WO2019061004A1 - 荧光增强的硅基氮氧化物青色荧光粉及其制备方法 - Google Patents

荧光增强的硅基氮氧化物青色荧光粉及其制备方法 Download PDF

Info

Publication number
WO2019061004A1
WO2019061004A1 PCT/CN2017/000619 CN2017000619W WO2019061004A1 WO 2019061004 A1 WO2019061004 A1 WO 2019061004A1 CN 2017000619 W CN2017000619 W CN 2017000619W WO 2019061004 A1 WO2019061004 A1 WO 2019061004A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
based oxynitride
cyan phosphor
silicon
phosphor
Prior art date
Application number
PCT/CN2017/000619
Other languages
English (en)
French (fr)
Inventor
张亮亮
贺帅
张家骅
张霞
郝振东
潘国徽
武华君
Original Assignee
中国科学院长春光学精密机械与物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院长春光学精密机械与物理研究所 filed Critical 中国科学院长春光学精密机械与物理研究所
Publication of WO2019061004A1 publication Critical patent/WO2019061004A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides

Definitions

  • the invention belongs to the technical field of luminescent materials, and in particular relates to a fluorescence-enhanced silicon-based oxynitride cyan phosphor and a preparation method thereof.
  • LED is widely used in various lighting fields due to its long life, high luminous efficiency, energy saving and environmental protection. So far, commercial white LEDs have been mainly realized by combining In-GaN blue LED chips and garnet-structured (YAG:Ce 3+ ) yellow phosphors, but this white light is caused by the lack of red and cyan light components.
  • the LED color rendering index is very low (Ra ⁇ 80), which limits the application of white LEDs.
  • the method of adding blue phosphor to blue phosphor is not perfect, based on its simple preparation and low energy consumption, it is still the main commercialization method on the market.
  • the silicon-based oxynitride is composed of a network of tetrahedrons of Si(O,N) 4 , and the stable tetrahedral structure causes a small Stokes shift, so that the silicon-based oxynitride phosphor has Higher light conversion efficiency and light color stability.
  • BaSi 2 O 2 N 2 :Eu 2+ was used as an oxynitride material, which has attracted attention due to its good thermal stability and chemical stability.
  • BaSi 2 O 2 N 2 :Eu 2+ has a spectral peak position that satisfies the demand for white LEDs for cyan phosphors while being excited by blue light.
  • BaSi 2 O 2 N 2 :Eu 2+ oxynitride material It can be used as a supplement to the blue light in the white LED excited by the blue chip.
  • the main problem of the BaSi 2 O 2 N 2 :Eu 2+ oxynitride material is that its fluorescent brightness is not high, which leads to a decrease in the efficiency of its packaged white LED, which seriously affects the commercialization process.
  • the present invention is based on the above problems, by regulating the composition of the fluorescent material and the variable doping of the ions, using the M, R, A ions to regulate the field strength of the Eu 2+ crystal, changing the 5d level of the Eu 2+ splitting degree and The centroid displacement changes the intensity of the excitation of Eu 2+ so that the blue light excitation of the phosphor near 450 nm to 460 nm is enhanced, so that the intensity of the emitted light is improved.
  • an object of the present invention is to provide a fluorescence-enhanced silicon-based oxynitride cyan phosphor, which realizes cyan light having a wavelength of 490 nm to 500 nm and is excited by changing a light-emitting position under excitation of a blue region of 450 nm to 460 nm.
  • the crystal field intensity changes the energy level of the illuminating center or the energy level of the illuminating center to enhance luminescence.
  • a fluorescently enhanced silicon-based oxynitride cyan phosphor having a chemical formula of: (Ba 1-xyzm M x R y A z )O ⁇ 0.5SiO 2 ⁇ 0.5Si 3 N 4 : mEu 2+ , and emitting light
  • the center is a positive divalent Eu ion;
  • m, x, y and z are all mole fractions, and the range of values is 0.01 ⁇ m ⁇ 0.05, 0 ⁇ x ⁇ 0.2, 0.005 ⁇ y ⁇ 0.2, 0.5 ⁇ y / z ⁇ 1, 0 ⁇ x + y+z ⁇ 0.5;
  • R is a mixture of one or more of La, Y, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, Pr, Mn in any ratio;
  • M is a mixture of one or more of Ca, Sr, and Mg in any ratio
  • A is a mixture of one or more of K, Na, and Li in any ratio
  • the phosphor belongs to the orthorhombic system, and the peaks of the X-ray diffraction peaks of the phase are located at a Bragg angle 2 ⁇ of 12.415°, 24.869°, 25.728°, 31.256°, 33.564°, 37.322°, 40.381°, 51.073. °.
  • the values of x, y, and z are: 0 ⁇ x ⁇ 0.1, 0.005 ⁇ y ⁇ 0.1, 0.5 ⁇ y / z ⁇ 1, 0 ⁇ x + y + z ⁇ 0.3;
  • R is La, Y, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, Pr or Mn; M is Sr; and A is Na or Li.
  • the method for preparing the above-mentioned fluorescence-enhanced silicon-based oxynitride cyan phosphor comprises the following steps:
  • Step 1 According to the stoichiometric ratio of each element in the precursor to be prepared, the solid compound or elemental substance of Ba, Si, Eu, M, R, A elements is weighed, and after mixing uniformly, the obtained mixture is passed at 1100 ° C - 1300 ° C The atmosphere is sintered for 2-6 hours, cooled to room temperature and ground to obtain a precursor (Ba 1-x'-y'-z'-m' M x' R y' A z' ) 2 SiO 4 : m'Eu 2+ , Wherein x', y', z' and m' are all mole fractions, and the range of values is x' ⁇ x, y' ⁇ y, z' ⁇ z, m' ⁇ m;
  • Step 2 Weigh the precursor and Ba, Si, Eu, M, R according to the stoichiometric ratio of (Ba 1-xyzm M x R y A z )O ⁇ 0.5SiO 2 ⁇ 0.5Si 3 N 4 : mEu 2+
  • the solid compound or elemental substance of element A is ground and uniformly mixed, and the obtained mixture powder is placed in a pneumatic furnace, heated to 1000 ° C - 1400 ° C, and sintered in an atmosphere of 0.01-10 MPa for 4-10 h, cooled to room temperature, and ground.
  • a fluorescence-enhanced silicon-based oxynitride cyan phosphor is obtained.
  • Si is added in the form of silicon powder.
  • M is added as at least one of a carbonate, a nitrate and a halide of the M element.
  • R is added as at least one of an oxide or a nitride of the R element.
  • A is added as at least one of carbonate, nitrate and halide of element A, and the excess is 10%-20%.
  • the atmosphere is a nitrogen-hydrogen mixed gas, ammonia gas or high-purity nitrogen gas.
  • the phosphor of the present invention is enhanced cyan fluorescent silicon oxynitride by introducing M, R A and Eu 2+ ion regulation crystal field strength, the degree of changing the energy splitting of 5d and a centroid displacement of Eu 2+ to Eu 2 change + excitation intensity, regular increase emission intensity of the silicon oxynitride green phosphor, and an emission peak in a stable 490nm-500nm, provides an effective material for high-CRI white light the LED;
  • the fluorescence-enhanced silicon-based oxynitride cyan phosphor of the invention can be synthesized by direct nitridation of silicon powder to synthesize silicon-based oxynitride cyan phosphor, which has high reaction activity and simple preparation process, and is advantageous for large-scale continuous production.
  • the fluorescence-enhanced silicon-based oxynitride cyan phosphor of the present invention is added with M, R and A ions in the synthesis process, the phosphor can still maintain the stability of the crystal phase, and the chemical stability and thermal stability of the phosphor Sex has also improved.
  • Example 1 is an XRD diffraction image of a phosphor of Example 1 of the present invention
  • Example 2 is a comparison chart of XRD diffraction spectra of phosphors of Examples 1-4, Example 9, Example 14, and Example 29;
  • Example 3 is an emission spectrum diagram of the phosphor of Comparative Example 1, Example 1 and Example 9 obtained under excitation light of 460 nm;
  • Example 5 is a graph showing emission spectra of phosphors of Example 14, Example 20, Example 21, Example 22, and Example 23 of the present invention.
  • the inventive principle of the present invention is that the luminescence of the BaSi 2 O 2 N 2 :Eu 2+ material is due to the electronic transition of the 4f 7 -4f 6 5d level of Eu 2+ , and the excitation light ranges from near ultraviolet to blue light. range. And the outer 5d electron of Eu 2+ is in a bare state, which makes it extremely susceptible to the lattice environment, mainly reflected in the 5d energy level splitting and centroid displacement.
  • the cavitation of the energy level depends on the size and shape of the coordination polyhedron, that is, it is affected by the crystal field; the position of the centroid is affected by the surrounding environment and the ligand, depending on the nature of the chemical bond and the polarizability of the ligand.
  • the fluorescence-enhanced silicon-based oxynitride cyan phosphor coordinates a matrix material by introducing a rare earth ion, an alkaline earth metal ion having a different radius of Ba ions, an ion of the same family as the Ba ion, and a Mn ion in the matrix material.
  • the lattice environment using the action of doping ions on the crystal field, changing the position of the 5d energy level of the Eu 2+ or the cavitation of the energy level to enhance the luminescence properties of the fluorescent material, while introducing ion compensation and radius compensation to fill the lattice Defects.
  • the excitation intensity of Eu 2+ at 400 nm to 460 nm is enhanced, and the absorption of blue light by the phosphor is increased, thereby enhancing the intensity of the emitted light of the phosphor.
  • the phosphor has a wide excitation range, and the range of the excitation spectrum covers ultraviolet, near-ultraviolet, blue, and partial green light, especially in the blue range of 450 nm to 460 nm, and is compatible with a commercial blue chip.
  • the phosphor of the present invention has a positive divalent Eu ion as a luminescent center, an emission peak of a broad band, a half-height width of the emission peak between 30 nm and 35 nm, and a peak position of 490 nm to 500 nm;
  • (Ba 1-xyzm M x R y A z )O ⁇ 0.5SiO 2 ⁇ 0.5Si 3 N 4 is a matrix material in which M, R and A ions regulate the crystal field and/or electronegativity of the matrix,
  • the center of luminescence that is, by introducing a charge or a R and A ion having a different radius from the Ba ion in the matrix, the Ba ion is changed, and the crest size of the 5d level of the luminescent center Eu 2+ or the centroid position of the 5d level is changed, so that Eu
  • the excitation intensity of 2+ at 400nm-460nm is enhanced, the absorption of blue light by the phosphor is increased, and the problem of mismatch with the blue LED chip is overcome.
  • the R and A ions are mutually compensated for charge, reducing charge mismatch and radius mismatch. Defects; provide radius compensation by introducing M elements with different radii than Ba ions but belonging to the second main group, further reducing defects in the matrix material due to the introduction of R and A elements; even if M, R and A ions have luminescence behavior
  • the absorption or emission during the luminescence process has no effect on the performance of the material as a cyan phosphor; the introduced M, R and A ions do not significantly change the emission peak position of the cyan phosphor, which affects the peak shift range. Not more than ⁇ 5nm FWHM values with no movement of the emission peak than ⁇ 2nm.
  • R is La, Y, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, Pr or Mn
  • M is Sr
  • A is Na or Li
  • the phosphor of the present invention belongs to the orthorhombic system, and the first eight strong peaks of the X-ray diffraction peak intensity of the phase are located at Bragg angles (2 ⁇ ) 12.415°, 24.869°, 25.728°, 31.256°, 33.564°, 37.322°, 40.381°. 51.073°, due to the influence of the instrument or sample preparation, the peak position moves in the range of 2° as a whole.
  • the preparation method of the fluorescence-enhanced silicon-based oxynitride cyan phosphor of the invention comprises the following steps:
  • Step 1 According to the stoichiometric ratio of the precursor to be prepared, weigh the solid compound of Ba and/or the Ba element, the solid compound of Si and/or the elemental substance of Si, the solid compound of Eu and/or the simple substance of Eu, the solid compound of M and / or M elemental, R solid compound and / or R elemental, A solid compound and / or A elemental, the above materials are mixed uniformly, the resulting mixture is sintered at 1100 ° C -1300 ° C atmosphere for 2-6h, cooling After room temperature, grinding to obtain a precursor (Ba 1-x'-y'-z'-m' M x' R y' A z' ) 2 SiO 4 : m'Eu 2+ , where x', y', z' and m' are mole fractions, and the range of values is x' ⁇ x, y' ⁇ y, z' ⁇ z, m' ⁇ m;
  • the mixing ratio is not particularly limited;
  • the sintering atmosphere is not limited, and may be a reducing atmosphere and a non-reducing atmosphere, and a reducing gas. Preferably it is CO or H 2 ;
  • Step 2 Weigh the precursor according to the stoichiometric ratio of (Ba 1-xyzm M x R y A z )O ⁇ 0.5SiO 2 ⁇ 0.5Si 3 N 4 , and the solid compound of Ba and/or the substance of Ba, Si Compound and/or element Si, solid compound of Eu and/or elemental substance of Eu, solid compound of M and/or elemental substance of M, solid compound of R and/or elemental substance of R, solid compound containing A and/or element A, grinding and mixing After homogenization, the mixture powder is obtained, and the mixture powder is placed in a gas pressure furnace, heated to 1000 ° C - 1400 ° C and sintered in an atmosphere of 0.01-10 MPa for 4-10 h, cooled to room temperature, and ground to obtain fluorescence-enhanced silicon.
  • Base oxynitride cyan phosphor Base oxynitride cyan phosphor;
  • the precursor is a substance that must be weighed, which element is added to Ba, Si, Eu, M, R, A, which element is not added, and the added amount of the added substance is determined by the stoichiometric ratio of the phosphor to be prepared.
  • the determination method is generally used in the art in combination with the actually prepared precursor; when the Ba, Si, Eu, M, R, and A elements are added as a solid compound and a simple mixture, the mixing ratio is not particularly limited; the atmosphere includes but It is not limited to nitrogen-hydrogen mixed gas, high-purity nitrogen gas, and ammonia gas.
  • Si is preferably added with silicon powder to increase reactivity; M is added with at least one of carbonate, nitrate, and halide of M element; and R is oxide or nitride of R element. At least one of them is added; A is at least one of a carbonate, a nitrate, and a halide of the A element. As added.
  • the method for preparing the fluorescence-enhanced silicon-based oxynitride cyan phosphor provided by the present invention is a high-temperature solid phase sintering method, but the method for synthesizing the phosphor of the present invention is not limited thereto, such as a sol-gel method, a combustion method,
  • the phosphor can be synthesized by a wet chemical method such as an emulsion method.
  • analytically pure BaCO 3 analytically pure Eu 2 O 3 , spectrally pure SiO 2 , analytically pure Si powder, spectrally pure Li 2 CO 3 , spectrally pure Na 2 CO 3 , and spectrally pure K 2 CO 3 were used as raw materials.
  • Step 1 Weigh BaCO 3 , SiO 2 and Eu 2 O 3 according to the stoichiometric ratio of chemical formula Ba 1.92 SiO 4 : 0.08Eu 2+ , and after mixing uniformly, the obtained mixture is sintered under a reducing atmosphere of hydrogen at 1200 ° C for 6 h, and cooled to After room temperature, grinding, to obtain a precursor Ba 1.92 SiO 4 : 0.08Eu 2+ ;
  • Step 2 According to the stoichiometric ratio of BaSi 2 O 2 N 2 :Eu 2+ , 0.5226 g of the precursor and 0.1264 g of the Si powder were weighed, and the weighed raw materials were placed in a mortar and ground to obtain a uniform mixture powder. The mixture powder was placed in a pneumatic furnace, heated to 1400 ° C, and sintered under a high-purity nitrogen gas atmosphere of 1 MPa for 6 hours, cooled to room temperature, and then ground to obtain a BaSi 2 O 2 N 2 :Eu 2+ phosphor.
  • Step 2 According to the stoichiometric ratio of (Ba 0.94 Dy 0.01 Li 0.01 )O ⁇ 0.5SiO 2 ⁇ 0.5Si 3 N 4 : 0.04Eu 2+ , 0.5171 g of precursor, 0.1264 g of Si powder, and Eu 2 O 3 0.0013 were weighed.
  • the weighed material was ground and mixed in a mortar to obtain a uniform mixture powder, the mixture powder was placed in a gas pressure furnace, and the temperature was raised to 1400 ° C And sintering in a high-purity nitrogen gas atmosphere of 1 MPa for 6 h, cooling to room temperature, and grinding to obtain a silicon-based oxynitride cyan phosphor (Ba 0.94 Dy 0.01 Li 0.01 ) O ⁇ 0.5 SiO 2 ⁇ 0.5Si 3 N 4 : 0.04 Eu 2+ .
  • the preparation process was the same as in Example 1.
  • the chemical formula of the cyan phosphor of each example, the chemical formula of the precursor, the raw materials used, and the preparation process conditions are shown in Table 1.
  • the peak and the full width at half maximum of the phosphor were stabilized at around 495 nm and 31 nm, respectively, in the process of changing the content of the doping ions.
  • FIG. 1 is an XRD diffraction spectrum of the phosphor of Example 1.
  • the fluorescence-enhanced silicon of the present invention The base oxynitride cyan phosphor is an orthorhombic system.
  • Example 2 is a comparison chart of XRD diffraction spectra of the phosphors of Examples 1-4, Example 9, Example 14, and Example 29, showing that the crystal structure of the M, R, and A ions is not changed during the transformation;
  • the main peak of the diffraction image of the phosphor of the example was the same as in Example 1, and the XRD diffraction image as a whole was shifted within the range of 2°.
  • Fig. 3 shows the emission spectra of the phosphors of Comparative Example 1, Example 1 and Example 9, and it can be seen from Fig. 3 that the luminescence intensity of the phosphor of the present invention is markedly increased under the excitation of 460 nm of blue light.
  • Example 4 shows the excitation spectra of the phosphors of Comparative Example 1, Example 1 and Example 9.
  • the excitation light of the phosphor in the range of 400 nm to 460 nm has a significant warpage enhancement. It is indicated that the addition of ions has an effect on the 5d energy level of the luminescence center Eu 2+ , causing the crystal field of the luminescence field to be cleft and accompanied by a change in the centroid displacement, so that the excitation in the blue light range is enhanced, and the corresponding emission light is also corresponding. Enhanced.
  • Example 5 is an emission spectrum of phosphors of Example 14, Example 20, Example 21, Example 22, and Example 23. It can be seen from FIG. 5 that the doping of Sr ions can increase the fluorescence intensity of the phosphor, wherein the luminescence intensity of Example 20 is the highest, which can be explained by the fact that the addition of Sr ions further reduces the defects caused by Dy and Li ions entering the crystal lattice. Therefore, the luminance of the phosphor is increased. When a large amount of Sr ions are added, the lattice distortion increases the defects and hinders the performance of the light emission.

Abstract

荧光增强的硅基氮氧化物青色荧光粉及其制备方法,属于发光材料技术领域。解决了现有技术中BaSi2O2N2:Eu2+氮氧化物荧光亮度不高的问题。本发明的荧光粉,化学式为(Bal-x-y-z-mMxRyAz)O·0.5SiO2·0.5Si3N4:mEu2+,0.01≤m≤0.05,0≤x≤0.2,0.005≤y≤0.2,0.5≤y/z≤1,0<x+y+z<0.5,R为La、Y、Tb、Dy、Ho、Er、Tm、Yb、Lu、Bi、Pr、Mn中的至少一种;M为Ca、Sr、Mg中的至少一种;A为K、Na、Li中的至少一种。该荧光粉荧光强度高,且在蓝光激发下激发峰值稳定在490-500nm内。

Description

荧光增强的硅基氮氧化物青色荧光粉及其制备方法 技术领域
本发明属于发光材料技术领域,具体涉及一种荧光增强的硅基氮氧化物青色荧光粉及其制备方法。
背景技术
LED由于其寿命长、发光效率高、节能、环保等特点,广泛应用于多种照明领域。迄今为止,商业化的白光LED主要通过In-GaN蓝光LED芯片和具有石榴石结构的(YAG∶Ce3+)黄色荧光粉相互结合而实现,但是由于缺乏红光和青色光成分导致这种白光LED显色指数很低(Ra<80),限制了白光LED的应用领域。虽然蓝光芯片加黄色荧光粉的方法还不够完善,但基于其制备简单,能耗小等特点,仍然是目前市场上的主要商业化方式。
目前,能够被蓝光激发且发射红光的荧光材料的研究已经取得一定的进展,例如国际申请06/301595,Eu2+激活的CaAlSiN3材料目前已经广泛的应用于封装LED,效果明显。大大提高了白光LED的性能,扩大了其应用范围,但是在显色指数较高的领域依旧存在问题。因此,青色光的缺失成为现阶段的重要问题,青色光的补充,能够明显提高LED的显色性,降低色温,尤其在健康照明领域和高品质显示器等领域有极大应用需求。在显示效果的提高及自然光谱的模拟方面有着重要的意义。
硅基氮氧化物是由Si(O、N)4的四面体构成的网状结构组成,这种稳定的四面体结构引起的斯托克斯位移较小,使硅基氮氧化物荧光粉具有较高的光转换效率和光色稳定性。起初,BaSi2O2N2∶Eu2+被作为氮氧化物材料,由于拥有较好的热稳定性和化学稳定性的性能被人们所关注。在随后的研究中发现,BaSi2O2N2∶Eu2+具有的光谱峰位恰好能够满足白光LED对青色荧光粉的需求,同时又能够被蓝光激发。恰好可以作为蓝光芯片激发的白光LED中青光的补充。而BaSi2O2N2∶Eu2+氮氧化物材料存在的主要问题在于其荧光亮度不高,导致其封装的白光LED效率降低,严重影响了其商业化的进程。
因此,本发明基于上述问题,通过对荧光材料组分的调控以及离子的变量掺杂,利用M,R,A离子调控Eu2+晶体场强度,改变Eu2+的5d能级劈裂程度以及质心位移来改变Eu2+的激发的强度,使得该荧光粉在450nm-460nm附近的蓝光激发增强,从而发射光的强度得到提高。
发明内容
有鉴于此,本发明的目的是提供一种荧光增强的硅基氮氧化物青色荧光粉,实现在450nm-460nm的蓝光区域激发下,发射波长为490nm-500nm的青色光并通过改变发光格位的晶体场强度,改变发光中心的能级劈裂或者发光中心的能级位置来增强发光。
荧光增强的硅基氮氧化物青色荧光粉,该青色荧光粉的化学式为:(Ba1-x-y-z-mMxRyAz)O·0.5SiO2·0.5Si3N4∶mEu2+,且发光中心为正二价的Eu离子;
式中,m、x、y和z均为摩尔分数,取值范围分别为0.01≤m≤0.05,0≤x≤0.2,0.005≤y≤0.2,0.5≤y/z≤1,0<x+y+z<0.5;
R为La、Y、Tb、Dy、Ho、Er、Tm、Yb、Lu、Bi、Pr、Mn中的一种或多种按任意比例的混合;
M为Ca、Sr、Mg中一种或多种按任意比例的混合;
A为K、Na、Li中一种或多种按任意比例的混合;
该荧光粉属于正交晶系,其物相的X射线衍射峰强度前八强峰位于的布拉格角2θ为12.415°、24.869°、25.728°、31.256°、33.564°、37.322°、40.381°、51.073°。
优选的是,所述x、y和z的取值范围为:0≤x≤0.1,0.005≤y≤0.1,0.5≤y/z≤1,0<x+y+z<0.3;
更优选的是,所述x、y和z的取值范围为:0≤x≤0.03,0.005≤y≤0.05,y=z。
优选的是,所述R为La、Y、Tb、Dy、Ho、Er、Tm、Yb、Lu、Bi、Pr或Mn;M为Sr;A为Na或Li。
上述荧光增强的硅基氮氧化物青色荧光粉的制备方法,包括以下步骤:
步骤一、按待制备前驱体中各元素的化学计量比称取Ba、Si、Eu、M、R、 A元素的固体化合物或单质,混合均匀后,得到的混合物在1100℃-1300℃下通气氛烧结2-6h,冷却至室温后研磨,得到前驱体(Ba1-x′-y′-z′-m′Mx′Ry′Az′)2SiO4∶m′Eu2+,其中,x′、y′、z′和m′均为摩尔分数,取值范围为x′≤x,y′≤y,z′≤z,m′≤m;
步骤二、按照(Ba1-x-y-z-mMxRyAz)O·0.5SiO2·0.5Si3N4∶mEu2+的化学计量比称取前驱体和Ba、Si、Eu、M、R、A元素的固体化合物或单质,研磨混合均匀,得到的混合物粉体放置于气压炉中,升温到1000℃-1400℃,并在0.01-10MPa的气氛下烧结4-10h,冷却至室温,研磨,得到荧光增强的硅基氮氧化物青色荧光粉。
优选的是,所述步骤二中,Si以硅粉形式添加。
优选的是,所述步骤一和步骤二中,M以M元素的碳酸盐、硝酸盐、卤化物中的至少一种作为添加。
优选的是,所述步骤一和步骤二中,R以R元素的氧化物或氮化物中的至少一种作为添加。
优选的是,所述步骤一和步骤二中,A以A元素的碳酸盐、硝酸盐、卤化物中的至少一种作为添加,并过量10%-20%。
优选的是,所述步骤一和步骤二中,气氛为氮氢混合气、氨气或高纯氮气。
与现有技术相比,本发明的有益效果为:
1、本发明的荧光增强的硅基氮氧化物青色荧光粉通过引入M、R和A离子调控Eu2+晶体场强度,改变Eu2+的5d能级劈裂程度以及质心位移来改变Eu2+的激发的强度,有规律的提高了硅基氮氧化物青色荧光粉的发光强度,并将发射峰稳定在490nm-500nm,为高显色指数的白光LED提供了有效的材料;
2、本发明的荧光增强的硅基氮氧化物青色荧光粉可以采用硅粉直接氮化法合成硅基氮氧化物青色荧光粉,反应活性高,制备过程简单,利于大规模连续生产。
3、本发明的荧光增强的硅基氮氧化物青色荧光粉在合成过程中添加M、R和A离子后,该荧光粉仍能够保持晶相的稳定,同时荧光粉的化学稳定性和热稳定性也有所提高。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例1的荧光粉的XRD衍射图像;
图2为实施例1-4、实施例9、实施例14和实施例29的荧光粉的XRD衍射谱对比图;
图3为本发明对比例1、实施例1和实施例9的荧光粉在460nm的激发光下得到的发射光谱图;
图4为本发明对比例1、实施例1和实施例9的荧光粉的激发光谱图;
图5为本发明实施例14、实施例20、实施例21、实施例22、实施例23的荧光粉的发射光谱图。
具体实施方式
为了进一步了解本发明,下面结合具体实施方式对本发明的优选实施方案进行描述,但是应当理解,这些描述只是为了进一步说明本发明的特征和优点而不是对本发明专利要求的限制。
本发明的发明原理为:BaSi2O2N2∶Eu2+材料的发光是由于Eu2+的4f7-4f65d能级的电子跃迁产生的,激发光的范围涵盖了近紫外到蓝光范围。并且Eu2+的外层5d电子处于裸露状态,这就导致其极易受晶格环境的影响,主要体现在5d能级的劈裂及质心位移这两个方面。能级的劈裂取决于配位多面体的大小与形状,即受晶体场的影响;质心的位置受周围环境和配位体的影响,取决于化学键的性质和配位体的极化率。本发明提供的荧光增强的硅基氮氧化物青色荧光粉通过在基质材料中引入与Ba离子半径不同的稀土离子、碱土金属离子、与Ba离子同主族的离子以及Mn离子等来协调基质材料的晶格环境,利用掺杂离子对晶体场的作用,改变Eu2+的5d能级质心位置或者能级的劈裂来增强荧光材料的发光性能,同时引入离子补偿和半径补偿填补晶格中的缺陷。使得Eu2+在 400nm-460nm的激发强度得到增强,增加荧光粉对蓝光的吸收,从而增强荧光粉的发射光强度。
本发明的荧光增强的硅基氮氧化物青色荧光粉,化学式为:(Ba1-x-y-z-mMxRyAz)O·0.5SiO2·0.5Si3N4∶mEu2+;式中,m、x、y和z均为摩尔分数,取值范围分别为:0.01≤m≤0.05,0≤x≤0.2,0.005≤y≤0.2,0.5≤y/z≤1,0<x+y+z<0.5;优选为,0≤x≤0.1,0.005≤y≤0.1,0.5≤y/z≤1,0<x+y+z<0.3;更优选为,0≤x≤0.03,0.005≤y≤0.05,y=z;R为La、Y、Tb、Dy、Ho、Er、Tm、Yb、Lu、Bi、Pr、Mn中的一种或多种按任意比例的混合;M为Ca、Sr、Mg中一种或多种按任意比例的混合;A为K、Na、Li中一种或多种按任意比例的混合。该荧光粉具有较宽的激发范围,激发光谱的范围涵盖紫外、近紫外、蓝光及部分绿光,尤其在450nm-460nm的蓝光范围具有有效的激发,与商业化的蓝光芯片匹配。
本发明的荧光粉,以正二价Eu离子为发光中心,其发射峰为宽带,发射峰的半高宽在30nm-35nm之间,峰值位置位于490nm-500nm;
(Ba1-x-y-z-mMxRyAz)O·0.5SiO2·0.5Si3N4为基质材料,其中,M、R和A离子对基质的晶体场和/或电负性进行调控,不作为发光中心,即通过引入电荷或者半径与基质中的Ba离子不同的R和A离子取代Ba离子,改变发光中心Eu2+的5d能级的劈裂大小或者5d能级的质心位置,使得Eu2+在400nm-460nm的激发强度得到增强,增加荧光粉对蓝光的吸收,克服其与蓝光LED芯片不匹配的问题;同时R和A离子互为电荷补偿,减少电荷失配及半径失配导致的缺陷;通过引入半径与Ba离子不同但属于第二主族的M元素来提供半径补偿,进一步减少基质材料中由于R与A元素的引入导致的缺陷;即便M、R和A离子有发光行为,但是其发光过程中的吸收或发射,对材料作为青色荧光粉的性能没有影响;引入的M、R和A离子也不会明显改变青色荧光粉的发射峰位置,其会影响的峰值移动范围不超过±5nm,半高宽的值随发射峰峰值的移动不超过±2nm。当R为La、Y、Tb、Dy、Ho、Er、Tm、Yb、Lu、Bi、Pr或Mn,M为Sr,A为Na或Li进行组合时,效果更佳;当A为Na时,效果最好。
本发明的荧光粉属于正交晶系,其物相的X射线衍射峰强度前八强峰位于布拉格角(2θ)12.415°、24.869°、25.728°、31.256°、33.564°、37.322°、40.381°、51.073°,由于仪器或者制样等影响,其峰位整体在2°范围内移动。
本发明的荧光增强的硅基氮氧化物青色荧光粉的制备方法,包括以下步骤:
步骤一、按照待制备的前驱体的化学计量比称取Ba的固体化合物和/或Ba单质、Si的固体化合物和/或Si单质、Eu的固体化合物和/或Eu单质、M的固体化合物和/或M单质、R的固体化合物和/或R单质、A的固体化合物和/或A单质,将上述材料混合均匀后,得到的混合物在1100℃-1300℃下通气氛烧结2-6h,冷却至室温后,研磨,得到前驱体(Ba1-x′-y′-z′-m′Mx′Ry′Az′)2SiO4∶m′Eu2+,式中,x′、y′、z′和m′为摩尔分数,取值范围为x′≤x,y′≤y,z′≤z,m′≤m;
步骤一中,当Ba、Si、Eu、M、R、A元素采用固体化合物和单质混合物作为添加时,混合配比没有特殊限制;烧结气氛没有限制,可以为还原气氛和非还原气氛,还原气体优选为CO或H2
步骤二、按照(Ba1-x-y-z-mMxRyAz)O·0.5SiO2·0.5Si3N4的化学计量比称取前驱体,及Ba的固体化合物和/或Ba单质、Si的固体化合物和/或Si单质、Eu的固体化合物和/或Eu单质、M的固体化合物和/或M单质、R的固体化合物和/或R单质、含A的固体化合物和/或A单质,研磨混合均匀后,得到混合物粉体,将混合物粉体放置于气压炉中,升温到1000℃-1400℃并在0.01-10MPa的气氛下烧结4-10h,冷却至室温后,研磨,得到荧光增强的硅基氮氧化物青色荧光粉;
步骤二中,前驱体为必须称取物质,Ba、Si、Eu、M、R、A中添加哪种元素、不添加哪种元素以及添加物质的添加量由待制备的荧光粉的化学计量比结合实际制备的前驱体确定,该确定方法为本领域常用方法;当Ba、Si、Eu、M、R、A元素采用固体化合物和单质混合物作为添加时,混合配比没有特殊限制;气氛包括但不限于氮氢混合气、高纯氮气、氨气。
本发明中,Si优选以硅粉作为添加,能够增加反应活性;M以M元素的碳酸盐、硝酸盐、卤化物中的至少一种作为添加;R以R元素的氧化物或氮化物中的至少一种作为添加;A以A元素的碳酸盐、硝酸盐、卤化物中的至少一种 作为添加。
本发明上述提供的荧光增强的硅基氮氧化物青色荧光粉的制备方法为高温固相烧结法,但是本发明的荧光粉的合成方法并不局限于此,如溶胶凝胶法、燃烧法、乳液法等湿化学法均可合成该荧光粉。
下面结合附图和具体的实施例对本发明进行详细说明。
实施例中用分析纯BaCO3、分析纯Eu2O3、光谱纯SiO2、分析纯Si粉、光谱纯Li2CO3、光谱纯Na2CO3、光谱纯K2CO3作原料,制备本发明各实施例荧光粉,其余原料均为分析纯。
对比例1
BaSi2O2N2∶Eu2+的制备:
步骤一、按照化学式Ba1.92SiO4∶0.08Eu2+的化学计量比称取BaCO3、SiO2和Eu2O3,混合均匀后,得到的混合物在1200℃还原气氛氢气下烧结6h,冷却至室温后,研磨,得到前驱体Ba1.92SiO4∶0.08Eu2+
步骤二、按照BaSi2O2N2∶Eu2+的化学计量比称取前驱体0.5226g,Si粉0.1264g,将称取的原料放入研钵中研磨混合,得到均匀的混合物粉体,将混合物粉体放置于气压炉中,升温至1400℃并在1MPa的高纯氮气压氛围下烧结6h,冷却至室温后,研磨,得到BaSi2O2N2∶Eu2+荧光粉。
实施例1
(Ba0.94Dy0.01Li0.01)O·0.5SiO2·0.5Si3N4∶0.04Eu2+的制备:
步骤一、按照化学式Ba1.92SiO4∶0.08Eu2+的化学计量比称取BaCO3、SiO2和Eu2O3,将上述材料混合均匀后,得到的混合物在1200℃还原气氛氢气下烧结6h,冷却至室温后研磨,得到前驱体Ba1.92SiO4∶0.08Eu2+
步骤二、按照(Ba0.94Dy0.01Li0.01)O·0.5SiO2·0.5Si3N4∶0.04Eu2+的化学计量比,称取前驱体0.5171g、Si粉0.1264g、Eu2O3 0.0013g、Li2CO3 0.0011g、Dy2O3 0.0056g,将称取的材料放入研钵中研磨混合,得到均匀的混合物粉体,将混合物粉体放置于气压炉中,升温至1400℃并在1MPa的高纯氮气压氛围下烧结6h,冷却至室温后,研磨,得到硅基氮氧化物青色荧光粉(Ba0.94Dy0.01Li0.01)O·0.5SiO2·0.5Si3N4∶ 0.04Eu2+
实施例2-39
制备过程与实施例1相同,各实施例的青色荧光粉的化学式、前驱体的化学式、采用的原料、制备工艺条件如表1所示。
对实施例2-39制备的荧光粉进行检测,其发射峰峰值及半高宽值也如表1所示。
表1 实施例2-39的青色荧光粉的化学式、前驱体的化学式、采用的原料、制备工艺条件
Figure PCTCN2017000619-appb-000001
Figure PCTCN2017000619-appb-000002
Figure PCTCN2017000619-appb-000003
Figure PCTCN2017000619-appb-000004
从表1可以看出,在改变掺杂离子的含量的过程中该荧光粉的峰值和半高宽分别稳定在495nm和31nm附近。
对实施例1-39的荧光增强的硅基氮氧化物青色荧光粉进行XRD分析,图1为实施例1的荧光粉的XRD衍射谱,从图1可以看出,本发明的荧光增强的硅基氮氧化物青色荧光粉,为正交晶系。
图2为实施例1-4、实施例9、实施例14和实施例29的荧光粉的XRD衍射谱对比图,可见在变换M、R和A离子的过程中其晶体结构未发生改变;其他实施例的荧光粉的衍射图像的主要峰值与实施例1相同,其XRD衍射图像整体在2°范围内移动。
图3给出对比例1、实施例1和实施例9的荧光粉的发射光谱,从图3可以看出,在蓝光460nm的激发下,本发明的荧光粉的发光强度明显增加。
图4给出对比例1、实施例1和实施例9的荧光粉的激发光谱,从图4可以看出,荧光粉在400nm-460nm范围内的激发光有明显的翘曲增强。说明由于添加离子对发光中心Eu2+的5d能级产生了影响,导致其所处的晶体场发生劈裂并 且伴有质心位移的改变,从而使得在蓝光范围的激发增强,同样对应的发射光增强。
图5为实施例14、实施例20、实施例21、实施例22、实施例23的荧光粉的发射光谱图。从图5可以看出,掺杂Sr离子可以提高该荧光粉的荧光强度,其中实施例20的发光强度最高,可以解释为Sr离子的加入进一步减少了Dy、Li离子进入晶格所产生的缺陷,从而使荧光粉的发光亮度提升,当加入大量Sr离子后,晶格畸变增加缺陷增多,阻碍了其发光的性能。
显然,上述实施例仅仅是为了清楚的说明所作的举例,在上述说明的基础上还可以做出其他形式的变动或变化。因此,由此所引申出的显而易见的变化或变动仍属于本发明的保护范围之内。

Claims (10)

  1. 荧光增强的硅基氮氧化物青色荧光粉,其特征在于,
    该青色荧光粉的化学式为:(Ba1-x-y-z-mMxRyAz)O·0.5SiO2·0.5Si3N4:mEu2+,且发光中心为正二价的Eu离子;
    式中,m、x、y和z均为摩尔分数,取值范围分别为0.01≤m≤0.05,0≤x≤0.2,0.005≤y≤0.2,0.5≤y/z≤1,0<x+y+z<0.5;
    R为La、Y、Tb、Dy、Ho、Er、Tm、Yb、Lu、Bi、Pr、Mn中的一种或多种按任意比例的混合;
    M为Ca、Sr、Mg中一种或多种按任意比例的混合;
    A为K、Na、Li中一种或多种按任意比例的混合;
    该荧光粉属于正交晶系,其物相的X射线衍射峰强度前八强峰位于的布拉格角2θ为12.415°、24.869°、25.728°、31.256°、33.564°、37.322°、40.381°、51.073°。
  2. 根据权利要求1所述的荧光增强的硅基氮氧化物青色荧光粉,其特征在于,所述x、y和z的取值范围为:0≤x≤0.1,0.005≤y≤0.1,0.5≤y/z≤1,0<x+y+z<0.3。
  3. 根据权利要求2所述的荧光增强的硅基氮氧化物青色荧光粉,其特征在于,所述x、y和z的取值范围为:0≤x≤0.03,0.005≤y≤0.05,y=z。
  4. 根据权利要求1所述的荧光增强的硅基氮氧化物青色荧光粉,其特征在于,所述R为La、Y、Tb、Dy、Ho、Er、Tm、Yb、Lu、Bi、Pr或者Mn;M为Sr;A为Na或者Li。
  5. 权利要求1-4任何一项所述的荧光增强的硅基氮氧化物青色荧光粉的制备方法,其特征在于,包括以下步骤:
    步骤一、按待制备前驱体中各元素的化学计量比称取Ba、Si、Eu、M、R、A元素的固体化合物或单质,混合均匀后,得到的混合物在1100℃-1300℃下通气氛烧结2-6h,冷却至室温后研磨,得到前驱体(Ba1-x′-y′-z′-m′Mx′Ry′Az′)2SiO4:m′Eu2+,其中,x′、y′、z′和m′均为摩尔分数,取值范围为x′≤x,y′≤y,z′≤z,m′≤m;
    步骤二、按照(Ba1-x-y-z-mMxRyAz)O·0.5SiO2·0.5Si3N4:mEu2+的化学计量比称取前驱体和Ba、Si、Eu、M、R、A元素的固体化合物或单质,研磨混合均匀, 得到的混合物粉体放置于气压炉中,升温到1000℃-1400℃,并在0.01-10MPa的气氛下烧结4-10h,冷却至室温,研磨,得到荧光增强的硅基氮氧化物青色荧光粉。
  6. 根据权利要求5所述的荧光增强的硅基氮氧化物青色荧光粉的制备方法,其特征在于,所述步骤二中,Si以硅粉形式添加。
  7. 根据权利要求5所述的荧光增强的硅基氮氧化物青色荧光粉的制备方法,其特征在于,所述步骤一和步骤二中,M以M元素的碳酸盐、硝酸盐、卤化物中的至少一种作为添加。
  8. 根据权利要求5所述的荧光增强的硅基氮氧化物青色荧光粉的方法,其特征在于,所述步骤一和步骤二中,R以R元素的氧化物或氮化物中的至少一种作为添加。
  9. 根据权利要求5所述的荧光增强的硅基氮氧化物青色荧光粉的制备方法,其特征在于,所述步骤一和步骤二中,A以A元素的碳酸盐、硝酸盐、卤化物中的至少一种作为添加,并过量10%-20%。
  10. 根据权利要求5所述的荧光增强的硅基氮氧化物青色荧光粉的制备方法,其特征在于,所述步骤一和步骤二中,气氛为氮氢混合气、氨气或高纯氮气。
PCT/CN2017/000619 2017-09-29 2017-10-13 荧光增强的硅基氮氧化物青色荧光粉及其制备方法 WO2019061004A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710903406.4A CN107722982A (zh) 2017-09-29 2017-09-29 荧光增强的硅基氮氧化物青色荧光粉及其制备方法
CN201710903406.4 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019061004A1 true WO2019061004A1 (zh) 2019-04-04

Family

ID=61208988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000619 WO2019061004A1 (zh) 2017-09-29 2017-10-13 荧光增强的硅基氮氧化物青色荧光粉及其制备方法

Country Status (2)

Country Link
CN (1) CN107722982A (zh)
WO (1) WO2019061004A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108753276B (zh) * 2018-06-19 2021-01-19 南昌大学 一种白光led用氮氧化物青绿色荧光材料及其制备方法
CN113249126B (zh) * 2021-05-20 2023-08-15 中国科学院长春光学精密机械与物理研究所 一种提高低温陷阱数量的青色力致发光材料及其制备方法和应用
CN113249119B (zh) * 2021-05-20 2022-06-21 中国科学院长春光学精密机械与物理研究所 一种抑制荧光粉中Eu3+数量的方法
CN114525131B (zh) * 2022-03-01 2023-07-21 中国计量大学 一种高热稳定性蓝绿色荧光粉及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045267A (zh) * 2011-10-17 2013-04-17 北京有色金属研究总院 一种氮化物荧光粉、其制备方法及含该荧光粉的发光装置
CN103881706A (zh) * 2012-12-21 2014-06-25 有研稀土新材料股份有限公司 一种氮氧化物荧光粉、其制备方法及含该荧光粉的发光装置
CN105038772A (zh) * 2015-07-10 2015-11-11 烟台同立高科新材料股份有限公司 一种硅基氮氧化物led荧光粉及其制备方法
CN105368451A (zh) * 2015-11-26 2016-03-02 华东师范大学 一种荧光增强的氧氮化物发光材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618261A (zh) * 2012-03-09 2012-08-01 东华大学 一种CaSi2O2N2:Eu2+, Dy3+, Li+荧光粉及其制备方法
CN103834390A (zh) * 2012-11-23 2014-06-04 石胜利 一种荧光材料晶体及其制备方法
CN103834389A (zh) * 2012-11-23 2014-06-04 石胜利 一种荧光材料晶体及其制备方法
CN103834387A (zh) * 2012-11-23 2014-06-04 石胜利 一种荧光材料晶体及其制备方法
CN106479498A (zh) * 2016-10-13 2017-03-08 河北利福光电技术有限公司 一种氮氧化物蓝色荧光粉及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045267A (zh) * 2011-10-17 2013-04-17 北京有色金属研究总院 一种氮化物荧光粉、其制备方法及含该荧光粉的发光装置
CN103881706A (zh) * 2012-12-21 2014-06-25 有研稀土新材料股份有限公司 一种氮氧化物荧光粉、其制备方法及含该荧光粉的发光装置
CN105038772A (zh) * 2015-07-10 2015-11-11 烟台同立高科新材料股份有限公司 一种硅基氮氧化物led荧光粉及其制备方法
CN105368451A (zh) * 2015-11-26 2016-03-02 华东师范大学 一种荧光增强的氧氮化物发光材料及其制备方法

Also Published As

Publication number Publication date
CN107722982A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
Bandi et al. Luminescence and energy transfer of Eu3+ or/and Dy3+ co-doped in Sr3AlO4F phosphors with NUV excitation for WLEDs
US9153754B2 (en) Light emitting diode (LED) red fluorescent material and lighting device having the same
US9671086B2 (en) Oxynitride orange-red fluorescent substance and light-emitting film or sheet and light-emitting device comprising the same
CN112094647B (zh) 一种窄带发射氮氧化物红色荧光粉及其制备方法
WO2019061004A1 (zh) 荧光增强的硅基氮氧化物青色荧光粉及其制备方法
CN112457848B (zh) 一种窄带蓝光荧光粉及其制备方法与应用
CN102433114B (zh) 一种荧光粉及其制备方法和应用
Han et al. Alkali metal ion substitution induced luminescence enhancement of NaLaMgWO6: Eu3+ red phosphor for white light-emitting diodes
CN111575004B (zh) 一种Eu2+掺杂的蓝-绿光可控的荧光粉及其制备方法和应用
Li et al. Atmospheric pressure preparation of red-emitting CaAlSiN3: Eu2+ phosphors with variable fluxes and their photoluminescence properties
CN101880528B (zh) 一种单一基质白光荧光粉及其制造方法和所制发光器件
CN113249125B (zh) Ce3+掺杂的硅酸盐基绿色荧光粉及其制备方法和应用
Zhao et al. Synthesis and luminescence properties of color-tunable Ce, Mn co-doped LuAG transparent ceramics by sintering under atmospheric pressure
JP2012062472A (ja) 緑色蛍光体およびその製造方法、ならびにそれを含む白色発光素子
CN103045267B (zh) 一种氮化物荧光粉、其制备方法及含该荧光粉的发光装置
CN109370580B (zh) 一种铋离子激活的钛铝酸盐荧光粉及其制备方法与应用
EP3015530B1 (en) Fluorescent powder and light emitting apparatus comprising same
CN111607397B (zh) 一种Eu2+-Eu3+共掺杂硅酸盐荧光粉及其制备方法和应用
CN110240900B (zh) 一种Eu2+掺杂的窄带绿色发光材料、制备方法及照明与显示光源
TWI432555B (zh) 鋁酸鹽類化合物螢光粉
CN112625683A (zh) 一种锗酸盐型红色荧光粉及制备方法
CN111187622A (zh) 白光led用单一基质磷酸盐荧光粉及其制备方法
CN114735662B (zh) La4Ba3Li3Si9N19晶体及荧光粉和制备方法
CN115305088A (zh) 基于石榴石结构衍生的荧光粉材料及其制备方法和应用
CN107880885B (zh) 石榴石型铝硅酸盐荧光粉及其制备方法和包含其的发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926859

Country of ref document: EP

Kind code of ref document: A1