CN112047735A - 一种复相荧光陶瓷材料及其制备方法 - Google Patents

一种复相荧光陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN112047735A
CN112047735A CN202010795668.5A CN202010795668A CN112047735A CN 112047735 A CN112047735 A CN 112047735A CN 202010795668 A CN202010795668 A CN 202010795668A CN 112047735 A CN112047735 A CN 112047735A
Authority
CN
China
Prior art keywords
equal
percent
fluorescent ceramic
phase
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010795668.5A
Other languages
English (en)
Other versions
CN112047735B (zh
Inventor
李建强
冯少尉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Process Engineering of CAS
Original Assignee
Institute of Process Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Process Engineering of CAS filed Critical Institute of Process Engineering of CAS
Priority to CN202010795668.5A priority Critical patent/CN112047735B/zh
Publication of CN112047735A publication Critical patent/CN112047735A/zh
Application granted granted Critical
Publication of CN112047735B publication Critical patent/CN112047735B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7792Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及发光材料领域,具体涉及一种复相荧光陶瓷材料及其制备方法,所述复相荧光陶瓷材料的化学组成为xY2O3‑yLu2O3‑zAl2O3‑mSiO2‑nMgO‑pRe2O3,其中x、y、z、m、n、p为摩尔百分比,且2x+2y+2z+m+n+2p=100%,该荧光陶瓷发射光谱在510‑680nm波段,其发光峰的波长可通过调节组分中Y2O3、Lu2O3、Al2O3、MgO和SiO2的比例进行改变,能实现从520nm‑610nm荧光发射峰的变化,且高温下其发光效率稳定(>80%@200℃),其制备方法包括中低温合成粉体,大尺寸快速成型以及两步烧结和后处理等步骤。通过组分的调控解决了单一荧光透明陶瓷组分光谱缺少红光成分的问题,本发明为激光照明和显示实现高质量、多样化的选择,极大地降低了红光光源的设计成本、更利于激光光源光束均匀化和色彩多样化,对实际生产应用具有重要意义。

Description

一种复相荧光陶瓷材料及其制备方法
技术领域
本发明涉及一种荧光透明陶瓷,具体涉及一种蓝光激发下可见光波段宽光谱发射的复相荧光陶瓷材料及其制备方法,特别是一种包含主相发光基质相,辅相光散射组分相的荧光透明陶瓷材料及其制备方法,属于无机发光材料技术领域。
背景技术
荧光陶瓷是一种在高功率蓝光二极管光源激发下高转换效率、耐高温、抗热震优异和使用寿命长的光-光转换功能材料,具有高可见光透过率和稳定的机械和物理化学性能,可广泛应用于红外夜视、警告指示、大功率照明和高流明显示等技术领域。激光作为激发源激发荧光陶瓷的光源设备具有亮度高、射程远、长寿命和体积小等诸多优点,可广泛适用于户外广场照明、体育赛事场馆、汽车大灯以及航空航海照明等领域,未来有望取代LED激发的面光源在户外远程照明和大屏投影显示领域中得到广泛应用。
蓝光激光二极管为激发源辐照荧光陶瓷,导致陶瓷中发光离子电子跃迁至高能态,电子从高能态返回基态的过程,释放光子能量,实现光-光转换。作为激发光源的蓝光和荧光陶瓷发射的荧光(绿光、黄光或者红光)混合组成白光,然而当前激光激发荧光材料的照明设备仍然存在以下突出问题:荧光材料吸收和转换蓝光效率较低;出射白光色温偏高≥6000K,绿光和红光波段光谱强度不足显色指数不高;低荧光材料抗热震性能差,长时间使用易出现严重的热淬灭现象;出射的光斑中蓝光和荧光组分的混合均匀性差,易导致远场和近场出射光斑颜色不均匀。
发明内容
本发明的目的在于,提供了一种宽光谱发射的复相荧光陶瓷材料。该荧光陶瓷能够发射更宽的光谱范围,具有高效的蓝光的吸收和转换率,同时兼具激光和荧光的匀化功能,可以满足在200℃的高温下连续稳定的使用,有望大幅度提高大功率照明和高亮度显示设备的光源模组寿命。
为达到上述目的,本发明采用的技术方案为:
一种宽光谱发射的复相荧光陶瓷材料,其化学组成为xY2O3-yLu2O3-zAl2O3-mSiO2-nMgO-pRe2O3,其中x、y、z、m、n、p为摩尔百分比,0≤x≤20%,0≤y≤20%,10%≤x+y≤40%,10%≤z≤40%,10%≤m≤40%,10%≤n≤40%,0.01%≤p≤10%,且2x+2y+2z+m+n+2p=100%;作为上述方案的优选,0≤x≤20%,10%≤y≤20%,且20%≤x+y≤40%;20%≤z≤30%,20%≤m≤30%,20%≤n≤30%,0.05%≤p≤5%。
本发明的荧光陶瓷材料为一种复相透明陶瓷,包含至少两种不同组分和结构的物相,分别为主相和辅相,主相为Y3(Mg,Al,Si)5O12、Lu3(Mg,Al,Si)5O12和(Y,Lu)3(Mg,Al,Si)5O12中的一种,辅相为Al2O3、MgO、Lu2SiO5、Lu2Si2O7和MgAl2O4中的一种或者多种,主相和辅相晶粒相互嵌套分布,主相作为发光基质相,辅相作为光散射组分相。
所述复相荧光陶瓷的发光基质相为立方结构,属于石榴石相。
所述复相荧光陶瓷的光散射组分相的晶粒尺寸分布在100nm-5000nm。
本发明的荧光陶瓷材料的激发波长在440-470nm,作为优选,激发波长在450-460nm,可被蓝光有效激发,在蓝光激发下发射波长范围为510-680nm。
本发明的荧光陶瓷材料的发射光谱可调,通过调节荧光陶瓷组分比例及发光离子的浓度改变荧光陶瓷材料的发光峰位置,能够实现发光峰位从520nm-610nm荧光峰位变化。
本发明的荧光陶瓷材料具有高效的蓝光的吸收和转换率,当蓝光激发荧光陶瓷时,由于光散射组分相的存在,蓝光在材料中发生一定角度的散射,实现蓝光与陶瓷中发光中心的充分作用,实现了蓝光吸收效率大于80%。
本发明的荧光陶瓷具有激光和荧光的匀化功能,荧光陶瓷的发光和入射蓝光在陶瓷中晶界和光散射组分相的作用下,进一步发生出射方向的变化,得到更加均匀的白光出射。
本发明的荧光陶瓷具有高热导率和发光热稳定性,材料热导率可以达8-14
W/(m·K),在200℃的高温下荧光强度大于室温下的80%。
本发明还提供了一种一步成型、烧结制备上述荧光陶瓷材料的方法,包括如下步骤:
按xY2O3-yLu2O3-zAl2O3-mSiO2-nMgO-pRe2O3的化学组成称量相应的原料,经过合成方法制得均匀的前驱粉体;前驱粉体经干燥、研磨、过筛、煅烧、成型、高温烧结和退火处理制得复相荧光陶瓷材料。
具体地,一种复相荧光陶瓷材料的制备方法,所述制备方法包括:
(1)根据xY2O3-yLu2O3-zAl2O3-mSiO2-nMgO-pRe2O3的化学组成,计算分别称量Y的氧化物或者相应的盐、Lu的氧化物或者相应的盐、Al的氧化物或者相应的盐、Si的氧化物或者相应的化合物、Mg的氧化物或者相应的化合物、Re的氧化物或者相应的盐,然后将所有的氧化物或者盐进行球磨混合或者溶解,加热干燥或者反应沉淀后得前驱粉体;
(2)将前驱粉体进行600-1200℃高温煅烧,去除粉体中的有机物及残留介质或者溶剂,并对煅烧后的粉体进行研磨过筛处理;
(3)将煅烧好的粉体进行成型处理,包括干压成型、注射成型、流延成型、冷等静压成型或者热压成型,得到陶瓷素坯;
(4)将得到的陶瓷素坯,经过1500-1850℃高温下烧结,烧结方法包括:无压烧结、热压烧结、真空烧结、氧气烧结、气压烧结和等静压烧结中的一种或多种,保温4-10h后得到荧光陶瓷原片;
(5)将高温烧结后的样品在一定气氛条件下退火处理,气氛包括氧气、氮氢混合气、CO气体和氩气等中的一种或多种,得到待加工的荧光陶瓷材料;
(6)将所得荧光陶瓷材料进行切割、研磨、抛光和镀膜等后处理。
优选地,所述步骤(1)中,得到前驱粉体的方法不限,包括酒精球磨混合、化学共沉淀混合、溶胶凝胶法和砂磨机研磨混合等中的一种或多种。
优选地,所述步骤(1)中,粉体干燥方法不限,包括微波干燥、喷雾干燥法、冷冻干燥和烘箱加热干燥等中的一种或多种。
优选地,所述步骤(2)中,粉体煅烧温度优选800℃-1000℃。
优选地,所述步骤(3)中,成型方法包含两种或者三种方法的组合,例如干压成型之后冷等静压,冷等静压之后进行热压成型,流延成型之后进行冷等静压成型。
优选地,所述步骤(3)中,高温烧结方式不限一种,包括两种或者多种烧结方式组合,如真空烧结配合氮氢混合气烧结、氧气气氛烧结配合还原气氛烧结、氧气烧结配合热等静压烧结、真空烧结配合热等静压烧结、放电等离子烧结配合热等静压烧结等。作为优选,采用无压烧结配合热等静压烧结,过程分为两段:先在空气或者氧气气氛下于1500℃-1800℃温度烧结,保温2h-10h,然后进行热等静压处理,在1500℃-1850℃,压力为1MPa-300MPa二次烧结,保温2h-10h,同时伴随氮气或者氩气气氛保护。优选地,所述步骤(4)中,退火方法不限,包括在还原气氛、空气、氧气气氛中进行,优选退火温度为900℃-1400℃,优选保温时间2h-10h,之后冷却到室温,得到荧光陶瓷材料。
本发明的陶瓷材料可以为片状,也可以制作为其他形状。
本发明的荧光陶瓷可被450-470nm蓝光LED和激光器激发,能够实现510-680nm荧光发光,可用作为高亮度、高显色、高功率照明和显示光源模组的荧光转换材料,相比较有机胶+荧光粉和荧光玻璃,其具有更高的热导率和更稳定的物理化学性能,相比单晶材料能够实现更多样的尺寸形状制备和低成本生产,此外荧光陶瓷材料具有灵活可控的微结构调节(晶粒尺寸、气孔和物相组成)。
本发明提供化学组分为xY2O3-yLu2O3-zAl2O3-mSiO2-nMgO-pRe2O3的荧光陶瓷,该荧光陶瓷发射光谱在510-680nm波段,其发光峰的波长可通过调节组分中Y2O3、Lu2O3、Al2O3、MgO和SiO2的比例进行改变,能实现从520nm-610nm荧光发射峰的变化,且高温下其发光效率稳定(>80%@200℃),其制备方法包括中低温合成粉体,大尺寸快速成型以及两步烧结和后处理等步骤。通过组分的调控解决了单一荧光透明陶瓷组分光谱缺少红光成分的的问题,本发明为激光照明和显示实现高质量多样化的光输出提供了方法,极大地降低了红光光源的设计成本、更利于激光光源光束均匀化和色彩多样化,对实际生产应用具有重要意义。
与现有技术相比,本发明的技术效果如下:
将制备的宽光谱发射的荧光陶瓷材料用于大功率照明和高亮度激光显示,与传统的荧光粉、荧光玻璃和单晶材料相比,该荧光陶瓷材料具有可调节的宽光谱发射,如图1所示,发射光谱横跨了绿光-黄光-红光区域;高热导率和灵活可控的微观结构,实现光-光转换和光匀化兼具,同时具有优异的发光热稳定性和物理机械性能,解决了目前荧光材料吸收和转换蓝光效率低,白光色温偏高和显色指数不高问题;提升了抗热震性能,避免了出现严重的热淬灭现象;能够获得更加均匀的白光出射。此外,本发明中的制备方法,能够实现连续化大批量制备,降低了生产制备成本。
附图说明
图1为本发明实施例1的稳态激发发射光谱;
图2为本发明实施例2中荧光陶瓷的扫描电子显微图;
图3为本发明实施例3中荧光陶瓷的发光强度-温度变化曲线;
图4为本发明实施例4中荧光陶瓷片450nm激光器激发下发射光谱图。
具体实施方式
本说明书中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。除非特别叙述,每个特征只是一系列等效或者类似特征中的一个例子而已。所述仅仅是为了帮助理解本发明,不应该视为对本发明的具体限制。
下面结合具体实施例和附图对本发明做进一步说明,以助于理解本发明的内容。
实施例1:
一种化学组成为xY2O3-yLu2O3-zAl2O3-mSiO2-nMgO-pCe2O3的荧光陶瓷材料的一系列组分如下:
Figure BDA0002625512200000051
(1)按100%mol计算每种氧化物物质的量,分别称取Y2O3,Lu2O3,Al2O3,SiO2,MgO,Ce2O3对应物质的量。用研磨罐加氧化锆球,以无水乙醇为研磨介质进行研磨与混合,直至粉体平均粒径小于1μm;
(2)将所得浆料干燥并过筛,将过筛后的粉体在空气中1000℃保温2h,去除粉体中的有机物;将所得粉体过筛后利用单轴模具进行成型,施加4Mpa压力后保持2min,泄压塑封后,将其在冷等静压设备中再次压制得到素坯,压力200MPa,保压时间5min;
(3)将所得陶瓷素坯在马弗炉中进行烧结;升温速率1℃/min,在900℃保温3h,在1600℃保温4h,完成固相反应,消除晶粒内部气孔,再将陶瓷样品通过气压炉在1700℃保温2h进行二次致密化烧结达到致密度99.95%;
(4)将烧结后样品在空气中,1100℃保温6h退火,得到的荧光陶瓷进行抛光处理,得到一系列xY2O3-yLu2O3-zAl2O3-mSiO2-nMgO-pCe2O3荧光陶瓷片,其厚度为1mm。
上述制得的荧光陶瓷片的稳态激发发射光谱如图1所示,发射光谱横跨了绿光-黄光-红光区域。
实施例2:
一种化学组成为10%Y2O3-8.725%Lu2O3-21.25%Al2O3-10%SiO2-10%MgO-0.025%Tb2O3的荧光陶瓷材料的制备方法如下:
(1)按100%mol计算每种氧化物物质的量,分别称取Y2O3:10%mol,Lu2O3:8.725%mol,Al2O3:21.25%mol,SiO2:10%mol,MgO:10%mol,Tb2O3:0.025%mol。用研磨罐加氧化锆球,以无水乙醇为研磨介质进行研磨与混合,直至粉体平均粒径小于1μm;
(2)将所得浆料干燥并过筛,将过筛后的粉体在空气中1000℃保温2h,去除粉体中的有机物;将所得粉体过筛后利用单轴模具进行成型,施加4Mpa压力后保持2min,泄压塑封后,将其在冷等静压设备中再次压制得到素坯,压力200MPa,保压时间5min;
(3)将所得陶瓷素坯在马弗炉中进行烧结;升温速率1℃/min,在900℃保温3h,在1600℃保温4h,完成固相反应,消除晶粒内部气孔,再将陶瓷样品通过气压炉在1700℃保温2h进行二次致密化烧结达到致密度99.95%;
(4)将烧结后样品在空气中,1100℃保温6h退火,得到的荧光陶瓷进行抛光处理,得到10%Y2O3-8.725%Lu2O3-21.25%Al2O3-10%SiO2-10%MgO-0.025%Tb2O3荧光陶瓷片,其厚度为1mm。
上述制得的荧光陶瓷片的断面形貌如图2(a)所示,可以形成完全致密化的多晶结构,同时得到尺寸较均匀的晶粒。
实施例3:
一种化学组成为10%Y2O3-8.7%Lu2O3-16.25%Al2O3-15%SiO2-15%MgO-0.05%Ce2O3的荧光陶瓷材料的制备方法如下:
(1)按100%mol计算每种氧化物物质的量,分别称取Y2O3:-10%mol,Lu2O3:-18.7%mol,Al2O3:-16.25%mol,SiO2:-15%mol,MgO:-15%mol,Ce2O3:-0.05%mol。用研磨罐加氧化锆球,以无水乙醇为研磨介质进行研磨与混合,直至粉体平均粒径介于300nm左右;
(2)将所得浆料干燥并过筛,将过筛后的粉体在空气中850℃保温2h,去除粉体中的有机物;将所得粉体过筛后待烧结使用;
(3)将陶瓷放在马弗炉中进行烧结从室温开始,升温速率5℃/min,到1200℃,保温2h,然后2℃/min升温到1680℃保温4h,降温到室温,完成固相反应,排除气孔达到99.9%的致密度,然后进行热等静压,在1700℃下,保温2h;
(4)将真空烧结后样品在空气中,1400℃保温6h退火,得到的荧光陶瓷进行抛光处理,得到10%Y2O3-8.7%Lu2O3-16.25%Al2O3-15%SiO2-15%MgO-0.05%Ce2O3荧光陶瓷片。
上述制得的荧光陶瓷片断面形貌如图2(b)所示,可以形成完全致密化的多晶结构,同时得到尺寸较均匀的晶粒;具有较高的热淬灭温度,在473K时仍能保持85%的荧光强度,如图3所示(与室温相比)。
实施例4:
一种化学组成为15%Y2O3-3.725%Lu2O3-6.25%Al2O3-25%SiO2-25%MgO-0.025%Ce2O3的荧光陶瓷材料的制备方法如下:
(1)按100%mol计算每种氧化物物质的量,分别称取Y2O3:-15%mol,Lu2O3:-3.725%mol,Al2O3:-6.25%mol,SiO2:-25%mol,MgO:-25%mol,Ce2O3:-0.025%mol。用研磨罐加氧化锆球,以无水乙醇为研磨介质进行研磨与混合,直至粉体平均粒径小于1μm;
(2)将所得浆料干燥并过筛,将过筛后的粉体在空气中1000℃保温4h,去除粉体中的有机物;将所得粉体过筛后利用等轴单向施加3Mpa压力保持1min,干压成型,将其在冷等静压设备中压制成素坯,压力250MPa,保压时间1min;
(3)所得粉体直接装入模具中,然后在马弗炉中进行烧结,升温速率30℃/min,在1000℃保温2h,升温速率3℃/min,在1580℃保温4h,完成固相反应,排除气孔达到99.9%的致密度,然后进行二次气压烧结,温度1650℃保温4h;
(4)将烧结后样品在空气中,1300℃保温20h退火,得到的荧光陶瓷进行抛光处理,得到15%Y2O3-3.725%Lu2O3-6.25%Al2O3-25%SiO2-25%MgO-0.025%Ce2O3荧光陶瓷片,其厚度为1mm。
上述制得的荧光陶瓷片的断面形貌如图2(c)所示,可以形成完全致密化的多晶结构,同时得到尺寸较均匀的晶粒;455nm激光激发发射光谱类如图4所示,显示该陶瓷材料可以实现455nm蓝光高效激发,发射出510-620nm的光谱范围。
实施例5:
一种化学组成为2.5%Y2O3-16.225%Lu2O3-18.75%Al2O3-12.5%SiO2-12.5%MgO-0.025%Eu2O3的荧光陶瓷材料的制备方法如下:
(1)按100%mol计算每种氧化物物质的量,分别称取Y2O3:-15%mol,Lu2O3:-3.725%mol,Al2O3:-6.25%mol,SiO2:-25%mol,MgO:-25%mol,Eu2O3:-0.025%mol。用研磨罐加氧化锆球,以无水乙醇为研磨介质进行研磨与混合,直至粉体平均粒径小于1μm;
(2)将所得浆料干燥并过筛,将过筛后的粉体在空气中850℃保温2h,去除粉体中的有机物;将所得粉体过筛后利用模具进行预成型,施加4Mpa压力后保持2min,泄压塑封后,将其在冷等静压设备中再次压制得到素坯,压力200MPa,保压时间30s;
(3)将所得陶瓷素坯在马弗炉中进行烧结,1500℃,保温2h,完成固相反应烧结,然后将陶瓷样品装入石墨模具中,升温速率5℃/min,在1000℃保温2h,在1680℃保温4h,同时保持压力80MPa,得到完全致密化的荧光陶瓷;
(4)将(3)中得到的陶瓷在空气中进行退火处理,在1250℃下,保温20h,得到高效率的2.5%Y2O3-16.225%Lu2O3-18.75%Al2O3-12.5%SiO2-12.5%MgO-0.025%Eu2O3荧光陶瓷片,其厚度为1mm。
上述制得的荧光陶瓷片断面形貌如图2(d)所示,可以形成完全致密化的多晶结构,同时得到尺寸较均匀的晶粒。
本发明的工艺参数(如温度、时间等)区间上下限取值以及区间值都能实现本法,在此不一一列举实施例。
本发明未详细说明的内容均可采用本领域的常规技术知识。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应该理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种复相荧光陶瓷材料,其特征在于,所述复相荧光陶瓷材料的化学组成为xY2O3-yLu2O3-zAl2O3-mSiO2-nMgO-pRe2O3,其中x、y、z、m、n、p为摩尔百分比,0≤x≤20%,0≤y≤20%,10%≤x+y≤40%,10%≤z≤40%,10%≤m≤40%,10%≤n≤40%,0.01%≤p≤10%,且2x+2y+2z+m+n+2p=100%;其发射光谱调节范围为510~680nm。
2.根据权利要求1所述的复相荧光陶瓷材料,其特征在于,所述复相荧光陶瓷材料的结构包括主相和辅相,主相为Y3(Mg,Al,Si)5O12、Lu3(Mg,Al,Si)5O12和(Y,Lu)3(Mg,Al,Si)5O12中的一种,辅相为Al2O3、MgO、Lu2SiO5、Lu2Si2O7和MgAl2O4中的一种或者多种,主相和辅相晶粒相互嵌套分布,主相作为发光基质相,辅相作为光散射组分相。
3.根据权利要求1所述的复相荧光陶瓷材料,其特征在于,所述复相荧光陶瓷的发光基质相为立方结构,属于石榴石相。
4.根据权利要求1所述的复相荧光陶瓷材料,其特征在于,所述复相荧光陶瓷的光散射组分相的晶粒尺寸分布在100nm-5000nm。
5.一种权利要求1-4任一项所述复相荧光陶瓷材料的制备方法,所述制备方法包括:
按xY2O3-yLu2O3-zAl2O3-mSiO2-nMgO-pRe2O3的化学组成称量相应的原料,经过合成方法制得均匀的前驱粉体;前驱粉体经干燥、研磨、过筛、煅烧、成型、高温烧结和退火处理制得复相荧光陶瓷材料。
6.根据权利要求5所述的制备方法,其特征在于,所述合成方法为酒精球磨混合、化学共沉淀混合、溶胶凝胶法和砂磨机研磨混合中的一种或多种。
7.根据权利要求5所述的制备方法,其特征在于,所述干燥方法为微波干燥、喷雾干燥法、冷冻干燥和烘箱加热干燥中的一种或多种。
8.根据权利要求5所述的制备方法,其特征在于,所述成型的方法为干压成型、注射成型、流延成型、冷等静压成型和热压成型中的一种或多种。
9.根据权利要求5所述的制备方法,其特征在于,所述高温烧结分成两个阶段:无压预烧结和高温高压烧结,无压预烧结:烧结温度为1500-1800℃;高温高压烧结:烧结温度为1500-1850℃,压力为1MPa-300MPa。
10.根据权利要求5所述的制备方法,其特征在于,所述退火处理为在一定气氛条件下退火处理,所述气氛条件为氧气、氮氢混合气、CO气体和氩气中的一种或多种气氛,退火处理的温度是900-1400℃,保温时间2-50h。
CN202010795668.5A 2020-08-10 2020-08-10 一种复相荧光陶瓷材料及其制备方法 Active CN112047735B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010795668.5A CN112047735B (zh) 2020-08-10 2020-08-10 一种复相荧光陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010795668.5A CN112047735B (zh) 2020-08-10 2020-08-10 一种复相荧光陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112047735A true CN112047735A (zh) 2020-12-08
CN112047735B CN112047735B (zh) 2021-12-07

Family

ID=73601282

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010795668.5A Active CN112047735B (zh) 2020-08-10 2020-08-10 一种复相荧光陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112047735B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113251326A (zh) * 2021-06-04 2021-08-13 厦门大学 一种实现高品质暖白光激光照明光源的荧光转换器件
CN113548894A (zh) * 2021-07-15 2021-10-26 中国科学院上海硅酸盐研究所 一种镱:三氧化二钇上转化发光透明陶瓷及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1821164A (zh) * 2006-03-09 2006-08-23 中国科学院上海硅酸盐研究所 混合型石榴石基陶瓷材料的制备方法
US20080210885A1 (en) * 2004-05-17 2008-09-04 Koninklijke Philips Electronics N.V. Fluorescent Ceramic and Fabrication Method Thereof
JP2008277341A (ja) * 2007-04-25 2008-11-13 Ube Ind Ltd 光変換用セラミックス複合体を用いた発光装置
CN101605866A (zh) * 2007-02-07 2009-12-16 皇家飞利浦电子股份有限公司 包含复合物单片陶瓷发光转换器的照明系统
CN102924072A (zh) * 2011-08-09 2013-02-13 上海祥羚光电科技发展有限公司 一种白光led用yag透明陶瓷及其制备方法
CN103476903A (zh) * 2011-02-24 2013-12-25 日东电工株式会社 具有磷光体组分的发光复合物
CN104446428A (zh) * 2013-09-23 2015-03-25 中国科学院上海硅酸盐研究所 一种用于白光led器件的复相透明陶瓷及其制备方法
CN104818024A (zh) * 2013-04-10 2015-08-05 中国科学院福建物质结构研究所 包含新型固态透明荧光材料的白光led及其制备方法
CN107540368A (zh) * 2017-02-28 2018-01-05 江苏罗化新材料有限公司 复相半透明荧光陶瓷的制备方法和led模组
CN107915481A (zh) * 2017-11-22 2018-04-17 中国科学院过程工程研究所 一种纳米结构钇铝石榴石基透明陶瓷材料、其制备方法及用途
CN108300473A (zh) * 2016-08-10 2018-07-20 深圳市光峰光电技术有限公司 一种波长转换装置及其制备方法、发光装置和投影装置
CN110036089A (zh) * 2016-12-07 2019-07-19 神岛化学工业株式会社 陶瓷组合物
CN111285682A (zh) * 2018-12-07 2020-06-16 上海航空电器有限公司 用于激光照明与显示的全光谱复相荧光陶瓷及制备方法
CN111377713A (zh) * 2019-11-27 2020-07-07 中国科学院上海硅酸盐研究所 一种复相荧光陶瓷及其制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080210885A1 (en) * 2004-05-17 2008-09-04 Koninklijke Philips Electronics N.V. Fluorescent Ceramic and Fabrication Method Thereof
CN1821164A (zh) * 2006-03-09 2006-08-23 中国科学院上海硅酸盐研究所 混合型石榴石基陶瓷材料的制备方法
CN101605866A (zh) * 2007-02-07 2009-12-16 皇家飞利浦电子股份有限公司 包含复合物单片陶瓷发光转换器的照明系统
JP2008277341A (ja) * 2007-04-25 2008-11-13 Ube Ind Ltd 光変換用セラミックス複合体を用いた発光装置
CN103476903A (zh) * 2011-02-24 2013-12-25 日东电工株式会社 具有磷光体组分的发光复合物
CN102924072A (zh) * 2011-08-09 2013-02-13 上海祥羚光电科技发展有限公司 一种白光led用yag透明陶瓷及其制备方法
CN104818024A (zh) * 2013-04-10 2015-08-05 中国科学院福建物质结构研究所 包含新型固态透明荧光材料的白光led及其制备方法
CN104446428A (zh) * 2013-09-23 2015-03-25 中国科学院上海硅酸盐研究所 一种用于白光led器件的复相透明陶瓷及其制备方法
CN108300473A (zh) * 2016-08-10 2018-07-20 深圳市光峰光电技术有限公司 一种波长转换装置及其制备方法、发光装置和投影装置
CN110036089A (zh) * 2016-12-07 2019-07-19 神岛化学工业株式会社 陶瓷组合物
CN107540368A (zh) * 2017-02-28 2018-01-05 江苏罗化新材料有限公司 复相半透明荧光陶瓷的制备方法和led模组
CN107915481A (zh) * 2017-11-22 2018-04-17 中国科学院过程工程研究所 一种纳米结构钇铝石榴石基透明陶瓷材料、其制备方法及用途
CN111285682A (zh) * 2018-12-07 2020-06-16 上海航空电器有限公司 用于激光照明与显示的全光谱复相荧光陶瓷及制备方法
CN111377713A (zh) * 2019-11-27 2020-07-07 中国科学院上海硅酸盐研究所 一种复相荧光陶瓷及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
于泽腾: "非发光离子掺杂 YAG:Ce 荧光粉的制备及其暖白光 LED的应用研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *
李慧娟: "白光LED用YAG:Ce3+荧光粉的温度淬灭性质", 《CHINESE JOURNAL OF LUMINESCENCE》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113251326A (zh) * 2021-06-04 2021-08-13 厦门大学 一种实现高品质暖白光激光照明光源的荧光转换器件
CN113548894A (zh) * 2021-07-15 2021-10-26 中国科学院上海硅酸盐研究所 一种镱:三氧化二钇上转化发光透明陶瓷及其制备方法

Also Published As

Publication number Publication date
CN112047735B (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
CN111205081B (zh) 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用
CN108863317B (zh) 一种荧光复合陶瓷及其制备方法和应用
CN109467453A (zh) 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
US8298442B2 (en) Method of manufacturing phosphor translucent ceramics and light emitting devices
CN108753296B (zh) 一种可由近紫外或蓝光芯片激发的红光发光材料及其制备方法和应用
CN109592978B (zh) 高功率led/ld照明用暖白光高显指荧光陶瓷及其制备方法与应用
CN107200588B (zh) 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN112047735B (zh) 一种复相荧光陶瓷材料及其制备方法
CN106518037B (zh) 一种全光谱发射的硅酸盐荧光陶瓷及其制备方法
Zhu et al. Additive-free Y2O3: Eu3+ red-emitting transparent ceramic with superior thermal conductivity for high-power UV LEDs and UV LDs
CN108503352B (zh) 一种石榴石基红色荧光陶瓷材料及其制备方法
CN113045205A (zh) 一种绿色荧光陶瓷及其制备方法和应用
KR101484428B1 (ko) 질소 화합물 발광 재료, 그 제조 방법 및 이로부터 제조된 조명 광원
WO2019200934A1 (zh) 一种复相荧光陶瓷及其制备方法
CN106221695A (zh) 氮化铝基荧光粉的制备方法
CN112159220B (zh) 一种白光led/ld用高热稳定性高量子效率荧光陶瓷及其制备方法
CN108018040A (zh) 一种荧光陶瓷材料、其制备方法以及一种低色温白光led
CN110642624A (zh) 一种蓝绿光发射的荧光透明陶瓷及其制备方法
CN113480311A (zh) 一种发射暖白光的Ce:YAG荧光陶瓷的制备方法
CN113582679B (zh) 一种白光照明用高显色指数高热稳定性荧光陶瓷及其制备方法
Dai et al. Fabrication and properties of transparent Tb: YAG fluorescent ceramics with different doping concentrations
CN111517804A (zh) 一种氮化物红色复相荧光陶瓷及其制备方法
CN111393166B (zh) 一种白光led/ld用高热稳定性荧光陶瓷及其制备方法
CN112266239A (zh) 一种白光led/ld用高热稳定性高显色指数荧光陶瓷及其制备方法
CN111995398B (zh) 一种用于高显指激光照明的荧光陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant