JP3836779B2 - 磁気抵抗効果素子及び磁気メモリ - Google Patents

磁気抵抗効果素子及び磁気メモリ Download PDF

Info

Publication number
JP3836779B2
JP3836779B2 JP2002329713A JP2002329713A JP3836779B2 JP 3836779 B2 JP3836779 B2 JP 3836779B2 JP 2002329713 A JP2002329713 A JP 2002329713A JP 2002329713 A JP2002329713 A JP 2002329713A JP 3836779 B2 JP3836779 B2 JP 3836779B2
Authority
JP
Japan
Prior art keywords
layer
magnetization
free layer
magnetic field
mtj element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002329713A
Other languages
English (en)
Other versions
JP2004165441A (ja
Inventor
正 甲斐
好昭 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002329713A priority Critical patent/JP3836779B2/ja
Publication of JP2004165441A publication Critical patent/JP2004165441A/ja
Application granted granted Critical
Publication of JP3836779B2 publication Critical patent/JP3836779B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Magnetic Heads (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気抵抗効果素子及び磁気メモリに関する。
【0002】
【従来の技術】
磁気抵抗効果素子は、例えば、一対の強磁性層を非磁性層を介して積層した構造を有している。この磁気抵抗効果素子の抵抗値は、一方の強磁性層の磁化に対する他方の強磁性層の磁化の相対的な向きに応じて変化する。このような磁気抵抗効果を示す磁気抵抗効果素子は様々な用途への応用が可能であり、磁気ランダムアクセスメモリ(以下、MRAMという)は磁気抵抗効果素子の主要な用途の1つである。
【0003】
MRAMでは、磁気抵抗効果素子などでメモリセルを構成するとともに、例えば、一方の強磁性層を磁場印加の際にその磁化の向きが変化しないピン層とし、他方の強磁性層を上記磁場印加の際にその磁化の向きが変化し得るフリー層として情報の記憶を行う。すなわち、情報を書き込む際には、ワード線に電流パルスを流すことにより発生する磁場とビット線に電流パルスを流すことにより発生する磁場との合成磁場を作用させる。これにより、フリー層の磁化を例えばピン層の磁化に対して平行な状態と反平行な状態との間で変化させる。このようにして、それら2つの状態に対応して二進情報(“0”、“1”)がメモリセルに記憶される。
【0004】
また、書き込んだ情報を読み出す際には、磁気抵抗効果素子に電流を流す。磁気抵抗効果素子の抵抗値は上記の2つの状態間で互いに異なるため、流れた電流(或いは抵抗値)を検出することによりメモリセルに記憶された情報を読み出すことができる。
【0005】
ところで、MRAMを高集積化するうえでは磁気抵抗効果素子の小面積化が極めて有効であるが、一般に、フリー層を小面積化すると、その保磁力が大きくなる。そのため、磁気抵抗効果素子の小面積化に応じ、フリー層の磁化をピン層の磁化に対して平行な状態と反平行な状態との間で変化させるのに必要な磁場(スイッチング磁場)の強さを高めなければならない。
【0006】
スイッチング磁場は、例えば、書き込みの際により大きな電流を書き込み配線に流すことにより強めることができる。しかしながら、この場合、消費電力が増大するのに加え、配線寿命が短くなる。
【0007】
上記の問題に対しては、ワード線及び/またはビット線の周囲にU字型の断面形状を有する高透磁率層を設けることが有効である。すなわち、このような構造を採用すると、ワード線やビット線に電流を流すことにより発生する磁場をフリー層に効果的に印加することができる。そのため、書き込み時にそれら配線に大きな電流を流す必要がなく、低消費電力と長い配線寿命とを実現できる。(特許文献1を参照のこと。)
しかしながら、上記の構造を採用すると、製造工程が著しく複雑になる場合がある。したがって、簡略化されたプロセスで製造可能であり且つ弱い磁場でフリー層の磁化を反転させることが可能な磁気抵抗効果素子が望まれる。
【0008】
【特許文献1】
米国特許第5,940,319号明細書
【0009】
【発明が解決しようとする課題】
本発明は、上記問題点に鑑みてなされたものであり、簡略化されたプロセスで製造可能であり且つ弱い磁場でフリー層の磁化を反転させることが可能な磁気抵抗効果素子及びそれを用いた磁気メモリを提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の第1の側面によると、強磁性を示すとともに磁場印加により磁化の向きが変化し得るフリー層と、強磁性を示すとともに前記磁場印加において磁化の向きが維持されるピン層と、前記フリー層と前記ピン層との間に介在した第1非磁性層とを具備し、前記フリー層はパラジウム及び白金の少なくとも一方の元素を含有した強磁性層を備え、前記強磁性層はその膜厚方向に前記元素の濃度分布を有し、前記強磁性層が含有する前記元素の濃度は前記第1非磁性層により遠い領域に比べ前記第1非磁性層により近い領域でより低いことを特徴とする磁気抵抗効果素子が提供される。
【0012】
本発明の第2の側面によると、ワード線と、前記ワード線に交差したビット線と、前記ワード線と前記ビット線との交差部またはその近傍に位置したメモリセルとを具備し、前記メモリセルは第1の側面に係る磁気抵抗効果素子を含んだことを特徴とする磁気メモリが提供される。
【0013】
第1の側面に係る磁気抵抗効果素子は、フリー層との間にピン層を介在させて設けられた反強磁性層をさらに具備していてもよい。また、第1の側面に係る磁気抵抗効果素子は、ピン層との間にフリー層を介在させて設けられ且つ強磁性を示すとともに上記磁場印加において磁化の向きが維持される第2ピン層と、フリー層と第2ピン層との間に介在した第3非磁性層とをさらに具備していてもよい。
【0014】
【発明の実施の形態】
以下、本発明の実施形態について、図面を参照しながら説明する。なお、各図において、同様または類似する機能を有する構成要素には同一の参照符号を付し、重複する説明は省略する。
【0015】
図1は、本発明の一実施形態に係る磁気抵抗効果素子を概略的に示す断面図である。図1に示す磁気抵抗効果素子1は、強磁性1重トンネル接合素子である。この強磁性トンネル接合素子(或いは「MTJ素子」;Magnetic Tunnel Junction element)1は、反強磁性層11、それに対向したフリー層12、反強磁性層11とフリー層12との間に介在したピン層13、及びフリー層12とピン層13との間に介在した非磁性層であるトンネルバリア層14を備えている。なお、図中、矢印は磁化の向きを示している。
【0016】
本実施形態において、フリー層12は1つの強磁性層のみからなる単層構造を有している。また、フリー層12は、その膜厚方向にパラジウム及び/または白金の濃度分布を有している。
【0017】
従来のMTJ素子では、フリー層にはその膜面に平行な方向(以下、面内方向という)に一軸磁気異方性が付与されているため、フリー層の全ての領域(ドメイン)で磁化は膜面方向に向く。本実施形態に係るMTJ素子1でも、フリー層12にはその膜面方向に一軸磁気異方性が付与されている。しかしながら、本実施形態に係るMTJ素子1では、上記の通り、フリー層12はその膜厚方向にパラジウム及び/または白金の濃度分布を有している。そのため、パラジウム及び/または白金を殆ど含有していない領域では磁化は面内方向に向くものの、パラジウム及び/または白金の濃度がより高い領域の一部では磁化は膜面に交差する方向に向く。
【0018】
例えば、図1に示すMTJ素子1では、フリー層12中でパラジウム及び/または白金の濃度が図中下方から上方に向けて単調増加しているとする。この場合、概略的には、磁化は、矢印でその向きを示すように、フリー層12の下側部分では殆どの領域で膜面に平行な方向に向き、中間部分では一部の領域で膜面に交差する方向に向き、上側部分ではより多くの領域で膜面に交差する方向に向くとともに膜面とより大きな角度を為し得る。すなわち、フリー層12中に上記の濃度分布を生じさせると、下側から上側に向けて、膜面に垂直な方向(以下、面直方向という)の磁化成分がより多くなる。
【0019】
このように、フリー層12の磁化が面内方向の成分だけでなく面直方向の成分をもつ場合、以下に説明するように、磁化が面内方向の成分のみをもつ場合に比べてより弱い磁場でフリー層12の磁化を反転させることが可能となる。
【0020】
図2は、磁場印加により磁化が向きを変化させる様子を概略的に示す斜視図である。なお、図中、参照番号51は磁化を示し、52は磁化容易軸を示し、53は磁化容易軸52に対して垂直な面内方向を示し、54は面直方向を示し、55は印加する磁場の向きを示している。
【0021】
磁場印加前の時点で磁化51と磁化容易軸52とが角度αが90°未満である場合、磁化51は角度αが90°を超えると反転する。この磁化反転は、磁場印加前の時点で角度αが広いほど、より弱い磁場で生じさせることができる。
【0022】
また、図2に示すように、磁化51の向きと印加磁場の向き55とが交差する場合、磁場を印加してから磁化51の向きと磁場の向き55とが為す角度βがほぼ180°になるまでの間、磁化51は、磁場の向き55を回転軸として図中右奥側から見て時計回り(矢印56で示す向きに)に回転しながら角度βを広げる。磁場印加開始直後の短い時間内では、仮に角度βが一定であったとしても、角度αは先の回転運動に伴って広くなる。そのため、磁場印加前の時点で角度αが90°未満の範囲内で広ければ、磁化51は僅かに回転することにより反転し得る。すなわち、磁場印加前の時点における角度αが広いほど、より速やかに磁化反転を生じさせることができる。
【0023】
図3(a)及び(b)は、図1に示すMTJ素子1が情報“0”を保持している状態と情報“1”を保持している状態とを概略的に示す断面図である。
【0024】
図3(a)に示す状態は、例えば、情報“0”に対応している。この状態では、フリー層12のほぼ全体で磁化は図中右向きの成分を有しているが、フリー層12の上面に近い領域では、図中右向きの成分が減少するとともに上向きの成分が増加している。
【0025】
図3(b)に示す状態は、例えば、情報“1”に対応している。この状態では、フリー層12のほぼ全体で磁化は図中左向きの成分を有しているが、フリー層12の上面に近い領域では、図中左向きの成分が減少するとともに上向きの成分が増加している。
【0026】
さて、ここで、フリー層12の磁化を図3(a)に示す状態から図3(b)に示す状態へと変化させるに際し、一例として、図3(a)に示すMTJ素子1に紙面右奥から左手前に向いた磁場を印加する場合を考える。このような磁場を印加すると、先に図2を参照して説明したように、磁場印加前の時点で角度αが広い磁化(面直方向の成分が多い磁化)は、磁場印加前の時点で角度αが狭い磁化(面直方向の成分が少ない磁化)に比べ、より弱い磁場で及びより速やかに角度αが90°よりも広くなる。
【0027】
フリー層12中の一部の領域で磁化と磁化容易軸とが為す角度αが90°よりも広くなると、残りの領域でも比較的弱い磁場で角度αを90°よりも広くすることができる。そのため、本実施形態によると、磁化が面内方向の成分のみをもつ場合に比べ、より弱い磁場でフリー層12の磁化を反転させることが可能となる。
【0028】
なお、本実施形態では、フリー層12の膜厚方向(面直方向)にパラジウム及び/または白金の濃度分布を生じさせ、それにより、フリー層12中に面直方向の成分がより多い磁化と面直方向の成分がより少ない磁化とを混在させている。このような磁化の分布は、例えば、フリー層12の面内方向にパラジウム及び/または白金の濃度分布を形成することでも生じさせることができる。しかしながら、後者の方法は、MTJ素子1間でスイッチング磁場の大きさやMR比にばらつきを生じ易く、しかも、大きなMR比を得るうえで不利である。
【0029】
本実施形態において、フリー層12の材料としては、例えば、強磁性を示し且つ導電性を有する磁性材料とパラジウム及び/または白金との混合物を使用することができる。フリー層12に使用可能な磁性材料としては、例えば、Fe、Co、Ni、それらの合金、及び、NiMnSb系、PtMnSb系、Co2MnGe系などのホイスラー合金等を挙げることができる。
【0030】
フリー層12中のパラジウム及び/または白金濃度は、トンネルバリア層14からの距離の増加に応じて単調増加していなくてもよい。例えば、それら元素の濃度は、フリー層12の膜厚方向中央部で最も高くてもよい。しかしながら、フリー層12中のパラジウム及び/または白金濃度がトンネルバリア層14からの距離の増加に応じて単調増加している場合、大きなMR比を実現するうえで最も有利である。
【0031】
フリー層12におけるパラジウム及び/または白金濃度の最大値と最小値との差は20%以上であることが好ましい。この差が小さすぎると、フリー層12にパラジウム及び/または白金を添加することにより生じる効果が顕著には現われない。なお、フリー層12におけるパラジウム及び/または白金濃度の最小値は、理想的にはゼロである。また、フリー層12におけるパラジウム及び/または白金濃度の最大値に特に制限はない。
【0032】
本実施形態において、フリー層12の膜厚は、通常、1nm以上とする。一般に、この膜厚が薄すぎると、その膜厚方向にパラジウム及び/または白金の濃度分布を生じさせること自体が難しくなる。また、フリー層12の膜厚は10nm以下であることが好ましい。フリー層12が過剰に厚いと、大きなスイッチング磁場が必要となる。
【0033】
本実施形態において、フリー層12は、例えば、強磁性体のターゲットとパラジウム及び/または白金ターゲットとを用いたスパッタリング法により形成することができる。すなわち、例えば、強磁性体のターゲットへの投入電力を一定とし、パラジウム及び/または白金ターゲットへの投入電力を経時的に変化させることにより、膜厚方向にパラジウム及び/または白金の濃度分布を有するフリー層12を得ることができる。
【0034】
次に、第1の参考例について説明する。
図4は、第1の参考例に係る磁気抵抗効果素子を概略的に示す断面図である。図4に示す磁気抵抗効果素子1は、強磁性1重トンネル接合素子である。このMTJ素子1は、フリー層12が一対の強磁性層12aとそれらの間に介在し且つパラジウム及び/または白金を含有した非磁性層12bとで構成されていること以外は図1に示すMTJ素子1と同様の構造を有している。
【0035】
強磁性層12aと上記の非磁性層12bとを積層すると、強磁性層12aの磁化は、非磁性層12bから遠い部分では殆どの領域で膜面に平行な方向に向き、非磁性層12bに近い部分では一部の領域で膜面に交差する方向に向く。すなわち、強磁性層12aと上記の非磁性層12bとを積層すると、非磁性層12bからの距離が短くなるのに応じ、面直方向の磁化成分がより多くなる。したがって、本参考例によると、上記実施形態で説明したのと同様の効果を得ることができる。
【0036】
また、本参考例では、フリー層12に上記の三層構造を採用している。そのため、個々の強磁性層12aの厚さを薄くすることができ、したがって、より弱い磁場で磁化反転を生じさせることが可能となる。パラジウム及び/または白金を含有した非磁性層12bを介した強磁性層12a間の結合が強いためにゼロ磁場での残留磁化が大きくなり、より大きなMR比をゼロ磁場で実現させることが可能となる
参考例において、フリー層12に含まれる強磁性層12aの材料としては、例えば、第1の実施形態においてフリー層12に関して例示した磁性材料を使用することができる。これら強磁性層12aの膜厚に特に制限はないが、通常、1nm乃至5nm程度である。なお、これら強磁性層12a間で、組成や膜厚は同一であってもよく或いは互いに異なっていてもよい。
【0037】
非磁性層12bは、典型的には、パラジウム及び/または白金と不可避的な不純物とからなる。しかしながら、非磁性層12bは、パラジウムや白金に加え、金、イリジウム、ルテニウムなどをさらに含有することができる。
【0038】
非磁性層12bは、パラジウム及び/または白金を50%以上の濃度で含有していることが好ましい。非磁性層12b中のパラジウム及び/または白金濃度が低すぎると、上記の効果が顕著には現われない。また、非磁性層12bの厚さは、通常、0.1nm乃至5nm程度である。
【0039】
次に、第2の参考例について説明する。
図5は、第2の参考例に係る磁気抵抗効果素子を概略的に示す断面図である。図5に示す磁気抵抗効果素子1は、強磁性1重トンネル接合素子である。このMTJ素子1は、フリー層12が一対の三層構造12-1,12-2とそれらの間に介在した非磁性層12cとで構成されていること以外は図4に示すMTJ素子1と同様の構造を有している。
【0040】
三層構造12-1,12-2のそれぞれは、第1の参考例で説明した一対の強磁性層12aとそれらの間に介在した非磁性層12bとで構成されている。また、非磁性層12cは、例えば銅からなる薄膜である。三層構造12-1,12-2同士は、この非磁性層12cを介して弱い強磁性結合を形成している。
【0041】
このような構造を採用した場合も、上記実施形態で説明したのと同様の効果を得ることができる。また、本参考例では、フリー層12に上記の多層構造を採用している。そのため、個々の強磁性層12aの厚さを薄くすることができ、したがって、より弱い磁場で磁化反転を生じさせることが可能となる。さらに、本参考例では、角型比が大きくなり、ゼロ磁場でのMR比がより大きくなる。
【0042】
参考例において、フリー層12に含まれる強磁性層12aの材料としては、例えば、上記実施形態においてフリー層12に関して例示した磁性材料を使用することができる。これら強磁性層12aの膜厚に特に制限はないが、通常、1nm乃至5nm程度である。なお、三層構造12-1,12-2間及び/または三層構造12-1,12-2内で、強磁性層12aの組成や膜厚は同一であってもよく或いは互いに異なっていてもよい。
【0043】
非磁性層12bの材料や膜厚は、第1の参考例で説明したのと同様とすることができる。三層構造12-1,12-2間で、非磁性層12bの組成や膜厚は同一であってもよく或いは互いに異なっていてもよい。
【0044】
フリー層12に含まれる非磁性層12cの材料としては、例えば、Cu、Au、Ru、Ir、Rh、及びAgなどを使用することができる。非磁性層12cの厚さは、通常、0.1nm乃至5nm程度である。
【0045】
上述した実施形態並びに第1及び第2の参考例において、反強磁性層11は必ずしも設けなくてもよいが、反強磁性層11を設けた場合、ピン層12と反強磁性層11との間の交換結合により、ピン層12の磁化をより強固に固着させることができる。反強磁性層11の材料としては、例えば、Fe−Mn、Pt−Mn、Pt−Cr−Mn、Ni−Mn、及びIr−Mnなどの合金やNiOなどを使用することができる。また、反強磁性層11を設ける代わりに、硬質磁性層を設けてもよい。この場合、硬質磁性層からの漏れ磁界により、ピン層12の磁化をより強固に固着させることができる。
【0046】
ピン層13には、一方向磁気異方性が付与されている。ピン層13は、単層構造を有していてもよく、或いは、多層構造を有していてもよい。すなわち、ピン層13は、強磁性層のみで構成されていてもよく、或いは、複数の強磁性層とそれらの間に介在した非磁性層との積層体で構成されていてもよい。ピン層13の強磁性層の材料としては、例えば、Fe、Co、Ni、それらの合金、及び、NiMnSb系、PtMnSb系、Co2MnGe系などのホイスラー合金等を挙げることができる。また、ピン層13の非磁性層の材料としては、例えば、Cu、Au、Ru、Ir、Rh、及びAgなどを使用することができる。なお、ピン層13に多層構造を採用する場合、それに含まれる強磁性層間で膜厚や組成は同一であってもよく或いは互いに異なっていてもよい。
【0047】
トンネルバリア層14の材料としては、例えば、Al23、SiO2、MgO、AlN、AlON、GaO、Bi23、SrTiO2、及びAlLaO3などの誘電体或いは絶縁体を使用することができる。これら誘電体或いは絶縁体には、酸素欠損や窒素欠損が存在していても構わない。トンネルバリア層14の膜厚は、MTJ素子1の面積などに応じて適宜設定する。トンネルバリア層14の膜厚は、0.5nm乃至3nm程度であることが好ましい。
【0048】
上記実施形態並びに第1及び第2の参考例に係るMTJ素子1は、下地層や保護層をさらに備えていてもよい。また、図1,図4及び図5において、図中、上側及び下側の何れを下地層側としてもよい。
【0049】
上記実施形態並びに第1及び第2の参考例に係るMTJ素子1は、例えば、基板の一主面に設けられた下地層上に各種薄膜を順次成膜することにより得られる。これら、薄膜は、各種スパッタリング法、蒸着法、及び分子線エピタキシャル法などの気相堆積法や、気相堆積と酸化や窒化などとを組み合わせた方法を用いて形成することができる。
【0050】
基板の材料としては、例えば、Si、SiO2、Al23、スピネル、及びAlNなどを挙げることができる。また、下地層や保護層としては、例えば、Ta、Ti、Pt、Pd、及びAuなどを含有した層や、Ti/Pt、Ta/Pt、Ti/Pd、Ta/Pd、及びTa/Ruなどで表される積層膜を使用することができる。
【0051】
上述したMTJ素子1は、様々な用途への応用が可能である。以下、上記の磁気抵抗効果素子1を用いたMRAMについて説明する。
【0052】
図6(a)は、実施形態並びに第1及び第2の参考例に係るMTJ素子1を用いたMRAMの一例を概略的に示す斜視図である。また、図6(b)は、実施形態並びに第1及び第2の参考例に係るMTJ素子1を用いたMRAMの他の例を概略的に示す斜視図である。
【0053】
図6(a)に示すMRAMでは、書き込み用のワード線4と略平行に読み出し用のワード線6を設けている。読み出し用のワード線6にはトランジスタ7のゲートが接続されており、トランジスタ7のソース及びドレインの一方は下部電極16を介して反強磁性層11に電気的に接続されている。また、ビット線5は、フリー層12と電気的に接続されており、読み出し及び書き込みの双方に利用可能である。なお、このMRAMでは、それぞれのメモリセルは、MTJ素子1とトランジスタ7とを含んでいる。
【0054】
このMRAMに情報を書き込む際、或るMTJ素子1に対向した1本のワード線4と1本のビット線5とに書き込み電流を流し、それにより発生する合成磁場を上記のMTJ素子1に作用させる。そのMTJ素子1のフリー層12は、ビット線5に流した電流の向きに応じて、その磁化の向きを反転させるか或いは維持する。このようにして、情報の書き込みを行う。
【0055】
また、このMRAMから情報を読み出す際、或るMTJ素子1に対向したビット線5を選択するとともに、そのMTJ素子1に対応したワード線6に所定の電圧を印加して先のMTJ素子1に接続されたトランジスタ7を導通状態とする。MTJ素子1の抵抗値はフリー層12の磁化の向きとピン層13の磁化の向きとが等しい場合と逆である場合とで異なるので、この状態でビット線5と下部電極16との間を流れる電流をセンスアンプにより検出することにより、上記のMTJ素子1が記憶している情報を読み出すことができる。
【0056】
図6(b)に示すMRAMでは、ワード線4とビット線5との間で、ダイオード8とMTJ素子1とを直列接続している。このMRAMでは、ワード線4及びビット線5は読み出し及び書き込みの双方に利用可能である。なお、このMRAMでは、それぞれのメモリセルは、MTJ素子1とダイオード8とを含んでいる。
【0057】
このMRAMに情報を書き込む際、或るMTJ素子1に対向した1本のワード線4と1本のビット線5とに書き込み電流を流し、それにより発生する合成磁場を上記のMTJ素子1に作用させる。そのMTJ素子1のフリー層12は、ビット線5に流した電流の向きに応じて、その磁化の向きを反転させるか或いは維持する。このようにして、情報の書き込みを行う。
【0058】
また、このMRAMから情報を読み出す際、或るMTJ素子1に対向したビット線5を選択するとともに、そのMTJ素子1に対応したワード線4に所定の電圧を印加する。MTJ素子1の抵抗値はフリー層12の磁化の向きとピン層13の磁化の向きとが等しい場合と逆である場合とで異なるので、この状態で選択したビット線5を流れる電流をセンスアンプにより検出することにより、上記のMTJ素子1が記憶している情報を読み出すことができる。
【0059】
図6(a),(b)に示すMRAMでは、実施形態並びに第1及び第2の参考例に係るMTJ素子1を使用しているため、比較的弱い磁場でフリー層12の磁化を反転させることができる。それゆえ、書き込みの際にワード線4及びビット線5に大きな電流を流す必要がない。したがって、低消費電力と長い配線寿命とを実現することができる。
【0060】
また、図6(a),(b)に示すMRAMでは、それぞれのメモリセルは磁気抵抗効果素子1に加えてトランジスタ7やダイオード8などのスイッチング素子を含んでいるため、非破壊読み出しが可能である。なお、破壊読み出しを行う場合、メモリセルはスイッチング素子を含んでいなくてもよい。
【0061】
上述した実施形態並びに第1及び第2の参考例では、MTJ素子1を強磁性1重トンネル接合素子としたが、これらMTJ素子1は強磁性2重トンネル接合素子であってもよい。すなわち、上記のMTJ素子1は、ピン層13及びトンネルバリア層14のそれぞれをフリー層12の両側に配置した構造を有していてもよい。
【0062】
また、実施形態並びに第1及び第2の参考例で説明した磁気抵抗効果素子1は、非磁性層14をトンネルバリア層としたMTJ素子であるが、これら磁気抵抗効果素子1は、非磁性層14を導電層とした巨大磁気抵抗効果(GMR)素子とすることができる。この場合、非磁性層14の材料としては、例えば、Cu、Ag、及びAuなどの導電材料を使用することができる。
【0063】
なお、上記の磁気抵抗効果素子1がMTJ素子である場合、フリー層11とピン層12との間に流れるトンネル電流の値は、フリー層11の磁化とピン層12の磁化とが為す角度の余弦に比例する。それらの磁化が逆向きの状態でトンネル抵抗値は最小となり、それらの磁化が同じ向きである状態でトンネル抵抗値は最大となる。
【0064】
他方、上記の磁気抵抗効果素子1がGMR素子である場合、その抵抗値は、フリー層11の磁化とピン層12の磁化とが為す角度の余弦に比例する。それらの磁化が逆向きの状態で抵抗値は最小値となり、それらの磁化が同じ向きである状態で抵抗値は最大となる。
【0065】
また、実施形態並びに第1及び第2の参考例に係る磁気抵抗効果素子1は上記の通りMRAMで利用することが可能であるが、他の用途にも利用可能である。例えば、上記磁気抵抗効果素子1は、磁気ヘッドやそれを搭載した磁気再生装置或いは磁気記録再生装置並びに磁気センサなどにも利用することができる。
【0066】
【実施例】
以下、本発明の実施例について説明する。
実施例
本例では、図1に示す磁気抵抗効果素子1を以下の方法により作製した。なお、本例では、磁気抵抗効果素子1をMTJ素子とした。
【0067】
すなわち、マグネトロンスパッタリング装置を用いて、図示しない熱酸化Si基板上に、厚さ10nmのTa層と厚さ10nmのNiFe層とを積層してなる下地層(図示せず)、IrMnからなる厚さ12nmの反強磁性層11、Co9Feからなる厚さ3nmのピン層13、Al23からなる厚さ1.5nmのトンネルバリア層14、及びPdとCo9Feとの混合物からなる厚さ5nmのフリー層12を順次積層した。
【0068】
具体的には、これら薄膜は、膜面方向に100Oeの磁場を印加しながら、真空破壊することなく連続的に形成した。なお、マスクの交換は真空チャンバ内で行った。
下地層、反強磁性層11、及びピン層13は、幅100μmの帯状(下部配線形状)の開口を有するマスクを用いたスパッタリングにより形成した。Al層は、矩形状(接合部形状)の開口を有するマスクを用いたスパッタリングにより形成した。
トンネルバリア層14は、Al層を成膜した後、これをプラズマ酸化することにより形成した。
【0069】
フリー層12は、幅100μmの帯状(下部配線に直交する上部配線形状)の開口を有するマスクを用いたスパッタリングにより形成した。この際、スパッタリングターゲットとしてCo9FeターゲットとPdターゲットとを使用し、Pdターゲットへの投入電力を経時的に変化させることにより、膜厚方向にPdの濃度勾配を有するフリー層12を形成した。なお、ここで形成したフリー層12は、下面側がほぼCo9Feのみからなり且つ上面側がCo9FeにPdが20%固溶した合金からなる。
以上のようにして、接合面積が100μm×100μmのMTJ素子1を作製した。
【0070】
(比較例1)
本例では、フリー層12にPdを含有させなかったこと以外は実施例で説明したのと同様の方法によりMTJ素子1を作製した。
【0071】
次に、実施例及び比較例1に係るMTJ素子1の磁気抵抗特性について4端子法を用いて調べた。その結果を図7に示す。
【0072】
図7は、本発明の実施例に係るMTJ素子1について得られた磁気抵抗特性を示すグラフである。図中、横軸はフリー層12に印加した磁場の強さを示し、縦軸はMTJ素子1のMR比を示している。また、実線101は実施例に係るMTJ素子1について得られたデータを示し、破線102は比較例1に係るMTJ素子1について得られたデータを示している。
【0073】
図7に示すように、実施例に係るMTJ素子1では、約20Oe以上の磁場でフリー層12の磁化を反転させることができ、MR比は約40%であった。これに対し、比較例1に係るMTJ素子1では、フリー層12の磁化を反転させるのに約25Oe以上の磁場を必要とした。すなわち、実施例では、比較例1に比べ、スイッチング磁場の大きさを20%程度低減することができた。また、図7に示すように、実施例に係るMTJ素子1は、比較例1に係るMTJ素子1に比べ、印加磁場の強さがゼロである場合の磁気抵抗比に優れ、角型比が向上していた。
【0074】
参考例1
本例では、図4に示す磁気抵抗効果素子1を以下の方法により作製した。なお、本例では、磁気抵抗効果素子1をMTJ素子とした。
【0075】
すなわち、マグネトロンスパッタリング装置を用いて、図示しない熱酸化Si基板上に、厚さ10nmのTa層と厚さ10nmのNiFe層とを積層してなる下地層(図示せず)、IrMnからなる厚さ12nmの反強磁性層11、Co9Feからなる厚さ3nmのピン層13、Al23からなる厚さ1.5nmのトンネルバリア層14、Co9Feからなる厚さ2nmの強磁性層12a、Pdからなる厚さ1nmの非磁性層12b、及びCo9Feからなる厚さ2nmの強磁性層12aを順次積層した。
【0076】
具体的には、これら薄膜は、膜面方向に100Oeの磁場を印加しながら、真空破壊することなく連続的に形成した。なお、トンネルバリア層14は、Al層を成膜した後、これをプラズマ酸化することにより形成した。また、これら薄膜はフォトリソグラフィ技術とエッチング技術とを用いてパターニングした。これにより、接合面積が1μm×1μmのMTJ素子1を作製した。
【0077】
次に、このMTJ素子1について、試料振動型磁力計(VSM)を用いて磁化曲線を測定した。その結果、面内方向及び面直方向の双方で、ヒステリシスを示す磁化曲線が得られ、フリー層12は面直方向の磁化成分を持っていることが確認された。
【0078】
(比較例2)
本例では、フリー層12を1つの強磁性層12aのみで構成したこと以外は参考例1で説明したのと同様の方法によりMTJ素子1を作製した。
【0079】
次に、参考例1及び比較例2に係るMTJ素子1の磁気抵抗特性について4端子法を用いて調べた。その結果、参考例1に係るMTJ素子1では、約24Oe以上の磁場でフリー層12の磁化を反転させることができ、MR比は約43%であった。これに対し、比較例2に係るMTJ素子1では、フリー層12の磁化を反転させるのに約31Oe以上の磁場を必要とした。すなわち、参考例1では、比較例2に比べ、スイッチング磁場の大きさを22%程度低減することができた。
【0080】
参考例2
本例では、図5に示す磁気抵抗効果素子1を以下の方法により作製した。なお、本例では、磁気抵抗効果素子1をMTJ素子とした。
【0081】
すなわち、マグネトロンスパッタリング装置を用いて、図示しない熱酸化Si基板上に、厚さ10nmのTa層と厚さ10nmのNiFe層とを積層してなる下地層(図示せず)、IrMnからなる厚さ12nmの反強磁性層11、Co9Feからなる厚さ3nmのピン層13、Al23からなる厚さ1.5nmのトンネルバリア層14、Co9Feからなる厚さ2nmの強磁性層12a、Pdからなる厚さ1nmの非磁性層12b、Co9Feからなる厚さ2nmの強磁性層12a、Ruからなる厚さ0.8nmの非磁性層12c、Co9Feからなる厚さ2nmの強磁性層12a、Pdからなる厚さ1nmの非磁性層12b、及びCo9Feからなる厚さ2nmの強磁性層12aを順次積層した。
【0082】
具体的には、これら薄膜は、膜面方向に100Oeの磁場を印加しながら、真空破壊することなく連続的に形成した。なお、トンネルバリア層14は、Al層を成膜した後、これをプラズマ酸化することにより形成した。また、これら薄膜はフォトリソグラフィ技術とエッチング技術とを用いてパターニングした。これにより、接合面積が1μm×1μmのMTJ素子1を作製した。
【0083】
次に、このMTJ素子1について、VSMを用いて磁化曲線を測定した。その結果、面内方向及び面直方向の双方で、ヒステリシスを示す磁化曲線が得られ、フリー層12は面直方向の磁化成分を持っていることが確認された。また、VSMを用いた測定の結果、非磁性層12cを介した強磁性層間の結合が強磁性的であることも確認された。
【0084】
次いで、参考例2に係るMTJ素子1の磁気抵抗特性について4端子法を用いて調べた。その結果、参考例2に係るMTJ素子1では、約22Oe以上の磁場でフリー層12の磁化を反転させることができ、MR比は約39%であった。すなわち、参考例2では、比較例2に比べ、スイッチング磁場の大きさを29%程度低減することができた。
【0085】
【発明の効果】
以上説明したように、本発明によると、簡略化されたプロセスで製造可能であり且つ弱い磁場でフリー層の磁化を反転させることが可能な磁気抵抗効果素子及びそれを用いた磁気メモリが提供される。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係るMTJ素子を概略的に示す断面図。
【図2】 磁場印加により磁化が向きを変化させる様子を概略的に示す斜視図。
【図3】 (a)及び(b)は、図1に示すMTJ素子が情報“0”を保持している状態と情報“1”を保持している状態とを概略的に示す断面図。
【図4】 第1の参考例に係るMTJ素子を概略的に示す断面図。
【図5】 第2の参考例に係るMTJ素子を概略的に示す断面図。
【図6】 (a)は実施形態並びに第1及び第2の参考例に係るMTJ素子を用いたMRAMの一例を概略的に示す斜視図、(b)は実施形態並びに第1及び第2の参考例に係るMTJ素子を用いたMRAMの他の例を概略的に示す斜視図。
【図7】 本発明の実施例に係るMTJ素子について得られた磁気抵抗特性を示すグラフ。
【符号の説明】
1…磁気抵抗効果素子、4…ワード線、5…ビット線、6…ワード線、7…トランジスタ、8…ダイオード、11…反強磁性層、12…フリー層、12-1,12-2…三層構造、12a…強磁性層、12b…非磁性層、13…ピン層、14…非磁性層、16…下部電極、51…磁化、52…磁化容易軸、53…磁化容易軸に対して垂直な面内方向、54…面直方向、55…磁場の向き、56…回転方向、101…実線、102…破線。

Claims (3)

  1. 強磁性を示すとともに磁場印加により磁化の向きが変化し得るフリー層と、強磁性を示すとともに前記磁場印加において磁化の向きが維持されるピン層と、前記フリー層と前記ピン層との間に介在した第1非磁性層とを具備し、
    前記フリー層はパラジウム及び白金の少なくとも一方の元素を含有した強磁性層を備え、前記強磁性層はその膜厚方向に前記元素の濃度分布を有し、前記強磁性層が含有する前記元素の濃度は前記第1非磁性層により遠い領域に比べ前記第1非磁性層により近い領域でより低いことを特徴とする磁気抵抗効果素子。
  2. 前記フリー層との間に前記ピン層を介在させて設けられた反強磁性層をさらに具備したことを特徴とする請求項1に記載の磁気抵抗効果素子。
  3. ワード線と、前記ワード線に交差したビット線と、前記ワード線と前記ビット線との交差部またはその近傍に位置したメモリセルとを具備し、前記メモリセルは請求項1又は2に記載の磁気抵抗効果素子を含んだことを特徴とする磁気メモリ。
JP2002329713A 2002-11-13 2002-11-13 磁気抵抗効果素子及び磁気メモリ Expired - Fee Related JP3836779B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002329713A JP3836779B2 (ja) 2002-11-13 2002-11-13 磁気抵抗効果素子及び磁気メモリ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002329713A JP3836779B2 (ja) 2002-11-13 2002-11-13 磁気抵抗効果素子及び磁気メモリ

Publications (2)

Publication Number Publication Date
JP2004165441A JP2004165441A (ja) 2004-06-10
JP3836779B2 true JP3836779B2 (ja) 2006-10-25

Family

ID=32807632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002329713A Expired - Fee Related JP3836779B2 (ja) 2002-11-13 2002-11-13 磁気抵抗効果素子及び磁気メモリ

Country Status (1)

Country Link
JP (1) JP3836779B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7599156B2 (en) 2004-10-08 2009-10-06 Kabushiki Kaisha Toshiba Magnetoresistive element having specially shaped ferromagnetic layer
JP2008218736A (ja) * 2007-03-05 2008-09-18 Renesas Technology Corp 磁気記憶装置
US8174800B2 (en) * 2007-05-07 2012-05-08 Canon Anelva Corporation Magnetoresistive element, method of manufacturing the same, and magnetic multilayered film manufacturing apparatus
JP2009146995A (ja) * 2007-12-12 2009-07-02 Renesas Technology Corp 磁気記憶装置
WO2009122992A1 (ja) * 2008-04-03 2009-10-08 日本電気株式会社 磁気抵抗記憶装置
JP4998801B2 (ja) * 2008-08-22 2012-08-15 独立行政法人科学技術振興機構 トンネル素子の製造方法
US8705213B2 (en) * 2010-02-26 2014-04-22 Seagate Technology Llc Magnetic field detecting device with shielding layer at least partially surrounding magnetoresistive stack
WO2014151820A1 (en) * 2013-03-15 2014-09-25 Magarray, Inc. Magnetic tunnel junction sensors and methods for using the same
CN113889151B (zh) * 2021-10-21 2023-05-26 郑州云海信息技术有限公司 一种基于铁磁材料的机械硬盘数据读写方法及系统

Also Published As

Publication number Publication date
JP2004165441A (ja) 2004-06-10

Similar Documents

Publication Publication Date Title
KR100421408B1 (ko) 자기 저항 효과 소자 및 자기 메모리 장치
KR100413174B1 (ko) 자기 저항 소자
US7532504B2 (en) Spin injection magnetic domain wall displacement device and element thereof
JP4371781B2 (ja) 磁気セル及び磁気メモリ
JP4568152B2 (ja) 磁気記録素子及びそれを用いた磁気記録装置
KR100344030B1 (ko) 자기 소자, 자기 메모리 디바이스, 자기저항 효과 헤드 및 자기 저장 시스템.
JP3863536B2 (ja) 磁気ランダムアクセスメモリ及びその磁気ランダムアクセスメモリのデータ書き込み方法
JP3699954B2 (ja) 磁気メモリ
JP4277870B2 (ja) 記憶素子及びメモリ
US20040165425A1 (en) Magnetic cell and magnetic memory
JP2005109263A (ja) 磁性体素子及磁気メモリ
KR20070057673A (ko) 기억 소자 및 메모리
JP2004023070A (ja) 磁気抵抗効果素子及び磁気メモリ装置、磁気抵抗効果素子及び磁気メモリ装置の製造方法
JP2007103471A (ja) 記憶素子及びメモリ
JP2004128015A (ja) 磁気抵抗効果素子および磁気メモリ装置
JP2006190838A (ja) 記憶素子及びメモリ
JP3697369B2 (ja) 磁気素子、磁気メモリ装置、磁気抵抗効果ヘッド、磁気ヘッドジンバルアッセンブリ、及び磁気記録システム
JP4005832B2 (ja) 磁気メモリ及び磁気メモリ装置
JP3836779B2 (ja) 磁気抵抗効果素子及び磁気メモリ
JP2006165265A (ja) 記憶素子及びメモリ
JP3468512B2 (ja) 磁気抵抗効果素子、磁気ヘッド、及び磁気記録装置
JP2001076479A (ja) 磁気メモリ素子
JP2004022599A (ja) 磁気抵抗効果素子及び磁気メモリ装置、磁気抵抗効果素子及び磁気メモリ装置の製造方法
JP2006108316A (ja) 記憶素子及びメモリ
JP2002270922A (ja) 磁気抵抗素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees