WO2019015227A1 - 一种yag荧光粉及其制备方法和由其制备的yag荧光陶瓷 - Google Patents

一种yag荧光粉及其制备方法和由其制备的yag荧光陶瓷 Download PDF

Info

Publication number
WO2019015227A1
WO2019015227A1 PCT/CN2017/114990 CN2017114990W WO2019015227A1 WO 2019015227 A1 WO2019015227 A1 WO 2019015227A1 CN 2017114990 W CN2017114990 W CN 2017114990W WO 2019015227 A1 WO2019015227 A1 WO 2019015227A1
Authority
WO
WIPO (PCT)
Prior art keywords
yag
yag fluorescent
fluorescent ceramic
yag phosphor
source
Prior art date
Application number
PCT/CN2017/114990
Other languages
English (en)
French (fr)
Inventor
周有福
张云峰
洪茂椿
Original Assignee
中国科学院福建物质结构研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院福建物质结构研究所 filed Critical 中国科学院福建物质结构研究所
Publication of WO2019015227A1 publication Critical patent/WO2019015227A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding

Definitions

  • the present application relates to a YAG phosphor powder, a preparation method thereof and a YAG fluorescent ceramic prepared therefrom, belonging to the field of phosphors and fluorescent ceramics.
  • white light LED As a new type of solid-state light source, white light LED has the advantages of environmental protection, energy saving, high efficiency and fast response compared with traditional incandescent lamps and fluorescent lamps. It is known as the three major incandescent lamps, fluorescent lamps and high-pressure gas discharge lamps. The fourth generation of green light source after the light source.
  • the performance of the phosphor determines the technical indicators such as LED luminous efficiency, color rendering index, color temperature and service life. Therefore, phosphors play an important role in white LEDs and have received extensive attention.
  • YAG (yttrium aluminum garnet, Y 3 Al 5 O 12 ) phosphor is a commonly used luminescent material in white LED devices.
  • YAG phosphor with Ce 3+ as the illuminating center is one of the most widely used materials, with wide spectral range, high luminous efficiency and stable performance.
  • YAG:Ce 3+ luminescence spectrum contains only yellow light component, lack of red light and green light component, resulting in low color rendering index of white LED, high color temperature and other issues, can not meet the requirements of human eye comfort, human eye Long-term evolution is comfortable with sunlight, so the illumination of simulated sunlight is high-quality illumination that is consistent with human eye health.
  • a YAG phosphor powder and a preparation method thereof are provided, and the YAG phosphor powder improves the problem of low color rendering index and high color temperature of the original phosphor, and avoids long-term use of the conventional LED lamp.
  • the luminescent center ions of the YAG phosphor include Ce 3+ and M; wherein M emits red/green light.
  • the M is at least one of a rare earth metal ion and a transition metal ion.
  • the rare earth metal is at least one of Pr, Tb, Eu, Dy, Nd, and Sm; and the transition metal is at least one of Cr, Ti, V, Ni, and Cu.
  • the rare earth metal is Pr or Tb; and the transition metal is Cr or Ti.
  • the M is Cr 3+ , Cr 3+ and Tb 3+ , Ti 3+ , Pr 3+ and Tb 3+ , Pr 3+ or Tb 3+ .
  • the M is Cr 3+ and Tb 3+ in a molar ratio of 1:1 or Pr 3+ and Tb 3+ in a molar ratio of 1:1.
  • the molar ratio of Ce to Y in the YAG phosphor is 0.002:1 to 0.06:1, and the molar ratio of M to Al is 0.001:1 to 0.01:1.
  • the molar ratio of Ce to Y is 0.02:1 to 0.06:1, and the molar ratio of M to Al is 0.001:1 to 0.005:1.
  • the molar ratio of Ce to Y is 0.02:1, 0.03:1 or 0.06:1; the molar ratio of M to Al is 0.001:1, 0.002:1, 0.003:1, 0.005:1 or 0.01 :1.
  • the preparation method of the YAG phosphor powder comprises:
  • the aluminum source, the cerium source and the luminescent center ion source are mixed in an organic solvent and dried to obtain a mixture; and then the resulting mixture is subjected to high-temperature solid phase synthesis under a flow reducing atmosphere to obtain a YAG phosphor.
  • the aluminum source is alumina; the lanthanum source is at least one of cerium oxide and cerium carbonate; the luminescent center ion source is an oxide or carbonate corresponding to the luminescent center ion; and the boiling point of the organic solvent is The pressing does not exceed 120 ° C; the drying is first to evaporate the organic solvent in a rotary evaporator, and then moved to a drying oven of 70 ° C to 90 ° C for 4 h to 6 h; the reducing atmosphere is N 2 /H 2 a mixed atmosphere; the temperature of the high-temperature solid phase synthesis is not less than 1500 ° C, and the time is not less than 2 h.
  • the temperature is increased in stages, firstly increasing to 900 ° C to 1100 ° C at a rate of 8 to 10 ° C / min, and then raising the temperature to a reaction temperature at a rate of 4 ° C / min to 5 ° C / min.
  • the temperature is increased in stages, firstly increasing to 1000 ° C at a rate of 10 ° C / min, and then raising the temperature to a reaction temperature at a rate of 5 ° C / min.
  • the high temperature solid phase synthesis has a temperature of 1500 ° C to 1700 ° C and a time of 2 h to 6 h.
  • the alumina has a particle diameter of ⁇ 20 ⁇ m, a purity of ⁇ 99.9%; a particle size of cerium oxide and cerium carbonate ⁇ 20 ⁇ m, a purity of ⁇ 99.9%; a particle diameter of the luminescent center ion source ⁇ 20 ⁇ m, and a purity ⁇ 99.9%.
  • the luminescent center ion source has a particle size of ⁇ 15 ⁇ m and a purity of ⁇ 99.9%.
  • the aluminum source is at least one of ⁇ -alumina, ⁇ -alumina, and ⁇ -alumina; the boiling point of the organic solvent does not exceed 100° C. under normal pressure; and the temperature of the high-temperature solid phase synthesis is 1500 ° C ⁇ 1600 ° C, the time is 4h ⁇ 5h.
  • the alumina is at least one of ⁇ -alumina and ⁇ -alumina; an organic solvent It is at least one of acetone, diethyl ether, petroleum ether, and ethanol.
  • the aluminum source, the germanium source, and the luminescent center ion source are powders.
  • the organic solvent is mixed by wet mixing to uniformly mix the raw materials.
  • the organic solvent is added in an amount of 5 to 99% of the sum of the masses of the aluminum source, the germanium source, and the luminescent center ion source.
  • the organic solvent is added in an amount of 10 to 50% of the sum of the masses of the aluminum source, the cerium source, and the luminescent center ion source.
  • the invention further provides a YAG fluorescent ceramic obtained by crushing, forming, sintering and post-treating the YAG phosphor prepared by the YAG phosphor and/or the method.
  • the crushing is ball milling and crushing; forming the ball-milled YAG powder, first dry pressing forming, and then cold isostatic pressing to obtain a YAG green body; sintering is performed at a temperature not lower than 1750 ° C for vacuum Sintering; post-treatment is grinding and polishing.
  • the ball mill is broken into: mixing the YAG powder with an appropriate amount of sintering aid, using a high-purity alumina grinding ball, and anhydrous ethanol as a medium for ball milling.
  • the sintering aid is calcium fluoride (CaF 2 ) and tetraethyl silicate (TEOS).
  • the particle diameter of the YAG phosphor obtained after the crushing does not exceed 1 mm.
  • the particle diameter of the YAG phosphor obtained after the crushing does not exceed 0.01 mm.
  • the YAG fluorescent ceramic generates high-quality luminescence (450 nm to 800 nm) under excitation of at least one portion of the light of 320 nm to 480 nm.
  • the YAG fluorescent ceramic emits light in 480-750 nm under light excitation of a 465 nm blue LED chip (simulating high-quality luminescence of sunlight).
  • the sintering temperature is from 1750 to 1800 ° C for a period of from 7 h to 8 h.
  • the linear transmittance of the YAG fluorescent ceramic is 50% to 80%.
  • the method for preparing the YAG fluorescent ceramic comprises:
  • alumina powder, cerium oxide, cerium oxide and chromium trioxide are used as reaction raw materials; among them, the particle size of alumina powder is ⁇ 20 ⁇ m, the purity is ⁇ 99.9%; the particle size of cerium oxide is ⁇ 20 ⁇ m, purity ⁇ 99.9%; the particle size of cerium oxide is ⁇ 20 ⁇ m, the purity is ⁇ 99.9%; the particle size of chromic oxide is ⁇ 15 ⁇ m, and the purity is ⁇ 99.9%.
  • the mixed powder obtained in the step (3) is placed in a crucible, placed in a high-temperature furnace, passed through a flowing N 2 /H 2 mixed gas, and kept at a high temperature to synthesize a high-purity YAG powder;
  • the ultrafine YAG powder obtained in the step (5) is shaped to obtain a YAG ceramic green body
  • the YAG green body is placed in a crucible, placed in a vacuum tungsten wire furnace, kept at a high temperature, and vacuum sintered to obtain a YAG ceramic;
  • the YAG fluorescent ceramic is applied to an LED lamp.
  • the invention aims at the disadvantages of YAG:Ce 3+ fluorescent pink light and green light deficiency in the prior art, and introduces a luminescent center ion M capable of emitting red light and green light in a common YAG:Ce 3+ phosphor, and is made.
  • YAG: Ce 3+ M transparent ceramics as a packaging material for white LEDs not only improves the low color rendering index of the original phosphors, but also avoids the problem of high color temperature, and avoids the long-term use of traditional LED lamps. The problem of light decay.
  • One or more luminescent center ions capable of emitting red/green light are introduced into the YAG phosphor provided by the present application, and the simulated sunlight of the human eye is obtained under the blue light excitation of the blue LED chip. Quality luminescence (480 nm to 750 nm).
  • the YAG fluorescent ceramic packaged LED lamp provided in the present application avoids the problem of light decay caused by thermal decomposition of the conventional LED lamp package silica gel, and at the same time obtains the advantage of simulating high-quality illumination of sunlight.
  • the method provided by the present application is widely available, and the process is simple, and is suitable for large-scale production, and YAG phosphor powder with high purity, good crystallinity and high luminescence quality is prepared, and YAG fluorite is prepared.
  • Photoceramic packaged LEDs produce high-quality luminescence that simulates sunlight.
  • Example 1 is an XRD pattern of P1 in Example 1;
  • Example 2 is an XRD pattern of C1 in Example 2;
  • Embodiment 3 is an emission spectrum of a C1 and a blue LED chip packaged into an LED wick in Embodiment 2;
  • XRD spectrum analysis was carried out by X-ray diffractometer (Miniflex-600, Rigaku Japan); emission spectrum analysis of LEDs was carried out using a spectroscopic analysis system (PMS-80, Hangzhou Yuggling Optoelectronics Co., Ltd.).
  • test methods for color rendering index, color temperature and thermal stability in the examples of the present application are as follows:
  • the color rendering index was measured using the PMS-80 system's own program to calculate the emission spectrum.
  • the color temperature test was performed with a HASS-2000 spectrometer with an integrating sphere (Hangzhou Yuzhou Optoelectronics Co., Ltd.).
  • the mixing ratio of the aluminum source, the lanthanum source, the lanthanum and the M powder is calculated, and the powder is placed in the same container; the appropriate amount of organic is added to the container containing the powder.
  • the mixed powder is thoroughly mixed by mechanical stirring, the mixed slurry is placed in a rotary evaporator to quickly evaporate the organic solvent, dried in a drying oven at 80 ° C for 5 hours, and then sieved;
  • the tube furnace In a flowing N 2 /H 2 atmosphere, the tube furnace is first heated to 1000 ° C at a heating rate of 10 ° C / min, and then heated to a reaction temperature at a heating rate of 5 ° C / min, and naturally cooled after a period of reaction. That is, the high quality YAG phosphor powder is obtained.
  • the phase of the samples P1 to P6 obtained in this example was analyzed by X-ray diffraction. The results showed that the powder samples P1 to P6 were all pure YAG phases (PDF No. 33-40), which typically represented the sample P1 in Fig. 1.
  • PDF No. 33-40 PDF No. 33-40
  • the XRD spectrum of the XRD spectrum of the samples P2 to P6 is close to that of Fig. 1, and is a pure YAG phase.
  • the samples P1 to P6 prepared in Example 1 were sieved through a 150 mesh sieve, and mixed with an appropriate amount of calcium fluoride (CaF 2 ) and tetraethyl silicate (TEOS) composite sintering aid, and a high-purity alumina grinding ball was used.
  • CaF 2 calcium fluoride
  • TEOS tetraethyl silicate
  • the ball-to-material ratio is 10:1, anhydrous ethanol is used as the medium, ball milling for 12 hours, drying to obtain the ball-milled samples P1'-P6' (particle size is 0.001 mm); the ball-milled samples P1'-P6' are respectively Dry pressing at 10 MPa, and isostatic pressing at 200 MPa to obtain YAG green; YAG green is placed in a crucible, placed in a vacuum tungsten furnace, vacuumed, and heated at a heating rate of 6 ° C / min After heat preservation to 1800 ° C for 8 hours, vacuum sintering was performed to obtain YAG ceramics; YAG ceramics were polished and polished to obtain fluorescent ceramics having a diameter of about 10 mm and a thickness of about 1.0 mm, which were respectively referred to as ceramics C1 to C6.
  • the phase analysis of the ceramics C1 to C6 obtained above was carried out.
  • the results show that the ceramic samples C1 ⁇ C6 have no significant changes in the phase of the firing process.
  • the XRD spectrum of sample C1 is shown in Fig. 2.
  • the XRD spectrum results of samples C2 to C6 are close to those of Fig. 2 and are pure YAG phases.
  • the ceramic C1 and the blue LED chip obtained above are packaged into an LED wick C11, and its emission spectrum (Fig. 3) simulates sunlight (480 to 750 nm), and the illumination quality is high, which is good for human eye health.
  • the D1 and blue LED chips obtained above were packaged into LED wicks D11, and the emission spectrum thereof is shown in FIG.
  • the color rendering index and color temperature data of C11 and D11 are shown in Table 2.
  • the samples in the examples improved the problem of low color rendering index and high color temperature of the samples in the comparative examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

本申请公开了一种YAG荧光粉及其制备方法和由其制备的YAG荧光陶瓷,所述YAG荧光粉的发光中心离子包括Ce3+和发射红光/绿光的M;其制备方法包括:将各原料混合,得到的混合物进行高温固相合成,即得。所述YAG荧光粉改善了原有荧光粉显色指数偏低、色温偏高的问题,而且避免了传统LED灯长时间使用的光衰问题;所述YAG荧光粉制备得到的YAG荧光陶瓷封装LED可产生模拟太阳光的高品质发光效果。

Description

一种YAG荧光粉及其制备方法和由其制备的YAG荧光陶瓷 技术领域
本申请涉及一种YAG荧光粉及其制备方法和由其制备的YAG荧光陶瓷,属于荧光粉及荧光陶瓷领域。
背景技术
白光LED作为一种新型的固态光源,与传统的白炽灯和荧光灯等光源相比,它具有环保、节能、高效、响应快等优点,被誉为继白炽灯、荧光灯和高压气体放电灯三大光源之后的第四代绿色光源。在LED光源中,荧光粉的性能决定了LED发光效率、显色指数、色温及使用寿命等技术指标,因此,荧光粉在白光LED中具有举足轻重的地位,受到广泛关注。
YAG(钇铝石榴石,Y3Al5O12)荧光粉是白光LED器件中常用的一种发光材料。其中以Ce3+为发光中心的YAG荧光粉是目前应用最为广泛的材料之一,其发光光谱范围宽,发光效率高,性能稳定。由于YAG:Ce3+发光光谱中仅含黄光成分,缺少红光、绿光成分,导致白光LED的显色指数偏低,色温偏高等问题,不能满足人眼舒适度的要求,人眼经长期进化对太阳光感到舒适,因此模拟太阳光的照明是符合人眼健康的高品质发光。
发明内容
根据本申请的一个方面,提供了一种YAG荧光粉及其制备方法,该YAG荧光粉改善了原有荧光粉显色指数偏低、色温偏高的问题,而且避免了传统LED灯长时间使用的光衰问题。
所述YAG荧光粉的发光中心离子包括Ce3+和M;其中,M发射红光/绿光。
优选地,所述M为稀土金属离子、过渡金属离子中的至少一种。
优选地,所述稀土金属为Pr、Tb、Eu、Dy、Nd、Sm中的至少一种;过渡金属为Cr、Ti、V、Ni、Cu中的至少一种。
进一步优选地,所述稀土金属为Pr或Tb;过渡金属为Cr或Ti。
优选地,所述M为Cr3+、Cr3+和Tb3+、Ti3+、Pr3+和Tb3+、Pr3+或Tb3+
进一步优选地,所述M为摩尔比为1:1的Cr3+和Tb3+或者摩尔比为1:1的Pr3+和Tb3+
优选地,所述YAG荧光粉中Ce与Y的摩尔比为0.002:1~0.06:1,M与Al的摩尔比为0.001:1~0.01:1.
进一步优选地,所述Ce与Y的摩尔比为0.02:1~0.06:1,M与Al的摩尔比为0.001:1~0.005:1。
更进一步优选地,所述Ce与Y的摩尔比为0.02:1、0.03:1或0.06:1;M与Al的摩尔比为0.001:1、0.002:1、0.003:1、0.005:1或0.01:1。
所述YAG荧光粉的制备方法,包括:
将铝源、钇源和发光中心离子源混合于有机溶剂中,干燥,得到混合物;然后在流动还原气氛保护下,将得到的混合物进行高温固相合成,得到YAG荧光粉。
优选地,所述铝源为氧化铝;钇源为氧化钇、碳酸钇中的至少一种;发光中心离子源为发光中心离子对应的氧化物、碳酸盐;所述有机溶剂的沸点在常压下不超过120℃;所述干燥为先在旋转蒸发仪中蒸去有机溶剂,然后移至70℃~90℃的干燥箱中持续干燥4h~6h;所述还原气氛为N2/H2混合气氛;所述高温固相合成的温度为不低于1500℃,时间不少于2h。
优选地,高温固相合成过程中为阶段升温,首先以8~10℃/min的速度升温至900℃~1100℃,然后以4℃/min~5℃/min的速度升温至反应温度。
进一步优选地,高温固相合成过程中为阶段升温,首先以10℃/min的速度升温至1000℃,然后以5℃/min的速度升温至反应温度。
优选地,所述高温固相合成的温度为1500℃~1700℃,时间为2h~6h。
优选地,所述氧化铝的粒径≤20μm,纯度≥99.9%;氧化钇和碳酸钇的粒径≤20μm,纯度≥99.9%;发光中心离子源的粒径≤20μm,纯度≥99.9%。
优选地,所述发光中心离子源的粒径≤15μm,纯度≥99.9%。
优选地,所述铝源为α-氧化铝、β-氧化铝、γ-氧化铝中的至少一种;有机溶剂的沸点在常压下不超过100℃;所述高温固相合成的温度为1500℃~1600℃,时间为4h~5h。
优选地,所述氧化铝为α-氧化铝和γ-氧化铝中的至少一种;有机溶剂 为丙酮、乙醚、石油醚、乙醇中的至少一种。
优选地,所述铝源、钇源和发光中心离子源为粉体。
优选地,所述有机溶剂通过湿法混合,将原料充分混合均匀。
优选地,所述有机溶剂的加入量为铝源、钇源和发光中心离子源的质量之和的5~99%。
进一步优选地,所述有机溶剂的加入量为铝源、钇源和发光中心离子源的质量之和的10~50%。
本申请又提供的一种YAG荧光陶瓷,所述荧光陶瓷是由所述YAG荧光粉和/或所述方法制备得到的YAG荧光粉经过破碎、成型、烧结、后处理得到。
优选地,所述破碎为球磨破碎;成型为将经过球磨的YAG粉体,先干压成型,再冷等静压成型,得到YAG素坯;烧结为在不低于1750℃的温度中进行真空烧结;后处理为研磨抛光。
进一步优选地,所述球磨破碎为:将所述YAG粉体与适量的烧结助剂混合,采用高纯氧化铝磨球,无水乙醇为介质进行球磨。
优选地,所述烧结助剂为氟化钙(CaF2)和硅酸四乙酯(TEOS)。
优选地,所述破碎后得到的YAG荧光粉的粒径不超过1mm。
进一步优选地,所述破碎后得到的YAG荧光粉的粒径不超过0.01mm。
优选地,所述YAG荧光陶瓷在320nm~480nm中的至少一段波光的激发下产生(450nm~800nm)高品质发光。
优选地,所述YAG荧光陶瓷在465nm的蓝光LED芯片的光激发下在480~750nm内发光(模拟太阳光的高品质发光)。
优选地,所述烧结的温度为1750~1800℃,时间为7h~8h。
优选地,所述YAG荧光陶瓷的直线透过率为50%~80%。
优选地,所述YAG荧光陶瓷的制备方法,包括:
(1)配料:以氧化铝粉、氧化钇、氧化铈、三氧化二铬为反应原料;其中,氧化铝粉的粒径≤20μm,纯度≥99.9%;氧化钇的粒径≤20μm,纯度≥99.9%;氧化铈的粒径≤20μm,纯度≥99.9%;三氧化二铬的粒径≤15μm,纯度≥99.9%。
(2)混料:以常压下沸点不高于120℃的低沸点的有机溶剂为媒介, 通过湿法混料使得氧化铝、氧化钇、氧化铈、三氧化二铬充分混合,得到均匀的料浆;
(3)烘干:将步骤(2)所得浆料烘干,过筛,得到混合粉体;
(4)高温合成:将步骤(3)得到的混合粉体装入坩埚中,置于高温炉中,通入流动N2/H2混合气,高温保温,合成高纯YAG粉体;
(5)球磨破碎:将步骤(4)合成的YAG粉体过筛,球磨,加入适量的烧结助剂,烘干得到组分均匀超细YAG粉体;
(6)成型:步骤(5)得到的超细YAG粉体经成型得到YAG陶瓷素坯;
(7)烧结:将YAG素坯装入坩埚中,置于真空钨丝炉中,高温下保温,真空烧结制得YAG陶瓷;
(8)后处理:将步骤(7)得到的YAG陶瓷进行研磨抛光,得到高品质YAG荧光陶瓷。
优选地,所述YAG荧光陶瓷应用于LED灯。
本发明针对现有技术中YAG:Ce3+荧光粉红光、绿光部分不足的缺点,在常见YAG:Ce3+荧光粉引入了能够发红光、绿光的发光中心离子M,并制成YAG:Ce3+,M透明陶瓷作为白光LED的封装材料,不但改善了原有荧光粉显色指数偏低、色温偏高的问题,而且避免了传统LED灯长时间使用,封装硅胶受热分解造成的光衰问题。此外,可以通过调整M的浓度和类型,调控LED发光的色温和光谱等发光参数,从而获得模拟太阳光的高品质发光。
本申请能产生的有益效果包括:
1)本申请所提供的YAG荧光粉中引入了一种或多种能够发射红光/绿光的发光中心离子,在蓝光LED芯片的蓝光激发下获得了对人眼健康的模拟太阳光的高品质发光(480nm~750nm)。
2)本申请所提供的YAG荧光陶瓷封装的LED灯,避免了传统LED灯封装硅胶受热分解造成的光衰问题,同时获得了模拟太阳光的高品质发光的优势。
3)本申请所提供的方法原料广泛易得、工艺简单,适合规模化生产,制备了纯度高、结晶度好、发光品质高的YAG荧光粉体,制备的YAG荧 光陶瓷封装LED可产生模拟太阳光的高品质发光效果。
附图说明
图1为实施例1中P1的XRD图谱;
图2为实施例2中C1的XRD图谱;
图3为实施例2中C1与蓝光LED芯片封装成LED灯芯的发射光谱;
图4为对比例1中D1与蓝光LED芯片封装成LED灯芯的发射光谱。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料、溶剂和助剂均通过商业途径购买,不进行处理。
本申请的实施例中分析方法如下:
采用X射线衍射仪(Miniflex-600,Rigaku Japan)进行XRD谱分析;采用光谱分析系统(PMS-80,杭州远方光电公司)进行LED的发射光谱分析。
本申请的实施例中显色指数、色温和热稳定性的测试方法如下:
显色指数的测试采用PMS-80系统自带程序计算分析发射光谱得。
色温的测试采用HASS-2000光谱仪带积分球(杭州远方光电公司)。
实施例1
YAG荧光粉的制备。
根据拟得到掺入不同Ce和M的摩尔比,计算出铝源、钇源、铈和M粉体的混合比例,将粉体置于同一容器中;向装有粉体的容器中加入适量有机溶剂,通过机械搅拌使得混合粉体充分混合,将混合浆料置于旋转蒸发仪中快速蒸去有机溶剂,在80℃的干燥箱中干燥5小时后过筛;将过筛后混合物装入坩埚,在流动N2/H2氛围中,于管式炉先以10℃/min的升温速率升温至1000℃,再以5℃/min的升温速率升温至反应温度,反应一段时间后自然冷却,即得到所述高品质YAG荧光粉体。
样品编号与原料种类、配比、具体制备条件的关系如表1所示。
表1
Figure PCTCN2017114990-appb-000001
采用X射线衍射方法对本实施例所得样品P1~P6的物相进行分析,结果表明粉体样品P1~P6均为纯YAG相(PDF NO.33-40),典型代表如图1中样品P1的XRD谱,样品P2~P6的XRD谱结果与图1接近,为纯YAG相。
实施例2
YAG荧光陶瓷(透明)的制备。
将实施例1制备的样品P1~P6分别过150目筛后,与适量的氟化钙(CaF2)和硅酸四乙酯(TEOS)复合烧结助剂混合,采用高纯氧化铝磨球,球料比为10:1,无水乙醇为介质,球磨12小时,烘干得到经过球磨的样品P1’~P6’(粒径为0.001mm);将经过球磨的样品P1’~P6’分别先在10MPa下干压成型,再在200MPa下冷等静压成型,得到YAG素坯;将YAG素坯装入坩埚,置于真空钨丝炉中,抽真空,以6℃/min的升温速率升温至1800℃,保温8小时,进行真空烧结,得到YAG陶瓷;对YAG陶瓷进行研磨抛光,得到直径约10mm、厚度约1.0mm的荧光陶瓷,分别记为陶瓷C1~C6。
对上述得到的陶瓷C1~C6进行物相分析。结果表明,陶瓷样品C1~C6在烧制过程中物相无明显变化。典型代表如图2中样品C1的XRD谱,样品C2~C6的XRD谱结果与图2接近,为纯YAG相。
将上述得到的陶瓷C1与蓝光LED芯片封装成LED灯芯C11,其发射光谱(如图3)模拟了太阳光(480~750nm),发光品质高,利于人眼健康。
对比例1
普通YAG荧光陶瓷的制备。
该对比例中YAG荧光粉的制备过程中,不加入M;其中,铝源、钇源和铈的加入量以及制备条件分别与P1~P6相同,得到普通的YAG荧光粉Q1~Q6。
利用上述得到的Q1~Q6,制备普通的YAG荧光陶瓷D1~D6,制备条件与实施例2中相同。
将上述得到的D1与蓝光LED芯片封装成LED灯芯D11,其发射光谱为图4。
C11和D11的显色指数、色温数据如表2所示。
表2
Figure PCTCN2017114990-appb-000002
从表2中的数据可以看出,实施例中样品很好的改善了对比例中样品的显色指数偏低和色温偏高的问题。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (12)

  1. 一种YAG荧光粉,其特征在于,所述YAG荧光粉的发光中心离子包括Ce3+和M;其中,M发射红光/绿光。
  2. 根据权利要求1所述的YAG荧光粉,其特征在于,所述M为稀土金属离子、过渡金属离子中的至少一种。
  3. 根据权利要求2所述的YAG荧光粉,其特征在于,所述稀土金属为Pr、Tb、Eu、Dy、Nd、Sm中的至少一种;过渡金属为Cr、Ti、V、Ni、Cu中的至少一种。
  4. 根据权利要求1至3任一项所述的YAG荧光粉,其特征在于,所述YAG荧光粉中Ce与Y的摩尔比为0.002:1~0.06:1,M与Al的摩尔比为0.001:1~0.01:1。
  5. 根据权利要求4所述的YAG荧光粉,其特征在于,所述Ce与Y的摩尔比为0.02~0.06:1,M与Al的摩尔比为0.001~0.005:1。
  6. 一种如权利要求1至5任一项所述的YAG荧光粉的制备方法,包括:
    将铝源、钇源和发光中心离子源混合于有机溶剂中,干燥,得到混合物;然后在流动还原气氛保护下,将得到的混合物进行高温固相合成,得到YAG荧光粉。
  7. 根据权利要求6所述的YAG荧光粉的制备方法,其特征在于,所述铝源为氧化铝;所述钇源为氧化钇、碳酸钇中的至少一种;发光中心离子源为发光中心离子对应的氧化物、碳酸盐;
    所述有机溶剂的沸点在常压下不超过120℃;
    所述高温固相合成的温度为1500℃~1700℃,时间为2h~6h。
  8. 根据权利要求6所述的YAG荧光粉的制备方法,其特征在于,所述铝源为α-氧化铝、β-氧化铝、γ-氧化铝中的至少一种;
    有机溶剂的沸点在常压下不超过100℃;
    所述高温固相合成的温度为1500℃~1600℃,时间为4h~5h。
  9. 一种YAG荧光陶瓷,其特征在于,所述YAG荧光陶瓷是由权利要求1至5任一项所述的YAG荧光粉和/或权利要求6至8任一项所述方法制备得到的YAG荧光粉经过破碎、成型、烧结、后处理得到。
  10. 根据权利要求9所述的YAG荧光陶瓷,其特征在于,所述YAG荧光陶瓷在320nm~480nm中的至少一段波光的激发下产生450nm~800nm发光;
    所述烧结的温度为1750~1800℃。
  11. 根据权利要求9所述的YAG荧光陶瓷,其特征在于,所述YAG荧光陶瓷在465nm的蓝光LED芯片的光激发下在480nm~750nm内发光。
  12. 根据权利要求11所述的YAG荧光陶瓷,其特征在于,所述YAG荧光陶瓷应用于LED灯。
PCT/CN2017/114990 2017-07-20 2017-12-07 一种yag荧光粉及其制备方法和由其制备的yag荧光陶瓷 WO2019015227A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710595397.7A CN107384398A (zh) 2017-07-20 2017-07-20 一种yag荧光粉及其制备方法和由其制备的yag荧光陶瓷
CN201710595397.7 2017-07-20

Publications (1)

Publication Number Publication Date
WO2019015227A1 true WO2019015227A1 (zh) 2019-01-24

Family

ID=60337309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114990 WO2019015227A1 (zh) 2017-07-20 2017-12-07 一种yag荧光粉及其制备方法和由其制备的yag荧光陶瓷

Country Status (2)

Country Link
CN (1) CN107384398A (zh)
WO (1) WO2019015227A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115044372A (zh) * 2022-06-27 2022-09-13 散裂中子源科学中心 一种粒子束激发用发光材料及其制备方法
CN116835983A (zh) * 2023-07-24 2023-10-03 江苏师范大学 一种激光照明用高性能复合荧光陶瓷及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108610023B (zh) 2016-12-09 2021-07-23 深圳光峰科技股份有限公司 陶瓷复合材料的制备方法、陶瓷复合材料及波长转换器
CN107384398A (zh) * 2017-07-20 2017-11-24 中国科学院福建物质结构研究所 一种yag荧光粉及其制备方法和由其制备的yag荧光陶瓷
CN107840660B (zh) * 2017-12-02 2020-03-31 重庆文理学院 一种半透明曲面yag荧光薄陶瓷的制备方法
CN108530071A (zh) * 2018-05-23 2018-09-14 中国科学院福建物质结构研究所 一种yag荧光陶瓷及其制备方法和应用
CN108947516B (zh) * 2018-08-29 2021-04-06 江苏师范大学 一种(Cu,Ce):YAG透明荧光陶瓷及其制备方法与应用
CN112159209A (zh) * 2020-09-29 2021-01-01 湖州市汉新科技有限公司 高显指高热导荧光陶瓷、制备方法及在激光显示中的应用
CN112266239B (zh) * 2020-10-19 2022-11-25 徐州凹凸光电科技有限公司 一种白光led/ld用高热稳定性高显色指数荧光陶瓷及其制备方法
CN114907852B (zh) * 2022-05-06 2024-03-15 东南大学 ScF3:Cr3+近红外荧光粉少溶剂的制备方法及应用
CN116143498A (zh) * 2022-11-21 2023-05-23 河北光兴半导体技术有限公司 近红外荧光陶瓷材料及其制备方法和近红外发光装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102079975A (zh) * 2009-12-01 2011-06-01 中国科学院理化技术研究所 稀土掺杂钇铝石榴石荧光粉的共沉淀制备方法
CN105154081A (zh) * 2015-10-10 2015-12-16 惠州学院 一种同时掺杂了Ce3+、Pr3+、Cr3+的YAG荧光粉及其制备方法
CN107384398A (zh) * 2017-07-20 2017-11-24 中国科学院福建物质结构研究所 一种yag荧光粉及其制备方法和由其制备的yag荧光陶瓷

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102079975A (zh) * 2009-12-01 2011-06-01 中国科学院理化技术研究所 稀土掺杂钇铝石榴石荧光粉的共沉淀制备方法
CN105154081A (zh) * 2015-10-10 2015-12-16 惠州学院 一种同时掺杂了Ce3+、Pr3+、Cr3+的YAG荧光粉及其制备方法
CN107384398A (zh) * 2017-07-20 2017-11-24 中国科学院福建物质结构研究所 一种yag荧光粉及其制备方法和由其制备的yag荧光陶瓷

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115044372A (zh) * 2022-06-27 2022-09-13 散裂中子源科学中心 一种粒子束激发用发光材料及其制备方法
CN116835983A (zh) * 2023-07-24 2023-10-03 江苏师范大学 一种激光照明用高性能复合荧光陶瓷及其制备方法

Also Published As

Publication number Publication date
CN107384398A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
WO2019015227A1 (zh) 一种yag荧光粉及其制备方法和由其制备的yag荧光陶瓷
WO2019223023A1 (zh) 一种yag荧光陶瓷及其制备方法和应用
JP6101700B2 (ja) Led赤色蛍光体及び該蛍光体を含有する発光デバイス
JP6897387B2 (ja) 焼結蛍光体、発光装置、照明装置、画像表示装置および車両用表示灯
CN111205081B (zh) 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用
CN107384399A (zh) Yag型荧光粉及制备方法、其制备的yag型透明陶瓷荧光体和应用
CN105219387B (zh) 一种锰掺杂的钛酸盐基红色发光材料及其制备方法和应用
WO2019169868A1 (zh) 荧光陶瓷及其制备方法
CN106221695A (zh) 氮化铝基荧光粉的制备方法
CN110642624A (zh) 一种蓝绿光发射的荧光透明陶瓷及其制备方法
Yuan et al. Rapid, convenient and low-energy preparation of spherical rare earth doped YAG phosphors by a laser sintering method
CN101307228B (zh) 氯铝硅酸盐荧光粉及其制备方法
CN111073644A (zh) 近红外荧光粉、制备与应用方法、近红外光源及近红外白光光源制备方法
CN112342021A (zh) 一种近红外宽带发射的发光材料、其制备方法及包含该材料的发光装置
Ji et al. The crystal structure and luminescence properties of a novel green-yellow emitting Ca 1.5 Mg 0.5 Si 1− x Li x O 4− δ: Ce 3+ phosphor with high quantum efficiency and thermal stability
WO2019061004A1 (zh) 荧光增强的硅基氮氧化物青色荧光粉及其制备方法
CN106147759A (zh) 一种白光led用硼酸盐基质荧光粉及其制备方法
TWI432555B (zh) 鋁酸鹽類化合物螢光粉
CN112011332A (zh) 一种远红光荧光粉以及包含该荧光粉的发光装置
CN111187622A (zh) 白光led用单一基质磷酸盐荧光粉及其制备方法
CN106281322A (zh) 一种高效稳定led氮化物红色荧光粉及其制备方法
CN105802619A (zh) 一种蓝光发射的硅酸盐荧光粉及其制备方法和应用
CN107880885B (zh) 石榴石型铝硅酸盐荧光粉及其制备方法和包含其的发光器件
CN107651955A (zh) 一种白光led照明用的复相透明陶瓷及其制备方法
TWI326704B (en) A phosphor and method for making the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917972

Country of ref document: EP

Kind code of ref document: A1