CN1207776C - 有控制栅突出部的浮栅存储器阵列自对准法及存储器阵列 - Google Patents

有控制栅突出部的浮栅存储器阵列自对准法及存储器阵列 Download PDF

Info

Publication number
CN1207776C
CN1207776C CNB011331615A CN01133161A CN1207776C CN 1207776 C CN1207776 C CN 1207776C CN B011331615 A CNB011331615 A CN B011331615A CN 01133161 A CN01133161 A CN 01133161A CN 1207776 C CN1207776 C CN 1207776C
Authority
CN
China
Prior art keywords
groove
conductor material
layer
side wall
ground floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB011331615A
Other languages
English (en)
Other versions
CN1359148A (zh
Inventor
C·H·王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silicon Storage Technology Inc
Original Assignee
Silicon Storage Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silicon Storage Technology Inc filed Critical Silicon Storage Technology Inc
Publication of CN1359148A publication Critical patent/CN1359148A/zh
Application granted granted Critical
Publication of CN1207776C publication Critical patent/CN1207776C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

在半导体基片上形成浮栅存储器单元一个半导体存储器阵列的一种自对准方法,在基片上有空间上互相隔开的多个隔离区的和活性区,在列方向上基本上互相平行。在每个活性区中形成浮栅。在行方向上,形成包括缩进的槽。在这些槽中填充导体材料,形成导体材料块,构成控制栅。这些槽的缩进导致在控制栅上形成在浮栅上延伸的突出部分。

Description

有控制栅突出部的浮栅存储器阵列 自对准法及存储器阵列
技术领域
本发明涉及形成分栅类型的浮栅存储器单元半导体存储器阵列的自对准方法。本发明还涉及上述类型的浮栅存储器单元半导体存储器阵列。
背景技术
在半导体基片上形成,利用浮栅在上面存储电荷的非易失性半导体存储器单元和这种非易失性存储器单元的存储器阵列在本领域中众所周知。通常情况下,这种浮栅存储器单元要么是分栅类型的,要么是叠栅类型的,或者是它们的组合。
制造半导体浮栅存储器单元阵列所面临的一个问题是如何对准各种元件,比方说源、漏、控制栅和浮栅。随着半导体集成工艺设计规范中尺寸不断变小,缩小最小光刻功能部件的尺寸并且精确地对准,变得更加重要。各种部件的对准程度决定了半导体产品的成品率。
本领域中的自对准早已是众所周知。自对准指的是对一种或者多种材料进行处理的一个或者多个步骤,这些处理使得功能部件自动地互相对齐。因此,本发明利用自对准技术来制造浮栅存储器单元类型的半导体存储器阵列。
在分栅结构中,控制栅场效应管不仅在影响源一侧注入FLASH单元的编程注入效率方面,还在干扰镜像单元方面起着重要的作用。对Lcg进行良好的工艺控制(也叫做WL(字-行)多晶硅长度,它是分布在沟道上的控制栅或者选择栅的长度)能够保证控制栅器件完全关闭,从而有效地防止在编程过程中镜像单元里出现干扰(程序干扰))。本发明是实现自对准FLASH单元的一种方法,这种自对准FLASH单元的控制栅器件具有改进了的完全关闭性能和更好的程序干扰特性。本发明也是这样一个器件。
发明内容
在本发明中,WL(控制/选择栅)多晶硅长度是由光刻工艺控制的,跟衬垫工艺形成的WL多晶硅相比,利用它能够很好地对WL多晶硅长度进行调整和控制。由于对光刻工艺的紧控制是逻辑技术的一种副产品,所以利用本发明能够更好地控制WL多晶硅长度,从而更好地抑制镜像单元中的程序干扰。本发明的另外一个优点是它能够在同一块晶片上形成具有不同WL多晶硅长度的单元。
利用本发明还能够形成具有基本上是直线形状的或者平坦侧壁部分的WL多晶硅,它使得形成侧壁衬垫更加容易控制,解决起WL-WL(位线)和WL-源块短路问题来更加容易。此外,在本发明的第一个实施方案中,WL多晶硅由WL槽划定,而不是由衬垫腐蚀划定。这样,存储器单元不会因为隔离或者槽氧化物-活性形状而发生WL-WL短路,而且WL多晶硅具有平坦的表面,它使得在WL带上形成触点更加容易(不需要任何WL带)。跟现有技术相比,第一个实施方案还有一个优点,也就是说利用它能够为关键尺寸检查选择“显影后检查”,例如在WL尺寸光刻定影以后。如果关键尺寸WL的控制没能达到目的,就能检测到误差,并且重做晶片,从而正确地确定这个关键尺寸。
本发明是在半导体基片上形成浮栅存储器单元半导体存储器阵列的一种自对准方法,其中每个存储器单元都有一个浮栅、沟道区在其间的第一端子和第二端子以及一个控制栅。该方法包括以下步骤:
a)在基本上互相平行,在第一个方向上延伸的基片上形成多个互相隔开的隔离区,在每一对相邻隔离区之间有一个活性区,每个活性区在半导体基片上都有第一层绝缘材料,以及第一层绝缘材料上的第一层导电材料;
b)通过活性区和隔离区形成空间上互相隔开的多个第一槽,它们基本上互相平行,并且在基本上跟第一个方向垂直的第二个方向上延伸,露出每个活性区中的第一层导电材料,第一槽中的每一个都有一个侧壁,其中形成一个缩进;
c)在每个活性区中形成第二层绝缘材料,它在第一层导电材料上面,并且跟它相邻;
d)在第一槽中的每一个里填满第二种导电材料,形成第二种导电材料构成的块,其中每一块都在一个活性区内;
这些块跟第二层绝缘材料相邻,跟基片绝缘,和
这些块包括第一槽侧壁上的缩进形成的突出部分,它们分布在第二层绝缘材料和第一层导电材料上;
e)在基片上形成多个第一端子,其中在每个活性区内,第一端子中的每一个都跟一块相邻;和
f)在基片上形成多个第二端子,其中在每个活性区内,每个第二端子都跟第一端子隔开,并且在第一层导电材料下面。
再一方面,本发明中电可编程和可擦除存储器阵列包括第一种导电类型的一个半导体材料基片,以及在基片上形成的互相隔开的隔离区,它们基本上互相平行,并且在第一个方向上延伸,每一对相邻隔离区之间有一个活性区。每个活性区都包括在第一个方向上延伸的多个存储器单元,其中每一个存储器单元都包括空间上互相隔开的第一个和第二个端子,它们是在基片上形成的,属于第二种导体类型,在它们之间的基片中有一个沟道区形成,第一个绝缘层分布在所述基片上,包括所述沟道区,一个导电浮栅分布在第一个绝缘层上,沿着一部分沟道区和一部分第二端子延伸,第二个绝缘层分布在浮栅上面并且跟它相邻,它的厚度允许电荷发生Fowler-Nordheim隧道贯穿,还有一个导电控制栅,它包括一个基本上是平的侧壁部分,跟第二个绝缘层和浮栅相邻,还包括突出部分,从平的侧壁部分突出,部分地延伸到浮栅上,并且跟它绝缘。
另一方面,本发明是在半导体基片上形成浮栅存储器单元半导体存储器阵列的一种自对准方法,其中的每个存储器单元都有一个浮栅、其间有一个沟道区的一个第一端子和一个第二端子以及一个控制栅。该方法包括以下步骤:
a)在基片上形成空间上互相隔开的多个隔离区,它们基本上互相平行,并且在第一个方向上延伸,在每一对相邻的隔离区之间有一个活性区,这些活性区中的每一个都包括半导体基片上的第一层绝缘材料和第一层绝缘材料上的第一层导电材料;
b)在活性区和隔离区上形成空间上互相隔开并且在跟第一个方向基本正交的第二个方向上延伸的多个第一槽,在每个活性区中露出第一层导电材料;
c)在每个活性区中形成第二层绝缘材料,在第一层导电材料之上并且跟它相邻;
d)在第一槽的侧壁上形成材料的第二侧壁衬垫;
e)在每个第一侧壁衬垫上形成材料的第二侧壁衬垫;
f)在每个活动区中形成第二槽,其中每个第二槽都有一个侧壁,它跟第一侧壁衬垫中的一个紧紧相邻;
g)去掉第一侧壁衬垫,在每个第二槽侧壁上形成一个缩进;
h)在每一个第二槽中填满第二种导电材料,形成第二种导电材料块,其中对于每个活动区中的每个块:
这个块跟第二层绝缘材料相邻,跟基片绝缘,和
这个块包括第二槽侧壁缩进形成的一个突出部分,它分布在第二层绝缘材料和第一层导电材料上;
i)在基片中形成多个第一端子,其中在每个活动区中每个第一端子跟一块相邻;和
j)在基片中形成多个第二端子,其中每个活动区中每个第二端子都跟第一端子隔开,并且在第一层导电材料下。
通过以下说明、权利要求和附图,本发明的其它目的和特征将会变得显而易见。
附图说明
图1A是本发明中形成隔离区所用方法第一步中所用半导体基片的一个顶视图。
图1B是沿着直线1-1的剖面图。
图1C是处理图1B所示结构的下一步骤的顶视图,在其中形成隔离区。
图1D是沿着图1C所示结构中直线1-1的一个剖面图,它说明这个结构中形成的隔离条纹。
图1E是图1C所示结构中沿着直线1-1的一个剖面图,它说明能够在半导体基片上形成的两种隔离区:LOCOS或者浅槽。
图2A~2T是沿着图1C所示直线2-2的剖面图,它按顺序说明在形成分栅类型浮栅存储器单元非易失性存储器阵列的时候,在处理图1C所示结构的过程中的步骤。
图2U是一个顶视图,它说明形成分栅类型浮栅存储器单元非易失性存储器阵列的过程中,活性区内行线和位线跟端子的互连。
图3A~3Q是沿着图1C所示直线2-2的剖面图,按顺序说明在形成分栅类型浮栅存储器单元非易失性存储器阵列的过程中,图1C所示结构的第一个工艺选择的步骤。
优选实施方案
参考图1A,其中画出了一个半导体基片10的顶视图,它最好是P型的,这在本领域里众所周知。绝缘材料12形成的第一层,比方说二氧化硅(氧化物),沉积在它上面,如图1B所示。在基片10上用众所周知的技术,比方说氧化或者沉积(例如化学气相沉积也就是CVD),形成第一个绝缘层12,形成一层二氧化硅(以后叫做“氧化物”)。在第一层绝缘材料12的顶部沉积形成第一层多晶硅114(FG多晶硅)。在第一个绝缘层12上沉积和形成第一个多晶硅层14是用低压CVD或者LPCVD这样的著名工艺完成的。在多晶硅层14上面沉积形成一个氮化硅层18(以后叫做“氮化物”)。形成隔离的时候这个氮化物层18用于划分活性区。当然,前面描述的所有参数以及后面描述的参数都取决于设计规则和工艺技术代。这里要描述的是0.18微米工艺。但是,本领域里的技术人员应当明白,本发明并不限于任何具体的工艺技术代,也不限于这里描述的任何具体工艺参数值。
一旦形成第一个绝缘层12、第一个多晶硅层14和氮化硅层18,就可以在氮化硅层18上面涂上适当的光刻胶材料19,采取掩蔽步骤,从特定的区域有选择地去掉光刻胶材料(条纹16)。在去掉光刻胶材料19的地方,在Y方向或者列方向形成的条纹中的氮化硅18、多晶硅14和下面的绝缘材料12被利用标准腐蚀技术(也就是各向异性腐蚀工艺)腐蚀掉,如图1C所示。相邻条纹16之间的距离W可以跟所用工艺的最小光刻功能部件一样小。在没有去掉光刻胶19的地方,氮化硅18、第一个多晶硅区14和下面的绝缘区12保存了下来。得到的结构用图1D说明。如同下面将描述的一样,在形成隔离区的时候有两个实施方案:LOCOS和STI。在STI实施方案中,腐蚀继续到基片10的预定深度。
对这个结构进行进一步的处理以去掉剩下的光刻胶19。然后,在区域或者“槽”16中形成二氧化硅这样的隔离材料20a或者20b。然后有选择地去掉氮化物层18形成图1E所示的结构。隔离可以通过著名的LOCOS工艺形成,产生局部氧化物20a(例如通过氧化露出的基片),或者可以通过浅槽工艺(STI)形成,在区域20b中形成二氧化硅(例如通过沉积氧化物层,然后进行化学机械抛光或者是CMP腐蚀)。应当指出,在形成LOCOS的时候,可能需要一个衬垫在形成局部氧化物的时候保护多晶硅层14的侧壁。
剩下的第一个多晶硅层14和它下面的第一种绝缘材料12形成活性区。这样,在这一点上,基片10具有活性区和隔离区相互交替的条纹,隔离区是由LOCOS绝缘材料20a或者浅槽绝缘材料20b形成的。虽然图1E说明了LOCOS区域20a和浅槽区域20b的形成过程,但是只采用LOCOS工艺(20a)或者浅槽工艺(20b)中的一个。在这个优选实施方案中,将形成浅槽20b。浅槽20b最受欢迎,因为它能够在更小的设计规则尺寸上更加精确地形成。
图1E所示的结构代表一种自对准结构,它比通过不是自对准方法形成的结构更加紧凑。形成图1E所示结构的传统的众所周知的非自对准方法如下。首先在基片10上形成隔离区20。这一点可以这样来做到:在基片10上沉积一层氮化硅,沉积光刻胶,用第一个掩蔽步骤在氮化硅上画出模型,暴露出基片10被选中的部分然后在采用硅槽形成和槽填充的地方用LOCOS工艺或者STI工艺氧化露出的基片10。然后去掉氮化硅,在基片上沉积出第一层二氧化硅12(形成栅极氧化物)。第一层多晶硅14沉积在栅极氧化物12上。用第二个掩蔽步骤在第一层多晶硅14上画上图案,同时去掉选中的部分。这样,多晶硅14没有跟隔离区20自对准,需要的第二个掩蔽步骤。此外,另外的掩蔽步骤要求多晶硅14的大小相对于隔离区具有一个对准容差。应当指出,非自对准方法没有采用氮化物层18。
对于图1E所示用自对准方法或者非自对准方法形成的结构,按照以下方法进一步处理。参考图2A,它在垂直于图1B和图1E的方向画出了这个结构,下面说明本发明中的工艺的随后步骤。在这个结构上形成一叠绝缘层。具体地说,在这个结构的整个表面上沉积形成很厚的一层氧化硅(以后叫做“氧化物”)22,随后形成一层氮化硅(以后叫做“氮化物”)24。氧化物层大约是2000~3000埃厚,氮化物层24大约是200~400埃厚。然后在氮化物层24上面沉积大约是800埃厚的一个顶层氧化物26。但是,绝缘叠层中绝缘层的层数不必是上面描述的3层。
在氧化物层26的顶部用光刻胶进行WL掩蔽操作。执行掩蔽步骤,在X方向或者行方向形成条纹(也就是掩蔽区域)。相邻条纹之间的距离可以按照要制造的器件的需要来确定其尺寸。在划定的掩蔽区域也就是行方向上的条纹中去掉光刻胶,然后用著名的腐蚀工艺有选择地去掉被去掉的条纹中的光刻胶下面的26、24和22这些层。具体地说,用一个各向异性腐蚀工艺去掉氧化层26的暴露部分,直到看见氮化物层24,腐蚀到这里停止,停止腐蚀过程。然后,执行各向异性氮化物腐蚀步骤,去掉露出的氮化物层24,直到看见氧化物层22,腐蚀到这里停止。用另外一个氧化物各向异性腐蚀过程去掉氧化物层22的暴露部分,直到看见多晶硅层14,它作为一个腐蚀停止层,从而停止腐蚀过程。从下面的描述中显然可以看出,本发明的工艺产生多对存储器单元镜像组。对于每一对这样的镜像存储器单元,这四个腐蚀工艺会形成一对第一槽30,它们中间有一个槽30a,向下延伸到多晶硅层14。然后去掉剩下的光刻胶。得到的这样一对镜像单元的结构在图2B中说明。
然后沿着槽30和30a的侧壁表面形成绝缘衬垫32。槽的形成方法在本领域中众所周知,它涉及材料在结构轮廓上的沉积,然后是各向异性腐蚀过程,在其中从结构的水平表面去掉材料,而结构垂直方向表面上的材料保持完好无损。衬垫32可以用任何介质材料形成。在图2C所示的结构中,通过在结构暴露表面上沉积一薄层氮化物用氮化物形成绝缘衬垫,接下来是各向异性腐蚀工艺,比方说反应离子腐蚀(RIE),这在本领域里大家都知道,它们去掉沉积的氮化物,除了衬垫32以外。
在相对的衬垫32之间采用各向异性多晶硅腐蚀过程,以去掉槽30和30a底部露出的多晶硅层14,直到看到氧化物层12,它被作为一个腐蚀停止层。然后用氮化物腐蚀来去掉氮化物衬垫32。使用衬垫32能够形成第一槽30和30a,在多晶硅层14那里的宽度小于一开始用来划分第一槽30顶部的掩蔽步骤中的宽度。这样,可以将这一工艺叫做下刻工艺。槽30和30a中的每一个在它跟多晶硅层14相邻的底部宽度比它跟氧化物/氮化物/氧化物层22/24/26(也就是说槽30的侧壁包括缩进31)相邻的顶部要窄。得到的结构如图2D所示。
然后用例如HTO氧化物沉积工艺在整个结构上形成一薄层氧化物34,如图2E所示。然后进行多晶硅沉积,在每个第一槽30(和30a)中填满一块36(和36a)多晶硅。沉积在第一槽30和30a外面过多的多晶硅被腐蚀掉,最好是用一个CMP深腐蚀工艺,使多晶硅块36和36a的顶部基本上跟顶部氧化物层34齐平,如图2F所示。多晶硅块36和36a在形状上主要是矩形,但是槽31侧壁上的缩进31使得多晶硅块36/36a有一个较低较窄的部分38,跟多晶硅层14相邻(由氧化物层34绝缘),还有一个上部较宽的部分40,它包括一个突出部分42,在一部分相邻多晶硅层14的上面。
现在参考图2G,在这个结构上面放置氮化物和氧化物腐蚀掩膜光刻胶PR(也可以选择硬掩膜),覆盖中间区域(它是最终形成相邻存储器单元镜像组之间的衬垫),使中间区域45交替暴露,从而有效地选择成对的多晶硅块36,它们跟匹配的存储器单元镜像组相关。交替的中间区44会最终作为匹配的存储器单元对的隔离和位线连接。应当指出,光刻胶掩膜PR的精确位置不是关键的,只要它的边缘位于多晶硅块36的某个位置上即可。采用氧化物腐蚀工艺,然后用(湿的或者干的)氮化物腐蚀工艺,接下来是另外一个氧化物腐蚀工艺,将露出的交替中间区里边的氧化物层34、氧化物层26、氮化物层24和氧化物层22腐蚀掉(被选中的多晶硅块对36之间)。由于这里使用的腐蚀剂是可以选择的腐蚀剂,所以多晶硅和FG多晶硅层14的块不受影响,使具有FG多晶硅层14的第二槽的底部暴露出来。氧化物层34将多晶硅块14隔开,在第二槽46的底部多晶硅层14也不受影响。对于每个腐蚀过程,下面的一层都作为一个腐蚀停止层,PR掩膜防止在交替中间区44中腐蚀。得到的结构如图2G所示。
腐蚀掩膜PR被随后剥离,然后沿着第二槽46的侧壁形成绝缘衬垫48。图2H所示的绝缘衬垫48最好是通过在这个结构的暴露表面上沉积一薄层氮化物,然后采用各向异性腐蚀工艺,比方说本领域里大家都知道的反应离子腐蚀(RIE),直到第二槽46中除了衬垫48以外氮化物层被剥离,用氮化物形成的。或者,可以通过沉积一薄层氮化物,然后进行氧化物沉积,形成一个复合衬垫48。用各向同性腐蚀来形成氧化物衬垫,然后进行氮化物腐蚀,在氮化物薄层上沉积氧化物形成一个复合衬垫。
下一步是氧化过程,氧化露出的多晶硅表面(也就是第二槽46内的多晶硅层14,以及多晶硅块36和36a的顶部表面),在多晶硅层14上形成一个氧化物层50,在多晶硅块36和36a上形成另外一个氧化物层52,如图2I所示。这个氧化步骤产生一个氧化物层50,它的形状是一个透镜的形状,它的侧边缘被氧化物层34连接,形成一个绝缘层,它在多晶硅层14的上面跟它相邻,并且在位于第二槽46内侧的多晶硅层14的每一个侧边形成向上凸起的尖锐边缘54。尖锐边缘54直接面对多晶硅块36的突出部分42,层34/50形成的绝缘层的厚度,允许电荷的Fowler-Nordheim隧道通过。虽然图中没有画出,但还是可以在衬垫48和层50的形成之前选择进行多晶硅腐蚀。这一可选的各向异性多晶硅腐蚀过程将第二槽46内多晶硅层14顶部表面的一部分腐蚀掉,但是使得多晶硅块36/36a旁边区域内顶部表面形成锥形,它能够帮助形成尖锐边缘54。
然后将氮化物衬垫48剥离,最好使用湿腐蚀工艺(或者可以选择的其它各向同性腐蚀工艺)。接下来是在整个结构的绝缘层56上沉积,将第二槽也填满绝缘材料块58。在图2J中用来形成绝缘层的电介质是氮化物。
进行平面化氧化腐蚀,最好是用CMP深腐蚀工艺,其中的氧化物层56、34(水平部分)和26被去掉。氮化物层24被用作氧化物停止腐蚀层,在多晶硅块36和36a上形成一部分氧化物层52。得到的结构如图2K所示。
采用另外一个氧化物深腐蚀步骤从这个结构中去掉残留的氧化物。具体地说,这个氧化物深腐蚀步骤从多晶硅块36和36a的顶部,多晶硅块36和氮化物层24之间的氧化物层顶部34,以及氧化物块58的顶部,去掉氧化物层52。得到的结构如图2L所示。
将多晶硅光刻胶腐蚀掩膜PR放在这个结构上,只将每一个存储器单元对的中心多晶硅块36a露出来,如图2M所示。随后用多晶硅腐蚀工艺去掉中心多晶硅块36a,形成一个槽60,延伸到绝缘层12。然后在这个结构的整个表面进行适当的离子注入。其中的离子具有足够的能量来穿透槽中的第一个二氧化硅层12,然后它们在基片10上形成第一个区域(也就是第二端子)62。在所有其它区域,离子被掩膜和/或下面的结构吸收,它们没有任何效果。得到的结构如图2M所示。
下一步剥离腐蚀掩码PR,在槽60的侧壁形成绝缘衬垫63。绝缘衬垫63最好是通过在这个结构上沉积一薄层氧化物,进行各向异性氧化物腐蚀去掉沉积的氧化物层,衬垫63除外,以及氧化物块58的顶部和槽的底部5氧化物层12,将基片暴露出来,形成氧化物衬垫63。接下来是多晶硅沉积步骤,以及多晶硅深腐蚀(最好是CMP),将氮化物层24用作腐蚀停止表面,它将槽60填满多晶硅块64,沿着氧化物块58和多晶硅块36的顶部延伸。多晶硅或者通过现场掺杂方法或者通过传统的注入方法掺杂进去。得到的结构如图2N所示。
然后采用多晶硅深腐蚀工艺,去掉多晶硅块36和64的顶部。氧化物块58和氧化物层34的顶部向上超过多晶硅块36/64的顶部表面,如图20所示。
然后通过在这个结构上沉积钨、钴、钛、镍、铂或者钼这样的金属,在多晶硅块36和64的顶部形成一层金属化硅(多酸)66。然后对这一结构退火,使热金属流动,进入多晶硅块36/64的顶部,形成多酸66的导电层。剩下的沉积在其余结构上的金属用一个金属腐蚀过程去掉。然后在这个结构上沉积一厚层氮化物68,接下来是氮化物腐蚀过程,比方说CMP,去掉氮化物层24和氮化物层68的顶部,从而使氧化物层22平坦。得到的结构如图2P所示。
用一个氧化物腐蚀过程从镜像单元组的两侧去掉氧化物层22和34的其余暴露部分,将作为腐蚀停止层的多晶硅层14暴露出来(在多晶硅块36外面)。然后用多晶硅腐蚀过程去掉多晶硅块36外面的多晶硅层14的其余暴露部分。接下来用氧化物腐蚀过程去掉多晶硅块对32外面氧化物层12的其余暴露部分。得到的结构如图2Q所示。
为了完成存储器单元,首先用热氧化或者CVD覆盖/密封多晶硅块形成一层氧化物72,然后在这个结构上沉积氮化物层,并且进行各向异性氮化物腐蚀去掉所有的氮化物,衬垫70除外,在多晶硅块32旁边形成氮化物侧壁衬垫70。进行氧化物腐蚀去掉氧化物薄层72上露出的部分。得到的结构如图2R所示。
然后用形成第一区62的方法在基片中用离子注入(例如N+)形成第二个区域(也就是第一端子)74。然后通过在这个结构上沉积钨、钴、钛、镍、铂或者钼这样的金属,在基片顶部侧壁衬垫旁边形成一层金属化硅(硅酸)76。然后让这个结构退火,让热金属流动,进入基片露出的顶部,形成金属化硅76的导电层。基片10上的金属化硅区76可以叫做自对准硅酸(也就是硅化物),因为它用衬垫70跟第二个区域74自对准。沉积在其余结构上剩下的金属用一个金属腐蚀过程去掉。得到的结构如图2S所示。
用BPSG 67这样的钝化覆盖整个结构。在硅化物区域76上面执行掩蔽步骤划分腐蚀区域。BPSG 67被有选择地在掩蔽区域内腐蚀,产生接触孔,它比相邻区域成对的存储器单元之间的硅化物区域76宽。氮化物层68用来保护多晶硅块和多酸层66,防止它们受到这一腐蚀过程的影响。然后通过金属沉积和平面化腐蚀,在接触孔中填满导体金属78,在相邻成对存储器单元组的衬垫70之间的整个区域内填满沉积的金属,形成接触孔导体78,通过氮化物衬垫70跟硅化物区域76对准(也就是自对准触点方案,或者SAC)。硅化物层76帮助导体78和第二个区域74之间导电。通过在BPSG 67上面进行金属掩蔽添加一条位线82,将这一列存储器单元中的所有导体78连接起来。最终的存储器单元结构如图2T所示。
自对准触点方案(SAC)能够消除对相邻组成对存储器单元之间最小间隔的限制。具体地说,虽然图2T说明触点区域(从而导体78)完全在硅化物区域76的中心,但是实际上很难形成这样的接触孔,而没有在水平方向上相对于硅化物区域76有不需要的偏移。对于非自对准触点方案,在形成BPSG之前结构上没有任何氮化硅保护层,如果接触孔78发生偏移,并且在多酸层66和多晶硅块36上形成,就会出现短路。为了防止非自对准触点方案中出现短路,形成的接触孔必须距离氮化硅衬垫70足够远,从而即使是触点区域发生最大的偏移,它们也不会延伸到氮化物衬垫70那里去。这当然会限制衬垫70之间的最小距离,以便在相邻组成对镜像单元之间有足够的距离容差。
本发明的SAC方法通过在BPSG下面采用保护性材料层(氮化硅层68)来消除这一限制。利用这个保护层,在BPSG中形成接触孔,它的宽度足以保证这个接触孔跟硅化物区域76有重叠部分,即使在成形过程中接触孔有明显的水平偏移。氮化物层68使得部分接触孔78在多晶硅块36或者在多酸层66上面,它们中间没有任何短路现象。很宽的接触孔保证了接触孔78完全填满衬垫70之间很窄的空间70,并且跟硅化物区域76有良好的电接触。这样,衬垫70之间接触区域的宽度可以做得最小,同时防止由于衬垫之间的空间70被填充而出现错误连接,使得整个单元尺寸变小。
如图2T所示,第一个和第二个区域62/74形成每个单元的源和漏(本领域里的技术人员知道在操作的时候源和漏可以开关)。每个单元的沟道区80是源和漏62/74之间的基片部分。多晶硅块36构成控制栅,多晶硅层14构成浮栅。控制珊有一面跟第二个区域74的边缘对齐,在沟道区的一部分上面80。控制珊36的形状一般是矩形,但是具有跟浮栅相邻的比较低比较窄的部分38(由氧化物层34绝缘),上面包括凸出部分42的较宽的部分40在相邻多晶硅层14的一部分上面(由氧化物层50绝缘)。凸出部分42形成一个缺口84,浮栅14的尖锐边缘54延伸到这个缺口84中。浮栅14在部分沟道区80上面,部分地通过控制珊36跟一端重叠,它的另一端部分地跟第一个区域62重叠。如图2T所示,本发明的过程形成互相是镜像的成对存储器单元。互相是镜像的存储器单元由氧化物层72和氮化物衬垫70绝缘。
参考图2U,其中画出了得到的结构、位线82跟第二个区域72的互相连接以及在X方向或者行方向上的控制线36和将第一个区域62跟基片10连接的源线的顶视图。虽然源线64(本领域里的技术人员明白,这个词“源”可以跟“漏”这个词互换)在整个行方向上跟基片10接触,也就是跟活性区和隔离区接触,源线64只跟基片中的第一个区域62有电连接。另外,“源”线64连接的每个第一区62都由两个相邻的存储器单元共享。同样,位线82连接的每个第二区74由不同镜像组存储器单元中的相邻存储器单元共享。
结果是多个非易失性分栅类型的存储器单元,它具有一个浮栅14,跟浮栅14紧挨着但是互相隔开,并且在连接同一行中其它存储器单元的控制珊的行方向上延伸,基本上是矩形的结构连接,第一个控制栅36,也在行方向上延伸,连接同一个行方向上成对的存储器单元的第一个区域62的源线64,以及沿着列方向也就是Y方向延伸,跟同一个列方向上成对的存储器单元的第二个区域74连接的位线82。控制栅、浮栅、源线和位线的形成都是自对准的。这个非易失性存储器单元是分栅类型的,它具有浮栅控制栅,如同美国专利第5572054号所描述的一样,这里关于非易失性存储器单元和由它形成的阵列将它引入作参考。
虽然浮栅长度仍然由光刻步骤确定,但是是浮栅多晶硅在受到腐蚀掩膜的保护,而不是浮栅多晶硅暴露给掩膜孔。WL掩膜划定字线,同时决定浮栅和源尺寸。另外,本发明利用一种自对准触点方案来形成跟第二个区域74的位线82接触。
图3A~3L说明形成跟图2T相同控制栅结构的另外一种工艺过程。这个过程也是从图2A所示的结构开始,只有单独一个氮化物形成的绝缘层22a在多晶硅层上面除外,如图3A所示。进行WL掩蔽操作,将光刻胶涂在氮化物层22a顶部。采取掩蔽步骤,在X方向或者行方向上画出条纹(也就是掩蔽区域)。相邻条纹之间的距离可以是按照需要制造的器件的需要确定的一个尺寸。在划分出来的掩蔽区中去掉光刻胶,也就是行方向中的条纹,在那以后,将条纹中去掉了的光刻胶下面的氮化物层22a腐蚀掉,暴露出下面的多晶硅层14。对于每一对这样的镜像存储器单元,这个腐蚀过程都会形成单独一个第一槽30,向下延伸到多晶硅层14。剩下的光刻胶被随后去掉。接下来沿着槽的侧壁表面形成绝缘衬垫90。如上所述,通过在结构上面沉积的材料,然后进行各向异性腐蚀(例如RIE),其中的材料从结构的水平表面上被去掉,而结构垂直表面上的材料基本上不受影响,衬垫的形成方法在本领域里大家都知道。衬垫90可以用任何电介质材料形成。在图3B所示的结构中,绝缘衬垫90是用氧化物形成的。在这以后是氧化过程,它氧化槽30内暴露出来的多晶硅层14部分,在多晶硅层上面形成透镜形状的氧化物层50。虽然图中没有画出,但是在形成衬垫90和层50之前可以选择采用多晶硅腐蚀工艺。这个可以选择的各向异性多晶硅腐蚀过程将多晶硅层14顶部表面的一部分腐蚀掉,但是在剩余氮化物层22a相邻的区域内的顶部表面形成一个锥形。结果如图3B所示。
然后通过沉积一厚层氧化物,接下来进行各向异性氧化物腐蚀,去掉除了衬垫92以外沉积的氧化物,在槽30内形成氧化物衬垫92。氧化物腐蚀步骤还去掉每个槽30中氧化物层50的中心部分。在相对的绝缘衬垫92之间进行各向异性多晶硅腐蚀过程,去掉槽30底部暴露出来的多晶硅层14,直到看见氧化物层12,它就是腐蚀的停止层。然后在衬垫92之间进行氧化物腐蚀,去掉槽30底部的氧化物薄层12,将基片10露出来。使用衬垫92能够形成这样的槽30,它在多晶硅层14的宽度小于用来最初划定槽30顶部的掩蔽步骤中的宽度。得到的结果如图3C所示。
在氧化步骤中氧化多晶硅层14的侧边和暴露在槽30内的基片表面,在多晶硅层的边上形成FG氧化物侧壁94,在基片上重新形成氧化物层12。然后在这个结构的整个表面进行离子注入。这些离子具有足够的能量穿透槽30中的第一个二氧化硅层12,然后它们在基片10中形成第一个区域(也就是第二端子)62。在其它区域中,这些离子被存在的结构吸收,不会造成任何影响。然后通过沉积一层氧化物,进行各向异性氧化物腐蚀,除了衬垫96以外去掉沉积的氧化物,在槽30中形成绝缘衬垫96。这个氧化物腐蚀步骤还从每个槽30中去掉氧化物层12的中心部分,将基片10露出来。得到的结构如图3D所示。
然后进行多晶硅沉积步骤,接下来进行多晶硅平面化(最好是用CMP),将槽30填满多晶硅块98。多晶硅深腐蚀步骤去掉槽30外面多余的多晶硅。应用现场方法或者传统的注入方法给多晶硅掺杂。然后通过沉积一层氧化物,在槽30中的每个多晶硅块98上形成氧化物层100,然后进行CMP和氧化物深腐蚀步骤,将氧化物层100留在多晶硅块98上面。接下来进行氮化物腐蚀,去掉氮化物层90和氮化物衬垫90。各向异性多晶硅腐蚀去掉氧化物衬垫92和氧化物层50没有覆盖的那部分多晶硅层14。氮化物和多晶硅腐蚀步骤有效地产生第二槽93,存储器单元镜像组的每一侧都有一个。得到的结果如图3E所示。
下一步是氧化物形成过程,它在多晶硅层14露出来的两端102形成氧化物层,它跟氧化物层50一起形成一个绝缘层,在多晶硅层14上面跟它相邻,它的形状是多晶硅层14向上突出的尖锐边缘104。尖锐边缘104和氧化物层102/50形成的绝缘层的厚度,允许Fowler-Nordheim隧道电荷通过。然后在这个结构上沉积一厚层WL多晶硅106(填满槽93),如图3F所示。
然后在这个结构上沉积一层氮化物18,并进行氮化物平面化(例如CMP)。氮化物深腐蚀步骤去掉多晶硅层106升高部分上面的那一部分氮化物层108,在多晶硅层106比较平的侧边部分留下一部分氮化物层108。对多晶硅层106的中心部分进行氧化,形成一层氧化物和110。得到的结构如图3G所示。用氮化物腐蚀过程去掉氮化物层108,然后用各向异性多晶硅腐蚀步骤去掉不是直接在氧化物层110下面的那一部分多晶硅层106,如图3H所示。
然后进行氧化物沉积,在这个结构上形成一厚层氧化物114。接下来是平面化氧化腐蚀,比方说CMP,使这个结构变平,将多晶硅层106用作腐蚀停止层。然后进行氧化物深腐蚀,在多晶硅层106的每一边留下氧化物块114。氧化物平面化和深腐蚀步骤去掉氧化物层110,得到图3I所示的结构。然后进行平面化多晶硅腐蚀,比方说CMP,将氧化物块114用作腐蚀停止层,如图3J所示。接下来进行多晶硅深腐蚀,比方说RIE,去掉多晶硅层106的顶部,只留下跟氧化物块114相邻的多晶硅块107,露出氧化物层100。氧化物块114和氧化物衬垫92被留下,使它们高出多晶硅块的顶部表面,如图3K所示。
进行薄的氧化物腐蚀,去掉多晶硅块98上面的氧化物层100。这个氧化物腐蚀步骤还去掉氧化物衬垫92和氧化物块114的顶部,如图3L所示。然后用可以选择的注入步骤在露出来的多晶硅块107和98中掺杂。然后进行金属沉积,在这个结构上沉积一层金属,例如钨、钴、钛镍、铂或者钼。然后将这个结构退火,使热金属流动,进入多晶硅块107和98露出来的顶部,在它上面形成一个金属化硅66(也就是多酸)的导电层。剩下的结构上剩余的沉积金属用一个金属腐蚀步骤去掉。金属化硅层66可以被称做自对准多酸,因为它通过氧化物衬垫92和氧化物块114跟多晶硅块自对准。得到的结构如图3M所示。
在氧化物114块之间按照以下方式形成一个保护性的氮化物层108。氮化物沉积在这个结构上,然后进行平面化氮化物腐蚀,例如CMP,将氧化物块114用作腐蚀停止层,从而使氮化物层108跟氧化物块114高度相同,如图3N所示。氧化物腐蚀过程去掉氧化物块114,以及不是在下面受到氮化硅层108和多晶硅块107保护的那一部分氧化物层12。得到的结构如图30所示。
为了做成存储器单元,通过用热氧化或者CVD覆盖/密封多晶硅块107首先形成一层氧化物72在多晶硅块107旁边形成氮化物侧壁衬垫70,然后在这个结构上沉积氮化硅,并且进行各向异性氮化物腐蚀(比方说RIE干腐蚀),去掉添加的所有氮化物,衬垫70除外。氧化物层72被用作腐蚀停止层,保护氮化物层108。然后用形成区域62的方式在基片中用离子注入(例如N+)形成第二个区域(也就是第一端子)74。用薄氧化物腐蚀去掉基片10上薄氧化物层72的露出部分。然后进行金属沉积,在这个结构上沉积一层金属,比方说钨、钴、钛、镍、铂或者钼。然后对这个结构退火,让热金属流动,进入基片的露出部分,在基片旁边的侧壁衬垫70上形成金属化硅76(硅化物)的导电层。基片10上金属化的硅区76可以叫做自对准的硅化物(也就是硅化物),因为它是用衬垫70跟第二区74自对准的。剩下的结构上剩下的沉积金属被金属腐蚀过程去掉。得到的结构如图3P所示。
用BPSG 67这样的钝化来覆盖整个结构。在硅化物区域76上用掩蔽步骤划分腐蚀区域。在掩蔽区域内有选择地进行BPSG 67腐蚀,产生接触孔,以成对的存储器单元相邻组之间形成的硅化物区域76为中心,比它宽。氮化物层108用来保护多晶硅块107和多酸层66防止被腐蚀。接触孔被随后的金属沉积和平面化深腐蚀填满导体金属78,其中成对的存储器单元相邻组的氮化物衬垫70之间的整个区域被填满沉积金属,形成接触孔导体78,它们通过氮化物衬垫70跟硅化物区域76自对准(也就是自对准触点方案,或者SAC)。这个硅化物层76支持导体78和第二区域74之间导电。通过在BPSG 67上进行金属掩蔽添加一条位线82,将同一列的存储器单元中的所有导体78连接起来。最后的存储器单元结构如图3Q所示。
这个自对准触点方案(SAC)消除了对成对存储器单元相邻组之间的最小间隔限制。具体地说,虽然图3说明触点区域(因而导体78)完全以硅化物区域76为中心,但是实际上很难形成这样的接触孔而没有相对硅化物区域76有不需要的水平偏移。对于形成BPSG之前结构上没有任何氮化物保护层的非自对准触点方案,如果接触孔78发生偏移,在多酸层66和多晶硅块107上面形成,就会出现短路。为了防止非自对准触点方案中出现短路,将在离开氮化物衬垫70足够远的地方形成接触孔,从而即使触点区域出现最大的偏移,它们也不会延伸到氮化物衬垫70那里。这当然会限制衬垫70之间的最小距离,以便在成对的镜像单元相邻组之间有足够的容差距离。
本发明的SAC方法利用BPSG下面的材料的保护层消除了这一限制。利用这个保护层,在BPSG中形成的接触孔具有足够的宽度来保证接触孔跟硅化物区域76重叠,即使在形成的过程中接触孔有很大的水平偏移。氮化物层允许部分接触孔在多晶硅块107或者多酸层66上形成,不会在它们之间形成短路。接触孔很宽保证了接触孔完全填满衬垫70之间非常窄的空间,并且跟硅化物区域76有良好的电接触。这样,衬垫70之间接触区域的宽度可以做得最小,防止由于衬垫70之间的空间被填满而出现误连接,缩小整个单元的尺寸。
如图3Q所示,第一和第二区域62/74形成每个单元的源和漏(本领域里的技术人员知道源和漏可以在工作的时候开关)。每个单元中的沟道区80都是源和漏62/74之间的那部分基片。多晶硅107构成控制栅,多晶硅层14构成浮栅。控制栅107的形状一般都是矩形,但是浮栅14附近的第一珊14较低(由氧化层102绝缘),上面的第二部分118包括一个突出部分120,形成一个具有较低的第一部分116的缺口122,其中浮栅14的尖锐边缘104延伸到缺口122中。浮栅14在部分沟道区80上,一端部分地跟控制栅107重叠,它的另一端部分的跟第一区域62重叠。如图3Q所示,本发明的工艺形成互相成镜像的存储器对。每一对镜像存储器单元都通过氧化物层72和氮化物衬垫70跟相邻的一对镜像存储器单元绝缘。
这另外一个实施方案的优点是在最初形成一个槽的基础之上形成一对存储器单元。此外,控制栅的形状基本上是矩形,突出部分120在浮栅14上面,帮助形成平的衬垫70的相对的平的表面,进一步帮助硅化物区域76的自对准形成,以及导体78的自对准形成。
显然本发明并不限于上面给出的实施方案,而是包括权利要求的范围所包括的所有变化。例如,虽然前面的方法描述了使用适当的掺杂多晶硅作为导体材料用来形成存储器单元,但是本领域里的技术人员应当明白,可以使用任何其它适当的导电材料。另外,可以用任何合适的绝缘体替换二氧化硅或者氮化硅。更进一步,可以使用腐蚀特性跟二氧化硅(或者任何绝缘体)和多晶硅(或者任何导体)不同的任何材料来替换氮化硅。此外,从权利要求可以明显地看到,不是所有的步骤都必须按照描述的顺序来进行,而是可以按照任意顺序,只要能形成本发明中的存储器单元。例如,可以这样来形成第一槽30和多晶硅36和36a,它们的侧壁被随后腐蚀掉,全部在多晶硅层形成之前。最后,虽然本说明中多晶硅块36是对称的,但是形成缺口84的突出部分42不必在面对浮栅14的多晶硅块的侧壁上形成(也就是至少是面对浮栅的每个槽30的侧壁会在槽30的底部包括一个缩进)。

Claims (37)

1.在半导体基片上形成浮栅存储器单元半导体存储器阵列的一种自对准方法,每个存储器单元都有一个浮栅、在它们中间有一个沟道区的第一端子和第二端子以及一个控制栅,该方法包括以下步骤:
a)在基片上形成空间上互相分离的多个隔离区,它们互相平行,并且在第一个方向上延伸,在每一对相邻隔离区之间有一个活性区,这些活性区中的每一个活性区都包括半导体基片上的第一层绝缘材料和第一层绝缘材料上的第一层导体材料;
b)穿过活性区和隔离区形成空间上互相分开的多个第一槽,所述多个第一槽互相平行,并且在跟第一个方向垂直的第二个方向上延伸,将每一个活性区中的所述第一层导体材料暴露出来,各个所述第一槽都有一个侧壁,侧壁上形成了一个缩进;
c)在每个活性区中形成第二层绝缘材料,该第二层绝缘材料在第一层导体材料上面并跟它相邻;
d)用第二导体材料填充每个第一槽,形成多个第二导体材料块,其中对于每个活性区中的每个第二导体材料块:
这个块跟第二层绝缘材料相邻,跟基片绝缘,和
这个块包括一个突出部分,它是由第一槽侧壁上的缩进形成的,该突出部分沉积在第二层绝缘材料和第一层导体材料上面;
e)在这个基片上形成多个第一端子,其中在每个活性区中每个第一端子都跟所述多个第二导体材料块之一相邻;和
f)在这个基片中形成多个第二端子,其中每个活性区中每个第二端子在空间上都跟第一端子隔开,并且在第一层导体材料的下面。
2.权利要求1的在半导体基片上形成浮栅存储器单元半导体存储器阵列的一种自对准方法,其中每一块的下部都跟所述第一层导体材料相邻,并且由所述第二层绝缘材料绝缘。
3.权利要求1的在半导体基片上形成浮栅存储器单元半导体存储器阵列的一种自对准方法,其中所述第二层绝缘材料的形成包括在所述第一槽的侧壁上形成绝缘材料,并且在所述第一层导体材料的上表面形成绝缘材料。
4.权利要求1的在半导体基片上形成浮栅存储器单元半导体存储器阵列的一种自对准方法,还包括以下步骤:
穿过所述活性区和隔离区形成空间上互相隔离的多个第二槽,所述多个第二槽互相平行,并且在第二个方向上延伸,每个所述第二槽都是在选中的所述块对之间形成的,并且延伸通过所述第一层导体材料和所述第一层绝缘材料,以将所述第二端子露出来;
沿着所述第二槽的侧壁形成第三层绝缘材料;
在每个所述第二槽中填满导体材料,由所述第三层绝缘材料将它跟所述第一层导体材料绝缘。
5.权利要求1的在半导体基片上形成浮栅存储器单元半导体存储器阵列的一种自对准方法,其中每一所述块都形成一个控制栅,该控制栅在所述突出部分底下有一个缺口。
6.权利要求1的在半导体基片上形成浮栅存储器单元半导体存储器阵列的一种自对准方法,其中形成第一槽包括以下步骤:
在所述第一层导体材料上形成至少一层材料,
有选择地腐蚀所述这至少一层材料,以形成所述第一槽的顶部;
在每个所述第一槽的侧壁上形成侧壁衬垫;
在每个所述第一槽中的所述侧壁衬垫之间,并通过所述第一层导体材料进行腐蚀,以形成所述第一槽的底部;和
从每个所述第一槽去掉所述侧壁衬垫;
其中所述第一槽的所述底部的宽度比所述第一槽的所述顶部的宽度小。
7.权利要求1的在半导体基片上形成浮栅存储器单元半导体存储器阵列的一种自对准方法,还包括以下步骤:
在每个所述第二导体材料块上形成一层金属化硅。
8.权利要求1的在半导体基片上形成浮栅存储器单元半导体存储器阵列的一种自对准方法,其中:
所述第一槽的形成包括穿过所述活性区和隔离区在选中的所述第一槽对之间形成中间槽,这些中间槽互相平行,并且在第二个方向上延伸;和
所述第一槽的填充包括在所述中间槽中填满所述第二导体材料,从而在所述中间槽里形成所述第二导体材料块。
9.权利要求8的在半导体基片上形成浮栅存储器单元半导体存储器阵列的一种自对准方法,还包括在各个所述第二导体材料块上形成一层金属化硅的步骤。
10.权利要求8的在半导体基片上形成浮栅存储器单元半导体存储器阵列的一种自对准方法,还包括以下步骤:
穿过所述活性区和隔离区形成空间上隔离的多个第二槽,所述多个第二槽互相平行,并且在所述第二个方向上延伸,所述第二槽是通过在所述中间槽中去掉所述第二导体材料来形成的,并且将所述中间槽通过所述第一层导体材料和所述第一层绝缘材料延伸,以将所述第二端子暴露出来;
沿着所述第二槽的侧壁形成第三层绝缘材料;
在所述第二槽中填满导体材料,该导体材料通过所述第三层绝缘材料跟所述第一层导体材料绝缘。
11.权利要求1的在半导体基片上形成浮栅存储器单元半导体存储器阵列的一种自对准方法,还包括以下步骤:
沿着每个所述导体材料块的侧壁形成绝缘材料的一个侧壁衬垫;和
在跟所述侧壁衬垫之一紧密相邻的每个所述第一端子上形成一层金属化硅,其中每一层金属化硅都跟一个所述侧壁衬垫自对准。
12.权利要求11的在半导体基片上形成浮栅存储器单元半导体存储器阵列的一种自对准方法,还包括以下步骤:
在每个所述第二导体材料块上形成一层金属化硅,其中对于每个所述第一槽,所述第一槽的侧壁都将所述金属化硅的一个边缘跟所述第二导体材料块的一个边缘对准;和
在所述一层金属化硅上形成第三层绝缘材料,其中对于每一个所述第一槽,所述第一槽的侧壁都将所述第三层绝缘材料的一个边缘跟所述金属化硅的边缘对准,并且跟所述第二导体材料块的边缘对准。
13.权利要求11的在半导体基片上形成浮栅存储器单元半导体存储器阵列的一种自对准方法,还包括以下步骤:
在每一层金属化硅上面,跟与之自对准的侧壁衬垫相对,形成导体材料。
14.权利要求11的在半导体基片上形成浮栅存储器单元半导体存储器阵列的一种自对准方法,其中每个侧壁衬垫的形成都包括在所述侧壁衬垫和所述导体材料块的侧壁之间形成一层绝缘材料。
15.权利要求1的在半导体基片上形成浮栅存储器单元半导体存储器阵列的一种自对准方法,还包括以下步骤:
沿着每个所述导体材料块的侧壁形成绝缘材料的一个第二侧壁衬垫,从而使所述第二侧壁衬垫对互相相邻但是互相在空间上隔开,一个所述第一端子在它们中间;
在对应于所述的这个第一端子的一对所述第二侧壁衬垫之间,在每个所述第一端子上形成一层金属化硅,从而使这一层金属化硅通过对应的那对第二侧壁衬垫跟所述这个第一端子自对准;
在所述活性区上形成一层钝化材料;
通过所述钝化材料形成接触孔,其中对于每个所述接触孔:
这个接触孔向下延伸,将一层所述金属化硅露出来,
这个接触孔具有由所述对应的一对第二侧壁衬垫限定的一个下部,和
这个接触孔具有一个上部,该上部的宽度大于所述对应的一对第二侧壁衬垫之间的距离;和
用导体材料填满每个所述接触孔。
16.权利要求1的在半导体基片上形成浮栅存储器单元半导体存储器阵列的一种自对准方法,还包括以下步骤:
穿过所述活性区和隔离区形成空间上互相分开的多个第二槽,所述多个第二槽互相平行,并且在第二个方向上延伸,每个所述第二槽都跟所述第二导体材料块之一相邻,并且将所述第一层导体材料的一部分露出来。
17.权利要求16的在半导体基片上形成浮栅存储器单元半导体存储器阵列的一种自对准方法,还包括以下步骤:
沿着所述第二槽的侧壁形成一个第三层绝缘材料;
在每个所述第二槽中所述第一层导体材料上露出来的部分上形成凸透镜形状的氧化层。
18.权利要求1的在半导体基片上形成浮栅存储器单元半导体存储器阵列的一种自对准方法,其中对于每个所述第一槽:
所述第一槽有一个上部和一个下部,其中上部的宽度比下部的宽度大,和
所述第一槽侧壁中的缩进是在所述第一槽的上部和下部之间形成的。
19.权利要求18的在半导体基片上形成浮栅存储器单元半导体存储器阵列的一种自对准方法,其中每一所述块的下部都跟所述第一层导体材料相邻,并通过所述第二层绝缘材料跟它绝缘。
20.一种电可编程和可擦除存储器阵列,包括:
第一种导体类型的一个半导体材料基片;
在这个基片上形成的空间上互相隔离的隔离区,它们互相平行,并且在第一个方向上延伸,每一对相邻的所述隔离区之间有一个活性区;和
每个所述活性区都包括在所述第一个方向上延伸的多个存储器单元,每个所述存储器单元都包括:
在基片上形成,具有第二导体类型,空间上互相隔离的一个第一端子和一个第二端子,在它们之间的基片中形成了一个沟道区,
第一个绝缘层,分布在所述基片上,包括在所述沟道区上面,
导电浮栅,分布在所述第一个绝缘层上,并且在所述沟道区的一部分上和所述第二端子的一部分上延伸,
第二绝缘层,分布在所述浮栅上面并跟它相邻,所述第二绝缘层的厚度允许Fowler-Nordheim隧道电荷通过,和
一个导电控制栅,包括跟所述第二绝缘层以及所述浮栅相邻的平面的侧壁部分,和一个突出部分,从所述平面的侧壁部分突出,部分地延伸到所述浮栅上面,并且跟它绝缘。
21.权利要求20的一种电可编程和可擦除存储器阵列,其中的每个所述控制栅都在跟所述第一个方向垂直的第二个方向上延伸到相邻隔离区上,并跟相邻活性区的控制栅有电连接。
22.权利要求20的一种电可编程和可擦除存储器阵列,其中的控制栅在突出部分下面形成一个缺口。
23.权利要求20的一种电可编程和可擦除存储器阵列,其中的每个所述控制栅都有第一部分和第二部分,所述第一部分是矩形的,跟所述第二绝缘层和所述浮栅相邻,所述第二部分是矩形的,它的宽度大于所述第一部分的宽度,从而使所述第二部分中的一部分延伸到所述第二绝缘层的一部分上和所述浮栅的一部分上。
24.在半导体基片上形成浮栅存储器单元的一个半导体存储器阵列的一种自对准方法,每个存储器单元都有一个浮栅、它们中间有一个沟道区的第一端子和第二端子以及一个控制栅,这个方法包括以下步骤:
a)在这个基片上形成空间上互相隔离的多个隔离区,它们互相平行,并且在第一个方向上延伸,在每一对相邻隔离区之间有一个活性区,每个活性区都在半导体基片上包括一个第一层绝缘材料,以及在所述第一层绝缘材料上的第一层导体材料;
b)穿过所述活性区和隔离区形成空间上互相隔离的多个第一槽,它们互相平行并且在跟所述第一个方向垂直的第二个方向延伸,将每个所述活性区中的所述第一层导体材料暴露出来;
c)在每个所述活性区中形成一个第二层绝缘材料,该第二层绝缘材料与所述第一层导体材料相邻并且在它的上面;
d)在所述第一槽的侧壁上形成一种材料的第一侧壁衬垫;
e)在每个所述第一侧壁衬垫上形成一种材料的第二侧壁衬垫;
f)在每个所述活性区形成第二槽,其中的每个所述第二槽都有一个侧壁跟所述第一侧壁衬垫之一紧密相邻;
g)在每个所述第二槽侧壁上去掉所述第一侧壁衬垫以形成一个缩进;
h)将各个所述第二槽填满第二导体材料,以形成第二导体材料块,其中对于所述活性区中的每一所述第二导体材料块:
这个块跟所述第二层绝缘材料相邻,并且跟所述基片绝缘,和
这个块包括所述第二槽侧壁缩进形成的一个突出部分,该突出部分布置在所述第二层绝缘材料和所述第一层导体材料上,
i)在所述基片上形成多个第一端子,其中在每个所述活性区中每个所述第一端子都跟所述第二导体材料块之一相邻;和
j)在这个基片上形成多个第二端子,其中在每个所述活性区中每个所述第二端子都在空间上跟所述第一端子隔开,并且在所述第一层导体材料的下面。
25.权利要求24的方法,其中每个所述第一侧壁衬垫都是直接在所述第二层绝缘材料上形成的。
26.权利要求24的方法,其中每个所述第二侧壁衬垫都是直接在所述第二层绝缘材料上形成的。
27.权利要求24的方法,其中每一所述第二导体材料块的下部都跟所述第一层导体材料相邻,并通过所述第二层绝缘材料跟它绝缘。
28.权利要求24的方法,其中的每一所述第二导体材料块都形成一个在所述突出部分下面有一个缺口的控制栅。
29.权利要求24的方法,其中所述第二槽的形成包括将每个所述活性区中的所述第一层导体材料露出来。
30.权利要求29的方法,其中所述第二层绝缘材料的形成包括在所述第二槽的侧壁上形成绝缘材料,并且在所述第一层导体材料的上表面形成绝缘材料。
31.权利要求24的方法,还包括以下步骤:
在每个所述第二槽中形成一个第三层绝缘材料;
在每个所述第二槽中填满一种导体材料,该导体材料通过所述第三层绝缘材料跟所述第一层导体材料绝缘。
32.权利要求24的方法,其中所述第一槽的形成包括以下步骤:
在所述第一层导体材料上至少形成一层材料,
有选择地腐蚀所述至少一层材料,以形成所述第一槽的顶部,然后在所述第一槽中形成所述第一和第二衬垫;
在每个所述第一槽中所述第二侧壁衬垫之间腐蚀所述第一层导体材料,形成所述第一槽的底部;和
其中所述第一槽底部的宽度比所述第一槽顶部的宽度小。
33.权利要求24的方法,还包括以下步骤:
沿着每一所述导体材料块的一个侧壁形成绝缘材料的第三侧壁衬垫;和
在跟所述第三侧壁衬垫之一紧密相邻的每个所述第二端子上形成一层金属化硅,其中每一层所述金属化硅都跟所述第三侧壁衬垫中所述的一个自对准。
34.权利要求33的方法,还包括以下步骤:
在每个所述第二导体材料块上形成一层金属化硅,其中对于每个所述第二槽,所述第二槽的一个侧壁将所述金属化硅的一个边缘跟所述第二导体材料块的一个边缘对准;
形成跟各个所述第二导体材料块相邻的一块材料;和
在所述一层金属化硅上形成一个第三层绝缘材料,其中对于每个所述的材料块,该块材料的一个侧壁都将所述第三层绝缘材料的一个边缘跟所述金属化硅的一个边缘对准,并且跟所述第二导体材料块的一个边缘对准。
35.权利要求33的方法,还包括以下步骤:
在每一层金属化硅上面,跟自对准的所述第三侧壁衬垫相对,形成一个导体材料。
36.权利要求33的方法,其中每一个所述第三侧壁衬垫的形成都包括在所述第三侧壁衬垫和所述导体材料块的侧壁之间形成一层绝缘材料。
37.权利要求24的方法,还包括以下步骤:
沿着每个所述导体材料块的一个侧壁形成绝缘材料的一个第三侧壁衬垫,从而使所述第三侧壁衬垫对互相相邻但互相隔开,所述第一端子之一在它们中间;
在对应于所述一个第一端子的一对所述第三侧壁衬垫之间在每个所述第一端子上形成一层金属化硅,从而使这一层金属化硅通过对应的所述第三侧壁衬垫对跟所述一个第一端子自对准;
在所述活性区上形成一层钝化材料;
通过所述钝化材料形成接触孔,其中对于每个所述接触孔:
这个接触孔向下延伸,露出一层所述金属化硅,
这个接触孔具有由所述对应的一对第三侧壁衬垫限定的一个下部,和
这个接触孔具有一个上部,该上部的宽度大于所述对应的一对第二侧壁衬垫之间的距离;和
用导体材料填满每个所述接触孔。
CNB011331615A 2000-09-20 2001-09-19 有控制栅突出部的浮栅存储器阵列自对准法及存储器阵列 Expired - Lifetime CN1207776C (zh)

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
US23431400P 2000-09-20 2000-09-20
US23398800P 2000-09-20 2000-09-20
US60/233,988 2000-09-20
US60/234,314 2000-09-20
US60/233988 2000-09-20
US60/234314 2000-09-20
US24209600P 2000-10-19 2000-10-19
US60/242,096 2000-10-19
US60/242096 2000-10-19
US27551701P 2001-03-12 2001-03-12
US60/275,517 2001-03-12
US60/275517 2001-03-12
US28704701P 2001-04-26 2001-04-26
US60/287,047 2001-04-26
US60/287047 2001-04-26
US09/917,023 US6627946B2 (en) 2000-09-20 2001-07-26 Semiconductor memory array of floating gate memory cells with control gates protruding portions
US09/917023 2001-07-26
US09/917,023 2001-07-26

Publications (2)

Publication Number Publication Date
CN1359148A CN1359148A (zh) 2002-07-17
CN1207776C true CN1207776C (zh) 2005-06-22

Family

ID=27559241

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011331615A Expired - Lifetime CN1207776C (zh) 2000-09-20 2001-09-19 有控制栅突出部的浮栅存储器阵列自对准法及存储器阵列

Country Status (5)

Country Link
US (2) US6627946B2 (zh)
EP (1) EP1191584A2 (zh)
JP (1) JP5016761B2 (zh)
KR (1) KR100931815B1 (zh)
CN (1) CN1207776C (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6868015B2 (en) * 2000-09-20 2005-03-15 Silicon Storage Technology, Inc. Semiconductor memory array of floating gate memory cells with control gate spacer portions
TW544786B (en) * 2002-07-29 2003-08-01 Nanya Technology Corp Floating gate and method therefor
US6828211B2 (en) * 2002-10-01 2004-12-07 Taiwan Semiconductor Manufacturing Co., Ltd. Shallow trench filled with two or more dielectrics for isolation and coupling or for stress control
JP4390452B2 (ja) 2002-12-27 2009-12-24 Necエレクトロニクス株式会社 不揮発性メモリの製造方法
TWI221661B (en) * 2003-06-30 2004-10-01 Sung-Mu Hsu Method for manufacturing memory
US6890821B2 (en) * 2003-07-11 2005-05-10 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for forming source regions in memory devices
US6991979B2 (en) * 2003-09-22 2006-01-31 International Business Machines Corporation Method for avoiding oxide undercut during pre-silicide clean for thin spacer FETs
US7315056B2 (en) 2004-06-07 2008-01-01 Silicon Storage Technology, Inc. Semiconductor memory array of floating gate memory cells with program/erase and select gates
US7214983B2 (en) * 2004-11-24 2007-05-08 Macronix International Co., Ltd. Non-volatile memory and fabricating method thereof
JP4461042B2 (ja) * 2005-03-11 2010-05-12 Okiセミコンダクタ株式会社 不揮発性メモリの製造方法
KR100814261B1 (ko) * 2006-06-28 2008-03-17 동부일렉트로닉스 주식회사 반도체 소자 형성 방법
JP2008085131A (ja) * 2006-09-28 2008-04-10 Toshiba Corp 半導体記憶装置
US8138524B2 (en) * 2006-11-01 2012-03-20 Silicon Storage Technology, Inc. Self-aligned method of forming a semiconductor memory array of floating memory cells with source side erase, and a memory array made thereby
CN102738229B (zh) * 2011-03-31 2015-01-28 无锡维赛半导体有限公司 功率晶体管结构及其制作方法
JP2017045835A (ja) 2015-08-26 2017-03-02 ルネサスエレクトロニクス株式会社 半導体装置の製造方法および半導体装置
CN108615705B (zh) * 2018-04-25 2021-02-23 武汉新芯集成电路制造有限公司 接触插塞的制造方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808328A (en) 1977-02-21 1998-09-15 Zaidan Hojin Handotai Kenkyu Shinkokai High-speed and high-density semiconductor memory
US4757360A (en) 1983-07-06 1988-07-12 Rca Corporation Floating gate memory device with facing asperities on floating and control gates
US4947221A (en) 1985-11-29 1990-08-07 General Electric Company Memory cell for a dense EPROM
IT1191566B (it) 1986-06-27 1988-03-23 Sgs Microelettronica Spa Dispositivo di memoria non labile a semiconduttore del tipo a porta non connessa (floating gate) alterabile elettricamente con area di tunnel ridotta e procedimento di fabbricazione
US4794565A (en) 1986-09-15 1988-12-27 The Regents Of The University Of California Electrically programmable memory device employing source side injection
KR910000139B1 (ko) 1986-10-27 1991-01-21 가부시키가이샤 도시바 불휘발성 반도체기억장치
US5268319A (en) 1988-06-08 1993-12-07 Eliyahou Harari Highly compact EPROM and flash EEPROM devices
JP2600301B2 (ja) 1988-06-28 1997-04-16 三菱電機株式会社 半導体記憶装置およびその製造方法
US5051793A (en) 1989-03-27 1991-09-24 Ict International Cmos Technology, Inc. Coplanar flash EPROM cell and method of making same
KR940006094B1 (ko) 1989-08-17 1994-07-06 삼성전자 주식회사 불휘발성 반도체 기억장치 및 그 제조방법
US5572054A (en) 1990-01-22 1996-11-05 Silicon Storage Technology, Inc. Method of operating a single transistor non-volatile electrically alterable semiconductor memory device
US5029130A (en) 1990-01-22 1991-07-02 Silicon Storage Technology, Inc. Single transistor non-valatile electrically alterable semiconductor memory device
US5021848A (en) 1990-03-13 1991-06-04 Chiu Te Long Electrically-erasable and electrically-programmable memory storage devices with self aligned tunnel dielectric area and the method of fabricating thereof
JP3099887B2 (ja) 1990-04-12 2000-10-16 株式会社東芝 不揮発性半導体記憶装置
JP2815495B2 (ja) 1991-07-08 1998-10-27 ローム株式会社 半導体記憶装置
US5544103A (en) 1992-03-03 1996-08-06 Xicor, Inc. Compact page-erasable eeprom non-volatile memory
KR950011983B1 (ko) 1992-11-23 1995-10-13 삼성전자주식회사 반도체 장치의 제조방법
US5371028A (en) 1993-08-02 1994-12-06 Chartered Semiconductor Manufacturing Pte Ltd. Method for making single transistor non-volatile electrically alterable semiconductor memory device
JP3133667B2 (ja) 1995-02-23 2001-02-13 三洋電機株式会社 スプリットゲート型トランジスタ、スプリットゲート型トランジスタの製造方法、不揮発性半導体メモリ
US5780892A (en) 1995-03-21 1998-07-14 Winbond Electronics Corporation Flash E2 PROM cell structure with poly floating and control gates
KR0144906B1 (ko) 1995-03-31 1998-07-01 김광호 불휘발성 메모리 소자 및 그 제조방법
US5597751A (en) 1995-12-20 1997-01-28 Winbond Electronics Corp. Single-side oxide sealed salicide process for EPROMs
US5814853A (en) 1996-01-22 1998-09-29 Advanced Micro Devices, Inc. Sourceless floating gate memory device and method of storing data
US5780341A (en) 1996-12-06 1998-07-14 Halo Lsi Design & Device Technology, Inc. Low voltage EEPROM/NVRAM transistors and making method
US6252799B1 (en) 1997-04-11 2001-06-26 Programmable Silicon Solutions Device with embedded flash and EEPROM memories
JP2000022115A (ja) * 1998-04-28 2000-01-21 Sanyo Electric Co Ltd 半導体メモリ及びその製造方法
KR100264816B1 (ko) 1998-03-26 2000-09-01 윤종용 비휘발성 메모리 장치 및 그 동작 방법
US6091104A (en) 1999-03-24 2000-07-18 Chen; Chiou-Feng Flash memory cell with self-aligned gates and fabrication process
US6140182A (en) 1999-02-23 2000-10-31 Actrans System Inc. Nonvolatile memory with self-aligned floating gate and fabrication process
US6103573A (en) 1999-06-30 2000-08-15 Sandisk Corporation Processing techniques for making a dual floating gate EEPROM cell array
US6222227B1 (en) 1999-08-09 2001-04-24 Actrans System Inc. Memory cell with self-aligned floating gate and separate select gate, and fabrication process
US6525371B2 (en) 1999-09-22 2003-02-25 International Business Machines Corporation Self-aligned non-volatile random access memory cell and process to make the same
US6329685B1 (en) 1999-09-22 2001-12-11 Silicon Storage Technology, Inc. Self aligned method of forming a semiconductor memory array of floating gate memory cells and a memory array made thereby
US6563167B2 (en) * 2001-01-05 2003-05-13 Silicon Storage Technology, Inc. Semiconductor memory array of floating gate memory cells with floating gates having multiple sharp edges
KR100368594B1 (ko) * 2001-02-23 2003-01-24 삼성전자 주식회사 스플릿 게이트형 플래쉬 메모리소자
US6570213B1 (en) * 2002-02-08 2003-05-27 Silicon Based Technology Corp. Self-aligned split-gate flash memory cell and its contactless NOR-type memory array
US6706592B2 (en) * 2002-05-14 2004-03-16 Silicon Storage Technology, Inc. Self aligned method of forming a semiconductor array of non-volatile memory cells
US6531734B1 (en) * 2002-05-24 2003-03-11 Silicon Based Technology Corp. Self-aligned split-gate flash memory cell having an integrated source-side erase structure and its contactless flash memory arrays

Also Published As

Publication number Publication date
US20030162347A1 (en) 2003-08-28
US20020034847A1 (en) 2002-03-21
KR20020022629A (ko) 2002-03-27
KR100931815B1 (ko) 2009-12-14
EP1191584A2 (en) 2002-03-27
CN1359148A (zh) 2002-07-17
JP2002158303A (ja) 2002-05-31
US6773989B2 (en) 2004-08-10
JP5016761B2 (ja) 2012-09-05
US6627946B2 (en) 2003-09-30

Similar Documents

Publication Publication Date Title
CN1222992C (zh) 半导体存储器阵列的自对准方法以及由此制造的存储器阵列
CN1186820C (zh) 半导体存储阵列及其制造方法
CN1207776C (zh) 有控制栅突出部的浮栅存储器阵列自对准法及存储器阵列
KR100436406B1 (ko) 부유 게이트를 갖는 반도체 기억 장치 및 그 제조 방법
KR100313695B1 (ko) 반도체 장치의 제조 방법
CN1269218C (zh) 形成半导体存储器阵列的方法及由此制造的存储器阵列
CN100547797C (zh) 半导体产品的制作方法
JPH04229654A (ja) 無接点フローティングゲートメモリアレイを製造する方法
KR100278647B1 (ko) 불휘발성 메모리소자 및 그 제조방법
US7888804B2 (en) Method for forming self-aligned contacts and local interconnects simultaneously
KR19980053143A (ko) 반도체 메모리 소자 및 그 제조방법
US4964143A (en) EPROM element employing self-aligning process
US20070122968A1 (en) Fabrication method and structure for providing a recessed channel in a nonvolatile memory device
US6011288A (en) Flash memory cell with vertical channels, and source/drain bus lines
US7242054B2 (en) Nonvolatile memory devices
CN101335240B (zh) 半导体器件及其制造方法
US5091326A (en) EPROM element employing self-aligning process
US20090035907A1 (en) Method of forming stacked gate structure for semiconductor memory
JP2007103652A (ja) 半導体装置およびその製造方法
US6893917B2 (en) Structure and fabricating method to make a cell with multi-self-alignment in split gate flash
JP2006526284A (ja) ビット線構造およびその製造方法
CN100369257C (zh) 氮化物只读存储器存储单元阵列制造方法
US20040164345A1 (en) Semiconductor memory with vertical charge-trapping memory cells and fabrication
CN1832134B (zh) 于半导体装置中形成栅电极图案的方法
JP2000260887A (ja) 不揮発性半導体記憶装置およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20050622

CX01 Expiry of patent term