CN107840660B - 一种半透明曲面yag荧光薄陶瓷的制备方法 - Google Patents
一种半透明曲面yag荧光薄陶瓷的制备方法 Download PDFInfo
- Publication number
- CN107840660B CN107840660B CN201711254745.0A CN201711254745A CN107840660B CN 107840660 B CN107840660 B CN 107840660B CN 201711254745 A CN201711254745 A CN 201711254745A CN 107840660 B CN107840660 B CN 107840660B
- Authority
- CN
- China
- Prior art keywords
- yag
- yag fluorescent
- fluorescent powder
- sintering
- binder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/50—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
- C04B35/505—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7715—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3229—Cerium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
- C04B2235/9653—Translucent or transparent ceramics other than alumina
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Luminescent Compositions (AREA)
Abstract
一种半透明曲面YAG荧光薄陶瓷的制备方法,它是以氧化钇Y2O3,氧化铝Al2O3,氧化铈CeO2为原料制得YAG荧光粉,再将YAG荧光粉与粘结剂混合,再注射成型制成素坯,再依次经还原气氛烧结、高温真空烧结、低温退火等步骤即可;所述粘结剂为聚甲醛、高密度聚乙烯、硬脂酸钠、硬脂酸、硬脂酸苯甲酰甲烷、山梨醇、木糖醇、甘油中的一种或多种。本发明可使得荧光陶瓷产品随着注射成型模具的形状多样化成型,透过率高并可根据不同需求达到可控,原料廉价易得,生产工艺简单可行,生产效率高,可操控强,周期短,生产周期约为40h,产品形貌好,光效高,值得市场推广应用。
Description
技术领域
本发明涉及一种荧光陶瓷的制备方法,具体涉及一种YAG荧光薄陶瓷的制备方法。
背景技术
白光LED(light-emitting diode)具有体积小、寿命长、色彩丰富、耐各种恶劣环境、节能环保、光电转换效率高等优点,近几年来,随着以白光LED为主的半导体照明产业的飞速发展,白光LED在固态照明方面显示出了巨大的市场潜力和应用前景,引起了各国政府、公司及科研院所的高度重视,纷纷设立专门的机构推动半导体照明技术的发展。目前,广泛应用于白光LED封装的工艺为传统的点胶工艺和荧光粉涂敷,点胶工艺存在以下弊端:一、环氧树脂的透明度会因为高的芯片温度和各种光线的照射严重下降。当器件在125℃附近或高于此温度时,将发生明显的膨胀或收缩,致使芯片电板和引线受到额外的压力,而发生过度疲劳乃至脱落损坏。二、虽然硅胶具有透光率高,折射率大,热稳定性好,应力小,吸湿性低等特点,但是也随着温度的升高,硅胶内部的热应力加大,导致硅胶的折射率降低,从而影响LED光效和光强分布。另一方面,传统的荧光粉涂敷方式由于无法对荧光粉的涂敷厚度和形状进行精确控制,导致出射光色彩不一致,出现偏蓝光或者偏黄光,并且硅胶散热性差,芯片长期处于较高温度下工作,会造成芯片光效降低和色彩偏移。
发光陶瓷材料不含任何放射性元素,具有吸光快,起始亮度高、余辉时间长、安全实用等特点,透明陶瓷从上世纪60年代起,也已经经过了半个世纪的发展,已先后研制成透明激光陶瓷、透明闪烁陶瓷、透明光学陶瓷等。特别是到1995年,内Ikesue等[Journal ofthe American Ceramic Society,1995.78(4):p.1033-1040.]以高纯氧化亿和氧化铝为原料,经等静压成型,采用高温固相反应方法制备出了高度透明的YAG和Nd:YAG陶瓷并实现了激光输出。在1966年,Brissette等人采用热机械形变的方法制备出了Y2O3透明陶瓷;2006年,闻雷等也在1700℃、10-3pa的真空条件下采用湿化学法烧结4h制备Y2O3纳米粉体,制备了高透过率的Y2O3陶瓷;2007年,A.S.Kaygorodov等采用脉冲CO2激光器作为热源,采用气相沉积法制备了平均粒径为50nm的Y2O3:Nd3+纳米粉体,在1700℃真空气氛的条件下烧结透明陶瓷。根据以上透明陶瓷的研究来看,粉体制备和陶瓷烧结虽取得了一些进展,但是目前陶瓷的发光效率、透过率还不太令人满意,并且产品还存在形貌不易控制,不成块,易形成粉末状形貌的产品等问题亟需解决。
发明内容
本发明的目的在于提供一种具有高亮度、宽发射、半透明曲面YAG荧光薄陶瓷的制备方法。
本发明目的通过如下技术方案实现:
一种半透明曲面YAG荧光薄陶瓷的制备方法,其特征在于,它是以氧化钇Y2O3,氧化铝Al2O3,氧化铈CeO2为原料制得YAG荧光粉,再将YAG荧光粉与粘结剂混合,再注射成型制成素坯,再依次经脱脂、还原气氛烧结、高温真空烧结、低温退火等步骤即可;所述粘结剂为聚甲醛、高密度聚乙烯、硬脂酸钠、硬脂酸、硬脂酸苯甲酰甲烷、山梨醇、木糖醇、甘油中的一种或多种。
进一步,一种半透明曲面YAG荧光薄陶瓷的制备方法,其特征在于,所述氧化钇Y2O3、氧化铝Al2O3、氧化铈CeO2需要满足摩尔比为3:5:0.06,所述粘合剂优选为聚甲醛、高密度聚乙烯、硬脂酸钠、山梨醇组成的复合粘合剂,其质量比为聚甲醛:高密度聚乙烯:硬脂酸钠:山梨醇=8:5:5:8。
一种半透明曲面YAG荧光薄陶瓷的制备方法,其特征在于,它是包括下列步骤:
1.YAG荧光粉的制备:取氧化钇Y2O3,氧化铝Al2O3,氧化铈CeO2,经过研磨混合均匀,然后采用高温固相法,在1600℃还原气氛中烧结制得YAG荧光粉,还原气氛为体积比H2:N2=10:90;
2.素坯的制备:取步骤1中制得的YAG荧光粉,于温度20~25℃环境条件下加入粘合剂混合,所述YAG荧光粉体积用量为60%~65%,粘合剂体积用量为35%~40%,混合均匀后,进行注射成型,取下,即得;所述注射成型中的密炼时间为20~60分钟,密炼温度和注射成型温度为100~200℃。
3.烧结成型:将步骤2中制得的素坯放入真空炉中进行煅烧;所述煅烧是先采用硝酸催化脱脂和热脱脂结合的工艺脱去试样中的粘结剂,所述煅烧温度为100~800℃,煅烧时间2~5h,所用硝酸质量百分浓度为98%,硝酸用量为100~150ml/h,粘结剂去除后继续升温至1400~1650℃还原气氛中烧结2~5h,还原气氛为体积比的H2:Ar=10:90~98,继续升温到1700℃在真空条件下烧结2~15h,取出,再经退火处理即得,所述真空度为1×10-3pa~1×10-4pa。
进一步,一种半透明YAG曲面荧光薄陶瓷制备方法,其特征在于,所述YAG荧光粉的组成为YAG:Ce3+,所述YAG荧光粉的基质为Y3Al5O12。
进一步,一种半透明YAG曲面荧光薄陶瓷制备方法,其特征在于,所述YAG荧光粉的激发峰为460nm±10nm和550nm±10nm,其发射光谱在500~700nm之间宽带发射和425~475nm的蓝光窄带发射,其中的宽带发射中最高峰位于550nm能与蓝光发光匹配。
一种新型照明系统,采用上述制得的半透明YAG曲面荧光薄陶瓷作为发光材料,所述照明系统的发光光源为激光光束或普通LED芯片。
本发明具有如下有益效果:
本发明一种半透明YAG曲面荧光薄陶瓷制备方法,可使得荧光陶瓷产品随着注射成型模具的形状多样化成型,透过率高并可根据不同需求达到可控,原料廉价易得,生产工艺简单可行,生产效率高,可操控强,周期短,生产周期约为40h,产品形貌好,光效高,发光强度高(如图4),产品与传统白光LED荧光粉部分相比较不易老化,耐高温,长期使用无色偏和无光衰弱,产品形貌可控等优点,可实现装饰、照明一体化,是一种实用效能很高的荧光光源材料,本发明发光陶瓷可用于以蓝色激光泵浦的新型光源(原理如图5所示),该照明光源技术能为照明系统带来一些重要技术突破,如:采用光纤传导能源替代以往的电线传导能源,实现照明用能的传导替代,实现无电线照明光源技术,具有很大的市场推广应用前景,值得市场推广应用。
附图说明:
图1是半透明YAG曲面荧光薄陶瓷的光谱图。
图2是半透明YAG曲面荧光薄陶瓷的SEM谱图。
图3是烧结完成的球形半透明YAG曲面荧光薄陶瓷的实物图。
图4是半透明球形YAG曲面荧光薄陶瓷在蓝色激光下的发光效果图。
图5是本发明半透明YAG曲面荧光薄陶瓷用于蓝色激光泵浦的新型照明系统原理图。
图6是半透明YAG曲面荧光薄陶瓷注射成型制备流程图。
具体实施方式
下面通过实施例对本发明进行具体的描述,有必要在此指出的是以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术人员可以根据上述本发明内容对本发明作出一些非本质的改进和调整。
实施例1:制备半透明YAG曲面荧光薄陶瓷
粘合剂的制备:取80g聚甲醛、50g高密度聚乙烯、硬脂酸钠50g、山梨醇8g进行混合,搅拌均匀,即得。
YAG荧光粉的制备:取氧化钇Y2O3,氧化铝Al2O3,氧化铈CeO2按摩尔比为3:5:0.06进行投料,经过研磨混合均匀,然后采用高温固相法,在1600℃还原气氛中烧结制得YAG荧光粉,还原气氛为体积比H2:N2=10:90;
素坯的制备:取上述步骤中制得的YAG荧光粉,于温度20℃环境条件下加入粘合剂混合,所述YAG荧光粉体积用量为60%,粘合剂体积用量为40%,混合均匀后,进行注射成型,取下,即得;所述注射成型中的密炼时间为20分钟,密炼温度和注射成型温度为200℃。
烧结成型:将上述步骤制得的素坯放入真空炉中进行煅烧;所述煅烧是先采用硝酸催化脱脂和热脱脂结合的工艺脱去试样中的粘结剂,煅烧温度为200℃,煅烧时间2h,所用硝酸质量百分浓度为98%,硝酸用量为150ml/h,粘结剂去除后继续升温至1400℃还原气氛中烧结5h,还原气氛为体积比的H2:Ar=10:98,继续升温到1700℃在真空条件下烧结15h,取出,再经退火处理即得,所述真空度为1×10-3pa。
实施例2:制备半透明YAG曲面荧光薄陶瓷
粘合剂的制备:取80g聚甲醛、50g高密度聚乙烯、硬脂酸钠50g、山梨醇8g进行混合,搅拌均匀,即得。
YAG荧光粉的制备:取氧化钇Y2O3,氧化铝Al2O3,氧化铈CeO2按摩尔比为3:5:0.06进行投料,经过研磨混合均匀,然后采用高温固相法,在1600℃还原气氛中烧结制得YAG荧光粉,还原气氛为体积比H2:N2=10:90;
素坯的制备:取上述步骤中制得的YAG荧光粉,于温度25℃环境条件下加入粘合剂混合,所述YAG荧光粉体积用量为65%,粘合剂体积用量为35%,混合均匀后,进行注射成型,取下,即得;所述注射成型中的密炼时间为50分钟,密炼温度和注射成型温度为150℃。
烧结成型:将上述步骤制得的素坯放入真空炉中进行煅烧;所述煅烧是先采用硝酸催化脱脂和热脱脂结合的工艺脱去试样中的粘结剂,煅烧温度为180℃,煅烧时间3h,所用硝酸质量百分浓度为98%,硝酸用量为120ml/h,粘结剂去除后继续升温至1550℃还原气氛中烧结4h,还原气氛为体积比的H2:Ar=10:95,继续升温到1700℃在真空条件下烧结10h,取出,再经退火处理即得,所述真空度为1×10-3pa。
实施例3:制备半透明YAG曲面荧光薄陶瓷
粘合剂的制备:取80g聚甲醛、50g高密度聚乙烯、硬脂酸钠50g、山梨醇8g进行混合,搅拌均匀,即得。
YAG荧光粉的制备:取氧化钇Y2O3,氧化铝Al2O3,氧化铈CeO2按摩尔比为3:5:0.06进行投料,经过研磨混合均匀,然后采用高温固相法,在1600℃还原气氛中烧结制得YAG荧光粉,还原气氛为体积比H2:N2=10:90;
素坯的制备:取上述步骤中制得的YAG荧光粉,于温度25℃环境条件下加入粘合剂混合,所述YAG荧光粉体积用量为62%,粘合剂体积用量为38%,混合均匀后,进行注射成型,取下,即得;所述注射成型中的密炼时间为60分钟,密炼温度和注射成型温度为100℃。
烧结成型:将上述步骤制得的素坯放入真空炉中进行煅烧;所述煅烧是先采用硝酸催化脱脂和热脱脂结合的工艺脱去试样中的粘结剂,煅烧温度为200℃,煅烧时间5h,所用硝酸质量百分浓度为98%,硝酸用量为100ml/h,粘结剂去除后继续升温至1650℃还原气氛中烧结2h,还原气氛为体积比的H2:Ar=10:90,继续升温到1700℃在真空条件下烧结2h,取出,再经退火处理即得,所述真空度为1×10-4pa。
Claims (3)
1.一种半透明曲面YAG荧光薄陶瓷的制备方法,其特征在于,它包括下列步骤:
A.YAG荧光粉的制备:取氧化钇Y2O3,氧化铝Al2O3,氧化铈CeO2,经过研磨混合均匀,然后采用高温固相法,在1600℃还原气氛中烧结制得YAG荧光粉,还原气氛为体积比H2:N2=10:90;所述氧化钇Y2O3、氧化铝Al2O3、氧化铈CeO2需要满足摩尔比为3:5:0.06;
B.素坯的制备:取步骤A中制得的YAG荧光粉,于温度20~25℃环境条件下加入粘合剂混合,所述YAG荧光粉体积用量为60%~65%,粘合剂体积用量为35%~40%,混合均匀后,进行注射成型,取下,即得;所述注射成型中的密炼时间为20~60分钟,密炼温度和注射成型温度为100~200℃;所述粘结剂为聚甲醛、高密度聚乙烯、硬脂酸钠、山梨醇组成的复合粘结剂,其质量比为聚甲醛:高密度聚乙烯:硬脂酸钠:山梨醇=8:5:5:8;
C.烧结成型:将步骤B中制得的素坯放入真空炉中进行煅烧;所述煅烧是先采用硝酸催化脱脂和热脱脂结合的工艺脱去试样中的粘结剂,所述煅烧温度为100~800℃,煅烧时间2~5h,所用硝酸质量百分浓度为98%,硝酸用量为100~150ml/h;粘结剂去除后继续升温至1400~1650℃还原气氛中烧结2~5h,还原气氛为体积比的H2:Ar=10:90~98;继续升温到1700℃在真空条件下烧结2~15h,取出,再经退火处理即得,所述真空度为1×10-3pa~1×10-4pa;所述YAG荧光粉的组成为YAG:Ce3+,所述YAG荧光粉的基质为Y3Al5O12。
2.如权利要求1所述的一种半透明YAG曲面荧光薄陶瓷制备方法,其特征在于:所述YAG荧光粉的激发峰为460nm±10nm和550nm±10nm,其发射光谱在500~700 nm之间宽带发射和425~475 nm的蓝光窄带发射,其中的宽带发射中最高峰位于550nm能与蓝光发光匹配。
3.如权利要求1或2所述方法制得的半透明YAG曲面荧光薄陶瓷作为发光材料,所述照明系统的发光光源为激光光束或普通LED芯片。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711254745.0A CN107840660B (zh) | 2017-12-02 | 2017-12-02 | 一种半透明曲面yag荧光薄陶瓷的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711254745.0A CN107840660B (zh) | 2017-12-02 | 2017-12-02 | 一种半透明曲面yag荧光薄陶瓷的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107840660A CN107840660A (zh) | 2018-03-27 |
CN107840660B true CN107840660B (zh) | 2020-03-31 |
Family
ID=61663449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711254745.0A Expired - Fee Related CN107840660B (zh) | 2017-12-02 | 2017-12-02 | 一种半透明曲面yag荧光薄陶瓷的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107840660B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108689712B (zh) * | 2018-06-26 | 2020-10-09 | 镭米光学科技(宁波)有限公司 | 一体式复合陶瓷荧光体及其制备方法 |
CN112321155B (zh) * | 2020-11-06 | 2022-11-25 | 焦作市吉成磁电有限公司 | 激光照明组件及其制造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101737723B (zh) * | 2009-12-28 | 2012-09-19 | 南京工业大学 | 一种led转光板及其制造方法 |
CN104891967A (zh) * | 2015-05-08 | 2015-09-09 | 苏州工业园区晶冠瓷材料科技有限公司 | 一种用于高光效led的绿光透明陶瓷荧光体的制备方法 |
CN105503188A (zh) * | 2015-12-08 | 2016-04-20 | 中国科学院上海硅酸盐研究所 | 一种led用荧光透明陶瓷薄片的制备方法 |
CN107324801A (zh) * | 2017-06-21 | 2017-11-07 | 东莞华晶粉末冶金有限公司 | 一种陶瓷注射成型材料及其制备方法 |
CN107384398A (zh) * | 2017-07-20 | 2017-11-24 | 中国科学院福建物质结构研究所 | 一种yag荧光粉及其制备方法和由其制备的yag荧光陶瓷 |
-
2017
- 2017-12-02 CN CN201711254745.0A patent/CN107840660B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN107840660A (zh) | 2018-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109467453A (zh) | 一种具有特征微观结构的荧光陶瓷及其制备方法和应用 | |
CN106479500B (zh) | 一种发光玻璃陶瓷及其制法与在led照明器件中的应用 | |
CN109411589B (zh) | 一种led灯丝 | |
CN107602109B (zh) | 一种Cr3+掺杂富铝镁铝尖晶石荧光透明陶瓷及其制备方法 | |
CN106800371B (zh) | 一种高导热系数硼硅酸盐荧光玻璃材料及其制备方法 | |
CN106684216A (zh) | 一种用于白光led的复合透明荧光陶瓷片及其制备方法 | |
CN100565000C (zh) | 利用yag透明陶瓷制备白光led的方法 | |
CN107840660B (zh) | 一种半透明曲面yag荧光薄陶瓷的制备方法 | |
CN106986626B (zh) | 一种羟基磷灰石基荧光陶瓷材料及其制备方法 | |
CN103258938A (zh) | 一种含荧光粉的导热led灯条封装基板的制作方法 | |
CN109704735A (zh) | 一种节能发光性陶瓷及其制备方法 | |
CN106978176A (zh) | 一种黄色荧光粉及制备方法和其在发光器件中的应用 | |
JP5529932B2 (ja) | 蛍光層、その製造方法およびその用途 | |
CN102800795A (zh) | 基于荧光树脂的白光led发光装置 | |
CN108395222B (zh) | 一种反射式激光显示用光转换、散热一体化陶瓷材料及其制备方法 | |
CN104003726A (zh) | 一种用于白光led灯的yag透明陶瓷及其制备方法 | |
CN107978666B (zh) | 一种半透明yag发光薄陶瓷半自由成型的方法 | |
CN208750435U (zh) | 一种具有4π发光板的电源内置型LED灯 | |
CN206003824U (zh) | 双层结构远程的荧光体及远程led器件 | |
CN103000786B (zh) | 白光发光二极管 | |
CN203179939U (zh) | 白光发光二极管 | |
CN107473729A (zh) | 一种半透明yag荧光陶瓷薄片制备方法 | |
CN113024253B (zh) | 用于激光照明的高显色性包边复合结构波长转换陶瓷及其制备方法 | |
CN208570650U (zh) | Led灯丝灯用封装基板、含有该基板的封装结构 | |
CN106058016A (zh) | 双层结构远程的荧光体、制备方法及远程led器件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200331 Termination date: 20211202 |
|
CF01 | Termination of patent right due to non-payment of annual fee |