还未见相关文献报道或公开红色复相荧光陶瓷的制备。
发明内容
为此,本发明旨在提供一种具有超高热导率的氮化物红色复相荧光陶瓷材料及其制备方法。
一方面,本发明提供了一种氮化物红色复相荧光陶瓷,所述氮化物红色复相荧光陶瓷包括:氮化铝基质相,以及分散在氮化铝基质相中的氮化物红色荧光分散相;优选地,所述氮化物红色荧光分散相的含量为20~80wt%。
在本公开中,氮化物红色复相荧光陶瓷是以氮化铝作为基质相,以分散在氮化铝基质相中的氮化物红色荧光材料作为荧光分散相。其中:(1)氮化铝本身的热导率非常高,理论热导率高达320W/m·K,远高于所选的氮化物红色荧光分散相的热导率(大约4W/m·K)。从而使得氮化物红色复相荧光陶瓷在具有优异的荧光性能的同时,还具有很高的热导率。(2)氮化铝还是宽禁带半导体,其本征吸收在紫外线区域,不会对氮化物红色荧光颗粒吸收可见光产生影响。(3)AlN和氮化物红色荧光分散相之间理论上也不发生化学反应。(4)AlN还可以被烧结成半透明陶瓷,还能具有一定的透过率。
较佳的,所述氮化物红色荧光分散相选自CaAlSiN3:Eu2+、(Sr,Ca)AlSiN3:Eu2+和Sr2Si5N8:Eu2+中至少一种。
较佳的,所述氮化物红色复相荧光陶瓷中还含有不超过5wt%的烧结助剂;优选地,所述烧结助剂选自Y2O3、MgO和CaF2中的至少一种。
较佳的,所述氮化物红色复相荧光陶瓷的热导率为42~232W/m·K。以作为CaAlSiN3:Eu2+示例,详细解释说明索尔氮化物红色复相荧光陶瓷的热导率。其中,基质相AlNAlN的理论热导率高达320W/m·K,远高于CaAlSiN3陶瓷(4W/m·K),通过麦克斯韦-加内特模型,可以计算出:当AlN含量为80wt%,荧光粉含量为20wt%时,所得复相陶瓷的热导率高达232W/m·K;当AlN含量为20wt%,荧光粉含量为80wt%,所得时复相陶瓷的热导率仍为48W/m·K。考虑到样品致密度的影响,本发明的复相荧光陶瓷的热导率范围基于述氮化物红色荧光分散相的含量为20~80wt%,在42W/m·K~232W/m·K之间相应变化,这远高于目前报道的绝大多数荧光陶瓷的热导率(20W/m·K左右)。
另一方面,本发明还提供了一种上述氮化物红色复相荧光陶瓷的制备方法,包括:
(1)选用AlN粉体、氮化物红色荧光粉和烧结助剂在研钵中混合,得到混合粉体;
(2)将混合粉体经过压制成型,得到素坯;
(3)将步骤(1)所得混合粉体或步骤(2)所得素坯经过烧结,得到所述氮化物红色复相荧光陶瓷。
较佳的,所述氮化铝粉体的粒径范围为0.05~10微米;所述氮化物红色荧光粉的粒径范围为5~30微米;所述烧结助剂的粒径范围为0.01~5微米。
较佳的,所述压制成型的方式为干压成型或/和冷等静压成型,优选为先干压成型后冷等静压成型;更优选地,所述干压成型的压力为10~15Mpa、保压时间为0.5~5分钟,所述冷等静压成型的压力为180~200MPa、保压时间为1~10分钟。
较佳的,所述烧结的温度为1700~1900℃,保温时间为5分钟~10小时;优选地,所述烧结的气氛为真空气氛或氮气气氛。
较佳的,将所得混合粉体进行烧结时,所述烧结的方式为放电等离子体烧结或热压烧结。
又,较佳的,所述放电等离子体烧结的压力为30~80MPa,温度为1750~1850℃、时间为5~20分钟;所述热压烧结的压力为30~80MPa,温度为1800~1900℃、时间为4~10小时。
较佳的,将所得素坯进行烧结时,所述烧结的方式选自气压烧结、真空烧结、常压烧结和热等静压烧结中的至少一种。
又,较佳的,所述气压烧结的气压压力为5~10MPa、温度为1750~1850℃、时间为4~10小时;
所述真空烧结的温度为1800~1900℃、时间为4~10小时;
所述常压烧结的温度为1800~1900℃、时间为4~10小时;
所述热等静压烧结的压力为100~200MPa、温度为1600~1700℃、时间为4~10小时。
较佳的,将混合粉体经过放电等离子体烧结之后,再进行气压炉除碳处理或/和热等静压致密化处理。又,较佳的,所述气压炉除碳处理的制度包括:气压为5~10MPa的氮气气氛,温度为1500~1850℃(例如,1600℃、1700℃、1800℃等),时间为2~10小时;所述热等静压致密化处理的制度包括:气氛为氮气气氛,压力为150~200MPa,温度为1600~1700℃,时间为2~10小时。
较佳的,将混合粉体进行热压烧结之后,再进行热等静压致密化处理。又,较佳的,所述热等静压致密化处理的制度包括:气氛为氮气气氛,压力为150~200MPa,温度为1600~1700℃,时间为2~10小时。
较佳的,将素坯经过气压烧结、真空烧结、或常压烧结之后,再进行热等静压致密化处理。又,较佳的,所述热等静压致密化处理的制度包括:气氛为氮气气氛,压力为150~200MPa,温度为1600~1700℃,时间为2~10小时。
有益效果:
本发明中,所得复相荧光陶瓷是一种具有高的热导率、高的致密度和良好的机械强度的氮化物红色荧光陶瓷,通过理论计算热导率高达232W/m·K,远高于市面上绝大多数荧光陶瓷的热导率(大约20W/m·K);
本发明中,所制备的氮化物红色荧光陶瓷和黄/绿色荧光陶瓷组合可以产生白光,能有效降低色温,提高显色指数;
本发明中,所制备的氮化物红色荧光陶瓷可被高功率蓝光LD或者蓝光LED激发,实现大功率高亮度的照明光源,在照明和显示领域具有很好的应用前景。
附图说明
图1为实施例1-4制备的复相荧光陶瓷(荧光粉含量20%~50%)的XRD图谱,从图中可知不同荧光粉含量的样品均只含AlN和CaAlSiN3两种物相,没有其他杂相,且随荧光粉含量的增加,CaAlSiN3的相对峰值明显增大;
图2为实施例3制备的复相荧光陶瓷的SEM图谱,图中灰色的大的棒状晶粒为CaAlSiN3荧光粉颗粒,黑色的小的等轴状晶粒为AlN晶粒,而弥散分布在AlN晶粒周围的白色物质是添加烧结助剂Y2O3形成的晶界相,从图中可知,荧光陶瓷烧结致密,没有明显的气孔;
图3为实施例4制备的复相荧光陶瓷的激发发射光谱,从图中可知所制备的荧光陶瓷可以被450nm的蓝光激发,发射波长为650nm的红光,;
图4为实施例3制备的复相荧光陶瓷的热稳定性曲线(从室温到200℃),从图中可知所制备的荧光陶瓷具有较好的热稳定性,当温度从室温升到200℃,发光强度仅下降23%;
图5为实施例13中放电等离子烧结后样品用气压炉除碳前后的激发发射光谱,从图中可知经过气压炉除碳后荧光陶瓷发光强度大大提高,这证明了作为淬灭中心的碳被除去后有利于发光性能的提升;
图6为实施例2-4中放电等离子烧结后的样品用气压炉除碳前后的光学照片,从照片可知,采用气压炉除碳前样品由于渗碳被污染而发黑,用气压炉除碳后样品颜色明显变浅(变红)。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
在本公开中,氮化物红色复相荧光陶瓷包括:氮化铝基质相和氮化物红色荧光粉分散相。其中,氮化物红色荧光粉分散相的成分是氮化物红色荧光粉(以下简称“荧光粉”),优选为CaAlSiN3:Eu2+、(Sr,Ca)AlSiN3:Eu2+以及Sr2Si5N8:Eu2+等中一种或多种。更优选,CaAlSiN3:Eu2+、(Sr,Ca)AlSiN3:Eu2+和Sr2Si5N8:Eu2+中Eu2+的浓度可分别为1~10mol%。
在可选的实施方式中,氮化物红色荧光粉分散相占氮化物红色复相荧光陶瓷总质量的20~80wt%,优选为30~60wt%。其中,由于氮化铝基质的引入实现超高的热导率,由于在大功率固态照明使用过程中会产生大量的热量,热导率的提高可以增强散热,进而可以提高荧光材料的热稳定性,减小发光饱和,因此热导率的提高至关重要。当氮化物红色荧光分散相的含量低于20wt%时,所得复相荧光陶瓷由于荧光粉含量过低而导致发光性能变差。当红色荧光分散相的含量低于20wt%时,本发明人发现发现样品颜色为灰黑色,这是由于AlN基质相过多而呈现AlN本身的颜色造成的。当红色荧光粉的含量逐渐增加时,样品会逐渐变红,一般认为样品颜色越红,在蓝光的激发下发出的红光的强度也会越高。但当氮化物红色荧光分散相的含量超过80wt%,所得复相荧光陶瓷由于氮化铝含量过低导致热导率降低使热稳定性变差。
以下示例性地说明,氮化物红色复相荧光陶瓷的制备过程。
按照质量比分别称量相应质量的AlN粉、荧光粉和烧结助剂,分别加入研钵混合均匀),得到混合粉体。其中,上述所有原料的纯度不低于99.5%。且,所用研钵可以是氮化硅材质,也可以是玛瑙等其他材质,这里并不多加限制。而且,本发明选用研钵进行原料物质的混合是为了避免在球磨过程对荧光粉颗粒的破坏,因为在磨球的冲击下,不光会减少荧光颗粒之间的团聚,同时也会打碎一部分荧光颗粒,损失的荧光颗粒势必会影响发光性能,而温和的手动研磨混料可以避免这个问题。优选,把研磨后的混合粉体过100~200目筛,进一步保证混合均匀。
将混合粉体经过通过干压成型或/和冷等静压成型,得到素坯。成型方式优选为先干压成型后冷等静压成型。
在可选的实施方式中,将混合粉体直接进行烧结,以制备得到氮化物红色复相荧光陶瓷。此时,混合粉体的烧结方式可包括放电等离子体烧结和热压烧结,无需压制成型,便能制备得到致密度较高的陶瓷材料。例如,采用放电等离子体烧结的方式时,无需预先成型,直接混合装入石墨模具中,且在石墨模具内侧垫一层石墨纸避免石墨模具和混合粉体直接接触,外侧包裹一层碳毡起到保温隔热的作用,把装好的石墨模具放入放电等离子体烧结炉内,最后开始放电等离子烧结。
在可选的实施方式中,将素坯进行烧结,以制备得到氮化物红色复相荧光陶瓷。此时,素坯的烧结方法包括气压烧结、真空烧结、常压烧结以及热等静压烧结等,本发明并不做限制,可以根据需要选择一种或多种烧结方法的组合。
在本发明中,虽然混合粉体和素坯的烧结方式不同,但烧结制度,可在“烧结温度为1600~1900℃,保温时间为5min~10h”进行适当调节。烧结气氛可选真空或N2气氛。当选用气压烧结时,氮气的气压可为5~10MPa。此外,热压烧结、热等静压烧结、放电等离子烧结等烧结方式的压力根据烧结方式灵活选择,范围可为无压至200MPa。对于放电等离子烧结来说,其升温速率一般在50~100℃之间,在烧结完成后降温速率可为50~100℃/min。对于其他烧结方式,其升温速率一般在5~10℃/min之间,在烧结完成后降温速率可为5~10℃/min之间。
在进一步优选的实施中,由于在采用放电等离子体烧结时选用石墨模具、石墨纸、碳毡等,所得氮化物红色复相荧光陶瓷存在渗碳的问题,渗入陶瓷中的碳会成为淬灭中心,进而影响其发光性能。这是由于碳的存在会影响发光中心之间的能量传递且会使样品发黑降低透明度。而且,由于氮化物红色复相荧光陶瓷为氮化物体系,不能采用常用的氧化处理的方式。因此,本发明采用气压烧结的方式,在高温、高压N2的条件下,利用氮气把碳元素置换出来,进而提高发光性能。同时,这种方法还可以用来消除热应力。
在进一步优选的实施中,由于采用放电等离子体烧结、气压烧结、真空烧结、常压烧结和热压烧结等的氮化物红色复相荧光陶瓷时其致密度一般达不到99%以上。为了进一步提高氮化物红色复相荧光陶瓷的致密度,提高荧光陶瓷的热导率和透射率,减少气孔对光线的散射,本发明采用热等静压处理的方式,进一步促进放电等离子体烧结后陶瓷的致密化。应注意,对于混合粉体采用放电等离子体烧结后的复合材料可分别单独进行气压炉除碳处理和热等静压致密化处理,也可先进行气压炉除碳处理再进行热等静压致密化处理,或者先进行热等静压致密化处理再进行气压炉除碳处理。
加工。对烧结好的氮化物红色复相荧光陶瓷用平面磨床打磨后进行双面抛光处理。所得氮化物红色复相荧光陶瓷的形状和大小主要根据烧结的模具以及实际的需要来选择。所得氮化物红色复相荧光陶瓷放入加工厚度分布在0.1mm~2mm之间。
性能测试:
采用阿基米德排水法测试氮化物红色复相荧光陶瓷的致密度至少为81%以上;
采用荧光光谱仪测试氮化物红色复相荧光陶瓷的量子效率分布在30~44%之间;
采用麦克斯韦-加内特模型,计算氮化物红色复相荧光陶瓷的热导率分布在42~232W/m·K之间。
在本发明中,氮化物红色复相荧光陶瓷和目前报道的荧光陶瓷相比,一方面热导率大幅提高,获得了优异的热稳定性,另一方面弥补了市面上红色荧光陶瓷的不足,利用本发明制备的红色荧光陶瓷和现有的黄色荧光陶瓷一起封装,可以提高显色指数。而且,所得氮化物红色复相荧光陶瓷可用于大功率固态照明,如高功率蓝光LD或者蓝光LED,提高了照明和显示器件的稳定性和显色指数。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。下述实施例和对比例中,若无特殊说,所用氮化物红色荧光粉的粒径范围为5~30微米,氮化铝粉体的粒径范围为0.05~10微米。
实施例1
(1)按照质量分数AlN粉:荧光粉:烧结助剂=75:20:5,分别称取AlN粉11.25g,CaAlSiN3:Eu2+荧光粉3g(Eu2+的浓度为1mol%)和Y2O3烧结助剂0.75g,在研钵中研磨直至混合均匀,一般为1h。把研磨后的粉体过200目筛,进一步保证混合均匀;
(2)采用放电等离子体烧结的方式,无需预先成型,直接把混合好的4g粉体装入石墨模具中,石墨模具内侧垫一层石墨纸避免模具和粉体直接接触,外侧包裹一层碳毡起到保温隔热的作用,把装好的模具放入放电等离子体烧结炉内。升温制度为50~100℃/min,烧结温度为1850℃,保温时间为20min,烧结压力为80MPa,烧结气氛为真空,降温制度为50~100℃/min。烧结完成后脱模取出样品;
(3)把烧结好的样品用平面磨床打磨后双面抛光至0.4mm。
实施例2
(1)按照质量分数AlN粉:荧光粉:烧结助剂=65:30:5,分别称取AlN粉9.75g,CaAlSiN3:Eu2+荧光粉4.5g和Y2O3烧结助剂0.75g,在研钵中研磨直至混合均匀,一般为1h。把研磨后的粉体过200目筛,进一步保证混合均匀;
(2)采用放电等离子体烧结的方式,无需预先成型,直接把混合好的4g粉体装入石墨模具中,石墨模具内侧垫一层石墨纸避免模具和粉体直接接触,外侧包裹一层碳毡起到保温隔热的作用,把装好的模具放入放电等离子体烧结炉内。升温制度为50~100℃/min,烧结温度为1850℃,保温时间为20min,烧结压力为80MPa,烧结气氛为真空,降温制度为50~100℃/min。烧结完成后脱模取出样品;
(3)把烧结好的样品用平面磨床打磨后双面抛光至0.4mm。
实施例3
(1)按照质量分数AlN粉:荧光粉:烧结助剂=55:40:5,分别称取AlN粉8.25g,CaAlSiN3:Eu2+荧光粉6g和Y2O3烧结助剂0.75g,在研钵中研磨直至混合均匀,一般为1h。把研磨后的粉体过200目筛,进一步保证混合均匀;
(2)采用放电等离子体烧结的方式,无需预先成型,直接把混合好的4g粉体装入石墨模具中,石墨模具内侧垫一层石墨纸避免模具和粉体直接接触,外侧包裹一层碳毡起到保温隔热的作用,把装好的模具放入放电等离子体烧结炉内。升温制度为50~100℃/min,烧结温度为1850℃,保温时间为20min,烧结压力为80MPa,烧结气氛为真空,降温制度为50~100℃/min。烧结完成后脱模取出样品;
(3)把烧结好的样品用平面磨床打磨后双面抛光至0.4mm。
实施例4
(1)按照质量分数AlN粉:荧光粉:烧结助剂=45:50:5,分别称取AlN粉6.75g,CaAlSiN3:Eu2+荧光粉7.5g和Y2O3烧结助剂0.75g,在研钵中研磨直至混合均匀,一般为1h。把研磨后的粉体过200目筛,进一步保证混合均匀;
(2)采用放电等离子体烧结的方式,无需预先成型,直接把混合好的4g粉体装入石墨模具中,石墨模具内侧垫一层石墨纸避免模具和粉体直接接触,外侧包裹一层碳毡起到保温隔热的作用,把装好的模具放入放电等离子体烧结炉内。升温制度为50~100℃/min,烧结温度为1850℃,保温时间为20min,烧结压力为80MPa,烧结气氛为真空,降温制度为50~100℃/min。烧结完成后脱模取出样品;
(3)把烧结好的样品用平面磨床打磨后双面抛光至0.4mm。
实施例5
(1)按照质量分数AlN粉:荧光粉:烧结助剂=75:20:5,分别称取AlN粉11.25g,(Sr,Ca)AlSiN3:Eu2+荧光粉(Eu2+的浓度为1mol%)3g和MgO烧结助剂0.75g,在研钵中研磨直至混合均匀,一般为1h。把研磨后的粉体过200目筛,进一步保证混合均匀;
(2)将混合粉体4g根据需要装入合适大小和形状的模具,先干压成型后冷等静压成型。所述干压成型的压力为10Mpa,保压时间为1分钟;所述冷等静压成型的压力为200MPa,保压时间为10分钟;
(3)采用气压烧结的方式,把成型好的素坯装入气压烧结炉内。升温制度为5~10℃/min,烧结温度为1800℃,保温时间为4h,烧结气氛为氮气气氛,施加8MPa的氮气压力,降温制度为5~10℃/min;
(4)把烧结好的样品用平面磨床打磨后双面抛光至1mm。
实施例6
(1)按照质量分数AlN粉:荧光粉:烧结助剂=15:80:5,分别称取AlN粉2.25g,(Sr,Ca)AlSiN3:Eu2+荧光粉12g和MgO烧结助剂0.75g,在研钵中研磨直至混合均匀,一般为1h。把研磨后的粉体过200目筛,进一步保证混合均匀;
(2)将混合粉体4g根据需要装入合适大小和形状的模具,先干压成型后冷等静压成型。所述干压成型的压力为10Mpa,保压时间为1分钟;所述冷等静压成型的压力为200MPa,保压时间为10分钟;
(3)采用气压烧结的方式,把成型好的素坯装入气压烧结炉内。升温制度为5~10℃/min,烧结温度为1800℃,保温时间为4h,烧结气氛为氮气气氛,施加8MPa的氮气压力,降温制度为5~10℃/min;
(4)把烧结好的样品用平面磨床打磨后双面抛光至1mm。
实施例7
(1)按照质量分数AlN粉:荧光粉:烧结助剂=75:20:5,分别称取AlN粉11.25g,Sr2Si5N8:Eu2+荧光粉(Eu2+的浓度为3mol%)3g和CaF2烧结助剂0.75g,在研钵中研磨直至混合均匀,一般为1h。把研磨后的粉体过200目筛,进一步保证混合均匀;
(2)采用热压烧结的方式,无需预先成型,直接把混合好的4g粉体装入石墨模具中,把装好的模具放入热压烧结炉内。升温制度为5~10℃/min,烧结温度为1900℃,保温时间为10h,烧结压力为60MPa,烧结气氛为真空,降温制度为5~10℃/min。烧结完成后脱模取出样品;
(3)把烧结好的样品用平面磨床打磨后双面抛光至0.1mm。
实施例8
(1)按照质量分数AlN粉:荧光粉:烧结助剂=15:80:5,分别称取AlN粉2.25g,Sr2Si5N8:Eu2+荧光粉12g和CaF2烧结助剂0.75g,在研钵中研磨直至混合均匀,一般为1h。把研磨后的粉体过200目筛,进一步保证混合均匀;
(2)采用热压烧结的方式,无需预先成型,直接把混合好的4g粉体装入石墨模具中,把装好的模具放入热压烧结炉内。升温制度为5~10℃/min,烧结温度为1900℃,保温时间为10h,烧结压力为60MPa,烧结气氛为真空,降温制度为5~10℃/min。烧结完成后脱模取出样品;
(3)把烧结好的样品用平面磨床打磨后双面抛光至0.1mm。
实施例9
(1)按照质量分数AlN粉:荧光粉:烧结助剂=75:20:5,分别称取AlN粉11.25g,(Sr,Ca)AlSiN3:Eu2+荧光粉3g和Y2O3烧结助剂0.75g,在研钵中研磨直至混合均匀,一般为1h。把研磨后的粉体过200目筛,进一步保证混合均匀;
将混合粉体4g根据需要装入合适大小和形状的模具,先干压成型后冷等静压成型。所述干压成型的压力为10Mpa,保压时间为1分钟;所述冷等静压成型的压力为200MPa,保压时间为10分钟;
(2)采用真空烧结的方式,把成型好的素坯装入真空钨丝烧结炉内。升温制度为5~10℃/min,烧结温度为1850℃,保温时间为8h,烧结气氛为真空,降温制度为5~10℃/min;
(3)把烧结好的样品用平面磨床打磨后双面抛光至2mm。
实施例10
(1)按照质量分数AlN粉:荧光粉:烧结助剂=15:80:5,分别称取AlN粉2.25g,(Sr,Ca)AlSiN3:Eu2+荧光粉12g和Y2O3烧结助剂0.75g,在研钵中研磨直至混合均匀,一般为1h。把研磨后的粉体过200目筛,进一步保证混合均匀;
(2)将混合粉体4g根据需要装入合适大小和形状的模具,先干压成型后冷等静压成型。所述干压成型的压力为10Mpa,保压时间为1分钟;所述冷等静压成型的压力为200MPa,保压时间为10分钟;
(3)采用真空烧结的方式,把成型好的素坯装入真空钨丝烧结炉内。升温制度为5~10℃/min,烧结温度为1850℃,保温时间为8h,烧结气氛为真空,降温制度为5~10℃/min;
(4)把烧结好的样品用平面磨床打磨后双面抛光至2mm。
实施例11
(1)按照质量分数AlN粉:荧光粉:烧结助剂=75:20:5,分别称取AlN粉11.25g,Sr2Si5N8:Eu2+荧光粉3g和Y2O3烧结助剂0.75g,在研钵中研磨直至混合均匀,一般为1h。把研磨后的粉体过200目筛,进一步保证混合均匀;
(2)将混合粉体4g根据需要装入合适大小和形状的模具,先干压成型后冷等静压成型。所述干压成型的压力为10Mpa,保压时间为1分钟;所述冷等静压成型的压力为200MPa,保压时间为10分钟;
(3)采用常压烧结的方式,把成型好的素坯装入常压烧结炉内。升温制度为5~10℃/min,烧结温度为1850℃,保温时间为6h,烧结气氛为氮气气氛,烧结压力为一个大气压,降温制度为5~10℃/min;
(4)把烧结好的样品用平面磨床打磨后双面抛光至0.5mm。
实施例12
(1)按照质量分数AlN粉:荧光粉:烧结助剂=15:80:5,分别称取AlN粉2.25g,Sr2Si5N8:Eu2+荧光粉12g和Y2O3烧结助剂0.75g,在研钵中研磨直至混合均匀,一般为1h。把研磨后的粉体过200目筛,进一步保证混合均匀;
(2)将混合粉体4g根据需要装入合适大小和形状的模具,先干压成型后冷等静压成型。所述干压成型的压力为10Mpa,保压时间为1分钟;所述冷等静压成型的压力为200MPa,保压时间为10分钟;
(3)采用常压烧结的方式,把成型好的素坯装入常压烧结炉内。升温制度为5~10℃/min,烧结温度为1850℃,保温时间为6h,烧结气氛为氮气气氛,烧结压力为一个大气压,降温制度为5~10℃/min;
(4)把烧结好的样品用平面磨床打磨后双面抛光至0.5mm。
实施例13
与实施例1-12采取单一烧结方式相比,在本实施例13中采用了放电等离子体烧结和气压烧结的组合烧结方式,具体的实施步骤如下:
(1)按照质量分数AlN粉:荧光粉:烧结助剂=45:50:5,分别称取AlN粉6.75g,CaAlSiN3:Eu2+荧光粉7.5g和Y2O3烧结助剂0.75g,在研钵中研磨直至混合均匀,一般为1h。把研磨后的粉体过200目筛,进一步保证混合均匀;
(2)采用放电等离子体烧结的方式,无需预先成型,直接把混合好的4g粉体装入石墨模具中,石墨模具内侧垫一层石墨纸避免模具和粉体直接接触,外侧包裹一层碳毡起到保温隔热的作用,把装好的模具放入放电等离子体烧结炉内。升温制度为50~100℃/min,烧结温度为1800℃,保温时间为5min,烧结压力为30MPa,烧结气氛为真空,降温制度为50~100℃/min。烧结完成后脱模取出样品;
(3)采用气压烧结对放电等离子体烧结后的荧光陶瓷样品进行除碳处理,把样品装入气压烧结炉内。升温制度为5~10℃/min,处理温度为1600℃,保温时间为4h,处理气氛为氮气气氛,施加10MPa的氮气压力,降温制度为5~10℃/min;
(4)把处理好的样品用平面磨床打磨后双面抛光至0.2mm。参见图5,采用该气压炉除碳后的陶瓷样品的激发发射光谱强度大大提高。
实施例14
(1)按照质量分数AlN粉:荧光粉:烧结助剂=15:80:5,分别称取AlN粉2.25g,CaAlSiN3:Eu2+荧光粉12g和Y2O3烧结助剂0.75g,在研钵中研磨直至混合均匀,一般为1h。把研磨后的粉体过200目筛,进一步保证混合均匀;
(2)采用放电等离子体烧结的方式,无需预先成型,直接把混合好的4g粉体装入石墨模具中,石墨模具内侧垫一层石墨纸避免模具和粉体直接接触,外侧包裹一层碳毡起到保温隔热的作用,把装好的模具放入放电等离子体烧结炉内。升温制度为50~100℃/min,烧结温度为1800℃,保温时间为5min,烧结压力为30MPa,烧结气氛为真空,降温制度为50~100℃/min。烧结完成后脱模取出样品;
(3)采用气压烧结对放电等离子体烧结后的荧光陶瓷样品进行除碳处理,把样品装入气压烧结炉内。升温制度为5~10℃/min,处理温度为1600℃,保温时间为4h,处理气氛为氮气气氛,施加10MPa的氮气压力,降温制度为5~10℃/min;
(4)把处理好的样品用平面磨床打磨后双面抛光至0.2mm。
实施例15
与实施例1-12采取单一烧结方式相比,在本实施例15中采用了放电等离子体烧结和热等静压烧结的组合烧结方式,具体的步骤如下:
(1)按照质量分数AlN粉:荧光粉:烧结助剂=75:20:5,分别称取AlN粉11.25g,(Sr,Ca)AlSiN3:Eu2+荧光粉3g和Y2O3烧结助剂0.75g,在研钵中研磨直至混合均匀,一般为1h。把研磨后的粉体过200目筛,进一步保证混合均匀;
(2)采用放电等离子体烧结的方式,无需预先成型,直接把混合好的4g粉体装入石墨模具中,石墨模具内侧垫一层石墨纸避免模具和粉体直接接触,外侧包裹一层碳毡起到保温隔热的作用,把装好的模具放入放电等离子体烧结炉内。升温制度为50~100℃/min,烧结温度为1800℃,保温时间为5min,烧结压力为80MPa,烧结气氛为真空,降温制度为50~100℃/min。烧结完成后脱模取出样品;
(3)采用热等静压烧结对放电等离子体烧结后的荧光陶瓷样品进行致密化处理,把样品装入热等静压烧结炉内。升温制度为5~10℃/min,处理温度为1700℃,保温时间为4h,处理气氛为氮气气氛,施加150MPa的压力,降温制度为5~10℃/min;
(4)把处理好的样品用平面磨床打磨后双面抛光至0.4mm。
实施例16
(1)按照质量分数AlN粉:荧光粉:烧结助剂=15:80:5,分别称取AlN粉2.25g,(Sr,Ca)AlSiN3:Eu2+荧光粉12g和Y2O3烧结助剂0.75g,在研钵中研磨直至混合均匀,一般为1h。把研磨后的粉体过200目筛,进一步保证混合均匀;
(2)采用放电等离子体烧结的方式,无需预先成型,直接把混合好的4g粉体装入石墨模具中,石墨模具内侧垫一层石墨纸避免模具和粉体直接接触,外侧包裹一层碳毡起到保温隔热的作用,把装好的模具放入放电等离子体烧结炉内。升温制度为50~100℃/min,烧结温度为1800℃,保温时间为5min,烧结压力为80MPa,烧结气氛为真空,降温制度为50~100℃/min。烧结完成后脱模取出样品;
(3)采用热等静压烧结对放电等离子体烧结后的荧光陶瓷样品进行致密化处理,把样品装入热等静压烧结炉内。升温制度为5~10℃/min,处理温度为1700℃,保温时间为4h,处理气氛为氮气气氛,施加150MPa的压力,降温制度为5~10℃/min;
(4)把处理好的样品用平面磨床打磨后双面抛光至0.4mm。
实施例17
将实施例2-4中所得氮化物红色复相荧光陶瓷分别在1830℃、8MPa氮气气氛下气压烧结4小时,所得陶瓷材料分别计为样品1-3。其在除碳前后照片如图6所示,从照片可知,用气压炉除碳前样品由于渗碳被污染而发黑,用气压炉除碳后样品颜色明显变浅(变红)。
对比例1
本对比例1中“氮化物红色复相荧光陶瓷”的制备过程基本参见实施例1,区别仅在于:CaAlSiN3:Eu2+荧光粉的含量为15wt%。
对比例2
本对比例2中“氮化物红色复相荧光陶瓷”的制备过程基本参见实施例8,区别仅在于:Sr2Si5N8:Eu2+荧光粉的含量为90wt%。
表1为本发明制备的氮化物红色复相荧光陶瓷的组成及其性能参数:
Figure BDA0002469467230000131
Figure BDA0002469467230000141
通过上述表1中可知气压炉除碳处理后氮化物红色复相荧光陶瓷存在致密度和热导率降低的情况,其是由于在气压炉除碳处理过程中部分成分挥发(碳以及烧结助剂形成的晶界相)引起的,因此可根据致密性需求再将其进行热等静压致密化处理。

Claims (10)

1.一种氮化物红色复相荧光陶瓷,其特征在于,所述氮化物红色复相荧光陶瓷包括:氮化铝基质相,以及分散在氮化铝基质相中的氮化物红色荧光分散相;优选地,所述氮化物红色荧光分散相的含量为20~80wt%;优选地,所述氮化物红色荧光分散相选自CaAlSiN3:Eu2 +、(Sr,Ca)AlSiN3:Eu2+和Sr2Si5N8:Eu2+中至少一种。
2.根据权利要求1所述的氮化物红色复相荧光陶瓷,其特征在于,所述氮化物红色复相荧光陶瓷中还含有不超过5wt%的烧结助剂;优选地,所述烧结助剂选自Y2O3、MgO和CaF2中的至少一种。
3.根据权利要求1或2所述的氮化物红色复相荧光陶瓷,其特征在于,所述氮化物红色复相荧光陶瓷的热导率为42~232W/m·K。
4.一种如权利要求1-3中任一项所述的氮化物红色复相荧光陶瓷的制备方法,其特征在于,包括:
(1)选用AlN粉体、氮化物红色荧光粉和烧结助剂在研钵中混合,得到混合粉体;
(2)将混合粉体经过压制成型,得到素坯;
(3)将步骤(1)所得混合粉体或步骤(2)所得素坯经过烧结,得到所述氮化物红色复相荧光陶瓷。
5.根据权利要求4所述的制备方法,其特征在于,所述氮化铝粉体的粒径范围为0.05~10微米;所述氮化物红色荧光粉的粒径范围为5~30微米;所述烧结助剂的粒径范围为0.01~5微米。
6.根据权利要求4或5所述的制备方法,其特征在于,所述压制成型的方式为干压成型或/和冷等静压成型,优选为先干压成型后冷等静压成型;更优选地,所述干压成型的压力为10~15Mpa、保压时间为0.5~5分钟,所述冷等静压成型的压力为180~200MPa、保压时间为1~10分钟。
7.根据权利要求4-6中任一项所述的制备方法,其特征在于,所述烧结的温度为1700~1900℃,保温时间为5分钟~10小时;优选地,所述烧结的气氛为真空气氛或氮气气氛。
8.根据权利要求4-7中任一项所述的制备方法,其特征在于,将所得混合粉体进行烧结时,所述烧结的方式为放电等离子体烧结或热压烧结;
优选地,所述放电等离子体烧结的压力为30~80MPa,温度为1750~1850℃、时间为5~20分钟;所述热压烧结的压力为30~80MPa,温度为1800~1900℃、时间为4~10小时。
9.根据权利要求4-7中任一项所述的制备方法,其特征在于,将所得素坯进行烧结时,所述烧结的方式选自气压烧结、真空烧结、常压烧结和热等静压烧结中的至少一种;
优选地,所述气压烧结的气压压力为5~10MPa、温度为1750~1850℃、时间为4~10小时;
所述真空烧结的温度为1800~1900℃、时间为4~10小时;
所述常压烧结的温度为1800~1900℃、时间为4~10小时;
所述热等静压烧结的压力为100~200MPa、温度为1600~1700℃、时间为4~10小时。
10.根据权利要求8或9所述的制备方法,其特征在于,将混合粉体经过放电等离子体烧结之后,再进行气压炉除碳处理或/和热等静压致密化处理;
将混合粉体进行热压烧结之后,再进行热等静压致密化处理;
将素坯经过气压烧结、真空烧结、或常压烧结之后,再进行热等静压致密化处理;
所述气压炉除碳处理的制度包括:气压为5~10MPa的氮气气氛,温度为1500~1850℃,时间为2~10小时;
所述热等静压致密化处理的制度包括:气氛为氮气气氛,压力为150~200MPa,温度为1600~1700℃,时间为2~10小时。
CN202010343970.7A 2020-04-27 2020-04-27 一种氮化物红色复相荧光陶瓷及其制备方法 Active CN111517804B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010343970.7A CN111517804B (zh) 2020-04-27 2020-04-27 一种氮化物红色复相荧光陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010343970.7A CN111517804B (zh) 2020-04-27 2020-04-27 一种氮化物红色复相荧光陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN111517804A true CN111517804A (zh) 2020-08-11
CN111517804B CN111517804B (zh) 2021-08-31

Family

ID=71903079

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010343970.7A Active CN111517804B (zh) 2020-04-27 2020-04-27 一种氮化物红色复相荧光陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN111517804B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680225A (zh) * 2020-12-30 2021-04-20 武汉理工大学 一种提高氮化物红色荧光粉发光强度与热稳定性能的方法
CN115947604A (zh) * 2022-12-14 2023-04-11 福建臻璟新材料科技有限公司 一种氮化铝基质的荧光陶瓷及其制备方法
CN116283303A (zh) * 2023-02-24 2023-06-23 中国科学院上海硅酸盐研究所 一种多元红色氮化物靶材的制备方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1837386A1 (en) * 2004-12-28 2007-09-26 Nichia Corporation Nitride phosphor, method for producing same and light-emitting device using nitride phosphor
CN102324424A (zh) * 2011-09-22 2012-01-18 华南师范大学 一种荧光透明陶瓷透镜封装的白光led
CN102321473A (zh) * 2011-02-16 2012-01-18 钟贤龙 Mg-α-SiAlON为主体晶格的荧光材料制造方法
CN103820107A (zh) * 2014-03-24 2014-05-28 中国科学院上海硅酸盐研究所 一种去除碳热还原反应制得荧光粉中碳粉的方法
CN104087293A (zh) * 2014-07-23 2014-10-08 中国科学院上海硅酸盐研究所 红色荧光体及其碳热还原氮化制备方法及应用
CN104291796A (zh) * 2014-09-23 2015-01-21 上海三思电子工程有限公司 一种led用透明荧光陶瓷的制备方法
CN105008486A (zh) * 2013-03-08 2015-10-28 宇部兴产株式会社 氮化物荧光体的制造方法和氮化物荧光体用氮化硅粉末以及氮化物荧光体
US20150315464A1 (en) * 2008-05-19 2015-11-05 Intematix Corporation Nitride-Based Red-Emitting Phosphors in RGB (Red-Green-Blue) Lighting Systems
CN106190124A (zh) * 2016-07-13 2016-12-07 张伯文 一种led芯片发光灯条基板材料及led球泡灯
CN106242539A (zh) * 2016-07-27 2016-12-21 江苏罗化新材料有限公司 一种led用氮化物荧光透明陶瓷制备方法
CN106866132A (zh) * 2017-01-13 2017-06-20 南京工业大学 一种用于照明或显示的荧光陶瓷及其制备方法
CN107200588A (zh) * 2016-03-18 2017-09-26 深圳市绎立锐光科技开发有限公司 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN107384383A (zh) * 2017-08-18 2017-11-24 苏州轻光材料科技有限公司 一种uv激发白光led用复合型荧光粉
CN108895314A (zh) * 2018-07-06 2018-11-27 厦门大学 激光照明用氮化物荧光粉/玻璃复合光转换组件及其制备
CN109020532A (zh) * 2018-09-28 2018-12-18 成都东骏激光股份有限公司 一种绿色荧光复相陶瓷及其制备方法与应用
CN110386822A (zh) * 2018-04-19 2019-10-29 深圳光峰科技股份有限公司 一种复相荧光陶瓷及其制备方法
TW201942334A (zh) * 2018-03-29 2019-11-01 日商電化股份有限公司 紅色螢光體及發光裝置
CN110759750A (zh) * 2019-11-01 2020-02-07 吴俊楠 一种led用高导热陶瓷材料的制备方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1837386A1 (en) * 2004-12-28 2007-09-26 Nichia Corporation Nitride phosphor, method for producing same and light-emitting device using nitride phosphor
US20150315464A1 (en) * 2008-05-19 2015-11-05 Intematix Corporation Nitride-Based Red-Emitting Phosphors in RGB (Red-Green-Blue) Lighting Systems
CN102321473A (zh) * 2011-02-16 2012-01-18 钟贤龙 Mg-α-SiAlON为主体晶格的荧光材料制造方法
CN102324424A (zh) * 2011-09-22 2012-01-18 华南师范大学 一种荧光透明陶瓷透镜封装的白光led
CN105008486A (zh) * 2013-03-08 2015-10-28 宇部兴产株式会社 氮化物荧光体的制造方法和氮化物荧光体用氮化硅粉末以及氮化物荧光体
CN103820107A (zh) * 2014-03-24 2014-05-28 中国科学院上海硅酸盐研究所 一种去除碳热还原反应制得荧光粉中碳粉的方法
CN104087293A (zh) * 2014-07-23 2014-10-08 中国科学院上海硅酸盐研究所 红色荧光体及其碳热还原氮化制备方法及应用
CN104291796A (zh) * 2014-09-23 2015-01-21 上海三思电子工程有限公司 一种led用透明荧光陶瓷的制备方法
CN107200588A (zh) * 2016-03-18 2017-09-26 深圳市绎立锐光科技开发有限公司 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN106190124A (zh) * 2016-07-13 2016-12-07 张伯文 一种led芯片发光灯条基板材料及led球泡灯
CN106242539A (zh) * 2016-07-27 2016-12-21 江苏罗化新材料有限公司 一种led用氮化物荧光透明陶瓷制备方法
CN106866132A (zh) * 2017-01-13 2017-06-20 南京工业大学 一种用于照明或显示的荧光陶瓷及其制备方法
CN107384383A (zh) * 2017-08-18 2017-11-24 苏州轻光材料科技有限公司 一种uv激发白光led用复合型荧光粉
TW201942334A (zh) * 2018-03-29 2019-11-01 日商電化股份有限公司 紅色螢光體及發光裝置
CN110386822A (zh) * 2018-04-19 2019-10-29 深圳光峰科技股份有限公司 一种复相荧光陶瓷及其制备方法
CN108895314A (zh) * 2018-07-06 2018-11-27 厦门大学 激光照明用氮化物荧光粉/玻璃复合光转换组件及其制备
CN109020532A (zh) * 2018-09-28 2018-12-18 成都东骏激光股份有限公司 一种绿色荧光复相陶瓷及其制备方法与应用
CN110759750A (zh) * 2019-11-01 2020-02-07 吴俊楠 一种led用高导热陶瓷材料的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LI GUANGHAO 等: "Effective suppression of AlN impurity in synthesis of CaAlSiN3:Eu2+ phosphors under condition of atmospheric pressure", 《MATERIALS CHEMISTRY AND PHYSICS》 *
LI SHUXING 等: "Synthesis, composition optimization, and tunable red emission of CaAlSiN3:Eu2+ phosphors for white light-emitting diodes", 《JOURNAL OF MATERIALS RESEARCH》 *
MOU YUN 等: "Efficient and heat-conducting color converter of phosphor glass film printed on sapphire substrate for high-power white LEDs/LDs", 《JOURNAL OF NON-CRYSTALLINE SOLIDS》 *
PENG XINGLIN 等: "Highly thermal conductive red-emitting AlN-CaAlSiN3:Eu2+ composite phosphor ceramics for high-power laser-driven lighting", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
申颖: "MAlSiN3:Eu2+(M=Ca,Sr)及其复合体系荧光粉的制备及发光特性研究", 《中国优秀硕士学位论文全文数据库 基础科学辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680225A (zh) * 2020-12-30 2021-04-20 武汉理工大学 一种提高氮化物红色荧光粉发光强度与热稳定性能的方法
CN112680225B (zh) * 2020-12-30 2022-11-25 武汉理工大学 一种提高氮化物红色荧光粉发光强度与热稳定性能的方法
CN115947604A (zh) * 2022-12-14 2023-04-11 福建臻璟新材料科技有限公司 一种氮化铝基质的荧光陶瓷及其制备方法
CN116283303A (zh) * 2023-02-24 2023-06-23 中国科学院上海硅酸盐研究所 一种多元红色氮化物靶材的制备方法

Also Published As

Publication number Publication date
CN111517804B (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
US10753574B2 (en) Sintered phosphor, light emitting device, illumination device, vehicle headlamp, and method for manufacturing sintered phosphor
CN111517804B (zh) 一种氮化物红色复相荧光陶瓷及其制备方法
CN107540368B (zh) 复相半透明荧光陶瓷的制备方法和led模组
CN109467453B (zh) 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
CN107285745B (zh) 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN101605866B (zh) 包含复合物单片陶瓷发光转换器的照明系统
KR101382915B1 (ko) 형광체 및 그 제조 방법, 및 그것을 이용한 발광 장치
CN108863317B (zh) 一种荧光复合陶瓷及其制备方法和应用
CN108503352B (zh) 一种石榴石基红色荧光陶瓷材料及其制备方法
CN107200588B (zh) 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN106518037B (zh) 一种全光谱发射的硅酸盐荧光陶瓷及其制备方法
CN104177079B (zh) 用于白光LED荧光转换的含Sr的Ce:YAG基透明陶瓷及其制备方法
WO2018028265A1 (zh) 一种波长转换装置及其制备方法、发光装置和投影装置
KR101484428B1 (ko) 질소 화합물 발광 재료, 그 제조 방법 및 이로부터 제조된 조명 광원
WO2020228066A1 (zh) 一种绿色荧光透明陶瓷的制备方法和应用
CN113045205A (zh) 一种绿色荧光陶瓷及其制备方法和应用
CN110240468A (zh) 荧光陶瓷及其制备方法
CN113582679B (zh) 一种白光照明用高显色指数高热稳定性荧光陶瓷及其制备方法
CN108395222B (zh) 一种反射式激光显示用光转换、散热一体化陶瓷材料及其制备方法
Wu et al. Cyan-green-emitting Ca 3 Sc 2 Si 3 O 12: Ce 3+ transparent ceramics: A promising color converter for high-brightness laser lighting.
CN108484168B (zh) 一种红色透明荧光陶瓷及其制备方法
CN112047735A (zh) 一种复相荧光陶瓷材料及其制备方法
CN113603462B (zh) 一种陶瓷-玻璃复合结构荧光色轮及其制备方法和在激光显示源中的应用
CN112552038B (zh) 一种绿色荧光复合陶瓷及其制备方法和应用
CN109020558B (zh) 一种大功率暖白光固态照明用SiAlON荧光透明陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant