CN1206196C - 采用多孔稀土卤化物载体的催化剂的氧卤化方法 - Google Patents

采用多孔稀土卤化物载体的催化剂的氧卤化方法 Download PDF

Info

Publication number
CN1206196C
CN1206196C CNB008160244A CN00816024A CN1206196C CN 1206196 C CN1206196 C CN 1206196C CN B008160244 A CNB008160244 A CN B008160244A CN 00816024 A CN00816024 A CN 00816024A CN 1206196 C CN1206196 C CN 1206196C
Authority
CN
China
Prior art keywords
rare earth
carrier
porous
chlorine
lanthanum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB008160244A
Other languages
English (en)
Other versions
CN1391543A (zh
Inventor
R·J·小古勒特
M·E·琼斯
D·A·希克曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Publication of CN1391543A publication Critical patent/CN1391543A/zh
Application granted granted Critical
Publication of CN1206196C publication Critical patent/CN1206196C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/10Chlorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/122Halides of copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/15Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/15Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination
    • C07C17/152Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/15Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination
    • C07C17/152Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons
    • C07C17/154Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons of saturated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/15Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination
    • C07C17/152Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons
    • C07C17/156Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons of unsaturated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/15Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination
    • C07C17/158Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of halogenated hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/22Halogenating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种氧卤化反应,包括使一种烃例如乙烯或一种卤代烃与一种卤素源如氯化氢和一种氧源在一种催化剂存在下进行接触,以形成一种卤代烃,优选为一种含氯烃,它较起始烃或卤代烃有更多数目的卤素取代基,例如1,2-二氯乙烷。所述催化剂为一种新颖组合物,它包括铜分散在一种多孔稀土卤化物载体上,优选为一种多孔稀土氯化物载体。公开了一种含有铜分散在一种多孔稀土卤氧化物载体上的催化剂前体组合物。还公开了所述多孔稀土卤化物和卤氧化物作为催化成分的载体物质的用途。

Description

采用多孔稀土卤化物载体的催化剂的氧卤化方法
本申请要求1999年11月22日提出的美国临时申请60/166897的权益。
首先,本发明涉及一种氧卤化方法,特别是一种氧氯化方法。为了便于讨论,术语“氧卤化”定义为一种方法,其中烃或卤代烃(“起始烃”)与一种卤素源和一种氧源进行接触,以形成一种具有较起始烃含有更多数目的卤素取代基的卤化碳。术语“卤化碳”将包括卤代烃以及仅由碳和卤素原子组成的化合物。其次,本发明涉及一种用于氧卤化方法的新型催化剂。再者,本发明还涉及新的催化剂载体。
卤代烃,如1,2-二氯乙烷、1,2-二溴乙烷、二氯丙烷和二氯丙烯,发现可用于众多的应用中,如用于熏蒸剂中和用于制备在聚合过程有用的单体中。1,2-二氯乙烷,例如,它是以每年数百万吨的工业规模进行生产的,它通过热脱氯化氢方法转化为氯乙烯单体(VCM)和氯化氢。VCM聚合形成聚氯(乙烯)(或PVC),是一种广泛采用的聚合物。由脱氯化氢作用产生的氯化氢从所述VCM中分离出来,之后它与乙烯和氧气在一种催化剂存在下进行接触,形成1,2-二氯乙烷。在先有技术中,乙烯、氯化氢和氧气的特定接触以形成1,2-二氯乙烷和水,称作“氧氯化反应”。
乙烯的氧氯化在专利文献中已经有大量的描述,代表性的技术包括US3,634,330、US3,658,367、US3,658,934、US5,972,827、GB1039369和GB1373296。用于乙烯氧氯化反应中的催化剂,通常含有氯化铜或氯化铁,和可选择地,一种或多种碱金属或碱土金属的氯化物,和/或可选择地,一种或多种稀土金属氯化物,负载在一种惰性载体通常为氧化铝、氧化硅或一种硅铝酸盐上。一种替代方案是,所述催化剂成分可以是未负载的,但是被熔化形成一种熔盐。
氧卤化方法是很常用的,它可扩展到乙烯之外的多种烃。例如,已知氧氯化方法可用来将甲烷转化为氯甲烷,将乙烷转化为氯乙烷和氯乙烯,以及类似地,将更高饱和的烃转化为更高含氯烃。这种化学反应不仅限于氯,它也可扩展到其它卤素。卤素源可包括卤化氢和具有不稳定卤素原子的卤代烃。
先有技术氧卤化方法的一个缺点在于会形成不受欢迎的氧化副产物,如部分氧化的烃类和深度氧化产物(COx),即一氧化碳和二氧化碳。先有技术氧卤化方法的另一缺点在于,它们会在1,2-二氯乙烷的生产中形成不受人欢迎的氧化卤代烃副产物,如三氯乙醛(也称作氯醛,CCl3CHO)。不想要的副产物的形成不可补救地浪费了烃原料,并带来产物分离和副产物处理的问题。所有降低氧化产物特别是氧化卤代烃和COx氧化物的数量,都将是非常受人欢迎的。
另一方面,已知稀土金属化合物在各种不同催化有机反应中用作促进剂,例如,氧化反应,蒸汽转化,汽车排放减少,酯化反应,费-托合成和前述氧卤化反应。在稀土促进催化剂的通常制备方法中,含有一种可溶稀土金属盐如氯化物的溶液,例如通过浸渍或离子交换,可选择地与一种或多种添加的催化成分一起,分散到一种载体如氧化铝或氧化硅之上。US2,204,733公开了一种含有一种铜化合物和一种稀土金属组的化合物的催化剂,它是通过将所述金属氢氧化物沉淀到一种合适载体上而制备的,或者是通过用一种铜和稀土金属盐的溶液浸泡或浸渍一种载体而制备的,或者是通过用钠或钾的氢氧化物沉淀所述金属氢氧化物而制备的。一般地,该技术对于稀土化合物作为催化剂载体的性能没有记载,可能是由于稀土化合物通常没有发现是多孔的。已知催化剂载体通常要求至少有一些孔隙度,也就是说,存在一些空隙空间,如通道和孔隙或空腔,它们会形成表面积,催化金属和成分可沉积在其上。
一方面,本发明提供一种新的制备卤化碳的氧卤化方法。本发明的新方法包括使一种烃或卤代烃与一种卤素源和一种氧源接触,在一种催化剂存在的反应条件下,足以制备一种含有较起始烃或卤代烃更多数目卤素取代基的卤化碳。根据具体情况,所述催化剂包括负载在多孔卤化物载体上的铜。术语“卤化碳”可以理解为包括卤代烃和仅由碳和卤素原子所组成的化合物。
本发明的氧卤化方法可有利地在一种卤素源和一种氧源存在下,将一种烃或卤代烃转化为一种与起始烃相比具有更多数目的卤素取代基的卤化碳。因此,本发明的方法,在一个优选实施方案中,可用来在氯化氢和氧存在下将乙烯氧氯化成1,2-二氯乙烷。由于氯化氢可从1,2-二氯乙烷的脱氯化氢作用得到,所以,如上所述,本发明的方法可以容易地整合到VCM工厂之中。作为一个更为优选的优点是,本发明的方法较先有技术氧卤化方法,可形成较低水平的不受欢迎的副产物,特别是COx氧化物,即一氧化碳和二氧化碳,和较低水平的不受欢迎的氧化卤化碳如氯醛。不受欢迎的氧化副产物的减少意味着想要的卤化碳产物的选择性提高、烃原料的浪费和副产物处理问题变少。而且,对于想要卤化碳产物的选择性的提高,可允许所述方法在较高温度下进行操作以获得更高的转化率。
第二个方面,本发明涉及一种新颖的组合物,它包括分散在一种多孔稀土卤化物载体上的铜。
本发明的新颖组合物可用作烃或卤代烃的氧卤化反应的催化剂,例如,乙烯在氯源和氧存在下通过氧氯化形成1,2-二氯乙烷。有利地是,本发明的新颖催化剂在前述的氧卤化方法中,可制得较低水平的副产物特别是COx氧化物和氧化卤化碳如氯醛。第二个优点,本发明独特的催化剂组合物不需要常规的载体如氧化铝或氧化硅。更确切地,本发明的催化剂是采用一种多孔稀土金属卤化物,它独特地用作催化剂的载体和作为进一步催化的活性(稀土金属)成分的来源。
第三个方面,本发明提供第二种组合物,它包括分散在一种多孔稀土卤氧化物载体上的铜。该第二种新颖组合物是前述含有铜的、分散在多孔稀土金属卤化物载体上的催化剂的一种有用的催化剂前体。
第四个方面,本发明要求保护前述多孔稀土卤氧化物和多孔稀土卤化物作为催化成分的载体的用途。所述多孔稀土金属卤氧化物或稀土金属卤化物可用作元素周期表中任何催化金属或金属离子的载体,以及任何有机或非金属无机催化剂成分的载体。
所述多孔稀土金属卤氧化物或卤化物载体,有利地,可用于从稀土元素的促进作用中受益的催化剂中,和/或用于需要碱性的催化剂中。与先有技术的许多催化剂载体不同,本发明的稀土卤化物载体可溶于水中。因此,如果工艺设备如过滤器、阀、循环管和反应器的小部件或复杂部件,被本发明所述的含稀土卤化物载体的催化剂颗粒堵塞,则简单的水洗就可方便地溶解堵塞的颗粒,从而恢复工艺设备到工作状态。另一个优点是,本发明的新颖稀土卤化物和卤氧化物载体提供了一种回收贵重催化金属的简易方法。所述回收方法仅包括使含有催化金属和新颖载体的废催化剂与酸在足以使催化金属腐蚀的条件下进行接触。然后,所述金属就可从所述酸性介质中,例如通过沉淀方法得到回收。溶解在酸性介质中的稀土金属载体的任何部分也可采用碱通过再沉淀进行回收。
在本发明的新颖氧卤化方法中,可选择地形成一种卤化碳,且好处是具有低水平的副产物如COx氧化物(CO和CO2)和氧化卤化碳如氯醛。本发明的新颖方法包括使一种烃或卤代烃(“起始烃”)与一种卤素源和一种氧源接触,在一种催化剂存在下,足以制得较起始烃具有更大数目的卤素取代基的卤化碳。如前所述,在本发明中,术语“卤化碳”包括卤代烃如1,2-二氯乙烷以及仅由碳和卤素原子所组成的化合物如全氯乙烯。
在一个优选实施方案中,本发明的方法是一种氧氯化方法,它包括使一种烃或含氯烃与一种氯源和一种氧源接触,在一种催化剂存在下,制得一种较起始烃具有更多数目的氯取代基氯化碳。在本发明的一个最优选的实施方案中,所述烃为乙烯,而所述氯化碳为1,2-二氯乙烷。
在本发明的氧卤化方法中采用的新颖催化剂,包括分散在一种多孔稀土金属卤化物载体上的铜。在本发明中,孔隙率以表面积表示。在一个优选实施方案中,所述多孔稀土金属卤化物载体的表面积最小为5m2/g,它是采用测量表面积的博纳-埃默特-特勒法(BET)法测得的,S.Brunauer,P.H.Emmett,and E.Teller.Journalof the American Chemical Society,60,309(1938)中对其作了详细的描述。在一个优选实施方案中,所述多孔稀土金属卤化物载体包括一种多孔稀土氯化物。
另一方面,本发明提供了第二种组合物,它包括分散在一种多孔稀土金属卤氧化物载体上的铜。这种第二组合物用作一种催化剂前体,发现它可用于前述稀土金属卤化物催化剂的制备方法之中。在一个优选实施方案中,所述多孔稀土金属卤氧化物载体的表面积最小为12m2/g,它由BET法测得。在一个更优选实施方案中,所述多孔稀土金属卤氧化物载体包括一种稀土金属氯氧化物。
又一个方面,本发明要求保护前述多孔稀土金属卤氧化物和多孔稀土金属卤化物作为催化成分的载体的用途。
下文中,将对优选的氧氯化方法进行说明;但是,根据给出的详细说明,本领域的技术人员将能够扩展所述说明到氧氯化之外的氧卤化反应。
用于本发明氧氯化方法中的烃,可为任何能够按照本发明方法获得的卤素取代的烃。所述烃可为基本纯的烃或一种烃的混合物。所述烃可为C1-20脂族烃,包括C1-20的烷烃或C2-20烯烃,以及C3-12脂环烃或C6-15芳烃。这类烃的合适非限定性实例包括甲烷、乙烷、丙烷、乙烯、丙烯、丁烷、丁烯、戊烷、戊烯、己烷、己烯、环己烷和环己烯以及苯和其它C6-15芳烃如萘。更优选地,所述烃是选自C1-20脂族烃,更加优选地,是C2-10烯烃,最优选为乙烯。
所述烃原料被一个或多个卤素取代基所取代也是在本发明的范围之内。不过,优选地,所述取代的烃保留有至少一个或多个碳-氢键;但是,如下所述,某些不含有碳-氢键的卤代烃如(全卤)烯烃,也是合适的。优选的卤素取代基包括氟、氯和溴。更优选地,为氟和氯。例如,所述起始卤代烃可为一种氟代烃,它经由本发明的氧氯化方法可转化为一种氯氟烃。在一个可替代实施方案中,一种(全氟)烯烃可用作起始原料,并转化为一种氯氟烃。
用于本方法中的氯源,它可为任意能够转移其氯到所述烃原料并能为氧原料提供氢源的含氯化合物。所述氯源的合适非限定性实例包括氯化氢和任意的具有一个或多个不稳定氯取代基(即,可转移的氯取代基)氯代烃,一个非限定性实例为二氯甲烷。通常地,分子氯(Cl2)不能用于本发明所述方法中,因为该方法需要氧源,且形成水。优选的氯源为氯化氢。
氯源可以按照有效形成想要的含氯烃产物的任意用量,提供到所述方法中。通常地,氯源的用量等于有关的氧氯化反应所需要的化学计量的数量。例如,在乙烯与氯化氢和氧气的氧氯化反应中,理论化学计量关系如下:
因此,在本发明的乙烯氧氯化反应中,通常地,对于每摩尔氧气,是采用四摩尔的氯化氢。氯化氢和氧气的用量,理想地是选择有利于两种试剂接近完全反应的用量;但是发现数量较多或较少的氯化氢也是合适的。
氧源可为任意含有氧气的气体,如商业纯分子氧或空气或氧气与其它不会干扰氧氯化反应的稀释气体的混合物,它们将在下文中提到。一般氧氯化反应器中的原料是“富含燃料的”,是指相对于氧气来说,起始烃是摩尔过量的。通常地,起始烃与氧气的摩尔比大于2/1,优选是大于4/1,更优选是大于5/1。通常地,烃与氧气的摩尔比小于20/1,优选是小于15/1,更优选地是小于10/1。
可选择地,如果需要的话,包括起始烃、卤素源和氧源的原料,可用一种稀释气体或载气进行稀释,它们可为任意基本不会干扰所述氧氯化反应的气体。所述稀释气体可有助于从所述反应器中移走产物和热量,有助于降低不受欢迎的副反应的数目。合适稀释气体的非限定性实例包括氮气、氩气、氦气、一氧化碳、二氧化碳、甲烷及其混合物。按照反应器中原料的总摩尔数即起始烃、卤素源、氧源和稀释气体的总摩尔数计算,稀释气体用量的摩尔百分数通常范围是大于10%,优选是大于20%,到小于90%,优选是小于70%。
从前述的讨论可知,氧氯化方法的原料物流包括一种烃或卤代烃、一种氯源、一种氧源和选择性的一种稀释气体或载气的混合物。因此,应当适当注意以避免形成爆炸混合物。为此目的,本领域技术人员应该知道如何全面估计所采用的特定原料物流的可燃性极限。
本发明的第二个方面,是提供一种组合物,它可用作前述氧氯化反应的催化剂。所述组合物包括分散在一种多孔稀土金属卤化物载体上的铜。所述稀土金属是由钪(原子序数为21)、钇(原子序数为39)和镧系元素(原子序数为57-71)所组成的、含有17种元素的元素组[James B.Hedrick,U.S.Geological Survey-Minerals Information-1997,“Rare-Earth Meatals”]。优选地,本申请中,该术语是用来表示一种选自镧、铈、钕、镨、镝、钐、钇、钆、铒、镱、钬、铽、铕、铥、镥、及其混合物的元素。优选用于前述氧氯化方法的稀土元素是那些通常认为具有单一价态的金属。采用多价金属的多孔稀土卤化物负载的催化剂的催化性能,表现为不如那些采用单一价态金属的性能令人满意。用于本发明的稀土元素优选地选自镧、钕、镨及其混合物。最优选地,用于所述催化剂载体中的稀土元素为镧或镧与其它稀土元素的混合物。
所述载体可优选采用分子式MX3表示,其中M为至少一种稀土元素镧、铈、钕、镨、镝、钐、钇、钆、铒、镱、钬、铽、铕、铥、镥及其混合物;并且其中X为氯、溴或碘。更优选地,X为氯,更优选载体可采用分子式MCl3表示,其中M定义如上所述。最优选地,X为氯,M为镧,所述稀土卤化物载体为氯化镧。
通常地,所述多孔稀土卤化物载体具有的BET表面积大于5m2/g,优选大于10m2/g,更优选大于15m2/g,更加优选大于20m2/g,最优选大于30m2/g。对于上述这些测量数据,氮吸附等温线是在77K测量的,表面积是采用BET法从等温线数据计算得到的。
本发明的第三个方面,是提供一种组合物,它是用作前述稀土金属卤化物负载催化剂组合物的催化剂前体。所述催化剂前体包括分散在一种多孔稀土金属卤氧化物载体上的铜。优选地,所述载体可由分子式MOX表示,其中M为至少一种稀土元素镧、铈、钕、镨、镝、钐、钇、钆、铒、镱、钬、铽、铕、铥、镥及其混合物;其中X为氯、溴或碘。更优选地,所述载体为氯氧化物,可采用分子式MOCl表示,其中M定义如上。最优选地,所述稀土氯氧化物为氯氧化镧,LaOCl。
典型地,所述多孔稀土卤氧化物载体具有的BET表面积大于12m2/g,优选大于15m2/g,更优选大于20m2/g,最优选大于30m2/g。一般地,所述BET表面积小于200m2/g。而且,要说明的是,MOCl相具有特征粉末X光衍射(XRD)光谱明显不同于MCl3相。
在本发明的一个优选实施方案中,所述催化剂和催化剂前体组合物基本不含有氧化铝、氧化硅、硅铝酸盐和其它常规难熔载体物质,例如氧化钛或氧化锆。按照所述催化剂或催化剂前体组合物和常规载体物质的总重量计算,术语“基本不含有”是指所述常规载体物质的存在量的重量百分比低于1%,更优选是低于0.5%,最优选是低于0.1%。在本发明的另一可替代实施方案中,如前所述催化剂或催化剂前体组合物(包括负载在稀土卤化物或稀土卤氧化物载体物质上的铜),可以结合、挤出或沉积到一种常规载体如氧化铝、氧化硅、氧化硅-氧化铝、多孔硅铝酸盐(沸石)、氧化硅-氧化镁、铁铝氧石、氧化镁、碳化硅、氧化钛、氧化锆、硅酸锆或其混合物之上。在此实施方案中,按照所述催化剂或催化剂前体组合物和常规载体的总重量计算,所述常规载体用量的重量百分比大于1%,但小于50%,优选是小于30%,更优选是小于20%。甚至存在有常规载体时,所述铜仍然主要是沉积在所述稀土卤氧化物或卤化物载体之上,而且,所述稀土卤氧化物或卤化物载体仍保持疏松材料状态。
在所述催化剂中含有其它元素可能也是有利的。例如,优选元素添加剂包括碱金属和碱土金属、硼、磷、硫、锗、钛、锆、铪及其混合物。这些元素的存在可改变所述组合物的催化性能或改善所述物质的机械性能(例如,耐磨性能)。不过,在一个最优选实施方案中,所述元素添加剂不是铝或硅。按照催化剂总重量计算,元素添加剂在所述催化剂中的总浓度的重量百分比通常大于0.01%,小于20%。
根据本文的说明,本领域技术人员将会认识到制备本发明载体组合物的可替代方法。一种目前认为优选的用来形成含有所述多孔稀土卤氧化物(MOX)的组合物的方法,包括下述步骤:(a)在一种含有水、醇或其混合物的溶剂中制备一种所述稀土元素或几种稀土元素的卤化物盐的溶液;和(b)加入碱以形成沉淀;和(c)收集并煅烧所述沉淀以形成MOX。优选地,所述卤化物盐是一种稀土氯化物盐,例如,任意商业可得的稀土氯化物。典型地,所述碱为一种含氮碱,选自氢氧化铵、烷基胺、芳基胺、芳烷基胺、氢氧化烷基铵、氢氧化芳基铵、氢氧化芳烷基铵及其混合物。所述含氮碱也可以一种含氮碱与其它不含氮的碱的混合物形式提供。优选地,所述含氮碱为氢氧化铵或氢氧化四(烷基)铵,更优选为氢氧化四(C1-20烷基)铵。多孔稀土氯氧化物也可通过适当使用碱金属或碱土金属的氢氧化物,特别地是与一种含氮碱的缓冲液一起使用,进行制备得到的,不过,应该注意防止形成稀土氢氧化物或氧化物。步骤(a)中的溶剂优选为水。一般地,所述沉淀作用是在大于0℃下进行的。通常地,沉淀作用是在温度低于200℃优选是低于100℃下进行的。所述沉淀作用一般地是在环境大气压下进行的,不过,根据需要,较高压力也可采用,以保持在采用的沉淀温度下处于液相。所述煅烧作用典型地是在温度大于200℃优选是大于300℃但低于800℃优选低于600℃下进行的。混合羧酸和稀土氯化物盐的产品在合适的分解条件下也可得到稀土氯氧化物。
一种目前认为优选的用来形成含有所述稀土卤化物(MX3)的催化剂组合物的方法,包括下述步骤:(a)在一种包括水、醇或其混合物的溶剂中制备一种所述稀土元素或几种稀土元素的卤化物盐的溶液;(b)加入碱以形成沉淀;(c)收集并煅烧所述沉淀;和(d)使所述煅烧的沉淀与一种卤素源进行接触。优选地,所述稀土卤化物为一种稀土氯化物盐,如任意商业可得的稀土氯化物。所述溶剂和碱可为任意在上述形成MOX时所提及的物质。优选地,所述溶剂为水,所述碱为一种含氮碱。所述沉淀作用一般是在温度大于0℃但低于200℃,优选是低于100℃,环境大气压或更高压力以保持液相下进行的。所述煅烧作用典型地是在大于200℃优选大于300℃但低于800℃优选低于600℃下进行的。优选地,所述卤素源为卤化氢,如氯化氢,溴化氢或碘化氢。更优选地,所述卤素源为氯化氢。所述与卤素源的接触典型地是在温度大于100℃和低于500℃下进行的。与卤素源接触的典型压力范围在环境大气压至低于150psia(1.034kPa)压力之间。
如上所述,可通过用一种卤素源处理所述MOX,使所述稀土卤氧化物载体(MOX)转化为所述稀土卤化物载体(MX3)。由于本发明的氧氯化方法需要一种氯源,所以使所述Cu负载MOCl载体与一种氯源在氧氯化反应器中原位进行接触以形成所述MCl3负载的Cu催化剂是可行的。所述形成催化剂的原位方法,可推广至氯之外的卤元素。所述多孔稀土卤氧化物物质发现也可用作催化剂载体,即使是在不能将卤氧化物转化为卤化物的条件下。
多孔氯氧化物物质MOX和完全氯化物质MX3,可用于所有需要催化剂载体的方法。所述稀土卤氧化物或卤化物可用作元素周期表中所有催化金属或金属离子的载体,以及所有有机或非金属无机催化剂成分的载体。合适的金属和金属离子可选自元素周期表的1A,2A,3B,4B,5B,6B,7B,8B,1B,2B,3A,4A和5A族,例如可参见Chemistry,S.Radel and M.Navidi.West Publishing Company.New York.1990。优选方法包括其中一种稀土元素适合用作催化剂或催化剂促进剂的催化方法,包括(非限定性地)氧化反应、还原反应、加氢反应、异构化反应、氨化反应、裂化反应、烷基化反应、酯化反应和其它烃转化反应如费-托合成。这里举例说明的氧卤化化方法仅是此处所述新颖载体的一种应用;但是,该说明不会限制这些载体在其它应用中的用途。任意的接触方法都可用来沉积或分散所述催化成分到本发明的多孔载体之上,包括(非限定性地)浸渍方法、离子交换方法、沉积-沉淀方法、共沉淀方法和汽相沉积方法。这些接触方法在催化领域中已经有充分的描述,例如,可参见,工业催化剂性能的基本原理(Fundamentals of Industrial CatalyticProperties),Robert J.Farrauto and Calvin H.Bartholomew,Blackie Academic & Professional,an Imprint of Chapman & Hall,伦敦.1997。
对于即时的氧氯化应用来说,铜在所述催化剂前体载体MOX或催化剂载体MX3上的沉积,可通过从一种含碱溶液中共沉淀出所述铜和镧得以实现,与前述形成所述载体方法相似。一种可替代方案是,所述铜可以通过浸渍或离子交换从一种含铜溶液中沉积出来,或者通过汽相沉积由一种挥发性的铜化合物得到沉积。典型地,按照所述催化剂或催化剂前体组合物的总重量计算,所述铜负载量的重量百分比大于0.01%,优选大于1%,更优选大于5%。典型地,,按照所述催化剂或催化剂前体组合物总重量计算,所述铜负载量的重量百分比低于30%,优选低于20%,更优选低于15%。
本发明的氧氯化方法可在任何常规设计的反应器中进行,优选是适合气相方法的反应器,包括间歇式、固定床、流化床、移动床、连续流和间歇流反应器。任意的工艺条件(例如,原料成分的摩尔比、温度、压力、气体时空速率)都可采用,只要想要的卤化碳产物优选含氯烃能够选择地获得即可。典型地,反应温度大于150℃,优选大于200℃,更优选大于250℃。典型地,反应温度低于500℃,优选低于425℃,更优选低于350℃。通常地,所述方法将是在大气压或更高压力下进行的。典型地,所述压力将等于或大于14psia(101kPa),但低于150psia(1.034kPa)。典型地,反应试剂进料(烃、卤素源、氧源和其它选择的稀释剂)的总气体时空速率(GHSV)的变化范围是,相对于每小时每ml催化剂大于10ml总进料(10h-1),优选大于100h-1,低于50000h-1,优选低于10000h-1
本发明方法中形成的含氯烃含有较起始烃或起始氯代烃更多数目的氯取代基。优选含氯烃产物为1,2-二氯乙烷。本发明的氧氯化方法形成的氧化含氯烃副产物如氯醛,其浓度较低,与先有技术氧氯化方法相比,降低倍数用摩尔百分比表示至少为20%,至多为90%。同样地,本发明的氧氯化方法形成的COx氧化物(CO和CO2)较先有技术的氧氯化方法其数量显著降低,典型地降低倍数是10。
下述实施例是用来说明本发明的方法、本发明的催化剂和催化剂前体组合物,和本发明新颖载体。这些实施例绝不能理解为是对本发明的限定。根据此处的说明,本领域技术人员将会认识到如反应试剂、反应条件、催化剂种类和载体种类的可替代实施方案,它们都落在本发明的范围之内。
实施例1
一种含有负载在一种多孔氯氧化镧载体上的铜的催化剂前体组合物,是按下述方法制得的。氯化镧(LaCl3·7H2O,15.0g)溶解在去离子水中(150ml)。氢氧化铵(6M,20ml)在搅拌作用下快速地加入到所述氯化镧溶液中,得到一种白色沉淀。离心分离所述混合物,轻轻倒出过量液体得到一种含镧凝胶。氯化铜(CuCl2·2H2O,0.689g)采用仅增加溶液量的方法将该铜盐溶解在在氢氧化铵中(6M)。所述铜溶液加入到所述含镧凝胶中。对所述凝胶进行搅拌直到得到一种颜色均匀的黑蓝色沉淀。所述沉淀在400℃下煅烧4小时得到一种含有铜(摩尔百分比10%)分散在一种多孔氯氧化镧载体上的组合物(5.35g)。X光衍射数据表明存在有准晶体形式的氯氧化镧。所述催化剂表面积为25.8m2/g,由BET法测得。
实施例2
将实施例1得到的催化剂前体组合物原位转化为本发明的含有分散在一种多孔氯化镧载体上的铜的催化剂组合物。所述催化剂接着在乙烯氧氯化反应中进行评价。在一个管式反应器中装入实施例1的催化剂前体物质(0.3208g)和一种低表面积氧化铝稀释剂(Norton SA5225氧化铝:2.3258g)的混合物。所述催化剂前体在氩气流中于200℃下干燥1小时,接着原位转化为活性催化剂,是采用摩尔百分比44.4%氯化氢、8.6%氧和47.0%氩的混合物在250℃和重量时空速率为22h-1条件下处理10分钟而实现的。所述重量时空速率是指质量流速除以试验催化剂重量所得到的数值。
一种氯氯化进料开始时包括摩尔百分比18.2%乙烯、36.3%氯化氢、7.0%氧和38.5%氩,温度为250℃,重量时空速率为26h-1。所述反应在250℃下连续进行30分钟,然后在相同的进料条件下改变温度到300℃。所得结果如表1所示。表1中在300℃下得到的测量数据,是采用在15分钟期间内在300℃时的平均效率。改变所述反应进料组合物,使其具有较低氧含量,含有摩尔百分比16.7%乙烯、33.3%氯化氢、4.3%氧和45.7%氩,重量时空速率为28h-1。所述温度在30分钟内提高到350℃,接着在30分钟内提高到400℃。表1中在400℃采集的数据,是在15分钟期间内在400℃时组合物的平均值。对反应器的气态流出物进行分析,是采用质谱法,使用校准基质以从所述数据中去卷积气体组成物进行的。通过监测位于82a.m.u.处的质谱峰估算氯醛。反应条件和结果如表1所示。
表1  乙烯转化为二氯乙烯(EDC)a的氧氯化反应
    实例     催化剂    WHSV(h-1)     T(℃)   EDC(ml/min)   氯醛(合计数)
    2     Cu/LaCl3    26     300   4.02   8
    ″     ″    28     400   8.86   700
    CE-1     Cu/K/Al2O3    78     300   2.84   160
    ″     ″    87     400   7.58   900
a.氧氯化进料物流组成(摩尔百分比):300℃,18.2% C2H6,36.3%HCl,7.0% O2和38.5% Ar;400℃,16.7% C2H6,33.3% HCl,4.3% O2和45.7%Ar。实验是在大气压下进行的。
从表1可以看出,含有铜负载在一种多孔氯化镧载体上的新颖催化剂,能够在氯化氢和氧存在下氧氯化乙烯为1,2-二氯乙烷。一个优点是仅形成很少量的氯醛,特别是在300℃较低温度下进行时。
比较实验例1(CE-1)
按照实施例2所述方式进行乙烯的氧氯化反应,不同之处在于采用一种对比性的含有铜(重量百分比4%)和钾(重量百分比1.5%)负载在氧化铝上的氧氯化反应催化剂替代实施例2的催化剂。所述对比催化剂(0.1046g)与氧化铝稀释剂(2.6639g)进行混合,将所述混合物装填到一个与实施例2相似的反应器。按照实施例2方式操作所述氧氯化反应,反应条件和结果如表1所示。当比较实验例1与实施例2在相似反应条件下进行对比时,可以看出本发明所述含有铜分散在一种多孔氯化镧载体上的催化剂,与对比催化剂相比,可在明显较低的杂质氯醛选择性下获得较高的1,2-二氯乙烷产率。
实施例3
将实施例1得到的催化剂前体组合物装入到一个固定床反应器中,采用实施例2所述的原位方法将其转化为一种含有铜负载在一种多孔氯化镧载体上的活性催化剂,然后在乙烷氧氯化反应中进行测试。一种气体进料,它含有乙烯(摩尔百分比53.75%)、氧(摩尔百分比14.61%)和氯化氢(摩尔百分比29.26%),在大气压和300℃下流过所述催化剂。调节气流使氧转化率为50%。所述催化剂制备得到1,2-二氯乙烷作为主要产物。形成的总碳氧化物(COx)仅为排出气摩尔百分比的0.8%。此外,由于所述催化剂是水可溶的,废催化剂可容易地采用简便的水洗方法,从所述反应器和支持性设备如过滤器和输送管线中移走。
比较实验例2(CE-2)
采用一种对比性的氧氯化催化剂替代实施例3的催化剂,重复实施例3。所述对比催化剂,它与比较实验例1的催化剂相似,含有铜(重量百分比5.7%)和钾(重量百分比1.75%)负载在氧化铝上。所述对比催化剂制备得到1,2-二氯乙烷作为主要产物;不过,形成的总碳氧化物(COx)为排出气摩尔百分比的4.5%。当比较实验2与实施例3进行比较时,可以看出,在相似的反应条件下,本发明催化剂形成明显低于比较催化剂的碳氧化物。

Claims (43)

1.一种烃或卤代烃的氧氯化方法,包括使一种烃或卤代烃与氯源和氧源接触,在一种催化剂的存在下,制备较起始烃或起始卤代烃具有更多数目氯取代基的含氯烃,所述催化剂包括负载在一种多孔稀土卤化物载体上的铜。
2.如权利要求1所述方法,其中所述起始烃为C1-20脂族烃、C3-12脂环烃或C6-15芳族烃。
3.如权利要求1所述方法,其中所述起始烃为一种C2-20烯烃。
4.如权利要求1所述方法,其中所述起始烃为乙烯。
5.如权利要求1所述方法,其中所述起始卤代烃为一种氟代烃、氯代烃或溴代烃。
6.如权利要求1所述方法,其中所述氯源为氯化氢或具有一个或多个不稳定氯取代基的氯代烃。
7.如权利要求1所述方法,其中所述氯源的用量与氧源是呈化学计量关系。
8.如权利要求1所述方法,其中所述氧源为分子氧或空气。
9.如权利要求1所述方法,其中,烃与氧的摩尔比大于2/1但小于20/1。
10.如权利要求1所述方法,其中,采用一种稀释剂。
11.如权利要求10所述方法,其中所述稀释剂为氮气、氦气、氩气、一氧化碳、二氧化碳、甲烷或其混合物。
12.如权利要求11所述方法,其中按照起始烃和稀释剂的总摩尔计算,所述稀释剂的用量用摩尔百分比表示大于10%但低于90%。
13.如权利要求1所述方法,其中所述多孔稀土卤化物载体的BET表面积大于5m2/g。
14.如权利要求13所述方法,其中所述多孔稀土卤化物载体的BET表面积大于15m2/g。
15.如权利要求1所述方法,其中所述稀土卤化物载体可由分子式MX3表示,其中M为至少一种稀土镧、铈、钕、镨、镝、钐、钇、钆、铒、镱、钬、铽、铕、铥或镥;其中X为氯、溴或碘。
16.权利要求15所述方法,其中M为镧,X为氯,所述稀土卤化物载体为氯化镧。
17.如权利要求1所述方法,其中所述催化剂是由一种含有分散在一种多孔稀土卤氧化物载体上的铜的催化剂前体制备得到的。
18.如权利要求17所述方法,其中所述多孔稀土卤氧化物载体的BET表面积大于12m2/g。
19.如权利要求18所述方法,其中所述多孔稀土卤氧化物载体的BET表面积大于20m2/g。
20.如权利要求17所述方法,其中所述多孔稀土卤氧化物载体可由分子式MOX表示,其中M为至少一种稀土镧、铈、钕、镨、镝、钐、钇、钆、铒、镱、钬、铽、铕、铥或镥;其中X为氯、溴或碘。
21.如权利要求20所述方法,其中M为镧,X为氯,所述稀土卤氧化物载体为氯氧化镧。
22.如权利要求1所述方法,其中所述催化剂是结合到一种常规载体之上或与一种常规载体一起挤出,按照所述催化剂和常规载体的总重量计算,所述常规载体的用量的重量百分比低于50%。
23.如权利要求1所述方法,其中所述方法是在大于150℃但低于500℃的温度下进行的。
24.如权利要求1所述方法,其中所述方法是在压力等于或大于101kPa但低于1,034kPa下进行的。
25.如权利要求1所述方法,所述方法是以总进料的气体时空速率大于10h-1但小于10000h-1下进行的,所述进料包括起始烃、氧源、氯源和选择性的稀释剂。
26.如权利要求1所述方法,其中所述催化剂是水溶性的。
27.一种将乙烯氧氯化成1,2-二氯乙烷的方法,该方法包括使乙烯与氯化氢和氧在一种催化剂存在下进行接触,该催化剂包括分散在一种多孔氯化镧载体上的铜,所述方法是在大于200℃但低于425℃的温度下进行的,以形成1,2-二氯乙烷。
28.一种含有分散在多孔稀土卤化物载体上的铜的组合物。
29.如权利要求28所述组合物,其中所述稀土卤化物载体的BET表面积大于5m2/g。
30.如权利要求29所述组合物,其中所述稀土卤化物载体的BET表面积大于15m2/g。
31.如权利要求28所述组合物,其中所述稀土卤化物载体可由分子式MX3表示,其中M为至少一种稀土镧、铈、钕、镨、镝、钐、钇、钆、铒、镱、钬、铽、铕、铥或镥;其中X为氯、溴或碘。
32.如权利要求31所述组合物,其中M为镧,X为氯,所述稀土卤化物载体为氯化镧。
33.一种含有分散在多孔稀土卤氧化物载体上的铜的组合物。
34.如权利要求33所述组合物,其中所述多孔稀土卤氧化物载体的BET表面积大于12m2/g。
35.如权利要求34所述组合物,其中所述多孔稀土卤氧化物载体的BET表面积大于20m2/g。
36.如权利要求34所述组合物,其中所述多孔稀土卤氧化物载体可由分子式MOX表示,其中M为至少一种稀土镧、铈、钕、镨、镝、钐、钇、钆、铒、镱、钬、铽、铕、铥或镥;其中X为氯、溴或碘。
37.如权利要求36所述组合物,其中M为镧,X为氯,所述稀土卤氧化物载体为氯氧化镧。
38.一种使用多孔稀土卤化物作为催化剂载体的方法,包括使一种或多种催化成分沉积在所述多孔稀土卤化物载体之上。
39.如权利要求38所述方法,进一步包括将一种或多种金属或金属离子沉积在所述多孔稀土卤化物载体上,所述金属或金属离子为元素周期表1A,2A,3B,4B,5B,6B,7B,8B,1B,2B,3A,4A或5A族的元素。
40.一种使用多孔稀土卤氧化物作为催化剂载体的方法,包括,沉积一种或多种催化成分到所述多孔稀土卤氧化物载体之上。
41.如权利要求40所述方法,进一步包括将一种或多种金属或金属离子沉积到所述稀土卤氧化物载体之上,所述金属或金属离子为元素周期表1A,2A,3B,4B,5B,6B,7B,8B,1B,2B,3A,4A或5A族的元素。
42.如权利要求40所述方法,其中,在一种或多种催化成分沉积到所述稀土卤氧化物载体上之后,所述载体与一种卤素源在足以转化所述稀土卤氧化物载体为稀土卤化物载体的条件下进行接触。
43.如权利要求42所述方法,其中所述卤素源为氯化氢或分子氯。
CNB008160244A 1999-11-22 2000-11-16 采用多孔稀土卤化物载体的催化剂的氧卤化方法 Expired - Fee Related CN1206196C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16689799P 1999-11-22 1999-11-22
US60/166,897 1999-11-22

Publications (2)

Publication Number Publication Date
CN1391543A CN1391543A (zh) 2003-01-15
CN1206196C true CN1206196C (zh) 2005-06-15

Family

ID=22605129

Family Applications (8)

Application Number Title Priority Date Filing Date
CN2004100885764A Expired - Fee Related CN1623659B (zh) 1999-11-22 2000-10-03 将乙烯转化成氯乙烯的生产方法中使用的新催化剂组合物
CNB008159696A Expired - Fee Related CN1208294C (zh) 1999-11-22 2000-10-03 将乙烯转化成氯乙烯的生产方法和在该方法中使用的新催化剂组合物
CNA2007101281197A Pending CN101104147A (zh) 1999-11-22 2000-10-03 一种具催化作用的组合物
CN00815970A Pending CN1391547A (zh) 1999-11-22 2000-10-06 由乙烷和乙烯制造氯乙烯并从反应器流出物中部分回收hci的方法
CN00815909A Pending CN1391544A (zh) 1999-11-22 2000-10-06 由乙烷乙烯制造氯乙烯次反应消耗反应器流出物流中氯化氢的方法
CN00816026A Pending CN1391545A (zh) 1999-11-22 2000-10-06 从反应器流出物直接回收hci的由乙烷和乙烯制造氯乙烯的方法
CNB008160244A Expired - Fee Related CN1206196C (zh) 1999-11-22 2000-11-16 采用多孔稀土卤化物载体的催化剂的氧卤化方法
CN00816025A Pending CN1391548A (zh) 1999-11-22 2000-11-16 使用稀土卤化物或卤氧化物催化剂进行卤代烷烃的脱氢卤化作用

Family Applications Before (6)

Application Number Title Priority Date Filing Date
CN2004100885764A Expired - Fee Related CN1623659B (zh) 1999-11-22 2000-10-03 将乙烯转化成氯乙烯的生产方法中使用的新催化剂组合物
CNB008159696A Expired - Fee Related CN1208294C (zh) 1999-11-22 2000-10-03 将乙烯转化成氯乙烯的生产方法和在该方法中使用的新催化剂组合物
CNA2007101281197A Pending CN101104147A (zh) 1999-11-22 2000-10-03 一种具催化作用的组合物
CN00815970A Pending CN1391547A (zh) 1999-11-22 2000-10-06 由乙烷和乙烯制造氯乙烯并从反应器流出物中部分回收hci的方法
CN00815909A Pending CN1391544A (zh) 1999-11-22 2000-10-06 由乙烷乙烯制造氯乙烯次反应消耗反应器流出物流中氯化氢的方法
CN00816026A Pending CN1391545A (zh) 1999-11-22 2000-10-06 从反应器流出物直接回收hci的由乙烷和乙烯制造氯乙烯的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN00816025A Pending CN1391548A (zh) 1999-11-22 2000-11-16 使用稀土卤化物或卤氧化物催化剂进行卤代烷烃的脱氢卤化作用

Country Status (23)

Country Link
EP (4) EP1235772B1 (zh)
JP (3) JP5053493B2 (zh)
KR (3) KR100780562B1 (zh)
CN (8) CN1623659B (zh)
AR (6) AR026559A1 (zh)
AT (4) ATE287386T1 (zh)
AU (3) AU779286B2 (zh)
BG (3) BG106720A (zh)
BR (3) BR0015921B1 (zh)
CA (3) CA2391582C (zh)
DE (2) DE60017590T2 (zh)
DK (2) DK1235772T3 (zh)
GC (2) GC0000145A (zh)
HU (3) HUP0204181A2 (zh)
IL (6) IL149742A0 (zh)
MA (6) MA25692A1 (zh)
MX (3) MXPA02005142A (zh)
MY (1) MY125504A (zh)
NO (6) NO20022402L (zh)
PL (6) PL354730A1 (zh)
RU (4) RU2265006C2 (zh)
TW (2) TW581752B (zh)
WO (4) WO2001038273A1 (zh)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452058B1 (en) * 2001-05-21 2002-09-17 Dow Global Technologies Inc. Oxidative halogenation of C1 hydrocarbons to halogenated C1 hydrocarbons and integrated processes related thereto
WO2002094749A1 (en) * 2001-05-23 2002-11-28 Dow Global Technologies Inc. Production of vinyl halide from single carbon feedstocks
US6984763B2 (en) * 2001-05-23 2006-01-10 Dow Global Technologies Inc. Oxidative halogenation and optional dehydrogenation of c3+hydrocarbons
US7838708B2 (en) 2001-06-20 2010-11-23 Grt, Inc. Hydrocarbon conversion process improvements
JP2007525477A (ja) 2003-07-15 2007-09-06 ジーアールティー インコーポレイテッド 炭化水素の合成
US20050171393A1 (en) 2003-07-15 2005-08-04 Lorkovic Ivan M. Hydrocarbon synthesis
US6951830B2 (en) * 2003-08-05 2005-10-04 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst compositions, their production and use in conversion processes
US20060100469A1 (en) 2004-04-16 2006-05-11 Waycuilis John J Process for converting gaseous alkanes to olefins and liquid hydrocarbons
US20080275284A1 (en) 2004-04-16 2008-11-06 Marathon Oil Company Process for converting gaseous alkanes to liquid hydrocarbons
US8173851B2 (en) 2004-04-16 2012-05-08 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
US7244867B2 (en) 2004-04-16 2007-07-17 Marathon Oil Company Process for converting gaseous alkanes to liquid hydrocarbons
US8642822B2 (en) 2004-04-16 2014-02-04 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor
US7674941B2 (en) 2004-04-16 2010-03-09 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
PL1753737T3 (pl) * 2004-05-21 2008-11-28 Dow Global Technologies Inc Sposób wytwarzania epichlorohydryny z etanu
JP4987253B2 (ja) * 2005-06-16 2012-07-25 鹿島ケミカル株式会社 イソプロピルクロライド合成用触媒および該触媒を用いたイソプロピルクロライドの合成方法
KR100744478B1 (ko) 2005-11-15 2007-08-01 주식회사 엘지화학 에탄 및 1,2-디클로로에탄을 이용한 염화비닐의 제조 방법및 제조 장치
SG187456A1 (en) 2006-02-03 2013-02-28 Grt Inc Separation of light gases from halogens
EA020442B1 (ru) 2006-02-03 2014-11-28 ДжиАрТи, ИНК. Способ превращения углеводородного сырья (варианты) и система для его осуществления
KR100843606B1 (ko) * 2006-02-04 2008-07-03 주식회사 엘지화학 메탄으로부터의 염화비닐의 제조방법
JP4867474B2 (ja) * 2006-05-31 2012-02-01 日本ゼオン株式会社 パーフルオロアルキン化合物の製造方法
CN101235160B (zh) * 2006-12-30 2011-04-27 仇晓丰 一种pvc生产过程中氯化氢全回收零排放工艺与装置
EP2148846A1 (en) 2007-05-24 2010-02-03 GRT, Inc. Zone reactor incorporating reversible hydrogen halide capture and release
US8258355B2 (en) * 2007-07-25 2012-09-04 Honeywell International Inc. Processes for preparing 1,1,2,3-tetrachloropropene
US8282810B2 (en) 2008-06-13 2012-10-09 Marathon Gtf Technology, Ltd. Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery
CA2730934C (en) 2008-07-18 2017-07-04 Grt, Inc. Continuous process for converting natural gas to liquid hydrocarbons
BRPI0914033A2 (pt) 2008-10-13 2015-11-03 Dow Global Technologies Inc processo de uma etapa para a produção de de propenos clorados e fluorados e processo para preparar 2,3,3,3- tetrafluorprop-1 eno( 1,3,3,3- tetrafluorprop-1 eno (hfo-123ze)
JP5495676B2 (ja) * 2009-08-27 2014-05-21 株式会社トクヤマ クロロアルカンの製造方法
JP5767231B2 (ja) 2009-10-09 2015-08-19 ダウ グローバル テクノロジーズ エルエルシー 塩素化及び/又はフッ素化されたプロペン及びより高級なアルケンを製造するプロセス
EP2485832B1 (en) 2009-10-09 2016-11-23 Blue Cube IP LLC Process for producing a chlorinated and/or fluorinated propene in an isothermal multitube reactors and
US8198495B2 (en) 2010-03-02 2012-06-12 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
US8367884B2 (en) 2010-03-02 2013-02-05 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
FI122828B (fi) * 2010-06-02 2012-07-31 Kemira Oyj Menetelmä katalyytin talteenottamiseksi
RU2446877C2 (ru) * 2010-07-16 2012-04-10 Учреждение Российской Академии наук Институт катализа им. Г.К. Борескова Сибирского отделения Российской Академии наук Каталитическая система для гетерогенных реакций
RU2446881C2 (ru) * 2010-07-16 2012-04-10 Учреждение Российской Академии наук Институт катализа им. Г.К. Борескова Сибирского отделения Российской Академии наук Способ селективного каталитического оксихлорирования метана в метилхлорид
US8815050B2 (en) 2011-03-22 2014-08-26 Marathon Gtf Technology, Ltd. Processes and systems for drying liquid bromine
US8907149B2 (en) 2011-05-31 2014-12-09 Dow Global Technologies Llc Process for the production of chlorinated propenes
EP2714631B1 (en) 2011-05-31 2020-05-13 Blue Cube IP LLC Process for the production of chlorinated propenes
CN103596908A (zh) 2011-06-08 2014-02-19 陶氏益农公司 生产氯化和/或氟化丙烯的方法
US8436220B2 (en) 2011-06-10 2013-05-07 Marathon Gtf Technology, Ltd. Processes and systems for demethanization of brominated hydrocarbons
US8829256B2 (en) 2011-06-30 2014-09-09 Gtc Technology Us, Llc Processes and systems for fractionation of brominated hydrocarbons in the conversion of natural gas to liquid hydrocarbons
US8907148B2 (en) 2011-08-07 2014-12-09 Dow Global Technologies Llc Process for the production of chlorinated propenes
US9233896B2 (en) 2011-08-07 2016-01-12 Blue Cube Ip Llc Process for the production of chlorinated propenes
US8802908B2 (en) 2011-10-21 2014-08-12 Marathon Gtf Technology, Ltd. Processes and systems for separate, parallel methane and higher alkanes' bromination
WO2013078035A1 (en) 2011-11-21 2013-05-30 Dow Global Technologies, Llc Process for the production of chlorinated alkanes
CN104024186B (zh) * 2011-12-02 2016-10-12 蓝立方知识产权有限责任公司 生产氯化烷烃的方法
CN104024187B (zh) 2011-12-02 2017-04-12 蓝立方知识产权有限责任公司 生产氯化烷烃的方法
JP6170068B2 (ja) 2011-12-13 2017-07-26 ブルー キューブ アイピー エルエルシー 塩素化プロパン及びプロペンの製造方法
US9193641B2 (en) 2011-12-16 2015-11-24 Gtc Technology Us, Llc Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems
EP2794528B1 (en) 2011-12-22 2020-02-26 Blue Cube IP LLC Process for the production of tetrachloromethane
BR112014015123A2 (pt) 2011-12-23 2017-06-13 Dow Global Technologies Llc processo para a produção de um ou mais alcenos ou compostos aromáticos
CN102580768B (zh) * 2012-01-17 2015-03-11 内蒙古大学 一种低温乙烷氧化脱氢制乙烯的催化剂及其使用方法
US8858777B2 (en) 2012-07-26 2014-10-14 Liquid Light, Inc. Process and high surface area electrodes for the electrochemical reduction of carbon dioxide
US8821709B2 (en) 2012-07-26 2014-09-02 Liquid Light, Inc. System and method for oxidizing organic compounds while reducing carbon dioxide
US10329676B2 (en) 2012-07-26 2019-06-25 Avantium Knowledge Centre B.V. Method and system for electrochemical reduction of carbon dioxide employing a gas diffusion electrode
US8641885B2 (en) 2012-07-26 2014-02-04 Liquid Light, Inc. Multiphase electrochemical reduction of CO2
US9175407B2 (en) 2012-07-26 2015-11-03 Liquid Light, Inc. Integrated process for producing carboxylic acids from carbon dioxide
CN104755448A (zh) * 2012-09-20 2015-07-01 陶氏环球技术有限公司 用于制造氯化丙烯的方法
WO2014046970A1 (en) 2012-09-20 2014-03-27 Dow Global Technologies, Llc Process for the production of chlorinated propenes
EP2900364B1 (en) 2012-09-30 2018-06-13 Blue Cube IP LLC Weir quench and processes incorporating the same
IN2015DN03949A (zh) 2012-10-26 2015-10-02 Dow Global Technologies Llc
US9512053B2 (en) 2012-12-18 2016-12-06 Blue Cube Ip Llc Process for the production of chlorinated propenes
WO2014100039A1 (en) 2012-12-19 2014-06-26 Dow Global Technologies, Llc Process for the production of chlorinated propenes
JP2016507590A (ja) 2013-02-27 2016-03-10 ブルー キューブ アイピー エルエルシー 塩素化プロペンを生成するための方法
WO2014164368A1 (en) 2013-03-09 2014-10-09 Dow Global Technologies Llc Process for the production of chlorinated alkanes
CN104209128A (zh) * 2013-05-29 2014-12-17 上海氯碱化工股份有限公司 用于直接氯化制备二氯乙烷的复合催化剂
US20160264497A1 (en) * 2013-11-11 2016-09-15 Saudi Basic Industries Corporation Process for the conversion of methane to c2+ hydrocarbons
CN103664504B (zh) * 2013-12-14 2015-10-28 济南开发区星火科学技术研究院 一种由乙烷制备氯乙烯的工艺
TWI683803B (zh) * 2014-11-11 2020-02-01 美商陶氏全球科技責任有限公司 由乙烷製造乙烯、偏二氯乙烯及氯化氫之方法
TWI561299B (en) * 2015-04-02 2016-12-11 Formosa Plastics Corp A catalyst for preparing vinyl chloride and a method for preparing vinyl chloride
CN105402742B (zh) * 2015-12-01 2017-10-17 中国天辰工程有限公司 一种焚烧炉进料危险废弃物稀释设备及其方法
CN107311835B (zh) * 2017-06-02 2020-10-27 青海盐湖工业股份有限公司 一种电石法生产氯乙烯中精馏高沸残液的处理系统及处理方法
CN107759441B (zh) * 2017-11-22 2021-03-23 中国科学院兰州化学物理研究所 一种1,2-二氯丙烷催化脱氯化氢制备1-氯丙烯的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3488398A (en) * 1964-04-23 1970-01-06 Goodrich Co B F Method of preparing 1,2-dichloroethane
BE667111A (zh) * 1964-07-22 1965-11-16
DE1693042B2 (de) * 1967-02-06 1974-06-12 The Lummus Co., Bloomfield, N.J. (V.St.A.) Verfahren zur Herstellung von Vinylchlorid
US4046821A (en) * 1969-12-31 1977-09-06 Petro-Tex Chemical Corporation Oxychlorination of hydrocarbons in the presence of non-halide copper containing catalysts
US3968200A (en) * 1972-03-27 1976-07-06 The Lummus Company Reactor effluent quench system
DE2440864C2 (de) * 1973-08-29 1983-12-15 The Dow Chemical Co., 48640 Midland, Mich. Verfahren zur Herstellung von gesättigten polychlorierten aliphatischen Kohlenwasserstoffen durch Oxychlorierung
US3927131A (en) * 1974-06-10 1975-12-16 Dow Chemical Co Dehydrohalogenation of halogenated hydrocarbons
US4042640A (en) * 1975-11-06 1977-08-16 The Lummus Company Oxychlorination of hydrocarbons
CA1244481A (en) * 1984-05-24 1988-11-08 Angelo J. Magistro Catalytic dehydrohalogenation process
US5008225A (en) * 1984-05-24 1991-04-16 The B. F. Goodrich Company Catalytic dehydrohalogenation catalyst
EP0372183B1 (en) * 1988-12-07 1997-01-22 Sumitomo Chemical Company, Limited Process for the production of 2,3-dimethylbutenes
US5113027A (en) * 1989-12-15 1992-05-12 Vulcan Materials Company Oxychlorination process using a catalyst which comprises copper chloride supported on rare-earth modified alumina
US5179215A (en) * 1991-02-27 1993-01-12 The Boc Group, Inc. Process for the production of petrochemicals
US5945573A (en) * 1997-01-31 1999-08-31 E. I. Du Pont De Nemours And Company Process for the manufacture of 1,1,1,3,3-pentafluoropropane

Also Published As

Publication number Publication date
RU2259989C2 (ru) 2005-09-10
ATE287386T1 (de) 2005-02-15
MY125504A (en) 2006-08-30
BG106725A (en) 2002-12-29
HUP0203274A3 (en) 2003-12-29
DE60017590T2 (de) 2005-12-29
NO20022400L (no) 2002-07-16
MA25692A1 (fr) 2003-04-01
TW581752B (en) 2004-04-01
NO20022397D0 (no) 2002-05-21
KR20020056934A (ko) 2002-07-10
WO2001038273A1 (en) 2001-05-31
IL149739A0 (en) 2002-11-10
CN1391546A (zh) 2003-01-15
AU1615101A (en) 2001-06-04
GC0000145A (en) 2005-06-29
MA25623A1 (fr) 2002-12-31
CA2391582C (en) 2009-08-18
NO20022399D0 (no) 2002-05-21
WO2001038271A1 (en) 2001-05-31
RU2259990C2 (ru) 2005-09-10
ATE267789T1 (de) 2004-06-15
PL355169A1 (en) 2004-04-05
CN1208294C (zh) 2005-06-29
MA25568A1 (fr) 2002-10-01
MA25691A1 (fr) 2003-04-01
EP1235772A1 (en) 2002-09-04
BG106724A (en) 2002-12-29
RU2265006C2 (ru) 2005-11-27
NO20022401D0 (no) 2002-05-21
PL364913A1 (en) 2004-12-27
IL149737A0 (en) 2002-11-10
CA2391938A1 (en) 2001-05-31
CN1391544A (zh) 2003-01-15
CN1391543A (zh) 2003-01-15
HUP0203302A2 (en) 2003-03-28
HUP0203274A2 (hu) 2003-01-28
DE60017590D1 (de) 2005-02-24
DK1235772T3 (da) 2005-04-11
AU1769401A (en) 2001-06-04
IL149742A0 (en) 2002-11-10
HUP0204181A2 (en) 2003-05-28
NO20022398L (no) 2002-07-16
NO20022402L (no) 2002-07-17
KR20020056933A (ko) 2002-07-10
MXPA02005142A (es) 2002-11-07
CA2391321A1 (en) 2001-05-31
NO20022400D0 (no) 2002-05-21
IL149741A0 (en) 2002-11-10
JP2003514881A (ja) 2003-04-22
AU7851100A (en) 2001-06-04
GC0000148A (en) 2005-06-29
JP2003514880A (ja) 2003-04-22
BR0015922A (pt) 2002-08-06
EP1235773B1 (en) 2005-05-25
EP1235769A1 (en) 2002-09-04
DE60011131T2 (de) 2005-05-25
AR026557A1 (es) 2003-02-19
MA25625A1 (fr) 2002-12-31
AR026556A1 (es) 2003-02-19
IL149736A0 (en) 2002-11-10
CN101104147A (zh) 2008-01-16
EP1235773A1 (en) 2002-09-04
BR0015919A (pt) 2002-08-06
NO20022402D0 (no) 2002-05-21
AU779286B2 (en) 2005-01-13
WO2001042176A1 (en) 2001-06-14
PL364911A1 (en) 2004-12-27
BR0015921B1 (pt) 2011-03-22
EP1235774A1 (en) 2002-09-04
ATE317377T1 (de) 2006-02-15
BR0015921A (pt) 2002-08-06
NO20022401L (no) 2002-07-18
PL354731A1 (en) 2004-02-23
AR026555A1 (es) 2003-02-19
CN1623659B (zh) 2010-05-05
JP5053493B2 (ja) 2012-10-17
DK1235773T3 (da) 2005-10-03
KR20020056932A (ko) 2002-07-10
TW524791B (en) 2003-03-21
CA2391582A1 (en) 2001-05-31
CN1623659A (zh) 2005-06-08
MA25624A1 (fr) 2002-12-31
NO20022397L (no) 2002-07-16
ATE296275T1 (de) 2005-06-15
BG106720A (en) 2003-01-31
PL354730A1 (en) 2004-02-23
EP1235769B1 (en) 2004-05-26
RU2002116665A (ru) 2003-12-20
AR026558A1 (es) 2003-02-19
AR026559A1 (es) 2003-02-19
EP1235772B1 (en) 2005-01-19
AR026554A1 (es) 2003-02-19
WO2001038275A1 (en) 2001-05-31
KR100780562B1 (ko) 2007-11-29
NO20022399L (no) 2002-07-12
MXPA02005147A (es) 2002-11-07
CN1391545A (zh) 2003-01-15
IL149740A0 (en) 2002-11-10
PL364882A1 (en) 2004-12-27
MXPA02005151A (es) 2002-11-07
CN1391548A (zh) 2003-01-15
JP2003514879A (ja) 2003-04-22
DE60011131D1 (de) 2004-07-01
NO20022398D0 (no) 2002-05-21
CN1391547A (zh) 2003-01-15

Similar Documents

Publication Publication Date Title
CN1206196C (zh) 采用多孔稀土卤化物载体的催化剂的氧卤化方法
US6821924B2 (en) Oxyhalogenation process using catalyst having porous rare earth halide support
CN1283601C (zh) C1烃转化为卤代c1烃的氧化卤化反应及与之相关的联合方法
CN1084721C (zh) 乙烯氧氯化生产二氯乙烷的方法
US6797845B1 (en) Process for vinyl chloride manufacture from ethane and ethylene with immediate HCl recovery from reactor effluent
AU2002256217A1 (en) Oxidative halogenation of C1 hydrocarbons to halogenated C1 hydrocarbons and integrated processes related thereto
CN1511127A (zh) C3+烃的氧化卤化和选择性脱氢反应
US20050027084A1 (en) Production of vinyl halide from single carbon feedstocks
US6933417B1 (en) Process for vinyl chloride manufacture from ethane and ethylene with partial CHl recovery from reactor effluent
AU2002307548A1 (en) Oxidative halogenation and optional dehydrogenation of C3+ hydrocarbons
AU778120B2 (en) Process for vinyl chloride manufacture from ethane and ethylene with immediate HC1 recovery from reactor effluent
JP2004534770A (ja) 空気供給および代替的HCl処理方法を用いたエタンおよびエチレンからの塩化ビニルの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee