CN1200433C - 非易失存储器高速读出用基准单元 - Google Patents

非易失存储器高速读出用基准单元 Download PDF

Info

Publication number
CN1200433C
CN1200433C CNB018010490A CN01801049A CN1200433C CN 1200433 C CN1200433 C CN 1200433C CN B018010490 A CNB018010490 A CN B018010490A CN 01801049 A CN01801049 A CN 01801049A CN 1200433 C CN1200433 C CN 1200433C
Authority
CN
China
Prior art keywords
control
coupling
line
voltage
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018010490A
Other languages
English (en)
Other versions
CN1366677A (zh
Inventor
S·帕塔克
J·E·佩恩
J·帕塔克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artemis Acquisition LLC
Original Assignee
Atmel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atmel Corp filed Critical Atmel Corp
Publication of CN1366677A publication Critical patent/CN1366677A/zh
Application granted granted Critical
Publication of CN1200433C publication Critical patent/CN1200433C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • G11C16/28Sensing or reading circuits; Data output circuits using differential sensing or reference cells, e.g. dummy cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • G11C7/067Single-ended amplifiers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/14Dummy cell management; Sense reference voltage generators

Landscapes

  • Read Only Memory (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

一种用于高速读出电路的基准单元(47)包括第一分电路(73)和第二分电路(71)。第一分电路(73)具有与主存储器阵列奇数行存储单元相类似的结构。第二分电路(71)具有与主存储器阵列偶数行存储单元相类似的结构。若主存储器阵列内的目标单元处于奇数行,便选择第一分电路,而目标单元处于偶数行的话,便选择第二分电路。第一和第二分电路两者均包括其控制栅极(99,91)分为2部分的基准晶体管(85,75)。第一部分为一poly-1多晶层,由隧道氧化物与沟道区分开。第二部分为一第一部分上方的金属或poly-2多晶层,由栅极氧化物与第一部分分开。利用一通道(101,95)将第一部分与第二部分连接。

Description

非易失存储器高速读出用基准单元
技术领域
本发明涉及与非易失半导体存储器一起使用的读出放大器。具体来说,涉及用于建立读出放大器基准电压的基准存储单元结构。
背景技术
存储器IC内用读出放大器从存储阵列内的目标存储单元读出数据。这些放大器通常分类为单端读出放大器或差分式读出放大器。单端读出放大器通常用于每一存储单元具有单个位的存储器。每单元单个位的存储器例子有EEPROM和闪存EPROM。这些每单元单个位的存储器每一存储单元仅存储数据选项中真值和互补值其中之一。诸如SRAM这种每单元双位的存储器则有所不同,其每一存储单元存储数据选项中真值和互补值两者。每一存储单元具有数据选项中真值和互补值两者,有利于并且加快存储单元的读出,因为可通过同时存取真值位和互补值位并简单判定其中哪一个位具有较高电压电位来识别所存储数据选项。更为清楚地来说,SRAM用差分放大器来读出每一存储单元,并且一旦判定表示存储单元内存储真值数据和互补值数据的电压失衡方向便识别存储单元内存储的逻辑状态。而每单元单个位的存储器则没有知道所存储数据选项这一开销,因而其单端读出电路便需要一种不同但更为关键的均衡途径。
在非易失存储器中用差分式读出放大器,会在读出速度方面提供很大推动,但每一存储单元将需要2个存储器存贮器件,一个用于真值数据,另一个用于互补值数据。这将减少存储器容量至少50%。由于需要提供附加的位线、均衡电路、更为复杂的编程及擦除电路等来实施每存储单元双位结构,因而更为可能的是,这种容量减少会大得多。所以非易失存储器通常用单端读出放大器。
参照图1,示出一适合与单个位存储单元14一起使用的单端读出电路12。目标单个位存储单元14图示为一单个浮动栅极晶体管16。读出电路12通过读出与目标存储单元14耦合的读出线18和与基准存储单元22耦合的基准线20两者之间的电位差来判定目标存储单元14内存储的逻辑状态。读出线18的电位取决于目标存储单元14内所存储数据的逻辑状态,即逻辑高状态或逻辑低状态。通常,若读出线18电位高于基准线20电位,目标存储单元14便被作为具有逻辑低状态读出,而读出线18电位低于基准线20,目标存储单元14便被作为具有逻辑高状态读出。因而,将基准线20电压电位保持在介于目标单元14逻辑高和逻辑低电压电位的中间值很重要。
粗粗一看,显然可用一稳恒的电压发生器来产生线20的基准电压,但这并非所希望的。读出线18的电位不仅受到浮动栅极晶体管16的栅极电位的影响,还受到存储器结构的影响。目标存储单元14的电容性负载取决于其物理结构和其在一较大存储阵列内的位置。这些电容性负载进而影响目标存储单元14的电流源容量,由此影响读出线18的电位。
所以,要致力于使基准线20反映这些电容性负载来更好地跟随目标存储单元16的逻辑高和逻辑低电压。对目标存储单元的逻辑高和逻辑低电压的上述效应进行跟随的典型方法是用另一存储单元即基准存储单元22来产生基准线20的电压电位。之所以如此思路是因为基准存储单元22具有与目标存储单元14相类似的结构,其性能也类似于目标单元14。基准线20的电位因而取决于基准单元22的电流源值。
本领域公知用基准单元产生用于单端读出电路的基准电压的种种方法。上述方法其中某些在授予Sheen等人的美国专利U.S.Pat.No.5,572,474、授予Medlock等人的美国专利U.S.Pat.No.5,608,679以及授予Yoshida等人的美国专利U.S.Pat.No.5,642,308中均有讨论。
但申请人发现,在基准线20上产生基准电压的现行方法并非在该存储器IC整个寿命内很稳定。部分原因是基准单元22用一浮动栅极晶体管26来产生该基准电压。由于浮动栅极晶体管26对目标存储单元14的浮动栅极晶体管16提供一较好的平衡所以基准单元22内用浮动栅极晶体管26是有好处的,但浮动栅极晶体管26所引入的另外的问题会使基准线20上产生正确的基准电压很复杂。
因为基准单元22的阈值电压本不应变化,所以基准单元22与用于改变主存储器阵列中存储单元14状态的编程及擦除电路相隔离。总之,所构成的基准存储单元在其浮动栅极28上没有电荷,而且其浮动栅极28上的电荷水平未被用于变动是因为它们未与任何编程或擦除电路连接。根据需要,基准单元的阈值电压电平可通过调整其沟道区的衬底掺杂浓度来调节。
但很不幸,有几方面因素可能使基准单元的浮动栅极28的电荷水平改变。浮动栅极晶体管总体上易受到读出干扰的问题可能改变基准单元浮动栅极28上的电荷量,从而使其阈值电压改变。这可能造成单元的基准电流值发生改变,进而改变基准线20的电压值。由于读出电路12的关键性均衡,读出线20的电压变化最好的情形可能使读出电路12减慢,而最坏的情形则可能使其读出错误数据。
另外,申请人还发现了与采用浮动栅极基准单元22有关联的另一差错源。非易失存储器IC的制造往往需要利用等离子体。等离子体具有与其相关联的固有电荷,通常在制造工艺期间将改变非易失存储单元的浮动栅极电荷。要适应浮动栅极电荷这种改变,主存储阵列通常有待于制造工艺最后阶段的擦除步骤。但由于基准单元22是与主存储器的编程及擦除电路隔离的,因而在该擦除步骤未被擦除,其浮动栅极未处于一中性位置。解决该问题的一个方法是,在制造工艺最后阶段让整个存储器IC经过一预定时间的紫外线UV光照。暴露于UV光可擦除基准单元22,但不能肯定基准单元22得到全面擦除。结果读出放大器12必须适应必然使其减慢这种变化。
随着非易失存储器密度的持续增加以及其速度要求的不断提高,影响速度性能的每一项因素都变得愈加关键。
发明内容
本发明目的在于,提供一种快速而且不对工艺过敏的读出放大器。
本发明另一目的在于,生成一种用于读出放大器的基准电压,不受读出放大器基准单元中阈值电压变化的影响,但仍可正确跟随主存储器阵列内目标存储单元中的变化。
本发明还有一目的在于,提供一种对紧凑的EEPROM存储结构中的布局变化进行补偿的基准单元。
一具有基准单元电路的单端读出放大器可满足上述目的,该基准单元电路其结构与主存储器阵列结构呈镜像对称,但并非取决于浮动栅极所存储电荷的正确测定结果来建立一基准电压。读出放大器的基准电压取决于以其基准单元为源的电流电平。该电流电平进而取决于基准单元的阈值电压、结构特性以及物理布局。由于基准单元的结构与目标存储器阵列结构相类似,所以基准电压跟随该目标存储器阵列整个寿命的变化。为了对主存储器阵列内目标存储单元的物理布局进行更好的跟随,目前的基准单元电路包括两个不同的基准单元布局。第一基准单元布局与偶数行目标存储单元布局相对应,第二基准单元布局与奇数行目标存储单元布局相对应。这允许对主存储器阵列目标单元的单元布局变动进行更为密切的跟随。
基准单元的阈值电压,因此其电流源容量,也取决于其浮动栅极的电荷量。如上所述,浮动栅极上的电荷对存储单元建立一阈值电压,确定其提供多少电流来响应其控制栅极所加上的电压。但申请人发现,依赖浮动栅极来建立基准单元阈值电压可能引入意想不到的差错。
制造存储器IC期间,往往需要使存储器IC经过一等离子体处理步骤。这可以是例如等离子体蚀刻步骤的一部分。等离子体具有相关联的电荷,全部浮动栅极晶体管的浮动栅极将在等离子体步骤期间被部分带上电荷。这并没有严重影响主阵列,因为对存储器IC进行首次测试期间其通常经历一擦除步骤,将其各自浮动栅极的任何累积电荷去除。但基准单元不经过该擦除步骤。实际上,存储器IC通常不使擦除电路与基准单元耦合。为了减少制造后落入浮动栅极内的电荷,存储器IC通常有待于一紫外线擦除步骤。理想情形,UV光本应去除各个存储单元内的电荷,使IC内全部浮动栅极处于一已知电荷状态。这对基准单元很关键,因为其必须产生一已知并经过精确控制的电流。该预期值的任何变化将使单元的读出减慢,因为允许范围将不得不被放宽。但已经发现,不是所有的基准单元在该UV光擦除步骤期间被完全擦除,这妨碍IC使其读出范围收紧,进而妨碍其读出存取时间缩短。
即便基准单元中的电荷可对已知的低值起动,但该浮动栅极的电荷在存储器整个寿命期间易于变化。换言之,基准单元上的电荷将随时间作为平常读出操作的结果而改变。这是由于种种现象,诸如称为读出干扰这样一种差错,这由于重复的读出操作可造成浮动栅极内所存储电荷量的较小改变。因为每当读出主存储器阵列内任何存储单元都读出基准单元,所以基准单元更容易受读出干扰问题影响。
本发明通过不允许基准单元浮动栅极浮动来解决上面提及的与浮动栅极有关的两项差错源。基准单元的控制栅极与该单元的浮动栅极连接。这允许本发明消除浮动栅极上电荷变化所引起的任何差错。而且,这还允许对浮动栅极与控制栅极耦合的正确电压进行更好的控制。浮动栅极单元通常在其控制栅极和其浮动栅极之间具有85%至90%耦合率,这种耦合率无法控制为一确切值。另外,有效的耦合范围很可能在单元整个寿命期间随浮动栅极上电荷的变化而改变。本发明可通过提供100%的精确耦合率进一步收紧存储器IC的工作范围,由此提高其速度。
由于利用其控制栅极的直接线路来控制浮动栅极的电荷量,因而不容易受浮动栅极上电荷累积或电荷欠缺的影响。这样,目前的基准单元不受制造工艺中等离子体步骤所造成的电荷累积的影响。这还使基准存储单元可抵御诸如读出干扰和老化这种与浮动栅极有关的其他差错。浮动栅极的电荷量由与基准单元控制栅极耦合的经过数字控制的稳恒基准电压源进行直接调节。这允许本发明将工作范围得到更多的收紧,从而使速度增益更高。
采用其控制栅极与其浮动栅极相连的基准单元,允许本发明更为集中地跟随主存储器阵列目标存储单元的体系结构布局。本发明基准单元跟随目标存储单元结构、离子植入分布、布局等以确保读出操作的正确比较,不容易发生利用浮动栅极结构相关联的差错。
最好本读出放大器基准单元电路包括2个基准单元来模仿一共用相同位线和相同源极线的目标存储器阵列的相邻行的2个浮动栅极晶体管。已经发现存储器阵列布局可影响目标存储单元的读出。与具有相同的所存储数据值并与相同位线耦合但处于相邻行的第二目标存储单元相比,处于第一行的第一目标存储单元可在其位线上产生不同的电压。这部分由于造成它们“看上去”为不同的电容性负载水平的这2个单元的物理布局方位。为了对此加以补偿,本发明的2个基准浮动栅极晶体管的布局按偶数行目标存储器单元与奇数行相邻目标存储单元耦合的存储器布局相对应的方式构成。本发明经过数字控制的稳恒基准电压源可确定被寻址的是偶数行还是奇数行,并仅仅激活其布局与相应的目标偶数或奇数行对应的基准浮动栅极晶体管。这允许本发明更好地匹配主存储器阵列内的电压变化,由此进一步收紧工作范围以实现更高的速度。
本发明第一方面的读出放大器用基准电压发生器,其特征在于,包括:
与所述读出放大器耦合的一基准电压输出结点;
用于接收一经过控制的电压电位的电压输入结点;和
第一MOS基准单元,具有第一漏极区、第一源极区、第一控制栅极、第一多晶硅栅极、第一沟道区、第一隧道氧化物以及第一栅极氧化物,所述第一漏极区和所述第一源极区位于所述第一沟道区的相对侧,所述第一多晶硅栅极由所述第一隧道氧化物与所述第一沟道区分开,所述第一栅极氧化物夹在所述第一控制栅极和所述第一多晶硅栅极之间,所述第一漏极区与所述基准电压输出结点耦合,所述第一源极区与第一基准电力干线耦合,所述电压输入结点与所述第一控制栅极和所述第一多晶硅栅极两者耦合,所述经过控制的电压电位处于有效状态以便激活所述第一MOS基准单元;以及
将所述第一控制栅极与所述第一多晶硅栅极连接的通道。
按照本发明第二方面,是第一方面的基准电压发生器,其特征在于,还具有一有选择地将所述第一漏极区与所述基准电压输出结点隔离并有选择地将所述第一漏极区与所述基准电压输出结点耦合的第一选择开关。
按照本发明第三方面,是第二方面的基准电压发生器,其特征在于,所述第一选择开关是一MOS晶体管。
按照本发明第四方面,是第二方面的基准电压发生器,其特征在于,所述读出放大器在每次读出操作期间与一目标数据存储单元耦合,所述目标数据存储单元为一诸行诸列数据存储单元的存储器阵列的一部分,所述读出放大器处于有效状态以便将所述目标数据存储单元的第一电流测定结果与所述基准电压输出结点的第二电流测定结果相比较,并响应所述第一电流测定结果大于所述第二电流测定结果提供第一输出逻辑状态,响应所述第一电流测定结果小于所述第二电流测定结果提供第二输出逻辑状态;
所述第一选择开关进一步处于有效状态以便响应所述目标数据存储单元处于所述存储器阵列中偶数行内将所述第一MOS基准单元与所述基准电压输出结点隔离,并处于有效状态以便响应所述目标数据存储单元处于所述存储器阵列中奇数行内将所述第一基准单元与所述基准电压输出结点耦合。
按照本发明第五方面,是第四方面的基准电压发生器,其特征在于,所述基准电压发生器进一步包括第二MOS基准单元,具有第二漏极区、第二源极区、第二控制栅极、第二多晶硅栅极、第二沟道区、第二隧道氧化物以及第二栅极氧化物,所述第二漏极区和所述第二源极区位于所述第二沟道区的相对侧,所述第二多晶硅栅极由所述第二隧道氧化物与所述第二沟道区分开,所述第二栅极氧化物夹在所述第二控制栅极和所述第二多晶硅栅极之间,所述第二漏极区有选择地与所述基准电压输出结点耦合,所述第二源极区与所述基准电力干线耦合,所述电压输入结点与所述第二控制栅极和所述第二多晶硅栅极两者连接,所述经过控制的电压电位处于有效状态以便激活所述第二MOS基准单元;以及
当所述第一选择晶体管将所述第一MOS基准单元与所述输出结点隔离时所述第二MOS基准单元便与所述输出结点耦合。
按照本发明第六方面,是第五方面的基准电压发生器,其特征在于,所述第一和第二沟道区按直排方式形成在单个衬底上。
按照本发明第七方面,是第五方面的基准电压发生器,其特征在于,进一步包括第二选择开关、反相器以及单元选择控制输入线,
所述第二选择开关耦合在所述第二漏极区和所述基准电压输出结点两者之间,
所述反相器具有一反相输入端和一反相输出端,所述单元选择控制线与所述反相输入端和所述第一开关的控制输入端两者耦合,所述反相输出端与所述第二开关的控制输入端耦合,所述选择控制输入线处于有效状态以便某一时刻仅使所述第一和第二开关其中之一闭合。
按照本发明第八方面,是第七方面的基准电压发生器,其特征在于,所述第一和第二选择开关为MOS晶体管,所述选择控制输入线与所述第一选择开关的控制栅极直接耦合,所述反相输出端与所述第二选择开关的控制栅极耦合。
按照本发明第九方面,是第四方面的基准电压发生器,其特征在于,进一步包括用于确定所述目标数据存储单元何时处于所述存储器阵列内奇数行并确定所述目标存储单元何时处于所述存储器阵列内偶数行的行检测电路,所述第一选择开关响应所述行检测电路。
按照本发明第十方面,是第九方面的基准电压发生器,其特征在于,所述行检测电路为一通过耦合选择所述存储器阵列内一行数据存储单元的x-译码器。
按照本发明第十一方面,是第九方面的基准电压发生器,其特征在于,所述行检测电路为一x地址总线的最低有效位,处于有效状态以便选择所述存储器阵列内的一行,使得所述基准电压发生器处于所述x地址总线的直接控制下。
按照本发明第十二方面,是第九方面的基准电压发生器,其特征在于,进一步具有第一行译码器和第二行译码器,所述第一行译码器为一用于接收行地址总线并选择所述存储器阵列内相应单一行的x译码器,所述第二行译码器为一用于观察所述行地址总线内行地址线的部分译码器,所述行地址线处于有效状态以便确定所述存储器阵列内所述相应单一行何时为偶数行以及何时为奇数行,所述行检测电路为所述第二行译码器。
按照本发明第十三方面,是第一方面的基准电压发生器,其特征在于,所述电压输入结点通过耦合接收一至少包含一个上拉电路和下拉电路在内的电压控制电路的所述经过控制的电压电位,
所述上拉电路包括一将所述电压输入结点与第二基准电力干线耦合的常态导通的上拉器件,
所述下拉电路至少包括并行的第一和第二下拉电路,所述第一下拉电路具有一将所述电压输入结点与所述第一基准电力干线耦合的常态导通下拉器件,所述第二下拉电路则包括所述控制输入结点和所述第一基准电力干线之间串联的至少一个电阻性元件和至少一个开关,所述开关响应第一开关控制线有选择地将所述电阻性元件与所述第一基准电力干线耦合。
按照本发明第十四方面,是第十三方面的基准电压发生器,其特征在于,所述第二下拉电路包括多对电阻性元件及开关对,所述每一对中的每一电阻性元件和开关在所述电压输入结点和所述第一基准电力干线间串联连接,所述开关对每一对中的每一开关由各自的开关控制线控制,以便从所述第二下拉电路当中有选择地插入和去掉所述开关对。
按照本发明第十五方面,是第十三方面的基准电压发生器,其特征在于,所述各自的开关控制线处于用户直接控制下,以便人工设定所述电压输入结点的电压电位。
按照本发明第十六方面,是第十三方面的基准电压发生器,其特征在于,所述第一开关控制线的逻辑状态存储在非易失存储单元中。
按照本发明第十七方面,是第十六方面的基准电压发生器,其特征在于,所述非易失存储单元为所述存储器阵列的一部分。
按照本发明第十八方面,是第一方面的基准电压发生器,其特征在于,所述读出放大器包括一跨导放大电路和一差分放大器,
所述跨导放大电路包括第一中间结点、第二中间结点、放大输出结点、第一n-MOS晶体管、第二n-MOS晶体管、第三n-MOS晶体管、二极管、可变电流源以及恒流源,
所述第一中间结点与所述基准输出结点耦合,所述恒流源在基准高电力干线和所述第二中间结点之间耦合,所述第一n-MOS晶体管漏极与所述第二中间结点耦合,而所述第一n-MOS晶体管源极与所述第一中间结点耦合,所述可变电流源在所述基准高电力干线和所述第一n-MOS晶体管控制栅极之间耦合,所述第二n-MOS晶体管使其漏极与所述第一n-MOS晶体管控制栅极耦合,其源极与基准接地耦合,其控制栅极与所述第一中间结点耦合,所述二极管在所述第二中间结点和所述放大输出结点之间耦合,所述第三n-MOS晶体管使其漏极与所述放大输出结点耦合,其源极与所述第一中间结点耦合,其控制栅极与所述第一n-MOS晶体管控制栅极耦合,所述第三n-MOS晶体管源极通过耦合控制所述可变电流源的电流幅值,所述放大输出结点与所述差分放大器输入端耦合。
按照本发明第十九方面,是第十八方面的基准电压发生器,其特征在于,所述可变电流源为一p-MOS晶体管。
按照本发明第二十方面,是第十八方面的基准电压发生器,其特征在于,所述二极管为一按二极管连接的n-MOS晶体管。
附图说明
图1是单端读出放大器及基准单元的现有技术图。
图2是采用本发明第一实施例读出方案的闪烁存储器结构。
图3是读出线和基准线的电压电位图。
图4是其允许水平比图3所示更为收紧的读出线和基准线的电压电位图。
图5是本发明EEPROM主存储器阵列的第一例布局。
图6是本发明EEPROM主存储器阵列的第二例布局。
图7是本发明第二实施例的基准单元。
图8是本发明基准的控制电压发生器。
图9是本发明第二实施例基准单元的布局图。
图10是本发明读出放大器的具体图。
具体实施方式
参照图2,示出的是本发明局部闪烁存储器11的示例图。该示例图示出一主存储器阵列13通过一局部y译码器15与单端读出电路17耦合。存储阵列13包含按n行m列排列的多个存储单元C00至Cnm。X地址允许通过选择即激活相应字线X0至Xn来对每行存储单元分别寻址。同样,可由选择相应位线B0至Bm的Y地址来唯一识别每一列存储单元。若其处于所选定字线和所选定位线的交点便选择了一单个存储单元。例如,若希望选择存储单元Cn1用于读出操作,便选择与第n行对应的字线Xn和与第1列对应的位线B1。要选择第n行,对字线Xn加上例如5V的读出电压,而其他全部字线接收的则是0V。加到字线Xn上的读出电压便加到字线Xn所定义行内的全部存储单元即存储单元Cn0至Cnm。该选定行内任何一个存储单元Cn0至Cnm可通过使其漏极与地耦合来响应所加上的读出电压,从而使其相应位线B0至Bm与地耦合。结果,多条位线B0至Bm可在读出操作期间与地耦合。
单端读出电路17通过确定目标单元的相应位线在读出操作期间是否与地耦合来确定所选定存储单元内存储的数据的逻辑值。通常,与地耦合的位线表示逻辑1,与地隔离的位线表示逻辑0。因而,为了读出存储单元Cn1,闪烁存储器11必须确定Cn1相应位线B1是否与地耦合。为了做到这,必须忽略其他全部位线的状态。局部y译码器15使与目标存储单元Cn1对应的位线即本例中的位线B1与其他全部位线隔离,并使之与一为单端读出电路17输入端的中间结点19耦合。Y选择线Y0至Ym激活Y译码晶体管Ty0至Tym其中之一。通过仅仅激活Y选择线Y1,仅使相应位线即B1与中间结点19耦合。
若其阈值电压低于加到其相应字线X0至Xn的读出电压,存储单元C00至Cnm便使其相应位线B0至Bm与地耦合。否则存储单元C00至Cnm仍处于截止状态,其相应位线仍与地隔离。这样便通过调节存储单元的阈值电压在存储单元中存储逻辑高和逻辑低数据。这是通过对存储单元内非易失浮动栅极晶体管的浮动栅极增加或去除电荷来实现的。要存储逻辑高即逻辑1,需对浮动栅极21去除电荷,使其阈值电压低于读出电压。相反,要存储逻辑低即逻辑0,则需对浮动栅极21增加电荷,使其阈值电压高于读出电压。
单端读出电路17包括一差分放大器,通常在本领域内是指具有2个输入端即读出线25和基准线27的读出放大器23。读出线25是与表示为上拉电阻33的上拉器件耦合。读出线25还通过一跟随n-MOS器件31与中间结点19耦合。中间结点19另外通过一上拉n-MOS器件35与VCC耦合。若中间结点19不与任何位线B0至Bm耦合,便会通过上拉n-MOS器件35和上拉电阻33使其上拉至一预定基准高电压。
偏置电压发生器37确定中间结点19的实际基准高电压。n-MOS晶体管的源极电极无法升高到比低于其控制栅极所加上电位的一个阈值电压要高。由于偏置电压发生器37的输出与n-MOS器件31和35两者的控制栅极耦合,且其各自的源极电极与中间结点19耦合,所以中间结点19所能达到的最高电位最多处于一个低于偏置电压发生器37输出的阈值电压。
不论何时局部y译码器15使位线B0至Bm与中间结点19耦合,位线的较高电容值便造成中间结点19的电压即刻下拉。上拉n-MOS器件35和上拉电阻33接着开始使中间结点19的电压升高。中间结点19的最终电压值取决于目标存储单元内存储的数据。若目标存储单元具有逻辑0,便仍处于截止状态来响应所加上的读出电压,接着便使相应位线与地隔离,中间结点19将升高至上述预定电压。另一方面,若目标存储单元具有逻辑1,便响应所加上的读出电压导通,该相应位线便通过存储晶体管与地耦合,中间结点19的电位将达到一较低电位。由于读出线25通过n-MOS器件31与中间结点19耦合,所以其电位V读出跟随中间结点19的电位。
参照图3,所示的示例V读出电压与对逻辑0和逻辑1的读出相对应。起初,中间结点19第一次与所选定位线耦合时将V读出电压下拉。若目标存储晶体管具有逻辑1,V读出电压便升高至最大逻辑低电位VLLMAX,但仍处于基准电压V基准以下。若目标存储晶体管具有逻辑0,V读出电压便升高至位于基准电压V基准以上的最大逻辑高电压VLHMAX。按此方式,读出放大器23便可确定目标存储晶体管的内容。
应理解,V基准是由最大误差范围V基准M定义的。如上面所述,加到读出放大器23上的基准电压V基准容易因种种原因变化。所以,V基准值不可以当作为绝对的,而必须由一误差范围V基准M来定义。结果,读出放大器23只有对V基准给出足够时间以升高到上述V基准误差范围以上才可以识别逻辑0。图3中将读出放大器23确定目标存储晶体管的逻辑状态所需的时间标注为t读出
可知道,t读出是tLL、t允许范围以及tAMP这三部分之和。tLL时间是逻辑低信号到达其最高电位VLLMAX所需时间的最大值。此后,读出放大器23必须等待时间t允许范围,这是逻辑高信号升高至V基准误差范围V基准M以上所需时间。最后,tAMP是读出放大器23对V读出相对于V基准的电压值进行判定所需的时间。时间tLL和tAMP是固定的,但时间t允许范围可通过减小V基准误差范围V基准M来减小。
参照图4,示出一例使误差范围V基准M减小来缩短读出时间t读出的情形。图4中与图3相同的全部单元用同样标号标识,并且上文中已说明。本示例中,基准电压V基准的误差范围V基准M减小大约15%形成图4中的新V基准M’。由于V读出升高时间的对数特征,基准电压V基准误差范围这种15%的下降,造成读出放大器必须等待逻辑高V读出信号从VLLMAX升高至为误差范围V基准M’以上这一时间t允许范围几乎70%的下降。本例中,V基准M其15%的减小还使得读出放大器23将V读出与V基准相比较所需的全部t读出时间减少20%。这样,即便对V基准误差范围的很小改进也能在速度方面产生可观的收获。
回到图2,V基准是基准线27的电位。如上所述,V基准跟随主存储器阵列13的种种变化很重要。所以,存储器阵列13读出通路中的大多数电路元件在产生基准电压的通路中被复制。所示出的基准线27与第二上拉电阻43耦合,并通过第二n-MOS跟随晶体管41与第二中间结点39耦合。第二中间结点39通过第二上拉n-MOS器件45与Vcc耦合。基准存储单元47通过一选择晶体管49与第二中间结点39耦合。该结构与通过y译码器15对主存储器阵列13进行寻址所用的结构呈镜像对称。主要差异在于,基准存储单元47的结构与主存储器阵列13中任何存储单元C00至Cnm的结构不同。
基准单元47不包括存储晶体管。但其所包括的基准晶体管51具有与主存储器阵列13存储单元C00至Cnm内存储晶体管同样的结构,不过基准晶体管51不具有浮动栅极。基准晶体管51的控制栅极分解为2部分,第一部分55与控制线57直接接触,第二部分53则插入第一部分55和基准晶体管51沟道之间。该控制栅极的第二部分53由绝缘的氧化物与第一部分分开,并且与晶体管沟道分开。第一部分55的尺度较好与存储单元C00至Cnm的控制栅极尺度相同,第二部分53的尺度较好与存储单元C00至Cnm的浮动栅极21相同。而且,将第二部分53与第一部分55分开的氧化物较好与将浮动栅极21与存储单元C00至Cnm内控制栅极分开的栅极间氧化物相同。最后,将控制栅极的第二部分53与基准晶体管51的沟道区分开的氧化物其尺度较好与将存储单元C00至Cnm的浮动栅极21与其各自的沟道区分开的隧道氧化物相同。从结构而言,基准晶体管51看上去与任何存储单元C00至Cnm内的浮动栅极晶体管很相像,并具有类似的尺度,但基准晶体管51另外还具有一耦合臂59,将其控制栅极第一部分53与其控制栅极第二部分55连接。
按照此方式,将表示存储单元C00至Cnm中浮动栅极的控制栅极第二部分53不允许浮动。所以,基准单元47不受其控制栅极第二部分53上电荷变化造成的电压阈值变化的影响。这是因为基准晶体管控制栅极插入部53不能存储电荷,因而其阈值电压无法按此方式变动。直接的结果是,本发明不受其制造工艺期间利用等离子体所引起的基准电压V基准变动的影响。而且,这归功于第二插入部53的电位由控制栅极的第一部分55直接控制。另外,本发明克服如上文所述对现有技术基准单元的控制栅极和浮动栅极间的耦合定量不具有绝对控制这种问题。本例中,第二插入部53通过连接臂59与控制栅极第一部分55的耦合具有100%耦合定量。由于这些差错源被消除,可减小V基准的误差范围使得读出速度更快速。
图2中,所示出的主存储器阵列13具有EPROM和闪烁EPROM存储器的典型结构,但存储器阵列13的结构可替换为EEPROM的结构。图5例如示出一具有EEPROM存储器阵列排列的存储器阵列13。将会明白,图5的存储器阵列13通常会取代图2中的存储器阵列13。所以,图5存储器阵列13中各个部分与图2存储器阵列13相同部分均给出相同标号,并且上文中已说明。本例中,每一单元C00至Cnm包含与浮动栅极存储晶体管63串联的选择晶体管61。每一字线X0至Xn与相应行内每一存储单元C00至Cnm的选择晶体管61和浮动栅极晶体管63两者的控制栅极耦合。每一行具有一分开的接地源极线S0至Sn,每一行内全部浮动栅极晶体管63的源极电极与其相应的源极线耦合。
本发明的基准单元将与图5存储器阵列13内存储单元C00至Cnm的体系结构相匹配,只是浮动栅极将会与控制栅极短路。就效果而言,图2中的基准单元47将会由2个晶体管基准单元替代。这2个晶体管基准单元会仿照图5中基准单元C00至Cnm的结构,与主存储器阵列13的选择晶体管61和浮动栅极晶体管63串接同样,使一选择晶体管与2栅极晶体管串接。主要差异在于,基准单元中浮动栅极与图2中基准晶体管51一样将会有一耦合臂使之与其相应的控制栅极连接。尽管很容易将图5的体系结构集成到图2的体系结构,但这并非最方便的,因为需要在IC中有大许多的空间。
图6示出一种适合EEPROM存储器的更为紧凑的存储器阵列体系结构。图6中与图5相类似的组成部分均给出同样的标号,并且上文中已说明。图6中的结构每一对字线X0、X1仅需要一个源极线S0。另外,相邻行存储单元使各个漏极连接共用一共同位线。这减少了每一存储单元所需的接点数目,因此减小整个存储器阵列13的大小。
但这种紧凑结构使读出电路17内所用的基准存储单元的应用复杂。如上所述,希望基准单元与主存储器阵列13内存储单元的总体结构相匹配。尽管基准单元会如图5结构所需的那样,仍然需要一与浮动栅极存储晶体管串联的选择晶体管,但申请人发现,这样一种结构并未给出最好的部件匹配,也未对基准电压V基准误差范围给出最大程度的减小。
存储器阵列的布局可极大地影响其电容分布,进而影响其性能。在采用图6阵列结构13的存储器基准单元中简单应用2晶体管存储单元将无法确保基准电压V基准正确跟随主阵列13内的变化。
参照图7,示出的是适合图6存储器阵列布局的本发明第二实施例基准单元47。基准单元47包括第一和第二分部件73及71,每次读出操作期间仅有其中之一工作。第一分部件73包含一与第一基准晶体管85串联的作为n-MOS开关晶体管实施的第一选择器件87。第一选择器件87和第一基准晶体管85在输出引线refin48和接地之间串联连接。第二分部件71包含一与第二基准晶体管75串联连接的作为n-MOS开关晶体管实施的第二选择器件77。第二选择器件77和第二基准晶体管85在输出引线48和接地之间串联。
控制线ymsb有选择地激活第一和第二分部件71和73其中之一。控制信号ymsb通过一反相器79与第二选择器件77的控制栅极耦合,ymsb与第一选择器件87的控制栅极直接耦合。若控制信号ymsb具有逻辑高,便使第一分电路73激活,若控制信号ymsb具有逻辑低,便选择第二选择分电路71。控制信号ymsb的逻辑状态与选择主存储器阵列13内的偶数行还是奇数行直接有关。
X译码电路81接收X地址总线,其载置着在主存储器13内被寻址行的地址。X译码电路81可以是用于选择主存储器阵列13内一行存储单元的主X地址译码器,或可以是专门用于选择第一和第二分电路71和73其中之一的第二X地址译码器。作为替代,可对x地址的最低有效位分接信号ymsb,因为该位上的0会表示一偶数行,而1则会表示一奇数行。本例中x地址本身将会控制该基准单元47。
若X译码器81是主X地址译码器的部分,X译码电路81便包括一与X译码器串联的X预译码器,它们一起来选择主存储器阵列13内的单个字线。本例中,X译码电路81还在控制线ymsb上发出一信号。本较佳实施例中,若X地址总线83表示一偶数行,便会在控制线ymsb上设置逻辑低,选择第二分电路71。相反,若X地址总线83表示一奇数行,便会在控制线ymsb上设置逻辑高,选择第一分电路73。因为在其X预译码状态后和其X译码器前X译码电路通常会知道被寻址的是奇数行还是偶数行,因而可在对所选定字线完全译码出正确地址前发出信号ymsb。这允许基准单元47内相应的分部件在开始读出目标存储单元之前就已处于选定状态。
按此方式,本基准单元47可更为正确地跟随主存储器阵列内目标存储单元的布局变化。如上所述,如图6按紧凑体系结构配置的2晶体管存储单元的读出电位很可能会随所选定的是偶数行还是奇数行而变化。为了更为密切地跟随读出电位这种变化并因此减小基准电压V基准的误差范围,第一分部件73与奇数行目标存储单元的布局相匹配,第二分部件71与偶数行目标存储单元的布局相匹配。另外,基准晶体管75和85的控制栅极和浮动栅极按图2所示同样方式由相应的耦合臂95和101一起短路。加到基准晶体管75和85的控制栅极91和99上的正确值分别由控制线Vrefsa加上。
参照图8,示出的是图7中基准单元的布局示例。如上所述,基准单元47响应与反相器79和第一选择器件87的控制栅极72耦合的控制线ymsb。反相器79的输出与第二选择器件77的控制栅极104连接。控制线ymsb选择每次读出操作期间第一和第二分部件73和71当中被激活的那个。第一分部件73包括第一选择器件87和第一基准晶体管85。第一选择器件87由沟道区上方的多晶硅控制栅极72所分开的漏极区80和源极区82界定。第一选择器件87的源极区82起到第一基准晶体管85漏极的作用。第一基准晶体管85的源极100与接地耦合,并通过通道102与一路由金属线76耦合。漏极82和源极100间的沟道区由形成栅极99的第二多晶硅层poly-2下形成栅极97的第一多晶硅层poly-1所覆盖。如上所述,poly-1栅极97和poly-2栅极99利用耦合臂101耦合在一起。本示例中,耦合臂101作为一使第一多晶层97与第二多晶层99耦合的通道来实现。
同样,第二分部件71包括第二选择器件77和第二基准晶体管75。第二选择器件77由沟道区上方的多晶硅控制栅极104所分开的漏极区80和源极区78界定。这样区域80便形成第一和第二选择器件77和87两者的漏极区。第二选择器件77的源极区78起到第二基准晶体管75漏极的作用。第二基准晶体管75的源极106与接地耦合,并且通过第二通道108与路由金属线76耦合。这样,第一和第二基准器件75和85两者的源极区便通过金属路由线76耦合在一起。漏极78和源极106间的沟道区由poly-2栅极91下的poly-1栅极95所覆盖。如上所述,poly-1栅极95和poly-2栅极91利用作为一通道实现的耦合臂95耦合在一起。耦合臂95和101利用金属路由线74连接在一起,还与基准电压线Vrefsa耦合。从不仅与局部位线88耦合还与漏极区80耦合的通道48引出输出基准线refin。2个另外的局部位线92和94处于与局部位线88相邻位置。这有助于模仿与主存储器阵列具有互相相邻的多个目标存储单元这一情况相关联的电容。
参照图9,控制线Vrefsa的电压值由一基准电压发生电路111所控制,其由Vcc和接地间串联的上拉支路和下拉支路所组成。该上拉支路包括2个p-MOS晶体管113和115,而下拉支路则包括至少一个n-MOS晶体管117。p-MOS晶体管113和115的控制栅极均接地,n-MOS晶体管117的控制栅极则按二极管形式与其漏极连接。通过晶体管113、115和117从Vcc至接地端有一电流生成。Vrefsa值取决于下拉支路两端的电压压降,该压降又取决于经过晶体管113、115和117的电流。根据需要,n-MOS晶体管117可以是在制造阶段可通过金属可选件连接的多个预制n-MOS晶体管和多个可选n-MOS晶体管的组合。这允许电流经过下拉支路,由此允许Vrefsa上的电压在制造期间与一特定数值进行硬连线。
本实施例中,下拉支路包括可对复合下拉支路按数字方式接入或去掉的另外的、可选的n-MOS晶体管。n-MOS晶体管n1至n3当中每一个均按二极管连接,而且靠相应的控制开关晶体管C1至C3有选择地与接地端耦合。控制开关晶体管C1至C3当中每一个均响应电压控制线VC1至VC3。通过使控制线VC1至VC3相应激活,可使另外的n-MOS晶体管n1至n3当中的某些接入到下拉支路中,并相应调节Vrefsa值。这允许甚至制造后也可对Vrefsa进行反复调节。按此方式可在存储器IC整个寿命期间对Vrefsa值进行调节来补偿存储器阵列和基准单元的老化效应。VC1至VC3数值可存储于主存储器阵列预制区内。
参照图10,示出的是适合替换图2中读出电路17的本发明第二实施例读出电路121。为了简洁起见,仅示出有关新组成部分。图当中省略的是上面已说明过或被认为是本领域技术人员所精通范围内的y选择电路、读出放大器启动电路、输出驱动器等电路组成。图10中,被理解为主存储器阵列一部分的目标存储单元123应用于读出电路121用于读出。如图2中先前例所述,目标存储单元123通过在其相应字线125上加一读出电压来选定。目标存储单元123的电流源幅值与响应控制电位Vrefsa的基准单元131的基准电流相比较。目标存储单元123和基准单元131的配置可以是上面参照图2至图9所说明的任何配置。同样,控制电位线Vrefsa值可按参照图9叙述的同样方式生成。
图10中,目标存储单元123其读出电流值利用第一跨导放大器137变换为V读出线135上的电压表示。同样,基准单元131输出的基准电流由第二跨导放大器141变换为V基准线139上的电压表示值。V读出线135和V基准线139的表示性电压电位接着由差分放大器143比较,并将结果置于读出放大输出线sa_out145上。应理解,线145上的sa_out输出通常会被放大锁存。
第一跨导放大器137是2个共用一共同稳压放大器150的经稳压的共阴共栅放大器复合体。该共同稳压放大器150由串联耦合在Vcc和接地间的可变电流源151和补偿晶体管153所组成。稳压放大器50和晶体管165及163构成第一经稳压的共阴共栅放大器,而稳压放大器50和晶体管155则构成第二经稳压的共阴共栅放大器。第一和第二稳压共阴共栅放大器一起形成第一复合跨导放大器137。
目标存储单元125生成的电流流过第一和第二经稳压的共阴共栅放大器两者,它们一起生成一该电流经放大的电压表示。采用共阴共栅电路是因为其通常提供高输出阻抗以及明显较低的反馈电容,从而使放大器具有较大的直流增益。可通过采用经稳压的共阴共栅放大器而非简单的未经稳压的共阴共栅放大器,实现更高的输出阻抗和较大输出电压摆动幅度。这允许对目标存储单元123的读出电流和基准单元131的基准电流进行更高的放大,使得差分放大器143更容易区分这2个电压电位。
另外,高度集成存储器中,往往需要采用最小尺度的晶体管,这甚至可在较低电压处显示沟道长调制以及载流子增殖。这特别涉及非易失存储器,其最小尺度晶体管往往与高电压晶体管很近似。沟道长调制将改变晶体管性能,并且会扰乱读出放大器的临界平衡。已经发现,甚至利用最小尺度晶体管的经稳压的共阴共栅电路也能实现较小的电路面积、较好的频率响应、高直流增益以及减轻沟道调制误差。
第一跨导放大器137内的第一经稳压的共阴共栅放大器包括第一输出n-MOS晶体管163、稳压放大器150、稳恒电流源157以及存储单元123本身。应注意,与通常的共阴共栅体系结构不同,稳压放大器150的电流源151并非稳恒电流源,而是由第一经稳压的共阴共栅电路内n-MOS晶体管163的源极电极所控制。实际上,第一经稳压的共阴共栅电路是一自稳压共阴共栅电路。
运作中,目标存储晶体管123将字线125上的读出电压变换为部分流经第一输出n-MOS晶体管163的漏极-源极通路至V读出线135再送至差分放大器143的漏极电流。稳恒电流源157通过n-MOS按二极管连接的晶体管165供给输出n-MOS晶体管163的漏极。为了获得高输出阻抗即抑制对目标存储单元123的沟道长调制,必须使相应的漏极-源极电压保持稳定。这通过一由稳压放大器150(从属的电流源151及晶体管153)和第一输出n-MOS晶体管163组成作为电压跟随器的反馈回路来实现。所以,目标存储单元123的漏极-源极电压被稳压为一固定值。
为了进一步稳定第一输出晶体管163源极即目标存储单元123漏极的电位,晶体管163的源极通过耦合对可变电流源151进行控制。较好是使可变电流源151的电流幅值与第一输出晶体管163的源极电位成反比。这可通过例如使可变电流源151作为一p-MOS晶体管来完成。按照此方式,若输出晶体管163源极电位下降,可变电流源151的电流值便提高,使得输出晶体管163控制栅极电位升高。这又会使相对较稳固的晶体管163导通以便使其源极电位回升。同样,若输出晶体管163源极电位升高,可变电流源151的幅值便减小,使输出晶体管163控制栅极电位下降,使之提供较少电流,使其源极电位回落。
这样,本自稳压共阴共栅放大器利用2种机制使结点152的电压波动最小。首先所采用的是稳压晶体管153和输出晶体管163之间的反馈机制,其次所采用的是可变电流源151和输出晶体管163之间的反馈机制。尽管这有助于使第一输出晶体管163的漏极电位稳定,但目标存储单元123所流过的电流还变换为输出晶体管163漏极的表示性电位,因为仍允许第一输出晶体管163的源极-漏极电位变化。
第二经稳压的共阴共栅电路起到与上面讨论的第一经稳压的共阴共栅电路同样方式的作用。其包括第二输出n-MOS晶体管155、稳压放大器150、稳恒电流源157以及目标存储单元123本身。运作中,目标存储晶体管123将字线125上的读出电压变换为部分流经第二输出n-MOS晶体管155的漏极-源极通路至一中间输出结点159的漏极电流。稳恒电流源157供给中间输出结点159,而中间输出结点159的电压电位由经过n-MOS晶体管155的电流量建立。为了获得高输出阻抗即抑制对目标存储单元123的沟道长调制,需使相应的漏极-源极电压保持稳定。这通过一由稳压放大器150和第二输出n-MOS晶体管155组成作为电压跟随器的反馈回路来实现。所以,目标存储单元123的漏极-源极电压被稳压为相同固定值。
跨导放大器137的输出从通过按二极管连接的晶体管161耦合第二输出n-MOS晶体管155漏极的第一输出n-MOS晶体管163漏极取出。这样,V读出线135的电位便处于第一和第二经稳压的共阴共栅放大器两者的直接控制下,其相应的输出端通过一二极管耦合在一起。这允许V读出线135的电位更加迅速地达到一稳定值,由此提高读出电路121的读出速度。
基准单元131的电流利用第二复合跨导放大器141变换为V基准线139的表示性电压电位。为了更好地平衡读出电路121,第二复合跨导放大器具有与第一复合跨导放大器137相同的结构,并起到与上述同样方式的作用。此外,由相同稳恒电流源147供给所述第一和第二复合跨导放大器137和141两者。
将V读出线135和V基准线139电位加到差分放大器143。差分放大器143包括由串联连接的p-MOS晶体管171和n-MOS晶体管173所组成的第一支路以及由串联连接的p-MOS晶体管175和n-MOS晶体管177所组成的第二支路。第一和第二支路并联连接在Vcc和电流漏极179之间。p-MOS晶体管171其漏极与p-MOS晶体管171和175的控制栅极连接。V读出线135与n-MOS晶体管173的控制栅极耦合,而V基准线139则与n-MOS晶体管177的控制栅极耦合。p-MOS晶体管177的漏极是差分放大器143中线145上的输出sa_out。

Claims (20)

1.一种读出放大器用基准电压发生器,其特征在于,包括:
与所述读出放大器耦合的一基准电压输出结点;
用于接收一经过控制的电压电位的电压输入结点;和
第一MOS基准单元,具有第一漏极区、第一源极区、第一控制栅极、第一多晶硅栅极、第一沟道区、第一隧道氧化物以及第一栅极氧化物,所述第一漏极区和所述第一源极区位于所述第一沟道区的相对侧,所述第一多晶硅栅极由所述第一隧道氧化物与所述第一沟道区分开,所述第一栅极氧化物夹在所述第一控制栅极和所述第一多晶硅栅极之间,所述第一漏极区与所述基准电压输出结点耦合,所述第一源极区与第一基准电力干线耦合,所述电压输入结点与所述第一控制栅极和所述第一多晶硅栅极两者耦合,所述经过控制的电压电位处于有效状态以便激活所述第一MOS基准单元;以及
将所述第一控制栅极与所述第一多晶硅栅极连接的通道。
2.如权利要求1所述的基准电压发生器,其特征在于,还具有一有选择地将所述第一漏极区与所述基准电压输出结点隔离并有选择地将所述第一漏极区与所述基准电压输出结点耦合的第一选择开关。
3.如权利要求2所述的基准电压发生器,其特征在于,所述第一选择开关是一MOS晶体管。
4.如权利要求2所述的基准电压发生器,其特征在于,所述读出放大器在每次读出操作期间与一目标数据存储单元耦合,所述目标数据存储单元为一诸行诸列数据存储单元的存储器阵列的一部分,所述读出放大器处于有效状态以便将所述目标数据存储单元的第一电流测定结果与所述基准电压输出结点的第二电流测定结果相比较,并响应所述第一电流测定结果大于所述第二电流测定结果提供第一输出逻辑状态,响应所述第一电流测定结果小于所述第二电流测定结果提供第二输出逻辑状态;
所述第一选择开关进一步处于有效状态以便响应所述目标数据存储单元处于所述存储器阵列中偶数行内将所述第一MOS基准单元与所述基准电压输出结点隔离,并处于有效状态以便响应所述目标数据存储单元处于所述存储器阵列中奇数行内将所述第一基准单元与所述基准电压输出结点耦合。
5.如权利要求4所述的基准电压发生器,其特征在于,所述基准电压发生器进一步包括第二MOS基准单元,具有第二漏极区、第二源极区、第二控制栅极、第二多晶硅栅极、第二沟道区、第二隧道氧化物以及第二栅极氧化物,所述第二漏极区和所述第二源极区位于所述第二沟道区的相对侧,所述第二多晶硅栅极由所述第二隧道氧化物与所述第二沟道区分开,所述第二栅极氧化物夹在所述第二控制栅极和所述第二多晶硅栅极之间,所述第二漏极区有选择地与所述基准电压输出结点耦合,所述第二源极区与所述基准电力干线耦合,所述电压输入结点与所述第二控制栅极和所述第二多晶硅栅极两者连接,所述经过控制的电压电位处于有效状态以便激活所述第二MOS基准单元;以及
当所述第一选择晶体管将所述第一MOS基准单元与所述输出结点隔离时所述第二MOS基准单元便与所述输出结点耦合。
6.如权利要求5所述的基准电压发生器,其特征在于,所述第一和第二沟道区按直排方式形成在单个衬底上。
7.如权利要求5所述的基准电压发生器,其特征在于,进一步包括第二选择开关、反相器以及单元选择控制输入线,
所述第二选择开关耦合在所述第二漏极区和所述基准电压输出结点两者之间,
所述反相器具有一反相输入端和一反相输出端,所述单元选择控制线与所述反相输入端和所述第一开关的控制输入端两者耦合,所述反相输出端与所述第二开关的控制输入端耦合,所述选择控制输入线处于有效状态以便某一时刻仅使所述第一和第二开关其中之一闭合。
8.如权利要求7所述的基准电压发生器,其特征在于,所述第一和第二选择开关为MOS晶体管,所述选择控制输入线与所述第一选择开关的控制栅极直接耦合,所述反相输出端与所述第二选择开关的控制栅极耦合。
9.如权利要求4所述的基准电压发生器,其特征在于,进一步包括用于确定所述目标数据存储单元何时处于所述存储器阵列内奇数行并确定所述目标存储单元何时处于所述存储器阵列内偶数行的行检测电路,所述第一选择开关响应所述行检测电路。
10.如权利要求9所述的基准电压发生器,其特征在于,所述行检测电路为一通过耦合选择所述存储器阵列内一行数据存储单元的x-译码器。
11.如权利要求9所述的基准电压发生器,其特征在于,所述行检测电路为一x地址总线的最低有效位,处于有效状态以便选择所述存储器阵列内的一行,使得所述基准电压发生器处于所述x地址总线的直接控制下。
12.如权利要求9所述的基准电压发生器,其特征在于,进一步具有第一行译码器和第二行译码器,所述第一行译码器为一用于接收行地址总线并选择所述存储器阵列内相应单一行的x译码器,所述第二行译码器为一用于观察所述行地址总线内行地址线的部分译码器,所述行地址线处于有效状态以便确定所述存储器阵列内所述相应单一行何时为偶数行以及何时为奇数行,所述行检测电路为所述第二行译码器。
13.如权利要求1所述的基准电压发生器,其特征在于,所述电压输入结点通过耦合接收一至少包含一个上拉电路和下拉电路在内的电压控制电路的所述经过控制的电压电位,
所述上拉电路包括一将所述电压输入结点与第二基准电力干线耦合的常态导通的上拉器件,
所述下拉电路至少包括并行的第一和第二下拉电路,所述第一下拉电路具有一将所述电压输入结点与所述第一基准电力干线耦合的常态导通下拉器件,所述第二下拉电路则包括所述控制输入结点和所述第一基准电力干线之间串联的至少一个电阻性元件和至少一个开关,所述开关响应第一开关控制线有选择地将所述电阻性元件与所述第一基准电力干线耦合。
14.如权利要求13所述的基准电压发生器,其特征在于,所述第二下拉电路包括多对电阻性元件及开关对,所述每一对中的每一电阻性元件和开关在所述电压输入结点和所述第一基准电力干线间串联连接,所述开关对每一对中的每一开关由各自的开关控制线控制,以便从所述第二下拉电路当中有选择地插入和去掉所述开关对。
15.如权利要求13所述的基准电压发生器,其特征在于,所述各自的开关控制线处于用户直接控制下,以便人工设定所述电压输入结点的电压电位。
16.如权利要求13所述的基准电压发生器,其特征在于,所述第一开关控制线的逻辑状态存储在非易失存储单元中。
17.如权利要求16所述的基准电压发生器,其特征在于,所述非易失存储单元为所述存储器阵列的一部分。
18.如权利要求1所述的基准电压发生器,其特征在于,所述读出放大器包括一跨导放大电路和一差分放大器,
所述跨导放大电路包括第一中间结点、第二中间结点、放大输出结点、第一n-MOS晶体管、第二n-MOS晶体管、第三n-MOS晶体管、二极管、可变电流源以及恒流源,
所述第一中间结点与所述基准输出结点耦合,所述恒流源在基准高电力干线和所述第二中间结点之间耦合,所述第一n-MOS晶体管漏极与所述第二中间结点耦合,而所述第一n-MOS晶体管源极与所述第一中间结点耦合,所述可变电流源在所述基准高电力干线和所述第一n-MOS晶体管控制栅极之间耦合,所述第二n-MOS晶体管使其漏极与所述第一n-MOS晶体管控制栅极耦合,其源极与基准接地耦合,其控制栅极与所述第一中间结点耦合,所述二极管在所述第二中间结点和所述放大输出结点之间耦合,所述第三n-MOS晶体管使其漏极与所述放大输出结点耦合,其源极与所述第一中间结点耦合,其控制栅极与所述第一n-MOS晶体管控制栅极耦合,所述第三n-MOS晶体管源极通过耦合控制所述可变电流源的电流幅值,所述放大输出结点与所述差分放大器输入端耦合。
19.如权利要求18所述的基准电压发生器,其特征在于,所述可变电流源为一p-MOS晶体管。
20.如权利要求18所述的基准电压发生器,其特征在于,所述二极管为一按二极管连接的n-MOS晶体管。
CNB018010490A 2000-06-21 2001-05-14 非易失存储器高速读出用基准单元 Expired - Fee Related CN1200433C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/602,108 2000-06-21
US09/602,108 US6411549B1 (en) 2000-06-21 2000-06-21 Reference cell for high speed sensing in non-volatile memories

Publications (2)

Publication Number Publication Date
CN1366677A CN1366677A (zh) 2002-08-28
CN1200433C true CN1200433C (zh) 2005-05-04

Family

ID=24409999

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018010490A Expired - Fee Related CN1200433C (zh) 2000-06-21 2001-05-14 非易失存储器高速读出用基准单元

Country Status (13)

Country Link
US (1) US6411549B1 (zh)
EP (1) EP1297535B1 (zh)
JP (1) JP2003536200A (zh)
KR (1) KR20030009285A (zh)
CN (1) CN1200433C (zh)
AU (1) AU2001261842A1 (zh)
CA (1) CA2391331A1 (zh)
DE (1) DE60132088T2 (zh)
HK (1) HK1046983B (zh)
MY (1) MY134250A (zh)
NO (1) NO20020847D0 (zh)
TW (1) TW512353B (zh)
WO (1) WO2001099114A1 (zh)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6922820B1 (en) * 2000-10-12 2005-07-26 Cypress Semiconductor Corp. Circuit for generating silicon ID for PLDS
JP4663094B2 (ja) * 2000-10-13 2011-03-30 株式会社半導体エネルギー研究所 半導体装置
US6587378B2 (en) * 2000-12-13 2003-07-01 Texas Instruments Incorporated Apparatus and method for refreshing a flash memory unit
US6697283B2 (en) * 2001-01-03 2004-02-24 Micron Technology, Inc. Temperature and voltage compensated reference current generator
US6940772B1 (en) 2002-03-18 2005-09-06 T-Ram, Inc Reference cells for TCCT based memory cells
US6799256B2 (en) * 2002-04-12 2004-09-28 Advanced Micro Devices, Inc. System and method for multi-bit flash reads using dual dynamic references
US6687162B1 (en) * 2002-04-19 2004-02-03 Winbond Electronics Corporation Dual reference cell for split-gate nonvolatile semiconductor memory
US6768677B2 (en) * 2002-11-22 2004-07-27 Advanced Micro Devices, Inc. Cascode amplifier circuit for producing a fast, stable and accurate bit line voltage
JP2004342276A (ja) * 2003-05-19 2004-12-02 Sharp Corp 半導体記憶装置およびそのプログラム方法
JP4286085B2 (ja) * 2003-07-28 2009-06-24 Okiセミコンダクタ株式会社 増幅器及びそれを用いた半導体記憶装置
US6970037B2 (en) * 2003-09-05 2005-11-29 Catalyst Semiconductor, Inc. Programmable analog bias circuits using floating gate CMOS technology
WO2005073982A1 (en) * 2004-01-28 2005-08-11 Koninklijke Philips Electronics N.V. Integrated circuit device with a rom matrix
US7149123B2 (en) * 2004-04-06 2006-12-12 Catalyst Semiconductor, Inc. Non-volatile CMOS reference circuit
US6967871B1 (en) 2004-05-19 2005-11-22 Taiwan Semiconductor Manufacturing Co., Ltd. Reference sensing circuit
US7142456B2 (en) * 2004-10-08 2006-11-28 Lexmark International Distributed programmed memory cells used as memory reference currents
JP4522217B2 (ja) * 2004-10-15 2010-08-11 パナソニック株式会社 不揮発性半導体メモリ
US7312641B2 (en) * 2004-12-28 2007-12-25 Spansion Llc Sense amplifiers with high voltage swing
ITMI20051075A1 (it) * 2005-06-10 2006-12-11 Atmel Corp "sistema e metodo per eguagliare la resistenza in una memoria non volatile"
JP2007087441A (ja) * 2005-09-20 2007-04-05 Matsushita Electric Ind Co Ltd 不揮発性半導体記憶装置
US7558907B2 (en) * 2006-10-13 2009-07-07 Spansion Llc Virtual memory card controller
KR100837282B1 (ko) * 2007-06-14 2008-06-12 삼성전자주식회사 비휘발성 메모리 장치, 그것을 포함하는 메모리 시스템,그것의 프로그램 방법 및 읽기 방법
TWI399754B (zh) * 2008-03-17 2013-06-21 Elpida Memory Inc 具有單端感測放大器之半導體裝置
US7813201B2 (en) * 2008-07-08 2010-10-12 Atmel Corporation Differential sense amplifier
US7796437B2 (en) * 2008-09-23 2010-09-14 Sandisk 3D Llc Voltage regulator with reduced sensitivity of output voltage to change in load current
US7995387B2 (en) * 2009-01-30 2011-08-09 Sandisk Il Ltd. System and method to read data subject to a disturb condition
US8374026B2 (en) * 2009-01-30 2013-02-12 Sandisk Il Ltd. System and method of reading data using a reliability measure
US7856528B1 (en) 2009-08-11 2010-12-21 Texas Memory Systems, Inc. Method and apparatus for protecting data using variable size page stripes in a FLASH-based storage system
US7818525B1 (en) 2009-08-12 2010-10-19 Texas Memory Systems, Inc. Efficient reduction of read disturb errors in NAND FLASH memory
US8189379B2 (en) 2009-08-12 2012-05-29 Texas Memory Systems, Inc. Reduction of read disturb errors in NAND FLASH memory
KR101094904B1 (ko) * 2009-09-30 2011-12-15 주식회사 하이닉스반도체 기준전압 생성 회로 및 방법, 이를 이용한 상변화 메모리 장치 및 리드 방법
CN102110475B (zh) * 2011-01-27 2013-09-04 深圳市国微电子有限公司 一种存储器的读出电路及其从存储器中读出数据的方法
CN103377687B (zh) * 2012-04-27 2017-04-05 上海复旦微电子集团股份有限公司 读出放大电路及存储器
CN103377708B (zh) * 2012-04-27 2016-08-03 上海复旦微电子集团股份有限公司 用于非易失性存储器的读出放大电路及存储器
CN104464803B (zh) * 2013-09-18 2018-07-20 北京兆易创新科技股份有限公司 一种读电压的产生装置、闪存存储系统
US9786348B1 (en) * 2016-04-11 2017-10-10 Micron Technology, Inc. Dynamic adjustment of memory cell digit line capacitance
KR102319710B1 (ko) * 2016-11-21 2021-10-29 매그나칩 반도체 유한회사 센스 앰프 구동 장치

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2089612B (en) * 1980-12-12 1984-08-30 Tokyo Shibaura Electric Co Nonvolatile semiconductor memory device
IT1228822B (it) * 1989-03-23 1991-07-04 Sgs Thomson Microelectronics Cella di riferimento per la lettura di dispositivi di memoria eeprom.
EP0424172B1 (en) 1989-10-20 1995-01-18 Fujitsu Limited Nonvolatile semiconductor memory apparatus
JP2853217B2 (ja) * 1989-11-21 1999-02-03 日本電気株式会社 半導体メモリ
US5608676A (en) 1993-08-31 1997-03-04 Crystal Semiconductor Corporation Current limited current reference for non-volatile memory sensing
DE69621323T2 (de) * 1995-02-10 2002-09-05 Micron Technology, Inc. Schneller leseverstärker für einen flash-speicher
JP3132637B2 (ja) * 1995-06-29 2001-02-05 日本電気株式会社 不揮発性半導体記憶装置
US5572474A (en) 1995-07-18 1996-11-05 Cypress Semiconductor Corporation Pseudo-differential sense amplifier
US5790453A (en) 1996-10-24 1998-08-04 Micron Quantum Devices, Inc. Apparatus and method for reading state of multistate non-volatile memory cells
JP3039458B2 (ja) * 1997-07-07 2000-05-08 日本電気株式会社 不揮発性半導体メモリ
US5859796A (en) * 1997-12-16 1999-01-12 Advanced Micro Devices, Inc. Programming of memory cells using connected floating gate analog reference cell
JP3237610B2 (ja) * 1998-05-19 2001-12-10 日本電気株式会社 不揮発性半導体記憶装置

Also Published As

Publication number Publication date
CA2391331A1 (en) 2001-12-27
EP1297535A1 (en) 2003-04-02
EP1297535B1 (en) 2007-12-26
KR20030009285A (ko) 2003-01-29
NO20020847L (no) 2002-02-21
JP2003536200A (ja) 2003-12-02
US6411549B1 (en) 2002-06-25
HK1046983A1 (en) 2003-01-30
HK1046983B (zh) 2005-08-12
CN1366677A (zh) 2002-08-28
NO20020847D0 (no) 2002-02-21
DE60132088D1 (de) 2008-02-07
TW512353B (en) 2002-12-01
AU2001261842A1 (en) 2002-01-02
WO2001099114A1 (en) 2001-12-27
MY134250A (en) 2007-11-30
DE60132088T2 (de) 2008-12-11

Similar Documents

Publication Publication Date Title
CN1200433C (zh) 非易失存储器高速读出用基准单元
CN1197163C (zh) 非挥发性半导体存储器件
CN1210719C (zh) 具有降低的写入速度波动的半导体存储器
CN1655281A (zh) 偏置电压施加电路和半导体存储装置
JP4305960B2 (ja) 強誘電体メモリ装置
CN101123115B (zh) 半导体存储装置
JP2007059024A (ja) 温度補償された読み出し・検証動作をフラッシュ・メモリにおいて生成するための方法及び装置
CN1208834C (zh) 恒定电压产生电路及半导体存储器件
CN1679115A (zh) 铁电存储器及其数据读取方法
JP2003173688A (ja) 不揮発性半導体メモリおよび不揮発性半導体メモリのプログラム電圧制御方法
CN1684199A (zh) 半导体存储装置的内部电压产生电路
CN1909113A (zh) 用于感测存储单元的状态的方法和装置
CN1848294A (zh) 存储多值数据的非易失性半导体存储器
JP4469649B2 (ja) 半導体フラッシュメモリ
JP2008084523A (ja) 低電圧、低キャパシタンスのフラッシュメモリアレイ
CN1595534A (zh) 非易失性半导体存储器件
JPH10106277A (ja) 不揮発性半導体メモリおよびそのデータ書込方法
US5038327A (en) Decoder circuit of erasable programmable read only memory for avoiding erroneous operation caused by parasitic capacitors
CN1516189A (zh) 半导体存储器件
JP4737918B2 (ja) ワード線及び選択線における電圧を正確に制御するためにフラッシュメモリxデコーダの容量性負荷を減少させる方法
US6707725B2 (en) Reference voltage generation circuit for semiconductor memory device, memory reading circuit including same, and electronic information device including the same
KR100389173B1 (ko) 임계값 전위의 변경이 가능한 인버터
CN114429779A (zh) 字线电压产生电路及存储器
US7035162B2 (en) Memory devices including global row decoders and operating methods thereof
US7376019B2 (en) Nonvolatile semiconductor memory

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: American California

Patentee after: Atmel Corp.

Address before: American California

Patentee before: Atmel Corporation

ASS Succession or assignment of patent right

Owner name: YATEMIS MERGER + ACQUISITIONS CO., LTD.

Free format text: FORMER OWNER: ATMEL CORP.

Effective date: 20130417

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130417

Address after: American California

Patentee after: ARTEMIS ACQUISITION LLC

Address before: American California

Patentee before: Atmel Corp.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050504

Termination date: 20140514