CN1262000C - 自对齐磁性包层位线及其制造方法 - Google Patents

自对齐磁性包层位线及其制造方法 Download PDF

Info

Publication number
CN1262000C
CN1262000C CNB018204589A CN01820458A CN1262000C CN 1262000 C CN1262000 C CN 1262000C CN B018204589 A CNB018204589 A CN B018204589A CN 01820458 A CN01820458 A CN 01820458A CN 1262000 C CN1262000 C CN 1262000C
Authority
CN
China
Prior art keywords
magnetic
layer
groove
memory cell
cladding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018204589A
Other languages
English (en)
Other versions
CN1481583A (zh
Inventor
罗伯特·E·琼斯
卡罗尔·C·巴伦
埃里克·D·卢科斯基
布拉德利·M·梅尔尼奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP USA Inc
Original Assignee
Freescale Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Freescale Semiconductor Inc filed Critical Freescale Semiconductor Inc
Publication of CN1481583A publication Critical patent/CN1481583A/zh
Application granted granted Critical
Publication of CN1262000C publication Critical patent/CN1262000C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

在此公开一种用于磁性存储单元(240a)的自对齐磁性包层位线结构(274)及其形成方法,其中自对齐磁性包层位线结构(274)在一个的沟槽(258)内延伸,并且包括导电材料(264)、磁性包层侧壁(262)以及磁性包层盖(252)。磁性包层侧壁(262)至少部分地包围导电材料(264),并且磁性包层盖(252)实质性地在该沟槽内相对于该沟槽的顶部凹陷。

Description

自对齐磁性包层位线及其制造方法
技术领域
本发明一般涉及一种磁性随机存取存储(MRAM)器件及其制造方法,特别涉及一种MRAM器件写入线结构。
背景技术
磁性随机存取存储器(MRAM)技术发展目前正在由半导体工业用作为一种非易失性存储器。MRAM还可以被用作为动态随机存取存储器(DRAM)或静态随机存取存储器(SRAM)的替换。在此有两种主要的MRAM:MTJ(磁性隧道结)和GMR(大磁阻)MRAM。图1示出包括与多个数字线14相交的一个写入线或位线12的MTJ阵列10的一部分或一个存储位。在每个交叉写入线和数字线处,磁性隧道层夹层16形成一个存储单元,其中存储一″位″信息。磁性隧道层夹层16包括在固定磁化矢量的一个磁性层20与可以切换该磁化矢量一个磁性层22之间的非磁性材料18;在此将称为固定层12和自由或切换层22。
由于各种原因增加在存储阵列中的存储单元的封装密度是有利的。有多种因素影响封装密度;它们包括存储单元尺寸以及相关存储单元电路,即,位线和数字线,以及在存储单元中的任何半导体切换和存取器件的相对尺寸。例如,参见图2,其中示出现有的MRAM写入线结构100的一部分的截面示图。(写入线结构100可以是在MTJ阵列中的位线结构或GMR阵列中的字线结构)。写入线结构100包括由磁性包层部件103和106所包围的导电材料104。磁性包层部件103可以使用高导磁率材料所形成,该材料具有在被施加和除去磁场之后被磁化和退磁的图2中所示的截面的平面中的磁畴。当通过导电材料104施加电流时,与磁性包层部件103和106相关的相应磁场有助于增加幅度,并且更加有效的把与写入线结构100相关的整个磁场聚焦到它的相关存储单元(未示出)上。另外,磁性包层部件103和106还有助于为与其他写入线相关的存储单元屏蔽位线的磁场,从而保护它们的编程状态信息。
用于形成写入线结构100的现有方法包括首先在电介质层101中蚀刻一个沟槽102。接着,高导磁率材料,例如镍铁(NiFe)合金的层面,被淀积在电介质层101和沟槽102中。然后,高导磁率材料的层面被各向异性蚀刻,以形成与沟槽侧壁相邻的磁性包层侧壁(衬垫)部件103。在形成磁性包层侧壁103之后,例如铜或铝的导电材料104被淀积覆盖电介质层103并且在沟槽开孔102中。然后,包含在开孔102中的导电材料104的部分被使用化学机械抛光(CMP)处理而除去。最后,高导磁率材料的覆盖层被淀积、构图、并且蚀刻以形成磁性包层覆盖部件106。
由于包层的存在而增强存储单元的位置处的磁场幅度,因此在导电材料104中需要较少的电流。由于磁性包层覆盖部件106被形成为覆盖沟槽102,因此它必须被构图和蚀刻为具有宽度Z,其大于沟槽102宽度X。另外,磁性包层覆盖部件106与沟槽102的对齐是关键的。不能正确地把磁性包层覆盖部件106与沟槽102相对齐可能导致由位线所产生的不良磁场,或者使相邻电路不良地暴露在不被控制的磁场下。因此,磁性包层覆盖部件106的尺寸Z必须另外被增加,以考虑到任何对齐容差。因此,减小磁性包层覆盖部件106的尺寸Z可以相应地增加MRAM阵列的封装密度的可伸缩性。
附图说明
本发明通过举例说明并且不限于该附图,在图中相同的参考标号表示相同的元件,其中:
图1包括现有的MTJ MRAM阵列的一部分的截面视图;
图2包括现有的MRAM写入线结构的截面视图;
图3-6包括示出MRAM阵列的一部分的制造的截面视图;以及
图7-14包括示出由图6中所示的MRAM阵列中的存储单元所用的位线结构的形成的本发明的一个实施例的截面视图;以及
图15包括示出GMR MRAM阵列的一部分的截面视图。
本领域的普通技术人员应当知道在图中的元件是用于简单和清楚地说明并且不一定按照比例来描绘。例如,在图中的一些元件的尺寸可能相对于其它元件被夸大,以有助于对本发明的实施例的理解。
具体实施方式
下面进一步参照附图详细讨论本发明的一个实施例。
根据本发明的一个实施例,公开一种磁性随机存取存储器(MRAM)及其形成方法。图3-13示出制造包括磁性存储单元、由于在读写操作中把电连接切换到该磁性存储单元的晶体管、以及相关磁性存储单元数字线和位线电路的MRAM器件的截面视图。
参见图3,其中示出包括一个部分制造的MRAM器件201的截面视图。MRAM器件201包括一个单晶基片200(或其他适当的基片,例如绝缘体上硅(SOI)等等)、隔离区202以及开关晶体管207a和207b。根据一个非限制性实施例,该单晶基片200是一个P型硅基片,并且该开关晶体管207a和207b是NMOS晶体管。开关晶体管207a和207b进一步包括N型掺杂区208和210、栅电介质层204以及栅电极层206。栅电极层206的还形成与本实施例中的数字线相平行的字线(未在图3中示出)。NMOS开关晶体管207a和207b使用常规的CMOS工艺而制造。其它电路元件,例如输入/输出电路、数据/地址解码器、以及比较器,可以包含在该MRAM器件中,但是为了简化它们被从图中省略。
在一个实施例中,在形成开关晶体管207a和207b之后,N型掺杂区208和210的表面以及开关晶体管207a和207b的表面被硅化以形成区域212a、212b、214和215。在存储单元的读取操作中,一个正电压的被施加到开关晶体管207a和207b的漏区210。这通过使一条读出线沿着特定的阵列行与所有晶体管对的漏区相接触而实现。该读出线与本实施例中的字线和数字线相平行。
在一个实施例中,读出线可以通过把相邻的漏区210和相关的硅化物区214相连接而形成。另外,这些漏区可以由一个分离的导体而连接。在图3中所示的实施例中,读出线是该导电部件216,其形成为覆盖硅化区214。根据一个实施例,该导电部件216是适用常规的镶嵌工艺所形成的一层钨。导电部件216通过晶体管207a和207b把一个读出电流提供到随后形成的磁性存储单元。在下文中将描述关于形成该磁性存储单元的说明。在另一个实施例中,该读出线可以由一系列接触窗口以及到达各个漏区210的接触插塞所形成,并且由一个分离的导体线所形成。
然后形成一个层间电介质(ILD)层218,覆盖该基片表面(请注意,在本文中,“基片表面”包括半导体器件基片以及到所讨论的处理步骤时在半导体器件基片上制造的所有层面)。因此,基片表面被称为该基片的当前最上表面,包括在其上面形成的所有结构)。在一个实施例中,ILD层218是二氧化硅,其中包含通过使用四乙氧基甲硅烷(TEOS)作为气体源采用化学汽相淀积(CVD)而淀积的材料。另外,ILD层218可以是氮化硅层、磷硅酸玻璃(PSG)层、磷硅酸玻璃(BPSG)层、旋涂玻璃(SOG)层、氮氧化硅(SiON)层、聚酰亚胺层、低k绝缘材料层(在本说明书中,一个低k绝缘材料或者低介电常数材料为具有约小于3.6的介电常数的任何材料)等等。另外,可以通过物理汽相淀积(PVD)、PVD和CVD的组合等等而执行淀积。
把读出电流传导到随后形成的磁性存储单元的导电插塞220a和220b然后形成在ILD层218中,并且互连到硅化区212a和212b。根据一个实施例,除了磁性存储单元、数字线、位线(如果有的话)之外,在形成导电插塞220a和220b之前,MRAM器件的大多数电路元件被被集成到基片200上。在一个实施例中,导电插塞220a和220b包括粘合/阻挡层(未示出)以及插塞填充材料。粘合/阻挡层一般为一种难熔金属,例如钨(W)、钛(Ti)、钽(Ta)等等、难熔金属氮化物、或者难熔金属或它们的氮化物的组合。插塞填充材料一般为钨、铝、铜等等导电材料。粘合/阻挡层和插塞填充材料可以使用PVD、CVD、电镀工艺及其组合等而淀积。在淀积粘合/阻挡层以及插塞填充材料之后,该基片表面被抛光,以除去部份粘合/阻挡层和不包含在该开孔内的插塞填充材料,以形成图3中所示的导电插塞220a和220b。
在形成导电插塞220a和220b之后,确定用于随后形成磁性存储单元的数字线。如图4中所示,阻蚀层222和ILD层224形成在基片表面上。在一个实施例中,阻蚀层222为CVID淀积氮化硅的一个层面。另外,例如氮化铝或氧化铝这样的其它材料以及例如PVD或CVD和PVD的组合这样的其他淀积方法可以用于形成阻蚀层222。ILD层224可以使用上文所述的任何材料或工艺来形成ILD层21。根据一个实施例,ILD层224是具有在大约400-600纳米范围内的厚度的CVD的二氧化硅的层面。
接着,使用常规的工艺对该基片表面进行构图和蚀刻以ILD层224中确定沟槽225和接触窗开口227。然后,该蚀刻工艺使用蚀刻阻蚀层222的一种化学物质,从而接触窗开口227延伸到导电插塞220a和220b。在另一个实施例中,如果终点(endpoint)工艺或适当控制的定时蚀刻工艺被用于形成该沟槽和接触窗开口,则可能不需要使用阻蚀层222。
接着,淀积一个相对较薄的高导磁率材料的层面226,覆盖该基片表面。一般来说,高导磁率材料的层面226包括合金材料,例如镍铁(NiFe)。根据一个实施例,高导磁率材料226的层面的厚度在大约5-40纳米的范围内。为了提高磁场聚焦层226的粘合性,或提供防止高导磁率材料扩散到ILD层224的阻挡层,氮化钛层、钽、氮化钽或者其他这样的材料可以形成在高导磁率材料层226和ILD层224之间。
然后,导电层228淀积在高导磁率材料层226上,以充分地填充沟槽225和接触窗开口227,并且形成如图3中所示的结构。根据一个实施例,导电层228是一个铜层,其中包括PVD淀积种子层(未示出)和电镀覆盖层。另外,导电层228可以使用例如铝、铝合金、铜合金或其组合这样的其它材料所形成。为了提高该高导磁率材料层226的粘合性,或者提供一个阻挡层保护,氮化钛、钽、氮化钽等等的层面可以形成在磁场聚焦层226和导电层228之间。
现在转到图4,在淀积导电层228之后,不包含在沟槽开孔225和接触窗开口227中的导电材料228和磁场聚焦层226的部分被除去,并且基片表面被使用常规的CMP工艺而平面化。在这一点,基本上形成数字线229a和229b。数字线229a和229b被高导磁率层226的剩余部分部分地包围。高导磁率层226的剩余部分有助于减小数字线的磁通量泄漏,并且把数字线的数字线磁场聚焦到随后形成的覆盖该磁性存储单元上。
电介质层230然后淀积在该基片表面上,包括数字线229a和229b。一种CMP工艺可以用于对电介质层230的上表面进行平面化。该电介质层230被构图和蚀刻,以形成如图4中所示的开孔301和302。接着,一个导电层232淀积在电介质层230上。电介质层230使得数字线229a和229b与导电层232电绝缘。根据一个实施例,导电层232的厚度大约在40-60纳米的范围内。在淀积导电层232之后,该基片表面被使用一种抛光工艺而平面化。
接着,磁性存储单元层234、236和238被淀积在导电层232上。该存储单元层234、236和238可以使用PVD、离子束淀积(IBD)、CVD及其组合等等而淀积。底部磁性存储单元层234和顶部磁性存储层利用磁性材料,例如NiFe、CoFe、NiFeCo等等。中间存储单元层236一般包括薄的隧道绝缘材料,例如在MTJ阵列中的氧化铝(Al2O3)以及在GMR阵列中的铜(Cu)。在一个实施例中,存储单元层236通过首先在底部磁性层234上淀积一个铝膜,然后使用例如RF氧等离子体这样的氧化源对该铝膜进行氧化。另外,氧化铝被淀积在层面234上随后接着在加热或不加热的的氧气环境中进行随后处理,以保证铝的完全氧化。磁性存储单元层234和238的厚度一般在大约2-20纳米的范围内。存储单元层236的厚度一般在大约1-3纳米的范围内。磁性存储单元层234和238必须形成该固定层和其他自由层。在该优选实施例中,底部磁性存储层234是固定层,并且是顶部磁性层238是自由层。固定和自由层的形成可以按照现有技术中所用的材料和结构而进行。固定层可以使用具有比自由层的矫顽磁场更高的矫顽磁场的磁性材料。另外,例如厚度或长宽比这样的系几何影响可以被用于使得自由层比固定层更加容易切换。例如非磁性或反铁磁层这样的多叠层夹在两个具有相反的磁化矢量并且可以用于形成固定层的磁性层之间。多叠层(例如CoFe与NiFe的叠层)可以被用于形成自由层。
现在转到图5,基片表面被构图和蚀刻以从存储单元层234、236和238的剩余部分形成存储单元240a和240b,以及从导电层232的剩余部分形成导电部件242a和242b。导电部件242a通过导电插塞220a和导电部件228a把存储单元240a与晶体管207a互连,并且导电部件242b通过导电插塞220b和导电部件228b把磁性存储单元240b与晶体管207b互连。
现在转到图6的,根据一个实施例,在形成存储单元240a和240b以及导电部件242a和242b之后,ILD层244淀积在该基片表面上。在该优选实施例中,CMP工艺将被用于对ILD层224进行平面化。然后阻蚀层246被淀积覆盖该ILD层244。然后,覆盖存储单元240a和240b的阻蚀层246和ILD层244的一部分被除去以确定暴露部分存储单元240a和240b的开口。接着,导电层248被淀积在该基片表面和开口内。然后,导电层被抛光以形成导电部件248a和248b,如图6中所示。本领域的普通技术人员将认识到直到这一点为止,制造MRAM器件的工艺是本领域的普通技术人员所公知的。尽管已经描述MTJ器件的处理,但是本领域的普通其人员将认识到直到这一点为止本发明的GMR器件也可以由现有的方法来制造。
现在转到图6和7-13,将进一步详细描述本发明的一个实施例。图6包括基本上完成的MRAM器件501的一个截面视图。该截面基本上沿着与位线结构274的长度相同的轴延伸,并且示出电连接到磁性存储单元240a和240b的位线结构274。该位线结构274是一个磁性包层位线结构,其中包括导电材料250和自对齐磁性包覆顶层252。覆盖该位线结构274的是钝化层254。
图7-13包括示出用于制造本发明的一个实施例的一系列处理步骤的放大截面视图,其中包括用于图6中所示的MRAM器件501的自对齐磁性包层位线。图7-13中所示的示意图包括通过电介质层230的截面以及如图6中的箭头7-7所示的导电部件248a。
现在参见图7,在形成导电部件248a和248b之后(248b未在图7示出),ILD层256形成在阻蚀层上(由于截面的方向,ILD层256未在图6示出)。在一个实施例中,ILD层256是通过CVD淀积的基于二氧化硅的材料,并且使用TEOS作为来源气体而形成。另外,ILD层256可以是氮化硅的层面、PSG的层面、BPSG的层面、SOG层面、SiON的层面、聚酰亚胺层、低k绝缘材料层、上述材料的组合等等。
在淀积ILD层256之后,该基片表面被构图和蚀刻以形成在ILD层256中的沟槽258。如图7中所示,沟槽258基本上与导电部件248a和存储单元240a相对齐。尽管未在图7中示出,该构思后在一个方向上延伸,使得它还基本上与如图6中所示相关于位线结构274的其他磁性存储单元相对齐。
接着,高导磁率材料层260的层面被淀积在ILD层256上和沟槽258内,如图8中所示。根据一个实施例,高导磁率材料层260包括NiFe。另外,该高导磁率材料层可以是NiFeCo的层面。一般来说,使用PVD来淀积高导磁率材料层260。另外,CVD、电镀、无电镀等等还可以被用于形成高导磁率材料层260。一般来说,高导磁率材料层260的厚度大约在5-40纳米的范围内。本领域的普通技术人员认识到随着技术的发展,该沟槽的尺寸可能会缩小。如果该沟槽缩小,则高导磁率材料层260的厚度可能不在5-40纳米的范围内。如果是这种情况,应当选择不填充该沟槽的其他厚度。
接着,高导磁率层260备各向异性蚀刻,以形成与沟槽开孔258的侧壁相邻的衬垫(磁性包层侧壁部件)262,如图9中所示。在一个实施例中,高导磁率层260的层面被使用等离子体蚀刻处理化学物质而蚀刻。该等离子体蚀刻可以包括氯(Cl)化学物质、或者氩(Ar)基化学物质、或者这种化学物质的组合。这种蚀刻化学物质还可以包括其他气体,例如氮(N)令。另外,离子研磨处理可以被用于形成该衬垫。
在形成磁性包层侧壁部件262之后,导电材料层250被淀积覆盖基片表面和沟槽开孔258内部,如图9中所示。导电材料或层面250可以使用PVD、CVD、电镀、无电镀、或者其组合来淀积。一般来说,导电材料250具有基本上填充该沟槽的厚度。本领域的普通技术人员将认识到该厚度要求将作为该沟槽的深度和宽度尺寸的一个函数而变化。根据一个实施例,导电材料250为一个铜层。另外,导电材料250可以包括其他材料,例如铜合金、铝、或者包括铝铜的铝合金。接着,不包含在沟槽258内部的导电材料250部分被除去,并且通过CMP对该基片表面进行平面化,以形成图10中所示的结构。
参见图11,在沟槽258内部的部分导电材料250被除去以形成在沟槽258的最下方部分之下延伸的凹陷(即,ILD层256的上表面部分)。根据一个具体实施例,使用反应离子蚀刻工艺或湿法蚀刻工艺按照比除去ILD层256的速度大3-5倍的速度除去导电材料250。该蚀刻不应当按照比蚀刻导电层250的蚀刻速度更快的速度除去磁性包层侧壁部件262。一般来说,凹陷268的量由将要说明的随后形成的自对齐磁性包层覆盖部件的厚度需求所决定。或者,本发明人已经认识到导电材料250的去除和凹陷还可以通过使用单个旋转蚀刻处理来使在该沟槽中的导电材料平整和凹陷。现在参见图12,在使该沟槽凹陷之后,包括例如NiFe这样的高导磁率材料的覆盖层270被淀积覆盖该基片表面并且在该沟槽258的凹陷268中。或者,例如NiFeCo或CoFe这样具有高导磁率的其它材料可以用于形成磁性包层材料或覆盖层270。一般来说,磁性覆盖材料270具有足以填充沟槽258内的凹陷268的厚度。根据一个实施例,使用PVD处理来淀积磁性包层材料270。另外,磁性包层材料270可以使用离子束淀积(IBD)、CVD、电镀及其组合等等来形成。
现在参见图13,在淀积磁性包层材料270之后,包含在沟槽开孔258的凹陷268中的磁性包层材料270的一些部分被除去,以形成在凹陷268内的磁性包覆顶层252。这些部分的除去例如可以通过使用CMP工艺或本领域普通技术人员所公知的平面化蚀刻处理来实现。自对齐磁性包覆顶层252或磁性包层材料270实质性地相对于沟槽258或电介质层256的顶部凹陷。在一个实施例中,实质性地凹陷被量化意味着至少90%在该沟槽中。电介质阻挡层或钝化层254然后通过CVD、PVD、这两者的组合等等淀积在该基片表面上。一般来说,电介质阻挡层为氮化硅(SiNX)。另外,该电介质阻挡层可以用硅、氧、氮以及这些材料的组合所形成。通过在凹陷268内形成磁性包覆顶层252,磁性包覆顶层结构252有利地与导电材料250和磁性包层侧壁衬垫自对齐。磁性包层侧壁衬垫、导电材料250以及磁性包覆顶层结构2的52的组合形成用于图6中所示的MRAM存储单元240a的自对齐磁性包层位线274。
在另一个实施例中,阻挡层280、282、284以及286被形成,如图14中所示,以限制在阻挡层的任何一侧上的材料之间的扩散。阻的挡层280在磁性包层侧壁衬垫262和ILD层256之间。包围导电材料250的是阻挡层282,其作为导电材料250和ILD层256和导电材料250和磁性包层侧壁衬垫262之间的扩散阻挡层。在磁性包覆顶层252的下方,阻挡层284作为具有导电材料250和磁性包层侧壁衬垫262的顶层252的扩散阻挡层。通过形成阻挡层286,扩散还可以被限制在磁性包覆顶层252和钝化层254之间。另外,钝化层可以是一个适当扩散阻挡层,并且可能不需要阻挡层286。本领域的普通技术人员认识到可以使用阻挡层280、282、284和286的任何组合。为了形成阻挡层280、282、284和286,可以在分别淀积磁性包层侧壁衬垫262、导电层250、磁性包覆顶层252和钝化层254之前淀积阻挡层材料。一般来说,阻挡层280、282、284和286使用PVD来淀积。另外,可以使用CVD、PVD和CVD的组合。在淀积阻挡层材料之后,从被淀积层的抛光和蚀刻开始接着执行上文讨论的处理流程。一般来说,阻挡层材料的厚度大约为5至20纳米。本领域的普通技术人员将认识到阻挡层材料的选择取决于在阻挡层280、282、283和284的任何一侧上的材料。为了限制NiFe、CoFe和NiFeCo之间的扩散,阻挡层280、282、284和286可以由Ta、TiW、TiN、TaN等等所构成。
尽管已经根据MTJ阵列描述本发明,但是本领域的普通技术人员将认识到本发明可以用于其他器件,特别是GMR阵列。图15示出GMR阵列30。可以是一个字线的写入线32包括本发明的磁性包覆顶层252。一个分离的位线34把在一个阵列中的GMR存储单元36与其他GMR存储单元相连接。在该磁性叠层中的非磁性导体38通常是在GMR阵列中的一个导体。如本领域的普通技术人员所公知,GMR阵列30通过位线34读出。
与形成覆盖该沟槽的磁性包覆顶层结构现有技术的写入线结构不同,本发明有利地在该沟槽中形成磁性包覆顶层结构。则消除了为了对齐和抑制磁场的目的而增加磁性包覆顶层结构的尺寸的必要性。因此,磁性包覆顶层252的宽度尺寸可以被缩放到基本上与沟槽的宽度尺寸相同的尺寸,并且远小于现有的磁性包覆顶层结构的宽度尺寸。相应地,存储单元的尺寸和伸缩性不再受到磁性包覆顶层尺寸要求的限制。另外,所公开的实施例可以被集成到一个现有的处理流程中,而不使用除了在现有技术中所使用的材料之外的其它材料,并且在该处理和处理设备中仅仅具有由受限制的改变。
在上述说明书中,已经参照具体的实施例描述本发明。但是,本领域的普通技术人员认识到可以作出各种改变和变化而不脱离在下文的权利要求中所给出的本发明的范围。相应地,该说明书和附图被认为是说明性而非限制性的,并且所有这种改变被认为是包含在本发明的范围内。优点、其他特点以及对问题的解决方案已经参照具体的实施例进行了描述。但是,该优点、特点、对问题的解决方案以及变得显而易见的可能造成任何优点、特点和解决方案的任何要素不被认为是任何权利要求的一个关键、必要和本质的特征或要素。

Claims (7)

1.一种磁性随机存取存储器件,包括:
写入线,其在施加电流之后产生磁场,其中:
该写入线在一沟槽中延伸,并且进一步包括导电写入线材料以及磁性包层材料,其中该磁性包层材料至少沿着该导电写入线材料的侧壁和上表面包围该导电写入线材料,其中覆盖该上表面的该磁性包层材料的部分相对于该沟槽的顶部凹陷。
2.根据权利要求1所述的磁性随机存取存储器件,其中进一步包括在该沟槽下方的磁性存储单元。
3.根据权利要求1所述的磁性随机存取存储器件,其中至少90%的磁性包层材料相对于该沟槽的上表面凹陷。
4.一种磁性随机存取存储器件,其中包括:
置于数字线和位线之间的磁性存储单元,其中:
该数字线在第一方向上延伸;以及
该位线在一个沟槽内在与第一方向相垂直的第二方向上延伸,并且进一步包括导电位线材料和磁性包层材料,其中该磁性包层材料至少沿着该导电位线材料的侧壁和上表面包围该导电位线材料,其中覆盖该上表面的该磁性包层材料的部分相对于该沟槽的顶部凹陷。
5.一种磁性随机存取存储器件,包括:
电介质层;
在该电介质层内的沟槽开口;
在该沟槽开口内沿着该沟槽开口的侧壁设置的侧壁磁性包层材料;
在该沟槽开口内至少被侧壁磁性包层材料所包围的导电材料;以及
在该沟槽开口内的覆盖磁性包层材料,其中该覆盖磁性包层材料的部分相对于该电介质层的上表面凹陷。
6.根据权利要求5所述的磁性随机存取存储器件,其中该覆盖磁性包层材料的上表面和该电介质层的上表面相互平齐。
7.一种用于形成磁性随机存取存储器件的方法,其中包括:
形成覆盖磁性随机存取存储器件基片的磁性存储单元;
形成覆盖该磁性存储单元的电介质层;
在该电介质层内形成沟槽开口;
在该沟槽的相邻侧壁上形成磁性包层侧壁衬垫;
在该沟槽内形成导电位线材料;
在该沟槽内形成磁性包覆顶层并且使其覆盖导电位线材料;其中该磁性包覆顶层的部分至少相对于该电介质层的上表面凹陷,其中在该沟槽内的导电位线材料、磁性包层侧壁衬垫和磁性包覆顶层的组合形成一个包层位线。
CNB018204589A 2000-11-15 2001-11-08 自对齐磁性包层位线及其制造方法 Expired - Fee Related CN1262000C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/713,734 2000-11-15
US09/713,734 US6555858B1 (en) 2000-11-15 2000-11-15 Self-aligned magnetic clad write line and its method of formation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNA2006100050947A Division CN1862846A (zh) 2000-11-15 2001-11-08 自对齐磁性包层位线及其制造方法

Publications (2)

Publication Number Publication Date
CN1481583A CN1481583A (zh) 2004-03-10
CN1262000C true CN1262000C (zh) 2006-06-28

Family

ID=24867314

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB018204589A Expired - Fee Related CN1262000C (zh) 2000-11-15 2001-11-08 自对齐磁性包层位线及其制造方法
CNA2006100050947A Pending CN1862846A (zh) 2000-11-15 2001-11-08 自对齐磁性包层位线及其制造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA2006100050947A Pending CN1862846A (zh) 2000-11-15 2001-11-08 自对齐磁性包层位线及其制造方法

Country Status (8)

Country Link
US (2) US6555858B1 (zh)
EP (1) EP1338036A2 (zh)
JP (1) JP4846185B2 (zh)
KR (1) KR100823465B1 (zh)
CN (2) CN1262000C (zh)
AU (1) AU2002230690A1 (zh)
TW (1) TW519680B (zh)
WO (1) WO2002041367A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104716257A (zh) * 2013-12-12 2015-06-17 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法
CN104733607A (zh) * 2013-12-20 2015-06-24 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法

Families Citing this family (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7554829B2 (en) 1999-07-30 2009-06-30 Micron Technology, Inc. Transmission lines for CMOS integrated circuits
US6373740B1 (en) * 1999-07-30 2002-04-16 Micron Technology, Inc. Transmission lines for CMOS integrated circuits
US6555858B1 (en) * 2000-11-15 2003-04-29 Motorola, Inc. Self-aligned magnetic clad write line and its method of formation
DE10059181C2 (de) * 2000-11-29 2002-10-24 Infineon Technologies Ag Integrierter magnetoresistiver Halbleiterspeicher und Herstellungsverfahren dafür
US6413788B1 (en) * 2001-02-28 2002-07-02 Micron Technology, Inc. Keepers for MRAM electrodes
US6475812B2 (en) * 2001-03-09 2002-11-05 Hewlett Packard Company Method for fabricating cladding layer in top conductor
US6780652B2 (en) * 2001-03-15 2004-08-24 Micron Technology, Inc. Self-aligned MRAM contact and method of fabrication
US6689661B2 (en) * 2001-04-10 2004-02-10 Micron Technology, Inc. Method for forming minimally spaced MRAM structures
US6682943B2 (en) * 2001-04-27 2004-01-27 Micron Technology, Inc. Method for forming minimally spaced MRAM structures
US6504221B1 (en) * 2001-09-25 2003-01-07 Hewlett-Packard Company Magneto-resistive device including soft reference layer having embedded conductors
JP4032695B2 (ja) * 2001-10-23 2008-01-16 ソニー株式会社 磁気メモリ装置
US6636436B2 (en) * 2001-10-25 2003-10-21 Hewlett-Packard Development Company, L.P. Isolation of memory cells in cross point arrays
US6717194B2 (en) * 2001-10-30 2004-04-06 Micron Technology, Inc. Magneto-resistive bit structure and method of manufacture therefor
US6661688B2 (en) * 2001-12-05 2003-12-09 Hewlett-Packard Development Company, L.P. Method and article for concentrating fields at sense layers
KR100450794B1 (ko) * 2001-12-13 2004-10-01 삼성전자주식회사 마그네틱 랜덤 엑세스 메모리 및 그 작동 방법
US6743641B2 (en) * 2001-12-20 2004-06-01 Micron Technology, Inc. Method of improving surface planarity prior to MRAM bit material deposition
US6735111B2 (en) * 2002-01-16 2004-05-11 Micron Technology, Inc. Magnetoresistive memory devices and assemblies
US7101770B2 (en) * 2002-01-30 2006-09-05 Micron Technology, Inc. Capacitive techniques to reduce noise in high speed interconnections
US6927072B2 (en) * 2002-03-08 2005-08-09 Freescale Semiconductor, Inc. Method of applying cladding material on conductive lines of MRAM devices
US6812040B2 (en) * 2002-03-12 2004-11-02 Freescale Semiconductor, Inc. Method of fabricating a self-aligned via contact for a magnetic memory element
US6900116B2 (en) * 2002-03-13 2005-05-31 Micron Technology Inc. High permeability thin films and patterned thin films to reduce noise in high speed interconnections
US7235457B2 (en) 2002-03-13 2007-06-26 Micron Technology, Inc. High permeability layered films to reduce noise in high speed interconnects
US6846738B2 (en) * 2002-03-13 2005-01-25 Micron Technology, Inc. High permeability composite films to reduce noise in high speed interconnects
US6897532B1 (en) * 2002-04-15 2005-05-24 Cypress Semiconductor Corp. Magnetic tunneling junction configuration and a method for making the same
US6783995B2 (en) * 2002-04-30 2004-08-31 Micron Technology, Inc. Protective layers for MRAM devices
JP2003324187A (ja) * 2002-05-01 2003-11-14 Sony Corp 磁気メモリ装置の製造方法および磁気メモリ装置
US7160577B2 (en) 2002-05-02 2007-01-09 Micron Technology, Inc. Methods for atomic-layer deposition of aluminum oxides in integrated circuits
US6846683B2 (en) * 2002-05-10 2005-01-25 Infineon Technologies Ag Method of forming surface-smoothing layer for semiconductor devices with magnetic material layers
US6716644B2 (en) * 2002-05-17 2004-04-06 Micron Technology, Inc. Method for forming MRAM bit having a bottom sense layer utilizing electroless plating
US6770491B2 (en) * 2002-08-07 2004-08-03 Micron Technology, Inc. Magnetoresistive memory and method of manufacturing the same
US6914805B2 (en) * 2002-08-21 2005-07-05 Micron Technology, Inc. Method for building a magnetic keeper or flux concentrator used for writing magnetic bits on a MRAM device
US6737283B2 (en) * 2002-08-29 2004-05-18 Micron Technology, Inc. Method to isolate device layer edges through mechanical spacing
US6822278B1 (en) * 2002-09-11 2004-11-23 Silicon Magnetic Systems Localized field-inducding line and method for making the same
KR100496860B1 (ko) * 2002-09-19 2005-06-22 삼성전자주식회사 자기 저항 기억 소자 및 그 제조 방법
KR100515053B1 (ko) * 2002-10-02 2005-09-14 삼성전자주식회사 비트라인 클램핑 전압 레벨에 대해 안정적인 독출 동작이가능한 마그네틱 메모리 장치
JP3906139B2 (ja) * 2002-10-16 2007-04-18 株式会社東芝 磁気ランダムアクセスメモリ
US20040087163A1 (en) * 2002-10-30 2004-05-06 Robert Steimle Method for forming magnetic clad bit line
US7183120B2 (en) * 2002-10-31 2007-02-27 Honeywell International Inc. Etch-stop material for improved manufacture of magnetic devices
US6740947B1 (en) * 2002-11-13 2004-05-25 Hewlett-Packard Development Company, L.P. MRAM with asymmetric cladded conductor
US6943038B2 (en) * 2002-12-19 2005-09-13 Freescale Semiconductor, Inc. Method for fabricating a flux concentrating system for use in a magnetoelectronics device
US6841826B2 (en) * 2003-01-15 2005-01-11 International Business Machines Corporation Low-GIDL MOSFET structure and method for fabrication
US6765823B1 (en) * 2003-01-29 2004-07-20 Micron Technology Incorporated Magnetic memory cell with shape anisotropy
US6818549B2 (en) * 2003-03-05 2004-11-16 Hewlett-Packard Development Company, L.P. Buried magnetic tunnel-junction memory cell and methods
US6798004B1 (en) * 2003-04-22 2004-09-28 Freescale Semiconductor, Inc. Magnetoresistive random access memory devices and methods for fabricating the same
US6970053B2 (en) * 2003-05-22 2005-11-29 Micron Technology, Inc. Atomic layer deposition (ALD) high permeability layered magnetic films to reduce noise in high speed interconnection
US6784091B1 (en) * 2003-06-05 2004-08-31 International Business Machines Corporation Maskless array protection process flow for forming interconnect vias in magnetic random access memory devices
JP4329414B2 (ja) * 2003-06-06 2009-09-09 ソニー株式会社 磁気記憶装置の製造方法
JP2005072139A (ja) * 2003-08-21 2005-03-17 Sony Corp 磁気記憶装置及びその製造方法
KR100555514B1 (ko) * 2003-08-22 2006-03-03 삼성전자주식회사 저 저항 텅스텐 배선을 갖는 반도체 메모리 소자 및 그제조방법
US7078239B2 (en) 2003-09-05 2006-07-18 Micron Technology, Inc. Integrated circuit structure formed by damascene process
US7264975B1 (en) 2003-09-25 2007-09-04 Cypress Semiconductor Corp. Metal profile for increased local magnetic fields in MRAM devices and method for making the same
US6900491B2 (en) * 2003-10-06 2005-05-31 Hewlett-Packard Development Company, L.P. Magnetic memory
KR20060125713A (ko) * 2003-10-06 2006-12-06 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 집적 회로 배치 및 그 제조 방법
US6937506B2 (en) * 2004-01-08 2005-08-30 Hewlett-Packard Development Company, L.P. Magnetic memory device
KR20050077157A (ko) * 2004-01-27 2005-08-01 삼성전자주식회사 자기 캐핑층을 갖는 엠램 소자 및 그 제조방법
JP2005260082A (ja) * 2004-03-12 2005-09-22 Toshiba Corp 磁気ランダムアクセスメモリ
US6946698B1 (en) 2004-04-02 2005-09-20 Taiwan Semiconductor Manufacturing Company, Ltd. MRAM device having low-k inter-metal dielectric
US7211874B2 (en) * 2004-04-06 2007-05-01 Headway Technologies, Inc. Magnetic random access memory array with free layer locking mechanism
US7330369B2 (en) * 2004-04-06 2008-02-12 Bao Tran NANO-electronic memory array
US7102921B2 (en) * 2004-05-11 2006-09-05 Hewlett-Packard Development Company, L.P. Magnetic memory device
US20060039183A1 (en) * 2004-05-21 2006-02-23 Taiwan Semiconductor Manufacturing Co., Ltd. Multi-sensing level MRAM structures
JP2005340366A (ja) * 2004-05-25 2005-12-08 Toshiba Corp 磁気記憶装置およびその製造方法
US20070279971A1 (en) * 2004-06-04 2007-12-06 Micron Technology, Inc. Modified pseudo-spin valve (psv) for memory applications
US7374952B2 (en) * 2004-06-17 2008-05-20 Infineon Technologies Ag Methods of patterning a magnetic stack of a magnetic memory cell and structures thereof
US7368299B2 (en) * 2004-07-14 2008-05-06 Infineon Technologies Ag MTJ patterning using free layer wet etching and lift off techniques
US7132707B2 (en) 2004-08-03 2006-11-07 Headway Technologies, Inc. Magnetic random access memory array with proximate read and write lines cladded with magnetic material
JP4828807B2 (ja) * 2004-07-20 2011-11-30 ルネサスエレクトロニクス株式会社 磁気記憶装置およびその製造方法
KR100660539B1 (ko) * 2004-07-29 2006-12-22 삼성전자주식회사 자기 기억 소자 및 그 형성 방법
US7221584B2 (en) * 2004-08-13 2007-05-22 Taiwan Semiconductor Manufacturing Company, Ltd. MRAM cell having shared configuration
TWI266413B (en) * 2004-11-09 2006-11-11 Ind Tech Res Inst Magnetic random access memory with lower bit line current and manufacture method thereof
US7623319B2 (en) * 2004-11-30 2009-11-24 Hitachi Global Storage Technologies Netherlands B.V. Electrical connection structure for magnetic heads and method for making the same
US7751333B2 (en) * 2004-12-29 2010-07-06 Intel Corporation Method and apparatus to couple a module to a management controller on an interconnect
US7087972B1 (en) * 2005-01-31 2006-08-08 Freescale Semiconductor, Inc. Magnetoelectronic devices utilizing protective capping layers and methods of fabricating the same
KR100626390B1 (ko) * 2005-02-07 2006-09-20 삼성전자주식회사 자기 메모리 소자 및 그 형성 방법
US7545662B2 (en) * 2005-03-25 2009-06-09 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for magnetic shielding in semiconductor integrated circuit
US7241632B2 (en) * 2005-04-14 2007-07-10 Headway Technologies, Inc. MTJ read head with sidewall spacers
US7696503B2 (en) * 2005-06-17 2010-04-13 Macronix International Co., Ltd. Multi-level memory cell having phase change element and asymmetrical thermal boundary
US8237140B2 (en) 2005-06-17 2012-08-07 Macronix International Co., Ltd. Self-aligned, embedded phase change RAM
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US7444738B2 (en) * 2005-07-29 2008-11-04 Everspin Technologies, Inc. Method for tunnel junction sensor with magnetic cladding
US7541804B2 (en) * 2005-07-29 2009-06-02 Everspin Technologies, Inc. Magnetic tunnel junction sensor
US7880249B2 (en) * 2005-11-30 2011-02-01 Magic Technologies, Inc. Spacer structure in MRAM cell and method of its fabrication
US7741636B2 (en) 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
UA90089C2 (ru) * 2006-02-08 2010-04-12 Григорий БЕРЕЗИН Способ производства кокса из неспекающихся марок угля и устройство для его осуществления
KR100763910B1 (ko) * 2006-02-23 2007-10-05 삼성전자주식회사 마그네틱 도메인 드래깅을 이용하는 자성 메모리 소자
US8395199B2 (en) * 2006-03-25 2013-03-12 4D-S Pty Ltd. Systems and methods for fabricating self-aligned memory cell
US7608848B2 (en) 2006-05-09 2009-10-27 Macronix International Co., Ltd. Bridge resistance random access memory device with a singular contact structure
US7732800B2 (en) * 2006-05-30 2010-06-08 Macronix International Co., Ltd. Resistor random access memory cell with L-shaped electrode
US7772581B2 (en) * 2006-09-11 2010-08-10 Macronix International Co., Ltd. Memory device having wide area phase change element and small electrode contact area
KR100883806B1 (ko) * 2007-01-02 2009-02-17 삼성전자주식회사 반도체 장치 및 그 형성방법
US8138028B2 (en) 2007-02-12 2012-03-20 Macronix International Co., Ltd Method for manufacturing a phase change memory device with pillar bottom electrode
JP5080102B2 (ja) * 2007-02-27 2012-11-21 ルネサスエレクトロニクス株式会社 磁気記憶装置の製造方法および磁気記憶装置
US20080308885A1 (en) * 2007-06-12 2008-12-18 United Microelectronics Corp. Magnetic random access memory and fabricating method thereof
KR100881055B1 (ko) * 2007-06-20 2009-01-30 삼성전자주식회사 상변화 메모리 유닛, 이의 제조 방법, 이를 포함하는상변화 메모리 장치 및 그 제조 방법
US8178386B2 (en) 2007-09-14 2012-05-15 Macronix International Co., Ltd. Phase change memory cell array with self-converged bottom electrode and method for manufacturing
US8158965B2 (en) * 2008-02-05 2012-04-17 Macronix International Co., Ltd. Heating center PCRAM structure and methods for making
DE102008044964B4 (de) * 2008-08-29 2015-12-17 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Verringerung der Leckströme und des dielektrischen Durchschlags in dielektrischen Materialien von Metallisierungssystemen von Halbleiterbauelementen durch die Herstellung von Aussparungen
US8829646B2 (en) * 2009-04-27 2014-09-09 Macronix International Co., Ltd. Integrated circuit 3D memory array and manufacturing method
JP2011009531A (ja) * 2009-06-26 2011-01-13 Tdk Corp スピン伝導素子
US8169816B2 (en) * 2009-09-15 2012-05-01 Magic Technologies, Inc. Fabrication methods of partial cladded write line to enhance write margin for magnetic random access memory
JP2009296010A (ja) * 2009-09-17 2009-12-17 Renesas Technology Corp 半導体装置
JP2011233835A (ja) * 2010-04-30 2011-11-17 Toshiba Corp 半導体記憶装置およびその製造方法
US8310864B2 (en) 2010-06-15 2012-11-13 Macronix International Co., Ltd. Self-aligned bit line under word line memory array
US9082954B2 (en) 2010-09-24 2015-07-14 Macronix International Co., Ltd. PCRAM with current flowing laterally relative to axis defined by electrodes
US8497182B2 (en) 2011-04-19 2013-07-30 Macronix International Co., Ltd. Sidewall thin film electrode with self-aligned top electrode and programmable resistance memory
KR20130016827A (ko) * 2011-08-09 2013-02-19 에스케이하이닉스 주식회사 반도체 장치 및 그를 이용한 제조방법
CN103717403B (zh) * 2011-08-10 2016-08-31 太阳诱电化学科技株式会社 包含薄底漆膜的结构体和包含薄底漆膜的镂空版印刷版
US8987700B2 (en) 2011-12-02 2015-03-24 Macronix International Co., Ltd. Thermally confined electrode for programmable resistance memory
US8981330B2 (en) 2012-07-16 2015-03-17 Macronix International Co., Ltd. Thermally-confined spacer PCM cells
US8901687B2 (en) 2012-11-27 2014-12-02 Industrial Technology Research Institute Magnetic device with a substrate, a sensing block and a repair layer
US9214351B2 (en) 2013-03-12 2015-12-15 Macronix International Co., Ltd. Memory architecture of thin film 3D array
US8916414B2 (en) 2013-03-13 2014-12-23 Macronix International Co., Ltd. Method for making memory cell by melting phase change material in confined space
CN104810325B (zh) * 2014-01-23 2018-11-16 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法
TWI549229B (zh) 2014-01-24 2016-09-11 旺宏電子股份有限公司 應用於系統單晶片之記憶體裝置內的多相變化材料
US9472749B2 (en) 2014-03-20 2016-10-18 International Business Machines Corporation Armature-clad MRAM device
US9559113B2 (en) 2014-05-01 2017-01-31 Macronix International Co., Ltd. SSL/GSL gate oxide in 3D vertical channel NAND
US9716064B2 (en) * 2015-08-14 2017-07-25 International Business Machines Corporation Electrical fuse and/or resistor structures
EP3440719A4 (en) * 2016-03-28 2019-11-13 INTEL Corporation CONNECTING CLOSURE METHOD FOR INTEGRATING MRAM DEVICES AND RESULTING STRUCTURES
US9793323B1 (en) 2016-07-11 2017-10-17 Macronix International Co., Ltd. Phase change memory with high endurance
US10403424B2 (en) 2017-06-09 2019-09-03 Texas Instruments Incorporated Method to form magnetic core for integrated magnetic devices
US10361120B2 (en) 2017-11-30 2019-07-23 Taiwan Semiconductor Manufacturing Co., Ltd. Conductive feature formation and structure

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3699619A (en) * 1969-07-30 1972-10-24 Tokyo Shibaura Electric Co Method for manufacturing a magnetic thin film memory element
JPS58115625A (ja) * 1981-12-28 1983-07-09 Seiko Epson Corp 磁気ヘツドの製造方法
US4935263A (en) * 1987-12-18 1990-06-19 Mitsubishi Denki Kabushiki Kaisha Method for manufacturing a strain detector
JPH08124926A (ja) * 1994-10-20 1996-05-17 Oki Electric Ind Co Ltd 配線の形成方法
US5641694A (en) * 1994-12-22 1997-06-24 International Business Machines Corporation Method of fabricating vertical epitaxial SOI transistor
JP2870437B2 (ja) * 1994-12-29 1999-03-17 ヤマハ株式会社 Mrヘッドおよびその製造方法
JP3373320B2 (ja) * 1995-02-10 2003-02-04 株式会社アルバック 銅配線製造方法
US5529814A (en) * 1995-10-19 1996-06-25 Read-Rite Corporation Method of producing exchange coupled magnetic thin films with post-deposition annealing
US5702831A (en) 1995-11-06 1997-12-30 Motorola Ferromagnetic GMR material
US5659499A (en) 1995-11-24 1997-08-19 Motorola Magnetic memory and method therefor
US5640343A (en) 1996-03-18 1997-06-17 International Business Machines Corporation Magnetic memory array using magnetic tunnel junction devices in the memory cells
US5793272A (en) 1996-08-23 1998-08-11 International Business Machines Corporation Integrated circuit toroidal inductor
JP3285509B2 (ja) * 1997-03-18 2002-05-27 三菱電機株式会社 半導体装置
US5768181A (en) 1997-04-07 1998-06-16 Motorola, Inc. Magnetic device having multi-layer with insulating and conductive layers
US5956267A (en) 1997-12-18 1999-09-21 Honeywell Inc Self-aligned wordline keeper and method of manufacture therefor
JP3421259B2 (ja) * 1997-12-25 2003-06-30 ティーディーケイ株式会社 エッチングマスク、その作製方法およびエッチング方法、並びに磁気ヘッドおよびその製造方法
US5946228A (en) 1998-02-10 1999-08-31 International Business Machines Corporation Limiting magnetic writing fields to a preferred portion of a changeable magnetic region in magnetic devices
US5939788A (en) * 1998-03-11 1999-08-17 Micron Technology, Inc. Copper diffusion barrier, aluminum wetting layer and improved methods for filling openings in silicon substrates with cooper
US6214731B1 (en) * 1998-03-25 2001-04-10 Advanced Micro Devices, Inc. Copper metalization with improved electromigration resistance
JPH11339223A (ja) * 1998-05-26 1999-12-10 Tdk Corp 磁性層のエッチング方法、薄膜磁気ヘッドの磁極の形成方法および薄膜磁気ヘッドの製造方法
DE19836567C2 (de) * 1998-08-12 2000-12-07 Siemens Ag Speicherzellenanordnung mit Speicherelementen mit magnetoresistivem Effekt und Verfahren zu deren Herstellung
US5940319A (en) 1998-08-31 1999-08-17 Motorola, Inc. Magnetic random access memory and fabricating method thereof
JP2000090658A (ja) * 1998-09-09 2000-03-31 Sanyo Electric Co Ltd 磁気メモリ素子
US6171693B1 (en) * 1998-10-27 2001-01-09 The United States Of America As Represented By The Secretary Of The Navy Structures with improved magnetic characteristics for giant magneto-resistance applications
US6218290B1 (en) * 1998-11-25 2001-04-17 Advanced Micro Devices, Inc. Copper dendrite prevention by chemical removal of dielectric
US6153443A (en) * 1998-12-21 2000-11-28 Motorola, Inc. Method of fabricating a magnetic random access memory
JP4138254B2 (ja) * 1999-02-26 2008-08-27 インフィネオン テクノロジーズ アクチエンゲゼルシャフト 記憶セル構造、およびこれを製造する方法
US6348709B1 (en) * 1999-03-15 2002-02-19 Micron Technology, Inc. Electrical contact for high dielectric constant capacitors and method for fabricating the same
US6872993B1 (en) * 1999-05-25 2005-03-29 Micron Technology, Inc. Thin film memory device having local and external magnetic shielding
US6211090B1 (en) 2000-03-21 2001-04-03 Motorola, Inc. Method of fabricating flux concentrating layer for use with magnetoresistive random access memories
US6555858B1 (en) * 2000-11-15 2003-04-29 Motorola, Inc. Self-aligned magnetic clad write line and its method of formation
US6358756B1 (en) * 2001-02-07 2002-03-19 Micron Technology, Inc. Self-aligned, magnetoresistive random-access memory (MRAM) structure utilizing a spacer containment scheme
US6413788B1 (en) * 2001-02-28 2002-07-02 Micron Technology, Inc. Keepers for MRAM electrodes
US6475812B2 (en) * 2001-03-09 2002-11-05 Hewlett Packard Company Method for fabricating cladding layer in top conductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104716257A (zh) * 2013-12-12 2015-06-17 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法
CN104733607A (zh) * 2013-12-20 2015-06-24 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法
CN104733607B (zh) * 2013-12-20 2017-08-01 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法

Also Published As

Publication number Publication date
JP2004514286A (ja) 2004-05-13
EP1338036A2 (en) 2003-08-27
US6555858B1 (en) 2003-04-29
KR20030059257A (ko) 2003-07-07
AU2002230690A1 (en) 2002-05-27
CN1481583A (zh) 2004-03-10
TW519680B (en) 2003-02-01
WO2002041367B1 (en) 2003-06-12
CN1862846A (zh) 2006-11-15
US6916669B2 (en) 2005-07-12
KR100823465B1 (ko) 2008-04-21
JP4846185B2 (ja) 2011-12-28
WO2002041367A3 (en) 2003-05-01
US20030151079A1 (en) 2003-08-14
WO2002041367A2 (en) 2002-05-23

Similar Documents

Publication Publication Date Title
CN1262000C (zh) 自对齐磁性包层位线及其制造方法
US11631806B2 (en) Method of integration of a magnetoresistive structure
EP1793433B1 (en) Spacer structure in MRAM cell and method of its fabrication
US6621730B1 (en) Magnetic random access memory having a vertical write line
US6806096B1 (en) Integration scheme for avoiding plasma damage in MRAM technology
US6417561B1 (en) Keepers for MRAM electrodes
US6890770B2 (en) Magnetoresistive random access memory device structures and methods for fabricating the same
US7144744B2 (en) Magnetoresistive random access memory device structures and methods for fabricating the same
US20210151503A1 (en) Magnetic random access memory (mram) structure with small bottom electrode
US10770652B2 (en) Magnetic tunnel junction (MTJ) bilayer hard mask to prevent redeposition
CN1820375A (zh) 用于磁性随机存取存储装置的自对准导电线及其形成方法
US20030117866A1 (en) Recessed magnetic storage element and method of formation
US11056643B2 (en) Magnetic tunnel junction (MTJ) hard mask encapsulation to prevent redeposition
US7473641B2 (en) Method for manufacturing a semiconductor device, method for manufacturing magnetic memory, and the magnetic memory thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: FREEDOM SEMICONDUCTORS CO.

Free format text: FORMER OWNER: MOTOROLA, INC.

Effective date: 20040813

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20040813

Address after: Texas in the United States

Applicant after: FreeScale Semiconductor

Address before: Illinois Instrunment

Applicant before: Motorola, Inc.

C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: FREESCALE SEMICONDUCTOR INC.

Free format text: FORMER NAME OR ADDRESS: FREEDOM SEMICONDUCTORS CO.

CP03 Change of name, title or address

Address after: Texas in the United States

Patentee after: FREESCALE SEMICONDUCTOR, Inc.

Address before: Texas in the United States

Patentee before: FreeScale Semiconductor

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060628

Termination date: 20121108