JP4032695B2 - 磁気メモリ装置 - Google Patents
磁気メモリ装置 Download PDFInfo
- Publication number
- JP4032695B2 JP4032695B2 JP2001324622A JP2001324622A JP4032695B2 JP 4032695 B2 JP4032695 B2 JP 4032695B2 JP 2001324622 A JP2001324622 A JP 2001324622A JP 2001324622 A JP2001324622 A JP 2001324622A JP 4032695 B2 JP4032695 B2 JP 4032695B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- magnetic
- free layer
- memory device
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005291 magnetic effect Effects 0.000 title claims description 131
- 230000000694 effects Effects 0.000 claims description 26
- 230000005415 magnetization Effects 0.000 claims description 21
- 239000003302 ferromagnetic material Substances 0.000 claims description 10
- 239000012212 insulator Substances 0.000 claims description 8
- 239000000696 magnetic material Substances 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 41
- 238000000034 method Methods 0.000 description 28
- 238000004519 manufacturing process Methods 0.000 description 26
- 230000008569 process Effects 0.000 description 23
- 238000005530 etching Methods 0.000 description 12
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 238000000059 patterning Methods 0.000 description 8
- 230000004907 flux Effects 0.000 description 5
- 229910003321 CoFe Inorganic materials 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000005290 antiferromagnetic effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910019041 PtMn Inorganic materials 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910015136 FeMn Inorganic materials 0.000 description 1
- 229910003289 NiMn Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005293 ferrimagnetic effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/14—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
- G11C11/15—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Hall/Mr Elements (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Semiconductor Memories (AREA)
Description
【発明の属する技術分野】
本発明は、情報を記憶するためのメモリデバイスとして用いられる磁気メモリ装置に関し、特に外部から加える磁界によって抵抗値が変化するという、いわゆるMR(MagnetoResistive)効果を発生する磁気抵抗効果素子を用いて構成された磁気メモリ装置に関する。
【0002】
【従来の技術】
近年、メモリデバイスとして機能する磁気メモリ装置の一つとして、MRAM(Magnetic Random Access Memory)が提案されている。MRAMは、巨大磁気抵抗効果(Giant MagnetoResistive;GMR)型またはトンネル磁気抵抗効果(Tunnel MagnetoResistive;TMR)型の磁気抵抗効果素子を用い、その磁気抵抗効果素子における磁化方向の反転を利用して情報記憶を行うものである。
【0003】
MRAMに用いられる磁気抵抗効果素子は、例えばTMR型のものであれば、強磁性体からなる自由層と、絶縁体からなる非磁性層と、強磁性体からなる固定層と、その固定層の磁化方向を直接的または間接的に固定するための反強磁性層とが順に積層されてなり、自由層における磁化方向によってトンネル電流の抵抗値が変わるように構成されている。これにより、MRAMでは、磁気抵抗効果素子における自由層の磁化方向に応じて、磁化がある方向を向いたときは「1」、他方を向いたときは「0」といった情報記憶を行うことが可能となる。
【0004】
また、MRAMでは、磁気抵抗効果素子への情報の書き込みを行うために、少なくとも磁気抵抗効果素子の自由層側に、その自由層と近接するように配された、非磁性導体からなる電極層を備えている。そして、その電極層が発生する電流磁界によって、磁気抵抗効果素子に対し自由層の磁化方向反転に必要な磁界Hcを超える値の磁界を与え、これにより自由層の磁化方向を変化させることで、磁気抵抗効果素子への情報の書き込みを行うようになっている。
【0005】
【発明が解決しようとする課題】
ところで、このようなMRAMにおいては、その集積度を上げるために、磁気抵抗効果素子のサイズ(平面上における面積)が小さくなる傾向にある。したがって、磁化方向の反転(スイッチング動作)を行う自由層のサイズも、当然に小さくなる傾向にある。
【0006】
しかしながら、自由層が小さくなると、これに伴ってその両端縁間の距離、すなわち自由層における磁極の間隔も小さくなるため、その自由層に生じる反磁界が大きくなってしまう。この反磁界は、外部から自由層に加えた磁界を減少させるものである。そのため、反磁界は、自由層における保磁力に大きな影響を与え、これが増大すると、より大きな磁界を与えなければ自由層がスイッチング動作を行わなくなってしまう。つまり、反磁界が増大すると、自由層への磁界発生のために電極層に印加する電流量も大きくする必要が生じてしまい、結果として情報書き込み時の消費電力が大きくなってしまう。
【0007】
このような反磁界による保磁力増大を抑制するためには、例えば、自由層のモーメント(自由層を形成する強磁性材料の飽和磁化Msとその自由層厚さtとの積)を小さくし、これにより反磁界の素子寸法依存性を緩和することが考えられる。反磁界Hdと、モーメントMs×tと、磁気抵抗効果素子に磁界を加える方向の寸法W(通常は磁化容易軸方向)との間では、Hd=A×Ms×t/W(Aは比例係数)の関係が成り立つからである。ただし、自由層を形成する強磁性材料については、MR比に大きな影響を及ぼすことから、その変更が容易ではない。そのため、自由層のモーメントを小さくするためには、自由層の厚さを薄くすることで対応する必要がある。ところが、自由層の厚さをあまりに薄くすると(例えば数nm)、自由層が連続膜でなくなったり、熱安定性が低下したりする等の問題が生じるおそれがある。つまり、自由層の薄型化には限界があるため、必ずしもその薄型化によって反磁界による保磁力増大を抑制し得るとは言えない。
【0008】
そこで、本発明は、自由層の膜厚やモーメント等にかかわらずに、その自由層での反磁界による保磁力増大を抑制できるようにすることで、磁気抵抗効果素子が小型化した場合であっても小さな消費電力で情報書き込みを行うことのできる磁気メモリ装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、上記目的を達成するために案出されたもので、強磁性体からなる自由層を有した磁気抵抗効果素子と、当該磁気抵抗効果素子の自由層側に当該自由層との積層部分を有して配された非磁性導体からなる電極層とを備え、前記電極層が発生する電流磁界により前記自由層の磁化方向を反転させるように構成された磁気メモリ装置において、前記電極層の前記自由層側の面で、かつ、当該自由層との積層部分を除いた非積層部分のみに、絶縁体からなる絶縁層を介して、磁性体からなる磁性層が設けられていることを特徴とするものである。
【0010】
上記構成の磁気メモリ装置によれば、電極層の自由層側の面における当該自由層との非積層部分に磁性層が設けられているので、自由層端縁の磁極がその周囲に配された磁性層部分によって打ち消され、磁性層と合わせれば見かけ上の自由層の面積が増大することになる。したがって、磁気抵抗効果素子のサイズが小型化しても、自由層での反磁界が大きくなってしまうことがない。
【0011】
【発明の実施の形態】
以下、図面に基づき本発明に係る磁気メモリ装置について説明する。ここでは、磁気抵抗効果素子として単一のTMR型スピンバルブ素子(以下、単に「TMR素子」という)を備えたMRAMに、本発明を適用した場合を例に挙げて説明する。
【0012】
〔第1の実施の形態〕
図1は本発明が適用されたMRAMの第1実施形態における要部構成例を示す模式図であり、図2はそのMRAMに用いられるTMR素子の概略構成例を示す模式図である。
【0013】
ここで、先ず、TMR素子について説明する。TMR素子は、強磁性体からなる自由層と、絶縁体からなる非磁性層と、強磁性体からなる固定層と、その固定層の磁化方向を直接的または間接的に固定する反強磁性層とが順に積層されてなり、自由層における磁化方向の変化を利用して情報記録を行うとともに、その磁化方向によってトンネル電流の抵抗値が変わるように構成されたものである。
【0014】
具体的には、例えば図2に示すように、基板11上に、3nm厚のTa膜12と、30nm厚のPtMn膜13と、1.5nm厚のCoFe膜14aと、0.8nm厚のRu膜14bと、2nm厚のCoFe膜14cと、1.5nm厚のAl−Ox膜15と、15nm厚のNiFe膜16と、5nm厚のTa膜17とが、順に積層されてなる膜構成のものが挙げられる。なお、それぞれの膜厚は、一例に過ぎず、これに限定されるものではない。
【0015】
このような膜構成のうち、NiFe膜16は自由層として、Al−Ox膜15は非磁性層として、PtMn膜13は反強磁性層として、それぞれ機能するようになっている。また、非磁性層であるRu膜14bを介して二つのCoFe膜14a,14cが積層された積層フェリ構造部14は、固定層としての機能を有するものである。さらに、Ta膜12,17は、保護膜として機能する。
【0016】
なお、ここでは、自由層を構成する強磁性体としてNiFe、固定層を構成する強磁性体としてCoFeをそれぞれ用いているが、これらはCo、Ni、Feのいずれか、若しくはこれらの少なくとも一種類を含んだ合金、またはそれらの積層膜を用いても構わない。また、反強磁性層としてPtMnを用いているが、同じく規則合金のNiMn、不規則合金のIrMn、RhMn、FeMn、酸化物系のNiO、α−Fe2O3を用いても構わない。
【0017】
また、ここでは、自由層よりも固定層のほうが先に(下方に)積層される、いわゆるボトム型のTMR素子を具体例として挙げたが、自由層が固定層よりも先に(下方に)積層される、いわゆるトップ型のTMR素子であっても構わないことは勿論である。さらには、TMR素子のみならず、自由層と固定層との間の非磁性層がCu等で構成されたGMR型のものについても、全く同様であることはいうまでもない。
【0018】
続いて、以上のようなTMR素子を備えたMRAMの要部構成について説明する。図1に示すように、本実施形態で説明するMRAMは、単一のTMR素子10を備えたものである。このTMR素子10は、基板11上に少なくとも固定層14、非磁性層15および自由層16が積層されてなるもの、さらに詳しくは上述したような膜構成(図2参照)を有したものである。なお、固定層14は、自由層16の磁化方向反転のための電流磁界を発生させる下部電極層としての機能を兼ね備えているものとする。
【0019】
また、図中のTMR素子10の上方、すなわちTMR素子10の自由層16側には、絶縁体からなる絶縁層21を介して、非磁性導体からなる電極層22が配設されている。この電極層22は、下部電極層に対する上部電極として機能し、下部電極層と同様に自由層16の磁化方向反転のための電流磁界を発生させるもので、自由層16側の一部にその自由層16との積層部分を有するように配されている。つまり、積層部分においては、自由層16の上に電極層22が直接積層されているが、それ以外の非積層部分においては自由層16と電極層22の間に絶縁層21が介在している。
【0020】
ところで、本実施形態で説明するMRAMは、その特徴的な構成として、電極層22の自由層16側の面で、かつ、その自由層16との非積層部分に、磁性体からなる磁性層23が設けられている。磁性層23としては、例えばNiFe膜を10nm厚で成膜したものが挙げられる。ただし、NiFe以外にも、Co、Ni、Feのいずれか、若しくはこれらの少なくとも一種類を含んだ合金、またはそれらの積層膜を用いても構わない。いずれの場合であっても、磁性層23は、大面積での保磁力が、自由層16に用いられる磁性材料の保持力と比較して、同等以下であることが望ましい。なお、磁性層23と電極層22との間には、金属非磁性材料や絶縁体等を介在させることも考えられる。
【0021】
次に、以上のような構成のMRAMの製造手順について説明する。図3〜図16は、MRAMの製造手順の概要を示す模式図である。上述した構成のMRAMを製造するのにあたっては、先ず、図3に示すように、基板11上に少なくとも固定層14、非磁性層15および自由層16(詳しくは、例えば図2に示した膜構成)を順次成膜して、TMR膜を形成する。
【0022】
TMR膜の形成後は、図4に示すように、自由層16に重ねて、下部電極層の形成のためのパターニングに対応したレジスト膜31を成膜する。そして、図5に示すように、エッチング処理を施して、固定層14、非磁性層15および自由層16の一部を除去するとともに、図6に示すように、絶縁層24を成膜する。その後、図7に示すように、いわゆるリフトオフの手法を利用して、不要部分の除去を行う。このリフトオフを行うために、レジスト膜31は、図4に示すような上層側が下方側より突出した二層構造または逆テーパー型であるものとする。
【0023】
絶縁層24を形成して下部電極層の埋め込みを行った後は、図8に示すように、自由層16および絶縁層24に重ねて、TMR素子10の形成のためのパターニングに対応したレジスト膜32を成膜する。そして、図9に示すように、エッチング処理を施して、非磁性層15および自由層16の一部を除去した後に、レジスト膜32を除去する。これにより、TMR素子10として機能する部分(図中における略中央部分)が形成されることになる。
【0024】
TMR素子10の形成後は、図10に示すように、電極接続穴となる箇所にレジスト膜33を成膜する。このレジスト膜33も、リフトオフを行うために二層構造または逆テーパー型であるものとする。そして、図11に示すように、さらに絶縁層21を成膜する。ここまでは、一般的なMRAMの製造手順と略同様である。
【0025】
その後、本実施形態で説明するMRAMを製造するのにあたっては、図12に示すように、絶縁層21に重ねて磁性層23を成膜する。この磁性層23は、既に説明したように、例えばNiFe膜を10nm厚で成膜することが考えられる。そして、図13に示すように、リフトオフの手法を利用して、レジスト膜33をはじめとする不要部分の除去を行う。これにより、TMR素子10として機能する部分(電極層22との積層部分)およびそのTMR素子10の下部電極層に接続するための電極接続穴の部分を除いて、絶縁層21および磁性層23が積層されることになる。なお、積層部分において、TMR素子10の自由層16と磁性層23とは、レジスト膜33の形状を適宜設定することによって、これらの間を接触させたり分離させたりする、といったことが可能である。
【0026】
絶縁層21および磁性層23の形成後は、図14に示すように、電極層22の形成のためのパターニングに対応したレジスト膜34を成膜する。そして、図15に示すように、電極層22の成膜およびレジスト膜34のリフトオフを行う。ただし、このままでは先に形成した磁性層23が全面に残ったままとなってしまうため、その後に電極層22をマスクとして全面エッチングを行うことで、不必要な磁性層23の除去を行う。このことから、電極層22は、エッチングによる除去量を考慮した膜厚で成膜することが望ましい。なお、不必要な磁性層23の除去は、電極層22をマスクとするエッチングによらずに、改めてレジストパターンを形成した後にエッチングをすることで行っても構わない。
【0027】
このような製造手順を経ることで、形成されたMRAMは、図1に示す構成、すなわち電極層22の自由層16側の面で、かつ、その自由層16との非積層部分に、磁性層23が積層された構成を有することになる。なお、ここでは、上部電極として機能する電極層22を、リフトオフの手法を利用して形成した場合について説明したが(図14参照)、これ以外にも、例えば図16に示すように、全面に電極層22を形成するための材料を成膜した後にエッチングを行うことで、所望する形状の電極層22を形成することも考えられる。この場合には、上述した例とは異なり、磁性層23も電極層22と合わせてエッチング除去されることになる。
【0028】
以上のようにして形成されたMRAMは、自由層16と電極層22との非積層部分に磁性層23が配設されているので、自由層16の端縁に生じる磁極がその周囲に配された磁性層23によって打ち消され、見かけ上の自由層16(磁性層)の面積が増大することになる。したがって、TMR素子10のサイズが小型化しても、そのTMR素子10における自由層16での反磁界が大きくなってしまうことがない。
【0029】
図17は、自由層における保磁力の素子寸法依存性の具体例を示す説明図である。図例では、TMR素子10の平面形状が略正方形である場合について、自由層16における保磁力の素子寸法依存性の測定例(図中黒丸印参照)を示すとともに、比較のため磁性層23が設けられていない一般的な構成のMRAMにおける場合の測定例(図中白丸印参照)も示している。図例からも明らかなように、一般的な構成の場合には素子寸法が小さくなるに連れて、自由層における保磁力が増大しているのに対し、本実施形態の構成のように磁性層23を設けた場合には、その傾向が緩和されていることがわかる。
【0030】
これらのことから、本実施形態で説明したMRAMによれば、TMR素子10のサイズが小型化しても、そのTMR素子10における自由層16での保磁力が増大する傾向の緩和が可能であると言える。しかも、そのために自由層16を薄型化する必要もない。つまり、自由層16の膜厚やモーメント等にかかわらずに、その自由層16での反磁界による保磁力増大を抑制できる。したがって、本実施形態のMRAMでは、TMR素子10が小型化した場合であっても、自由層16の磁化方向スイッチング動作のための電流量を大きくする必要がなく、結果として小さな消費電力でTMR素子10に対する情報書き込みを行うことができるようになる。
【0031】
〔第2の実施の形態〕
次に、本発明の第2の実施の形態について説明する。図18は、本発明が適用されたMRAMの第2実施形態における要部構成例を示す模式図である。なお、ここでは、上述した第1実施形態との相違点についてのみ説明する。また、図中においても、第1実施形態の場合と同一の構成要素については、同一の符号を与えている。
【0032】
図例のように、本実施形態で説明するMRAMは、磁性層23が、電極層22の自由層16側の面だけではなく、その面の反対側の面にも積層されている点に、大きな特徴がある。この反対側の面における磁性層23も、自由層16側の磁性層23と同様に、例えばNiFe膜等の磁性体からなる。なお、反対側の面における磁性層23と電極層22との間にも、金属非磁性材料や絶縁体等を介在させるようにしてもよい。
【0033】
以上のような構成のMRAMを製造するのにあたっては、第1実施形態の場合と略同様にして電極層22を形成した後に、その電極層22に重ねて磁性層23を成膜すればよい。これにより、電極層22の互いに対向する二面(上下面)に磁性層23が積層された構成のMRAMを形成することができる。
【0034】
このようにして形成されたMRAMにおいても、第1実施形態の場合と同様に、電極層22に電流を流して電流磁界を発生させ、これによりTMR素子10に対するスイッチング動作を行う。ただし、このとき、TMR素子10の自由層16側だけでなく、その反対側の面にも磁性層23が積層されている。そのため、電極層22に電流を流して電流磁界を発生させると、当該反対面の磁性層23が電流磁界による磁束の通路として働くので、その磁性層23の部分に電流磁界が集中することになり、電極層22の外方に磁束が拡散してしまうのを極力抑制し得る。
【0035】
したがって、本実施形態で説明したMRAMによれば、自由層16の膜厚やモーメント等にかかわらずに、その自由層16での反磁界による保磁力増大を抑制できるのに加えて、電流磁界の集中によって効率的に自由層16でのスイッチング動作を行わせることができ、結果として小さな消費電力でTMR素子10に対する情報書き込みを行うことができるようになる。
【0036】
しかも、本実施形態のMRAMでは、第1実施形態の場合に対して磁性層23の成膜プロセスを一工程追加するだけで、電流磁界の集中を実現し得るようになるので、そのために生産効率が低下してしまうのを極力抑制することができる。
【0037】
〔第3の実施の形態〕
次に、本発明の第3の実施の形態について説明する。図19は、本発明が適用されたMRAMの第3実施形態における要部構成例を示す模式図である。なお、ここでも、上述した第1または第2実施形態との相違点についてのみ説明するものとし、図中において第1実施形態の場合と同一の構成要素については同一の符号を与えている。
【0038】
図例のように、本実施形態で説明するMRAMは、磁性層23が、電極層22の自由層16側の面だけではなく、それ以外の各面を覆うように配設されている点に、大きな特徴がある。例えば、電極層22の断面が矩形状であれば、自由層16側の面に加えて、他の三面にも磁性層23が積層されている。勿論、電極層22の断面形状が矩形以外の多角形の場合には、自由層16側の面以外の各面それぞれについて磁性層23を配設することになる。なお、各面における磁性層23も、自由層16側の磁性層23と同様に、例えばNiFe膜等の磁性体からなる。また、各面の磁性層23と電極層22との間にも、金属非磁性材料や絶縁体等を介在させるようにしてもよい。
【0039】
ここで、以上のような構成のMRAMの製造手順について説明する。図20〜図22は、そのMRAMの製造手順の概要を示す模式図である。上述した構成のMRAMを製造する場合であっても、電極層22の形成までは第1実施形態の場合と略同様である(図3〜図16参照)。電極層22を形成した後は、図20に示すように、必要に応じて電極層22および磁性層23の一部(例えば、新たに磁性層23を形成すべき電極層22の側面部分)をエッチング除去した後、図21に示すように、その新たに形成すべき磁性層23の形成のためのパターニングに対応したレジスト膜35を成膜する。そして、図22に示すように、磁性層23を成膜した後に、リフトオフの手法を利用して、レジスト膜35をはじめとする不要部分の除去を行う。このときも、磁性層23としては、例えばNiFe膜を成膜することが考えられる。これにより、電極層22の自由層16側の面における非積層部分および当該面以外の三面が磁性層23によって覆われた構成のMRAMを形成することができる。
【0040】
このようにして形成されたMRAMにおいても、第2実施形態の場合と同様に、磁性層23が電流磁界による磁束の通路として働くので、その磁性層23の部分に電流磁界が集中することになり、電極層22の外方に磁束が拡散してしまうのを極力抑制し得る。しかも、電流磁界が集中は、磁束の通路となる磁性層23が電極層22の各面を覆うように配されているため、第2実施形態の場合に比べてより一層効果的なものとなる。
【0041】
したがって、本実施形態で説明したMRAMによれば、自由層16での反磁界による保磁力増大を抑制できるのに加えて、自由層16でのスイッチング動作をより一層効率的に行わせることができ、結果として更なる情報書き込み時における消費電力の低下が期待できる。
【0042】
なお、上述した第1〜第3実施形態では、単一の磁気抵抗効果素子を備えたMRAMに本発明を適用した場合を例に挙げて説明したが、本発明はこれに限定されるものではなく、例えば複数の磁気抵抗効果素子がマトリクス状に配されたものであっても、同様に適用することが可能である。
【0043】
図23は、複数の磁気抵抗効果素子がマトリクス状に配されたMRAMの基本的な構成例を示す模式図である。図例のように、かかるMRAMでは、各磁気抵抗効果素子10が配された行および列のそれぞれに対応するように、相互に交差するワード線20aおよびビット線20bを備えている。そして、これらワード線20aおよびビット線20bが各磁気抵抗効果素子10群を縦横に横切ることによって、各磁気抵抗効果素子10がワード線20aとビット線20bに上下から挟まれた状態で、かつ、これらの交差領域に位置するように配置されている。
【0044】
各磁気抵抗効果素子10への情報の書き込みは、ワード線20aおよびビット線20bの両方に電流を流すことによって発生する合成電流磁界を用いて、各磁気抵抗効果素子10における磁化方向を制御することにより行う。つまり、各磁気抵抗効果素子10における磁化方向を反転させるための磁界は、ワード線20aおよびビット線20bに流した電流磁界の合成によって与えられる。これによって、選択された磁気抵抗効果素子10のみの磁化方向が反転し情報が記録されることになる。選択されない磁気抵抗効果素子10については、ワード線20aとビット線20bのいずれか一方の電流磁界のみが印加されるので、反転磁界が不十分となり、情報が書き込まれない。
【0045】
このようなMRAMにおいては、ワード線20aまたはビット線20bのうち、磁気抵抗効果素子10の自由層側に配されたいずれか一方が、第1〜第3実施形態で説明した電極層22に相当する。したがって、ワード線20aまたはビット線20bのいずれか一方に付随するように磁性層23を設ければ、隣接する磁気抵抗効果素子10毎に当該磁性層23を分離する必要はあるが、メモリ集積度を上げるために各磁気抵抗効果素子10が小型化する場合であっても、上述したように、反磁界による保磁力増大を抑制して、情報書き込み時の低消費電力化を実現することができる。
【0046】
【発明の効果】
以上に説明したように、本発明に係る磁気メモリ装置によれば、電極層の自由層側の面における当該自由層との非積層部分に設けられた磁性層によって、見かけ上の自由層の面積が増大するので、磁気抵抗効果素子のサイズが小型化しても、自由層での反磁界が大きくなってしまうことがない。すなわち、自由層の膜厚やモーメント等にかかわらずに、その自由層での反磁界による保磁力増大を抑制し得る。したがって、磁気抵抗効果素子のサイズが小型化した場合であっても、その磁気抵抗効果素子に対して小さな消費電力で情報書き込みを行うことができるようになる。
【図面の簡単な説明】
【図1】本発明に係る磁気メモリ装置の第1実施形態における要部構成例を示す模式図である。
【図2】磁気メモリ装置に用いられる磁気抵抗効果素子の概略構成例を示す模式図である。
【図3】本発明の第1実施形態における磁気メモリ装置の製造手順の概要を示す模式図(その1)であり、磁気抵抗効果膜の成膜工程を示す図である。
【図4】本発明の第1実施形態における磁気メモリ装置の製造手順の概要を示す模式図(その2)であり、下部電極のパターニング工程を示す図である。
【図5】本発明の第1実施形態における磁気メモリ装置の製造手順の概要を示す模式図(その3)であり、下部電極のエッチング工程を示す図である。
【図6】本発明の第1実施形態における磁気メモリ装置の製造手順の概要を示す模式図(その4)であり、下部電極埋め込み用絶縁膜の成膜工程を示す図である。
【図7】本発明の第1実施形態における磁気メモリ装置の製造手順の概要を示す模式図(その5)であり、下部電極埋め込み用絶縁膜のリフトオフ工程を示す図である。
【図8】本発明の第1実施形態における磁気メモリ装置の製造手順の概要を示す模式図(その6)であり、磁気抵抗効果素子部のパターニング工程を示す図である。
【図9】本発明の第1実施形態における磁気メモリ装置の製造手順の概要を示す模式図(その7)であり、磁気抵抗効果素子部のエッチングおよびレジスト除去工程を示す図である。
【図10】本発明の第1実施形態における磁気メモリ装置の製造手順の概要を示す模式図(その8)であり、電極接続穴のパターニング工程を示す図である。
【図11】本発明の第1実施形態における磁気メモリ装置の製造手順の概要を示す模式図(その9)であり、電極接続穴形成用絶縁膜の成膜工程を示す図である。
【図12】本発明の第1実施形態における磁気メモリ装置の製造手順の概要を示す模式図(その10)であり、磁性層の成膜工程を示す図である。
【図13】本発明の第1実施形態における磁気メモリ装置の製造手順の概要を示す模式図(その11)であり、電極接続穴形成用絶縁膜および磁性層のリフトオフ工程を示す図である。
【図14】本発明の第1実施形態における磁気メモリ装置の製造手順の概要を示す模式図(その12)であり、上部電極のパターニング工程を示す図である。
【図15】本発明の第1実施形態における磁気メモリ装置の製造手順の概要を示す模式図(その13)であり、上部電極の成膜およびリフトオフ並びに磁性層のエッチング工程を示す図である。
【図16】本発明の第1実施形態における磁気メモリ装置の製造手順の概要を示す模式図(その14)であり、上部電極の成膜工程の他の例を示す図である。
【図17】自由層における保磁力の素子寸法依存性の具体例を示す説明図である。
【図18】本発明に係る磁気メモリ装置の第2実施形態における要部構成例を示す模式図である。
【図19】本発明に係る磁気メモリ装置の第3実施形態における要部構成例を示す模式図である。
【図20】本発明の第3実施形態における磁気メモリ装置の製造手順の概要を示す模式図(その1)であり、上部電極の形成工程を示す図である。
【図21】本発明の第3実施形態における磁気メモリ装置の製造手順の概要を示す模式図(その2)であり、磁性層リフトオフパターンの形成工程を示す図である。
【図22】本発明の第3実施形態における磁気メモリ装置の製造手順の概要を示す模式図(その3)であり、磁性層の成膜およびリフトオフ工程を示す図である。
【図23】複数の磁気抵抗効果素子がマトリクス状に配された磁気メモリ装置の基本的な構成例を示す模式図である。
【符号の説明】
10…TMR素子(磁気抵抗効果素子)、11…基板、14…固定層、15…非磁性層、16…自由層、22…電極層、23…磁性層
Claims (3)
- 強磁性体からなる自由層を有した磁気抵抗効果素子と、
当該磁気抵抗効果素子の自由層側に当該自由層との積層部分を有して配された非磁性導体からなる電極層とを備え、
前記電極層が発生する電流磁界により前記自由層の磁化方向を反転させるように構成された磁気メモリ装置において、
前記電極層の前記自由層側の面で、かつ、当該自由層との積層部分を除いた非積層部分のみに、絶縁体からなる絶縁層を介して、磁性体からなる磁性層が設けられている
ことを特徴とする磁気メモリ装置。 - 前記電極層は、前記自由層側の面の反対側の面にも磁性体からなる磁性層が積層されている
ことを特徴とする請求項1記載の磁気メモリ装置。 - 前記電極層は、前記自由層側の面以外の各面が磁性体からなる磁性層に覆われている
ことを特徴とする請求項1記載の磁気メモリ装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001324622A JP4032695B2 (ja) | 2001-10-23 | 2001-10-23 | 磁気メモリ装置 |
PCT/JP2002/010481 WO2003036725A1 (fr) | 2001-10-23 | 2002-10-09 | Dispositif memoire magnetique |
DE60221877T DE60221877T2 (de) | 2001-10-23 | 2002-10-09 | Magnetspeichereinrichtung |
US10/492,591 US6967386B2 (en) | 2001-10-23 | 2002-10-09 | Magnetic memory device |
KR1020047005963A KR100895837B1 (ko) | 2001-10-23 | 2002-10-09 | 자기 메모리 장치 |
EP02802003A EP1441392B1 (en) | 2001-10-23 | 2002-10-09 | Magnetic memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001324622A JP4032695B2 (ja) | 2001-10-23 | 2001-10-23 | 磁気メモリ装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003133524A JP2003133524A (ja) | 2003-05-09 |
JP4032695B2 true JP4032695B2 (ja) | 2008-01-16 |
Family
ID=19141318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001324622A Expired - Fee Related JP4032695B2 (ja) | 2001-10-23 | 2001-10-23 | 磁気メモリ装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US6967386B2 (ja) |
EP (1) | EP1441392B1 (ja) |
JP (1) | JP4032695B2 (ja) |
KR (1) | KR100895837B1 (ja) |
DE (1) | DE60221877T2 (ja) |
WO (1) | WO2003036725A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100678471B1 (ko) * | 2005-01-25 | 2007-02-02 | 삼성전자주식회사 | 자기램 소자의 구동 방법 |
JP4690675B2 (ja) * | 2004-07-30 | 2011-06-01 | 株式会社東芝 | 磁気抵抗効果素子、磁気ヘッド、および磁気記録再生装置 |
US7683445B2 (en) * | 2005-02-24 | 2010-03-23 | Everspin Technologies, Inc. | Enhanced permeability device structures and method |
JP4521316B2 (ja) * | 2005-05-26 | 2010-08-11 | 株式会社東芝 | 磁気抵抗効果素子、磁気ヘッド、および磁気記録再生装置 |
JP4764294B2 (ja) * | 2006-09-08 | 2011-08-31 | 株式会社東芝 | 磁気抵抗効果素子、及び磁気ヘッド |
KR100833080B1 (ko) * | 2006-12-27 | 2008-05-27 | 동부일렉트로닉스 주식회사 | 자기 메모리 장치 및 그 제조방법 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6590750B2 (en) * | 1996-03-18 | 2003-07-08 | International Business Machines Corporation | Limiting magnetoresistive electrical interaction to a preferred portion of a magnetic region in magnetic devices |
JPH1186528A (ja) * | 1997-09-12 | 1999-03-30 | Toshiba Corp | 磁気記憶装置 |
JPH11316919A (ja) * | 1998-04-30 | 1999-11-16 | Hitachi Ltd | スピントンネル磁気抵抗効果型磁気ヘッド |
DE19836567C2 (de) * | 1998-08-12 | 2000-12-07 | Siemens Ag | Speicherzellenanordnung mit Speicherelementen mit magnetoresistivem Effekt und Verfahren zu deren Herstellung |
JP2001196659A (ja) * | 2000-01-12 | 2001-07-19 | Tdk Corp | トンネル磁気抵抗効果素子、薄膜磁気ヘッド、メモリ素子ならびにこれらの製造方法 |
US20020055190A1 (en) * | 2000-01-27 | 2002-05-09 | Anthony Thomas C. | Magnetic memory with structures that prevent disruptions to magnetization in sense layer |
JP3872936B2 (ja) * | 2000-06-30 | 2007-01-24 | 株式会社東芝 | 磁気抵抗効果素子の製造方法と強磁性トンネル接合素子 |
US6767655B2 (en) * | 2000-08-21 | 2004-07-27 | Matsushita Electric Industrial Co., Ltd. | Magneto-resistive element |
US6555858B1 (en) * | 2000-11-15 | 2003-04-29 | Motorola, Inc. | Self-aligned magnetic clad write line and its method of formation |
US6590803B2 (en) * | 2001-03-27 | 2003-07-08 | Kabushiki Kaisha Toshiba | Magnetic memory device |
US6831312B2 (en) * | 2002-08-30 | 2004-12-14 | Freescale Semiconductor, Inc. | Amorphous alloys for magnetic devices |
JP2004179483A (ja) * | 2002-11-28 | 2004-06-24 | Hitachi Ltd | 不揮発性磁気メモリ |
JP2004235443A (ja) * | 2003-01-30 | 2004-08-19 | Renesas Technology Corp | 薄膜磁性体記憶装置およびその製造方法 |
-
2001
- 2001-10-23 JP JP2001324622A patent/JP4032695B2/ja not_active Expired - Fee Related
-
2002
- 2002-10-09 US US10/492,591 patent/US6967386B2/en not_active Expired - Fee Related
- 2002-10-09 DE DE60221877T patent/DE60221877T2/de not_active Expired - Lifetime
- 2002-10-09 EP EP02802003A patent/EP1441392B1/en not_active Expired - Lifetime
- 2002-10-09 KR KR1020047005963A patent/KR100895837B1/ko not_active IP Right Cessation
- 2002-10-09 WO PCT/JP2002/010481 patent/WO2003036725A1/ja active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
DE60221877T2 (de) | 2008-05-08 |
EP1441392A1 (en) | 2004-07-28 |
US6967386B2 (en) | 2005-11-22 |
WO2003036725A1 (fr) | 2003-05-01 |
DE60221877D1 (de) | 2007-09-27 |
KR20040058221A (ko) | 2004-07-03 |
US20050029562A1 (en) | 2005-02-10 |
KR100895837B1 (ko) | 2009-05-06 |
JP2003133524A (ja) | 2003-05-09 |
EP1441392A4 (en) | 2006-06-21 |
EP1441392B1 (en) | 2007-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4309075B2 (ja) | 磁気記憶装置 | |
US7696548B2 (en) | MRAM with super-paramagnetic sensing layer | |
KR100408576B1 (ko) | 기억 셀 어레이 및 그의 제조 방법 | |
JP2000090658A (ja) | 磁気メモリ素子 | |
JP2004128430A (ja) | 磁気記憶装置及びその製造方法 | |
JP2005286340A (ja) | 磁気抵抗効果素子およびその形成方法 | |
KR100450468B1 (ko) | 기억 셀 장치 및 그의 제조 방법 | |
JP2001196659A (ja) | トンネル磁気抵抗効果素子、薄膜磁気ヘッド、メモリ素子ならびにこれらの製造方法 | |
US20030123197A1 (en) | Magnetoresistive element, method for making the same, and magnetic memory device incorporating the same | |
JP2001273759A (ja) | 磁気メモリセルと磁気メモリ装置 | |
KR101464691B1 (ko) | 자기 메모리 소자 및 그 제조 방법 | |
JPH0954916A (ja) | スピンバルブ磁気抵抗効果型トランスジューサ及び磁気記録装置 | |
JP4032695B2 (ja) | 磁気メモリ装置 | |
JP3836779B2 (ja) | 磁気抵抗効果素子及び磁気メモリ | |
JP2007053143A (ja) | 記憶素子、メモリ | |
JP3872962B2 (ja) | 磁気抵抗効果素子及び磁気記憶装置 | |
JP2002353418A (ja) | 磁気抵抗効果素子および磁気メモリ装置 | |
JP2003197872A (ja) | 磁気抵抗効果膜を用いたメモリ | |
JP2007115781A (ja) | 磁気メモリ | |
JP2009146995A (ja) | 磁気記憶装置 | |
JP2007221086A (ja) | トンネル型磁気検出素子及びその製造方法 | |
JP2006073861A (ja) | 磁気記憶装置 | |
JP2006344750A (ja) | 磁気メモリ | |
JP2007067091A (ja) | 磁気メモリ | |
JP2001176032A (ja) | 磁気抵抗効果型ヘッド |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060725 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060908 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070515 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070712 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070803 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071002 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071015 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111102 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121102 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |