CN108603307A - 功能化表面及其制备 - Google Patents
功能化表面及其制备 Download PDFInfo
- Publication number
- CN108603307A CN108603307A CN201680080788.9A CN201680080788A CN108603307A CN 108603307 A CN108603307 A CN 108603307A CN 201680080788 A CN201680080788 A CN 201680080788A CN 108603307 A CN108603307 A CN 108603307A
- Authority
- CN
- China
- Prior art keywords
- oligonucleotide
- emr
- cases
- group
- seat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0046—Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00279—Features relating to reactor vessels
- B01J2219/00306—Reactor vessels in a multiple arrangement
- B01J2219/00313—Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
- B01J2219/00315—Microtiter plates
- B01J2219/00317—Microwell devices, i.e. having large numbers of wells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00351—Means for dispensing and evacuation of reagents
- B01J2219/00427—Means for dispensing and evacuation of reagents using masks
- B01J2219/00432—Photolithographic masks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00351—Means for dispensing and evacuation of reagents
- B01J2219/00436—Maskless processes
- B01J2219/00441—Maskless processes using lasers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00596—Solid-phase processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00608—DNA chips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/0061—The surface being organic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00614—Delimitation of the attachment areas
- B01J2219/00617—Delimitation of the attachment areas by chemical means
- B01J2219/00619—Delimitation of the attachment areas by chemical means using hydrophilic or hydrophobic regions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00632—Introduction of reactive groups to the surface
- B01J2219/00637—Introduction of reactive groups to the surface by coating it with another layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/0068—Means for controlling the apparatus of the process
- B01J2219/00693—Means for quality control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00709—Type of synthesis
- B01J2219/00711—Light-directed synthesis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00718—Type of compounds synthesised
- B01J2219/0072—Organic compounds
- B01J2219/00722—Nucleotides
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plant Pathology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Computational Biology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本文提供了用于结构表面的差异功能化以支持生物聚合物合成的组合物、装置、方法和系统。本文提供了包括使用灯、激光器和/或微接触印刷以将功能基团添加到表面以供有效且均一地合成寡核酸的工艺。
Description
交叉引用
本申请要求2015年12月1日提交的美国临时申请号62/261,753的权益,该临时申请通过引用以其全文并入本文。
背景技术
生物技术装置的日益小型化需要更高的分辨率以便在这样的装置上沉积材料。多种已知的技术能在表面上实现中等至高分辨率图案化。然而,这类技术存在诸如材料不相容性或污染等缺点。
发明内容
本文提供了表面图案化方法,该方法包括:将第一组分子施加到结构的表面,其中所述第一组分子中的每一个与所述表面结合并且不含能够与核苷结合的反应性基团;将电磁辐射(EMR)施加到所述表面的预定区域,其中所述EMR具有约100nm至约300nm的波长,其中所述EMR的施加导致在所述预定区域处去除第一组分子,从而限定用于寡核酸延伸的不同座位(locus);以及合成多个寡核酸,其中每个寡核酸从不同的座位延伸,并且其中当使用光学显微镜在白光照明之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以总信号强度来测量时,所述不同的座位为至少约75%一致。进一步提供了这样的方法,其中在施加EMR之后,在所述表面的所述预定区域处去除超过约90%的所述第一组分子。进一步提供了这样的方法,在施加EMR之后,在所述表面的所述预定区域处去除约100%的所述第一组分子。进一步提供了这样的方法,其中所述预定区域具有约1um至约500um的宽度。进一步提供了这样的方法,其中所述预定区域具有约1um至约100um的宽度。进一步提供了这样的方法,其中所述预定区域具有约3um至约60um的宽度。进一步提供了这样的方法,其中所述预定区域具有至少3um的宽度。进一步提供了这样的方法,其中所述预定区域具有形状为圆形或矩形的周边。进一步提供了这样的方法,其中所述第一组分子包括氟硅烷。进一步提供了这样的方法,其中所述第一组分子包括全氟辛基三氯硅烷(perfluorooctyltrichlorosilane)、(十三氟-1,1,2,2-四氢辛基)三氯硅烷((tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane)或(十三氟-1,1,2,2-四氢辛基)三甲氧基硅烷(tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane)。进一步提供了这样的方法,其进一步包括在施加所述EMR之后将第二组分子施加到所述表面,其中所述第二组分子中的每一个与所述表面的预定区域结合并且包含能够与核苷结合的反应性基团。进一步提供了这样的方法,其中所述第二组分子包括氨基硅烷。进一步提供了这样的方法,其中所述第二组分子包括N-(3-三乙氧基甲硅烷基丙基)-4-羟基丁酰胺(HAPS)(N-(3-triethoxysilylpropyl)-4-hydroxybutyramide)、11-乙酰氧基十一烷基三乙氧基硅烷(11-acetoxyundecyltriethoxysilane)、正癸基三乙氧基硅烷(n-decyltriethoxysilane)、(3-氨丙基)三甲氧基硅烷((3-aminopropyl)trimethoxysilane)、(3-氨丙基)三乙氧基硅烷((3-aminopropyl)triethoxysilane)、3-缩水甘油基氧基丙基三甲氧基硅烷(GOPS)(3-glycidoxypropyltrimethoxysilane(GOPS))或3-碘-丙基三甲氧基硅烷(3-iodo-propyltrimethoxysilane)。进一步提供了这样的方法,其中所述寡核酸中的每一个具有约25个碱基至约2kb的长度。进一步提供了这样的方法,其中所述寡核酸中的每一个具有约25个碱基至约150个碱基的长度。进一步提供了这样的方法,其中当使用光学显微镜在白光照明之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以总信号强度来测量时,从每个座位延伸的所述寡核酸为约80%一致。进一步提供了这样的方法,其中从所述不同的座位延伸的所述寡核酸共同编码预选基因的序列。进一步提供了这样的方法,其中所述EMR具有约150nm至约200nm的波长。进一步提供了这样的方法,其中所述EMR具有约172nm的波长。进一步提供了这样的方法,其中所述表面是基本上平面的。进一步提供了这样的方法,其中所述表面包含显微结构。进一步提供了这样的方法,其中所述显微结构包含通道或孔。进一步提供了这样的方法,其中所述EMR由灯或激光器发射。进一步提供了这样的方法,其中所述灯包含圆柱形或平板形状的发射源。进一步提供了这样的方法,其中所述平板具有至少36平方英寸的表面积。进一步提供了这样的方法,其中所述结构为板、卷带(tape)或带(belt)。
本文提供了表面图案化方法,该方法包括:将第一组分子施加到结构的表面,其中所述第一组分子中的每一个包含能够与核苷结合的反应性基团;将电磁辐射(EMR)施加到所述表面的预定区域,其中所述EMR具有约100nm至约300nm的波长,其中所述EMR的施加导致在所述预定区域处去除所述第一组分子,从而限定用于寡核酸延伸的不同座位;以及合成多个寡核酸,其中每个寡核酸从不同的座位延伸,并且其中当使用光学显微镜在白光照明之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以总信号强度来测量时,所述不同的座位为至少约75%一致。进一步提供了这样的方法,其中在施加EMR之后,在所述表面的所述预定区域处去除超过约90%的所述第一组分子。进一步提供了这样的方法,其中在施加EMR之后,在所述表面的所述预定区域处去除约100%的所述第一组分子。进一步提供了这样的方法,其中所述预定区域具有约1um至约500um的宽度。进一步提供了这样的方法,其中所述预定区域具有约1um至约100um的宽度。进一步提供了这样的方法,其中所述预定区域具有约3um至约60um的宽度。进一步提供了这样的方法,其中所述预定区域具有至少3um的宽度。进一步提供了这样的方法,其中所述预定区域具有形状为圆形或矩形的周边。进一步提供了这样的方法,所述结构为板、卷带(tape)或带(belt)。进一步提供了这样的方法,其中所述第一组分子包括氨基硅烷。进一步提供了这样的方法,其中所述第一组分子包括N-(3-三乙氧基甲硅烷基丙基)-4-羟基丁酰胺(HAPS)、11-乙酰氧基十一烷基三乙氧基硅烷、正癸基三乙氧基硅烷、(3-氨丙基)三甲氧基硅烷、(3-氨丙基)三乙氧基硅烷、3-缩水甘油基氧基丙基三甲氧基硅烷(GOPS)或3-碘-丙基三甲氧基硅烷。进一步提供了这样的方法,其进一步包括在施加所述EMR之后将第二组分子施加到所述表面,其中所述第二组分子中的每一个与所述表面的所述预定区域结合并且不含能够与核苷结合的反应性基团。进一步提供了这样的方法,其中所述第二组分子包括氟硅烷。进一步提供了这样的方法,其中所述第二组分子包括全氟辛基三氯硅烷、辛基氯硅烷、十八烷基三氯硅烷、(十三氟-1,1,2,2-四氢辛基)三氯硅烷或(十三氟-1,1,2,2-四氢辛基)三甲氧基硅烷。进一步提供了这样的方法,其中所述寡核酸中的每一个具有约25个碱基至约2kb的长度。进一步提供了这样的方法,其中所述寡核酸中的每一个具有约25个碱基至约150个碱基的长度。进一步提供了这样的方法,其中当使用光学显微镜在白光照明之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以总信号强度来测量时,每个座位包含约80%一致的寡核酸群体。进一步提供了这样的方法,其中从所述不同的座位延伸的所述寡核酸共同编码预选基因的序列。进一步提供了这样的方法,其中所述EMR具有约150nm至约200nm的波长。进一步提供了这样的方法,其中所述EMR具有约172nm的波长。进一步提供了这样的方法,其中所述表面是基本上平面的。进一步提供了这样的方法,其中所述显微结构包含通道或孔。
本文提供了表面图案化方法,该方法包括:将第一组分子施加到结构的表面,其中所述第一组分子中的每一个与所述表面结合并且包含能够与核苷结合的反应性基团;合成第一层寡核酸,其中所述第一层寡核酸中的每个寡核酸具有约10至约100个碱基的长度并从所述表面延伸;将电磁辐射(EMR)施加到所述表面的预定区域以选择性地去除该层寡核酸的一部分,其中所述EMR具有约100nm至约300nm的波长;以及合成第二层寡核酸,其中所述第二层寡核酸中的每个寡核酸从第一层寡核酸的剩余部分延伸。进一步提供了这样的方法,其中所述第一组分子包括氨基硅烷。进一步提供了这样的方法,其中所述第一组分子包括N-(3-三乙氧基甲硅烷基丙基)-4-羟基丁酰胺(HAPS)、11-乙酰氧基十一烷基三乙氧基硅烷、正癸基三乙氧基硅烷、(3-氨丙基)三甲氧基硅烷、(3-氨丙基)三乙氧基硅烷,3-缩水甘油基氧基丙基三甲氧基硅烷(GOPS)或3-碘-丙基三甲氧基硅烷。进一步提供了这样的方法,其进一步包括在施加所述EMR之后将第二组分子施加到所述表面,其中所述第二组分子中的每一个与所述表面的所述预定区域结合并且不含能够与核苷结合的反应性基团。进一步提供了这样的方法,其中所述第二组分子包括氟硅烷。进一步提供了这样的方法,其中所述第二组分子包括全氟辛基三氯硅烷、辛基氯硅烷、十八烷基三氯硅烷、(十三氟-1,1,2,2-四氢辛基)三氯硅烷或(十三氟-1,1,2,2-四氢辛基)三甲氧基硅烷。进一步提供了这样的方法,其中所述第二层寡核酸具有约25个碱基至约2kb的长度。进一步提供了这样的方法,其中所述第二层寡核酸具有约25个碱基至约500个碱基的长度。进一步提供了这样的方法,其中所述第一层寡核酸包含均聚核酸序列。进一步提供了这样的方法,其中所述均聚核酸序列的长度为约50个碱基。进一步提供了这样的方法,其中所述EMR具有约150nm至约200nm的波长。进一步提供了这样的方法,其中所述EMR具有约172nm的波长。进一步提供了这样的方法,其中所述EMR由灯或激光器发射。进一步提供了这样的方法,其中所述灯包含圆柱形或平板形状的发射源。进一步提供了这样的方法,其中所述平板具有至少36平方英寸的表面积。进一步提供了这样的方法,其中所述结构为板、卷带或带。进一步提供了这样的方法,其中所述表面包含用于寡核酸延伸的多个座位,并且其中当使用光学显微镜在白光照射之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以的总信号强度来测量时,所述座位为至少约75%一致。进一步提供了这样的方法,其中所述表面是基本上平面的。进一步提供了这样的方法,其中所述表面包含显微结构。进一步提供了这样的方法,其中所述显微结构包含通道或孔。进一步提供了这样的方法,其进一步包括释放所述多个寡核酸并组装多个基因。
本文提供了一种合成的寡核酸的文库,其包含多个不同的寡核酸,每个不同的寡核酸从结构上于不同座位处延伸,其中当使用光学显微镜在白光照射之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以的总信号强度来测量时,所述不同的座位为至少约75%一致。进一步提供了一种文库,其中所述多个不同的寡核酸包含至少20,000个不同的寡核酸。进一步提供了一种文库,其中当使用光学显微镜在白光照射之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以的总信号强度来测量时,从每个座位延伸的所述寡核酸为约80%一致。
本文提供了基因合成方法,其包括为多个寡核酸提供预定序列,其中所述多个寡核酸共同编码多个基因;提供用于寡核酸合成的表面;从所述表面合成所述多个寡核酸,其中每个寡核酸从不同的座位延伸,并且其中当使用光学显微镜在白光照射之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以的总信号强度来测量时,所述不同的座位为至少约75%一致;以及从所述多个寡核酸组装所述多个基因。本文进一步提供了这样的方法,其在合成之前进一步包括:提供用于寡核酸合成的表面,其中所述表面包含第一组分子,其中所述第一组分子中的每一个不含能够与核苷结合的反应性基团;将电磁辐射(EMR)施加到所述表面的预定区域,其中所述EMR具有约100nm到约300nm的波长,其中所述EMR的施加导致在所述预定区域处去除所述第一组分子,从而限定用于寡核酸延伸的座位。本文提供了基因合成方法,该方法包括:为多个寡核酸提供预定序列,其中所述多个寡核酸共同编码多个基因;提供用于寡核酸合成的表面,其中所述表面包含第一组分子,其中所述第一组分子中的每一个不含能够与核苷结合的反应性基团;将电磁辐射(EMR)施加到所述表面的预定区域,其中所述EMR具有约100nm到约300nm的波长,其中所述EMR的施加导致在所述预定区域处去除所述第一组分子,从而限定用于寡核酸延伸的座位;从所述表面合成多个寡核酸,其中每个寡核酸从不同的座位延伸,并且其中当使用光学显微镜在白光照明之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以总信号强度来测量时,所述不同的座位为至少约75%一致;以及从所述多个寡核酸组装多个基因。进一步提供了这样的方法,其中在施加EMR之后,在所述表面的所述预定区域处去除超过约90%的所述第一组分子。进一步提供了这样的方法,其中在施加EMR之后,在所述表面的所述预定区域处去除约100%的所述第一组分子。进一步提供了这样的方法,其中所述预定区域具有约1um至约500um的宽度。进一步提供了这样的方法,其中所述预定区域具有约1um至约100um的宽度。进一步提供了这样的方法,其中所述预定区域具有约3um至约60um的宽度。进一步提供了这样的方法,其中所述预定区域具有至少3um的宽度。进一步提供了这样的方法,其中所述预定区域具有形状为圆形或矩形的周边。进一步提供了这样的方法,其中所述第一组分子包括氟硅烷。进一步提供了这样的方法,其中所述第一组分子包括全氟辛基三氯硅烷、辛基氯硅烷、十八烷基三氯硅烷、(十三氟-1,1,2,2-四氢辛基)三氯硅烷或(十三氟-1,1,2,2-四氢辛基)三甲氧基硅烷。进一步提供了这样的方法,其进一步包括在施加所述EMR之后将第二组分子施加到所述表面,其中所述第二组分子中的每一个与所述表面的所述预定区域结合并且包含能够与核苷结合的反应性基团。进一步提供了这样的方法,其中所述第二组分子包括氨基硅烷。进一步提供了这样的方法,其中所述第二组分子包括N-(3-三乙氧基甲硅烷基丙基)-4-羟基丁酰胺(HAPS)、11-乙酰氧基十一烷基三乙氧基硅烷、正癸基三乙氧基硅烷、(3-氨丙基)三甲氧基硅烷、(3-氨丙基)三乙氧基硅烷、3-缩水甘油基氧基丙基三甲氧基硅烷(GOPS)或3-碘-丙基三甲氧基硅烷。进一步提供了这样的方法,其中所述寡核酸中的每一个具有约25个碱基至约2kb的长度。进一步提供了这样的方法,其中所述寡核酸中的每一个具有约25个碱基至约150个碱基的长度。进一步提供了这样的方法,其中当使用光学显微镜在白光照明之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以总信号强度来测量时,每个座位包含约80%一致的寡核酸群体。进一步提供了这样的方法,其中从所述不同的座位延伸的寡核酸共同编码预选基因的序列。进一步提供了这样的方法,其中所述EMR具有约150nm至约200nm的波长。进一步提供了这样的方法,其中所述EMR具有约172nm的波长。进一步提供了这样的方法,其中所述表面是基本上平面的。进一步提供了这样的方法,其中所述表面包含显微结构。进一步提供了这样的方法,其中所述显微结构包括通道或孔。进一步提供了这样的方法,其中所述EMR由灯或激光器发射。进一步提供了这样的方法,其中所述灯包含圆柱形或平板形状的发射源。进一步提供了这样的方法,其中所述平板具有至少36平方英寸的表面积。进一步提供了这样的方法,其中在所述表面上合成的所述多个寡核酸布置在成簇的不同座位中,其中每个簇包含编码单个基因序列的寡核酸。进一步提供了这样的方法,其中所述多个基因包含至少50、240或5000个基因。
援引并入
本文公开的所有出版物、专利和专利申请均通过引用并入本文,其程度如同特别地且单独地指出每个单独的出版物、专利或专利申请通过引用而并入。如果本文公开的术语与所并入的参考文献中的术语之间存在冲突,则以本文中的术语为准。
附图说明
图1描绘了使用以电磁辐射(EMR)图案化的两种不同涂层材料对表面进行功能化的示意性工艺流程。
图2A描绘了图1中所示的工艺流程的一部分的详细视图。
图2B描绘了图1中所示的工艺流程的一部分的详细视图。
图3描绘了在包含孔的表面上进行的图1中所示的工艺流程。
图4描绘了使用以EMR图案化的两种不同涂层材料对表面进行功能化的示意性工艺流程。
图5描绘了在包含通道的表面上进行的图4中所示的工艺流程。
图6描绘了用钝化剂和活性剂对表面进行功能化的示意性工艺流程,其中寡核酸层从活性功能化的表面延伸。
图7A示出了示例性激光器设置,其使用输送带来移动带以供在期望的区域中暴露于激光。
图7B示出了示例性激光器设置,其使用输送带来移动板以供在期望的区域中暴露于激光。
图7C示出了示例性激光器设置,其使用卷到卷机构来移动芯片以供在期望的区域中暴露于激光。
图7D示出了示例性激光器设置,其使用平板来保持芯片以供暴露于激光。
图8图示了在包含活化和钝化功能化的不同区域的图案化表面上进行基因合成的处理工作流程。寡核酸在该表面的活性功能化区域上合成,从表面上去除,使用聚合酶链组装(PCA)组装成基因,并且对所组装的基因产物进行扩增。对基因产物序列中的错误进行校正,并对经校正的产物进行扩增和处理。对扩增的、校正的基因产物进行测序并释放以供运输。
图9图示了计算机系统。
图10图示了计算机系统的架构的框图。
图11是说明网络的示图,该网络被配置用于并入多个计算机系统、多个蜂窝电话和个人数据助理,以及网络附加存储(NAS)。
图12是使用共享虚拟地址存储空间的多处理器计算机系统的框图。
图13是在差异功能化工艺的各个步骤之后从二氧化硅表面的表面测量的接触角的图,该工艺包括:用氟硅烷钝化层涂覆表面,通过选择性暴露于深UV光进行图案化,并涂覆GOPS活性层。迹线A对应于在表面上涂覆一层氟硅烷之后测量的接触角。迹线B对应于通过阴影掩模将表面暴露于深UV光之后测量的接触角。迹线C对应于在表面上涂覆GOPS之后测量的接触角。
图14是用活性层和钝化层差异功能化的表面的图像抓取,其中活性层是合成的寡核酸的支持物。包含合成的寡核酸的表面区域显得清晰,而发暗的表面区域则对应于钝化层。
图15是在寡核酸合成之后差异功能化表面的图像抓取,其中表面的活性层是合成的寡核酸的支持物。包含合成的寡核酸的表面区域显得清晰,而涂覆有钝化层的表面区域则显得较暗。
图16示出了通过不同的工艺步骤用活性层和钝化层差异功能化的表面的图像抓取。
图17A是如实施例5中所述使用正向光致抗蚀剂工艺功能化的表面上合成的寡核酸的DNA强度分布曲线的绘图。该绘图具有顶线、中线和底线。每条线代表在暴露于白光之后从照相机上的不同光传感器获得的强度信号。中心线对应于对于芯片上的样品寡核苷酸具有最有效对比度的传感器。
图17B是如实施例5中所述使用反向光致抗蚀剂工艺功能化的表面上合成的寡核酸的DNA强度分布曲线的绘图。该绘图具有顶线、中线和底线。每条线代表在暴露于白光之后从照相机上的不同光传感器获得的强度信号。中心线对应于对于芯片上的样品寡核苷酸具有最有效对比度的传感器。
图17C是如实施例5中所述使用深UV工艺功能化的表面上合成的寡核酸的DNA强度分布曲线的绘图。该绘图具有顶线、中线和底线。每条线代表在暴露于白光之后从照相机上的不同光传感器获得的强度信号。中心线对应于对于芯片上的样品寡核苷酸具有最有效对比度的传感器。
图18示出了使用以EMR图案化的两种不同涂层材料对表面进行功能化的示例性设置。
图19示出了图18中的示例性设置的备选视图。
图20示出在整个表面上为等距的灯与芯片之间的距离的平面灯。
图21示出了类似于Ushio灯的圆柱形灯,其灯与芯片之间的距离在中心处比在任一边缘处更近。
图22示出了从121个非连续座位延伸的寡核苷酸的写入器合成后的芯片。在芯片的这个视图中,在芯片的基准点2101上表现出对齐。
图23描绘了对面积为150um×150um的二氧化硅芯片(底部)、在其具有氟硅烷涂层时(顶部)以及在DUV去除功能基团之后(中部)进行TOF-SIMS分析所得的绘图。Y轴为强度计数,且X轴为质量(u)。
具体实施方式
本公开内容提供了这样的装置、组合物和系统,其涉及对结构的表面进行图案化:利用电磁辐射(EMR)在选定区域去除与结构表面结合的材料,从而在表面上生成材料的期望图案。本文所述的方法提供了在比常规方法更快的时间框架内生成具有不同化学涂层的表面。另外,本文描述了这样的方法,其中从核酸延伸位点(座位)延伸的所得群体提供高度一致的核酸群体。本文所述的方法提供了生成合成的寡核酸的文库,该合成的寡核酸的文库包含多个不同的寡核酸,每个不同的寡核酸从结构上于不同座位处延伸,其中当使用光学显微镜在白光照明之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以总信号强度来测量时,所述不同的座位为至少约75%一致。通过本文所述方法合成的合成核酸群体可用于下游应用,例如基因组装或PCR诱变。例如,本文进一步提供了基因合成方法,该方法包括为多个寡核酸提供预定序列,其中所述多个寡核酸共同编码多个基因;从表面合成多个寡核酸,其中每个寡核酸从不同的座位延伸,并且其中当使用光学显微镜在白光照明之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以总信号强度来测量时,所述不同的座位为至少约75%一致;以及从多个寡核酸组装多个基因。
定义
贯穿本公开内容,各个实施方案以范围格式给出。应当理解,范围格式的描述只是为了方便和简明,而不应被解释为对任何实施方案范围的硬性限制。相应地,对范围的描述应被认为明确公开了所有可能的子范围以及该范围内精确到下限单位十分之一的单个数值,除非上下文另有明确规定。例如,诸如从1至6的范围描述应被认为已经明确公开了诸如从1至3、从1至4、从1至5、从2至4、从2至6、从3至6等子范围,以及该范围内的单个值,例如,1.1、2、2.3、5和5.9。无论范围的宽度如何,这都是适用的。这些中间范围的上限和下限可独立地包括在更小的范围内,并且也被涵盖于本发明之中,但受制于所声称范围中的任何被明确排除的限值。当所声称范围包括限值中之一或全部两者时,也包括排除了这些所包括的限值中之一或全部二者的范围,除非上下文另有明确规定。
本文使用的术语仅用于描述特定实例的目的,而不旨在限制任何实施方案。除非上下文另有明确规定,否则如本文所使用的单数形式“一个”、“一种”和“该”也预期包括复数形式。如本文所使用的,术语“和/或”包括一个或多个相关所列项目的任何或所有组合。
除非特别说明或从上下文中明显看出,否则如本文所使用的,关于数字或数字范围的术语“约”应理解为所述数字及其数字+/-10%,或者对于范围列出的值,低于所列下限的10%且高于所列上限的10%。
用EMR进行表面功能化
通常,结构表面上的图案化区域通过经由图案化的阴影掩模将表面的涂覆区域暴露于EMR来制备。在这类情况下,对于涂覆在表面上的材料,处于暴露的区域中的得以去除,而处于掩模保护的区域中的则不去除。结果,阴影掩模的图案被转到结构的表面化学物质上。在一些情况下,EMR通过经由光解对表面与结合的涂层材料之间的化学键进行切割来去除涂覆在表面上的材料。在一些情况下,EMR为深UV光。不希望受理论束缚,在一些情况下,对于结合有有机分子的表面,在氧气的存在下从深UV光生成的臭氧有利于从表面去除有机分子。或者,结构表面上的图案化区域通过将涂覆的表面暴露于激光束来制备。在这类情况下,对于涂覆在表面上的材料,处于暴露的区域中的得以去除,而处于非暴露的区域中的则不去除。结果,由暴露于激光的区域所限定的图案被转到结构的表面化学物质上。
在一些情况下,图案化导致表面的差异功能化,其中对表面的两个或更多个不同区域进行功能化以具有彼此不同的化学性质。在这类情况下,通过向表面施加具有第一化学性质的第一组分子并随后通过经由阴影掩模暴露于EMR去除选定区域的第一组分子来对表面进行图案化。随后在无第一组分子的选定区域用具有第二化学性质的第二组分子涂覆表面。第一和第二组分子对于结合生物聚合物具有不同的亲和力,因此提供具有图案化涂层的表面,这是用于生物聚合物延伸的预定区域。在一些情况下,该生物聚合物为寡核酸。
在一些情况下,对表面进行图案化,使得一个或多个区域涂覆有活性剂,并且其表面的一个或多个区域涂覆有钝化剂,其中活性剂包含与靶分子结合的功能基团,而钝化剂不含能够与靶分子结合的功能基团。在用于生物聚合物延伸的表面的情况下,包含活性剂的区域(即活性功能化区域)是为延伸反应中第一单体的偶联提供支持的区域。在一些情况下,第一单体是寡核酸延伸反应的亚磷酰胺核苷。
本文提供了这样的方法,其中功能化表面通过将EMR施加到表面的特定区域以通过光解切割来选择性地去除结合的功能化剂进行图案化。在一些情况下,通过经由阴影掩模将EMR施加到表面来实现从表面于特定区域处切割结合剂。阴影掩模保护一些表面区域免受EMR的作用,使得这些区域的结合剂不会受到EMR作用而光解。掩模由不传输EMR的任何合适的材料组成。在一些情况下,阴影掩模包含石英上的铬。在一些情况下,阴影掩模包含高UV透射石英上的铬。在一些情况下,阴影掩模包含高UV透射石英上的介电层。在一些情况下,阴影掩模包括在高UV透射LiF或MgF2上的介电层。在一些情况下,表面上的功能化剂的图案由阴影掩模的图案限定。例如,阴影掩模包含对应于表面的期望特征的多个开口。在这种情况下,在本文所述的功能化方法中使用的阴影掩模开口的尺寸对应于如本文其他地方所述的表面特征的尺寸。
在一些情况下,对与功能化剂结合的表面进行图案化包括将阴影掩模覆盖到表面上并且施加EMR穿过掩模的开放区域。在一些情况下,将阴影掩模直接放置于表面的顶部以进行图案化,从而使非预期的表面区域暴露于所施加的光减至最小。在一些情况下,EMR源与阴影掩模之间的距离为小于约100mm、10mm、5mm、1mm或0.5mm。
在多个方面,通过经由激光器将EMR施加到表面的特定区域以通过光解切割来选择性地去除结合的功能化剂而对功能化表面进行图案化。从表面于特定区域处切割结合剂是这样实现的:通过光束偏转和/或通过移动样品(例如,分别用X-Y或X-Y-Z平台,能够沿两维或沿三维移动),以及使用激光快门打开和关闭激光器,其中沿着激光器光路并且围绕基底在受控环境中使用特定的暴露时间或剂量。在一些情况下,将基底引入包含在受控环境内的引导系统中。在一些情况下,基底与用于暴露于激光束的参照物对准,并且在待暴露的基底处和激光路径中产生受控气氛。在一些情况下,基底以与激光脉冲及偏转同步的方式移动并且由此在基底上形成图案。
在一些情况下,将表面暴露于EMR是在氧气控制的环境中进行的。在一些情况下,该环境缺乏氧气。在EMR暴露期间由氧气生成的臭氧有助于结合剂的光解。然而,氧气也吸收光,因此也降低了切割效率。因此,在一些情况下,在EMR暴露的表面图案化期间,将氧气保持在受控水平或予以去除。在一些情况下,在位于EMR源与阴影掩模之间的区域中去除氧气。
在一些情况下,将EMR以约100nm至约400nm、约100nm至约300nm或约100nm至约200nm的波长施加到表面。例如,以紫外(UV)波长或深UV波长施加EMR。在一些情况下,将约172nm波长的深UV光施加到表面,以从该表面上切割结合剂。在一些情况下,使用氙灯施加EMR。暴露距离是灯与表面之间的测量值。在一些情况下,暴露距离为约0.1至5cm。在一些情况下,暴露距离为约0.5至2cm。在一些情况下,暴露距离为约0.5、1、2、3、4或5cm。在一些情况下,使用激光器施加EMR。示例性的激光器及其波长包括但不限于Ar2(126nm)、Kr2(146nm)、F2(157nm)、Xe2(172和175nm)、ArF(193nm)。
在一些情况下,本文所述的工艺提供了具有为寡核酸群体合成提供支持的座位(用于寡核酸延伸的位点)的图案化表面的生成,其中跨越多个座位的测量值显示当使用光学显微镜在白光照射之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以的总信号强度来测量时,所述寡核酸群体具有至少约70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、90、95或更高百分比(%)的一致性。在一些情况下,一致性是使用能够记录白光发射的照相机(例如,Nikon DS Fi2照相机)测量的。白光照明可处于约400nm至约700nm的范围内。在一些情况下,所述照相机对约450nm至约620nm范围内的波长具有灵敏度。在一些情况下,所述照相机对约480nm至约550nm范围内的波长具有灵敏度。在一些情况下,所述照相机对约500nm至约530nm范围内的波长具有灵敏度。在一些情况下,所述一致性百分比为约77%。在一些情况下,所述一致性百分比为至少约75%。在一些情况下,所述一致性百分比为约80%。在一些情况下,本文所述的工艺提供了在暴露于EMR之后基于光去除沉积在预选区域的至少约80、81、82、83、84、85、86、87、88、90、91、92、93、94、95或更高百分比(%)的功能化剂。
在一些情况下,通过EMR的光解去除在本文所述的表面图案化过程期间暴露于EMR的至少约50%、60%、70%、80%、90%、95%、98%、99%或几乎全部结合剂。在一些情况下,通过EMR的光解去除在表面图案化过程期间暴露于EMR的至少约90%的结合剂。在一些情况下,通过EMR的光解去除在表面图案化过程期间暴露于EMR的约100%的结合剂。EMR施加方法的不同参数可根据切割功能化剂与表面的反应性基团之间的键的要求进行调节。在一些情况下,EMR以10至200mW/cm2、10至100mW/cm2、10至50mW/cm2或10至50mW/cm2的强度的深UV光予以施加。在一些情况下,将EMR施加到表面30秒至300秒、30秒至240秒、30秒至180秒、30秒至120秒或30秒至60秒。
灯
本文提供了利用电磁辐射(EMR)用一种或多种化学物质以期望的图案对表面进行功能化的方法。以下段落中描述了用于对本文所述结构上的表面进行差异功能化的示例性工作流程。第一个处理工作流程提供了用具有不同化学物质的两种涂层材料对表面进行功能化(图1)。该第一个工作流程大致分为以下处理步骤:(A)表面制备;(B)在表面上沉积第一组分子;(C)通过从表面在暴露于由灯经由阴影掩模施加的EMR的区域处切割所述第一组分子进行图案化;(D)去除切割的第一组分子;以及(E)将第二组分子沉积到第一组分子已被去除的区域。
在第一处理工作流程的第一阶段中,提供了具有表面101的结构100,该表面101包含与随后施加的涂层材料结合的反应性功能基团的层。在这种情况下,表面101包含与第一和第二组分子两者发生反应的二氧化硅层。表面101任选地以湿法和/或干法工艺进行清洗以去除有机污染物。在一些情况下,该表面用等离子体清洗,其中将氧等离子体施加到该表面。在一些情况下,通过将氧化剂施加到表面以清洗并羟基化该表面使该表面得以清洁。示例性的氧化剂为包含硫酸和过氧化氢的混合物的水虎鱼(piranha)溶液。
制备的表面100沉积有包含与表面101的功能基团发生反应的试剂的第一组分子102,从而生成与第一组分子层结合的表面(图1,B部分)。随后通过将所述区域暴露于EMR105,以从该表面的限定区域103去除第一组分子来对该表面进行图案化(图1,C部分)。在一些情况下,EMR为深UV光。将阴影掩模104置于表面之上,使得仅限定的区域103通过该阴影掩模中的开口106暴露于EMR 105。将结合至该表面的暴露区域的第一组分子层从该表面切下并用合适的洗涤溶液洗掉(图1,D部分)。然后将该表面干燥以备后续工艺步骤使用。
在经由EMR用第一组分子对表面101进行图案化之后,不含所述第一组分子的不同表面暴露区域103的功能基团与沉积到该表面上的第二组分子107反应(图1,E部分)。在一些情况下,该第二组分子包含具有与核苷反应的功能基团的活性剂,而该第一组分子包含不含与核苷反应的功能基团的钝化剂。因此,在一些情况下,第一处理工作流程例示了用于对表面的不同区域进行图案化以用于核苷附接,并随后从附接的核苷进行寡核酸延伸的方法。在一些情况下,包含活性剂的表面的不同区域为表面的座位。
在第二处理工作流程中,具有包含有机硅烷(-O-Si-C)反应层的表面202的结构201涂覆有第一组分子层,R(图2A,A部分)。在通过图案化的阴影掩模施加EMR时,暴露的第一组分子从表面切下,如图2B部分的游离C-R基团所示。将切割的第一组分子洗掉以露出具有包含第一组分子(-O-Si-C-R)和暴露的氧化硅区域(-O-Si)的功能化区域的图案化表面。将该暴露的氧化硅区域重新氧化以备与第二组分子反应。将第二组分子层R2沉积到结构201的表面201上,以生成以第二组分子(-O-Si-O-Si-C-R2)功能化的区域(图2B)。在一些情况下,除了C-R基团的切割之外或作为其替代,切割Si-O键,并且将该第二组分子沉积到该表面的原始反应性基团(例如,羟基、巯基或胺基)。在一些情况下,该第一组分子包含不与生物分子反应的钝化剂。在一些情况下,该第二组分子包含与生物分子反应的活性剂。
图1和图2A-2B中所示的表面包括基本上平面的表面。在一些情况下,将本文所述的差异功能化方法施加到包含三维元件的表面。三维元件包括凸起和凹陷的特征。示例三维元件包括但不限于孔、通道/孔隙和立柱。示例三维形状包括但不限于具有深度或高度的圆形、正方形、矩形、椭圆形和三角形。示例二维(或基本上平面的形状)包括但不限于圆形、正方形、矩形、椭圆形和三角形。
在第三处理工作流程(图3)中,差异功能化方法在包含三维特征的结构301上进行。在这种情况下,包含孔303的表面用第一组分子302进行层积,其中第一组分子304包含与表面上的反应性功能基团结合的试剂。将包含限定表面的孔的图案中的开口的阴影掩模305置于该表面的顶部表面上,并且施加EMR穿过掩模306。EMR处理导致第一组分子从孔中切下,并且将剩余物质洗掉,以生成表面,表面包含涂覆有第一组分子层的表面和具有不含第一组分子层的表面的孔307。将第二组分子308沉积到表面上,其中材料与孔表面上的暴露的反应性功能基团发生化学反应以沿着孔表面形成第二组分子层309。在一些情况下,第一组分子包含不与生物分子反应的钝化剂。在一些情况下,第二组分子包含与生物分子反应的活性剂。在一些情况下,三维表面包含限制在孔的表面的活性功能化区域。在一些情况下,活性功能化的孔对核苷具有反应性并且支持寡核酸的附接及合成。
在一些情况下,本文公开的图案化工艺包括顺序地将包含钝化剂的第一材料施加到表面,并且将包含活性剂的第二组分子施加到表面。在一些情况下,由图1-3中的任一个例示的图案化工艺包括顺序地将包含活性剂的第一材料施加到表面,并且将包含钝化剂的第二材料施加到表面。在一些情况下,将如由图1-3中的任一个所示的图案化工艺修改为省略将第一或第二材料施加到表面的步骤。例如,第一材料使用EMR在表面上进行图案化,而不含第一材料的表面区域则通过不包括材料沉积的化学反应进行修饰。
在一些情况下,沉积在表面上的材料包含活性剂和钝化剂两者。在一些情况下,第一材料和第二材料两者均包含活性剂。在一些情况下,第一材料和第二材料两者均包含钝化剂。在一些情况下,沉积在表面上的材料包含失活或对具有生物分子的化学物质不发生反应的活性剂(即未活化的活性剂)。
在第四处理工作流程中,在一种方法中用活性功能化区域对表面进行图案化,该方法包括:将未活化的活性剂沉积到表面,用EMR进行图案化并激活该活性剂(图4)。该工作流程大致分为以下过程:(A)表面制备;(B)使第一组分子的未活化的活性剂与该表面的反应性功能基团反应;(C)通过从表面在暴露于经由阴影掩模施加的EMR的区域处切割该第一组分子来对表面进行图案化;(D)将第二组分子沉积到第一组分子已去除的区域;以及(E)激活未活化的活性剂。在一些实施方式中,一个或多个工作流程过程根据所处理的表面的要求是可选的和/或进行修改。
在该工作流程中,结构401包括表面402。表面402任选地以湿法和/或干法工艺进行清洗以去除有机污染物。将包含未活化的活性剂的第一组分子403沉积到表面402上,其中它与该表面的反应性功能基团结合以在整个表面上产生未活化的活性层(图4,B部分)。随后通过在将表面的限定区域404暴露于EMR 405期间从所述区域切割未活化的活性层而对该未活化的活性层进行图案化(图4,C部分)。将阴影掩模406置于该表面上,使得所限定的区域404通过该阴影掩模中的开口407暴露于EMR 405。通过洗涤将切割的、未活化的活性材料从该表面去除,随后进行干燥步骤(未示出)。将第二组分子408沉积到该表面上以与暴露的限定区域404处的表面功能基团反应,从而形成图案化的第二组分子层(图4,D部分)。通过将活化剂409施加到该表面来激活所述非活化的活性剂(图4,E部分)。在一些情况下,功能化表面的活化区域支持核酸单体的附接,而其余区域则对该核酸单体反应无反应性。
在一些情况下,将用于图案化方法的第四处理工作流程应用于包括三维特征的表面。在一些情况下,三维特征包括提供结构501的两个或更多个表面之间的流体连通的通道503。在第一步骤中,表面与包含未活化的活性剂的第一组分子层502结合(图5,A部分)。包含限定该表面之特征的图案中的开口的阴影掩模504置于该表面上,并且通过该掩模施加EMR 505(图5,B部分)。在EMR从通道的暴露区域切割未活化的活性剂层之后,将残留试剂洗掉。将第二组分子506沉积到该表面上,其与通道的暴露表面发生化学反应以生成差异功能化的表面(图5,C部分)。在一些情况下,激活非活性(non-active)的活性剂。在一些情况下,以上述方式制备的功能化表面的活化区域支持将核酸单体附接到其表面,而其余区域则对该核酸单体无反应性。
在第五处理工作流程中,对结构的表面进行图案化以包含用活性剂功能化的区域和用钝化剂功能化的不同区域,其中活性功能化区域与寡核酸层结合。在一些情况下,该寡核酸层是在寡核酸合成反应期间预定序列的寡核酸从其延伸的平台。在一些情况下,该平台的寡核酸包含约10至约100个具有共有的寡核酸序列或多个不同序列的核碱基。根据该表面的需要和/或从所述平台延伸的寡核酸的同一性,寡核酸平台的长度和同一性是可调的。该工作流程大致分为以下过程:(A)表面制备;(B)将包含活性剂的第一组分子沉积到该表面以与所述表面结合;(C)从结合的活性剂层延伸寡核酸平台;(D)通过从该表面在暴露于经由阴影掩模施加的EMR的区域处切割该活性剂和寡核酸平台层来对该表面进行图案化;(E)将第二组分子沉积到所述活性层已去除的区域;以及(F)从平台寡核酸延伸预定的寡核酸序列(图6)。在一些实施方式中,一个或多个工作流程过程根据所处理的表面的要求是可选的和/或进行修改。
参照图6,提供了包含表面602的结构601。在一些情况下,表面602在施加涂层材料之前通过湿法或干法清洗工艺进行准备。在一些情况下,表面602沉积有第一组分子,该第一组分子包含与表面602的功能基团和核苷反应的活性剂603。结合的活性剂与核碱基反应,并且从该活性剂表面延伸寡核酸层以生成寡核酸平台604。将保护基团施加到寡核酸平台的末端(未示出)。随后通过经由暴露于EMR 606从该表面的限定区域605去除所述层来对活性剂层和寡核酸平台层进行图案化。将阴影掩模607置于表面上,使得仅限定的区域605通过该阴影掩模中的开口608暴露于EMR 606。涂覆在该表面的暴露区域上的活性剂层和平台寡核酸层从该表面切下,并用合适的洗涤溶液洗掉。在对该表面进行图案化之后,暴露区域605的表面功能基团与沉积到表面602上的第二组分子609反应,致使差异功能化表面包含具有从其延伸的寡核酸平台的活性功能化区域。将平台寡核酸脱保护,并且进行从所述平台延伸寡核酸610的预定序列。
激光器
本文提供了表面功能化方法,其中EMR由激光器提供,其无须使用阴影掩模。通常,工艺步骤包括:(A)表面制备;(B)在该表面上沉积第一组分子;(C)通过从表面在暴露于由激光器施加的EMR的区域处切割该第一组分子进行图案化;(D)去除所切割的第一组分子;以及任选地(E)将第二组分子沉积到第一组分子已去除的区域。
使用激光器的益处在于在特定位置处将EMR施加到表面上并且不需要阴影掩模。与灯相比,在基底结构(例如,板或柔性表面)移动时使用快门来调节ERM暴露。在这种布置中,基底结构的运动速度和方向结合激光器的角度和位置是确定表面图案化的因素。
参照图7A,提供了输送带701。输送带701使用输送带701的两端处的两个辊703移动,以便移动输送带701。带或带上的材料具有经选择用于通过本文所述的光发射方法进行表面图案化的区域。在一些情况下,所述输送带包含尼龙,或在带的顶部上的单独层包含尼龙。在一些情况下,首先将本文所述的钝化功能化剂层沉积在所述带的表面上。输送带701的移动与激光发射装置713中的快门的定时相协调,使得基底材料在需要EMR暴露的特定区域中暴露于激光束711。通过洗涤将所切割的分子从所述表面去除,随后进行干燥步骤。将第二组分子沉积到该表面上以与暴露的限定区域处的表面功能基团反应,从而形成图案化的第二组分子层。第二组分子为活性功能化剂,其包含能够结合该表面并且还与核苷偶联的反应性基团。在备选的布置中(图7B),输送带701包含刚性材料,如小板705,预选该区域进行表面图案化。在一些情况下,刚性板为硅。参照图7C,使用卷到卷控制器715移动卷带709。在一些情况下,该卷带以类似的方式暴露于光源,导致该卷带具有化学图案化表面。参照图7D,提供了平坦表面717(例如,硅板)以用于暴露于由激光发射装置713控制的激光束711。激光发射装置713与激光发射装置中的快门相协调地移动,使得该板在板的特定区域暴露于激光束711。在备选的方法中,本文所述的表面首先用活性功能化层处理,随后进行基于光的切割,并用钝化功能化剂处理。在一些布置中,为了暴露板的不同位置,要么激光源偏转,要么芯片沿X-Y或X-Y-Z轴移动。在一些情况下,第三、第四或第五图案化处理工作流程包括顺序地将包含活性剂的第一组分子施加到表面,用EMR进行图案化,以及将包含钝化剂的第二组分子施加到表面。在一些情况下,第三、第四或第五图案化处理工作流程包括顺序地将包含钝化剂的第一组分子施加到表面,用EMR进行图案化,以及将包含活性剂的第二组分子施加到表面。在一些情况下,将第三、第四或第五图案化处理工作流程修改为省略将第一或第二组分子施加到表面。在一些情况下,第一组分子和/或第二组分子包含活性剂和钝化剂两者。在一些情况下,第一组分子和第二组分子两者均包含活性剂。在一些情况下,第一组分子和第二组分子两者均包含钝化剂。
用于包含在本文所述的一组分子中的示例性活性剂包括但不限于N-(3-三乙氧基甲硅烷基丙基)-4-羟基丁酰胺(HAPS)、11-乙酰氧基十一烷基三乙氧基硅烷、正癸基三乙氧基硅烷、(3-氨丙基)三甲氧基硅烷、(3-氨丙基)三乙氧基硅烷、3-缩水甘油基氧基丙基三甲氧基硅烷(GOPS)、3-碘-丙基三甲氧基硅烷、丁基-醛-三甲氧基硅烷、二聚仲氨烷基硅氧烷、(3-氨丙基)-二乙氧基-甲基硅烷、(3-氨丙基)二甲基-乙氧基硅烷和(3-氨丙基)-三甲氧基硅烷、(3-缩水甘油基氧基丙基)-二甲基-乙氧基硅烷、缩水甘油基氧基-三甲氧基硅烷、(3-巯基丙基)-三甲氧基硅烷,3-4环氧环己基-乙基三甲氧基硅烷以及(3-巯基丙基)-甲基-二甲氧基硅烷、烯丙基三氯氯硅烷、7-辛-1-烯基三氯氯硅烷或双(3-三甲氧基甲硅烷基丙基)胺。用于包含在本文所述的一组分子中的钝化剂包括但不限于全氟辛基三氯硅烷;(十三氟-1,1,2,2-四氢辛基三氯硅烷;(十三氟-1,1,2,2-四氢辛基)三甲氧基硅烷;1H,1H,2H,2H-氟辛基三乙氧基硅烷(FOS);三氯(1H,1H,2H,2H-全氟辛基)硅烷;叔丁基-[5-氟-4-(4,4,5,5-四甲基-1,3,2-二氧硼杂环戊烷-2-基)吲哚-1-基]-二甲基-硅烷;CYTOPTM;FluorinertTM;全氟辛基三氯硅烷(PFOTCS);全氟辛基二甲基氯硅烷(PFODCS);全氟癸基三乙氧基硅烷(PFDTES);五氟苯基-二甲基丙基氯-硅烷(PFPTES);全氟辛基三乙氧基硅烷;全氟辛基三甲氧基硅烷;辛基氯硅烷;二甲基氯十八烷基硅烷;甲基二氯十八烷基硅烷;三氯十八烷基硅烷;三甲基十八烷基硅烷;三乙基十八烷基硅烷;或十八烷基三氯硅烷。
在一些情况下,活性功能化区域包含活性剂和钝化剂的组合,使得活性功能化区域包含比仅与活性剂反应的区域更低密度的活性功能化剂。类似地,在一些情况下,将两种或更多种活性剂组合以调节活性功能化区域的表面性质。在一些情况下,制备用于寡核酸合成的活性功能化表面,并且通过调节结构表面上的活性剂的密度,得以调节从所述表面延伸的寡核酸的密度。
在本文公开的任何表面中,寡核酸延伸步骤包括延伸至少约10、25、50、75、100、125、150、200、500、1000、2000个或更多个碱基的长度。在一些情况下,合成长度为约25个碱基至2kb、25个碱基至150个碱基或25个碱基至500个碱基的寡核酸。
微接触印刷
本文提供了表面功能化方法,其通过使用将活性剂和/或钝化剂微接触印刷至选定表面如板(例如,硅板)上,在需要该活性剂和/或钝化剂的表面的特定区域处将该活性剂和/或钝化剂直接施加到选定表面上。表面的活性功能化涉及将活性功能化剂或活性剂微接触印刷到该表面上,其中该试剂与该表面的功能基团结合。表面的钝化功能化涉及将钝化功能化剂或钝化剂微接触印刷到该表面上,其中该试剂与该表面的功能基团结合。在一些情况下,活性功能化剂与表面上的反应性基团结合并且包含与特定生物分子反应的功能基团,从而支持与该表面的偶联反应。如本文所用,用于微接触印刷的“上墨”印模是指在印模上沉积待施加到表面的试剂,例如本文所述的活性剂或钝化剂。在备选的布置中,类似的微接触印刷方法在柔性表面(例如,卷带或输送带)上进行。
在对板(例如,硅板)上的钝化剂进行图案化的示例性工作流程中,使用UV光刻工艺制造聚二甲基硅氧烷(PDMS)印模。涂覆有光致抗蚀剂的硅晶片暴露于穿过掩模的UV光,在硅晶片上形成图案。然后将曝光的晶片暴露于显影剂溶液,形成用于浇铸PDMS印模的母模。将PDMS预聚物与固化剂混合并倒在所制备的母模上。然后将固化的印模从模板上剥离以备上墨。成品印模为约100μm至约1cm厚,并且印模的凸起部分的范围为约1μm至约500μm。在备选的布置中,类似的微接触印刷方法在柔性表面(例如,卷带或输送带)上进行。
印模用含有钝化剂(例如,(十三氟-1,1,2,2-四氢辛基)三氯硅烷或(十三氟-1,1,2,2-四氢辛基)三甲氧基硅烷)的溶液上墨。上墨后,将钝化剂溶液转移至板。在冲压微芯片时注意不要使印模变形。在重新加载印模之前,每个上墨的印模用于对三个微芯片进行图案化。或者,将油墨连续施加到图案化的辊印模上,并将油墨从辊转移至移动带上。在备选的布置中,类似的微接触印刷方法在柔性表面(例如,卷带或输送带)上进行。然后使用CVD将活性剂沉积在未处理的区域上。
在对硅板上的活性剂进行图案化的备选工作流程中,使用UV光刻工艺制造聚二甲基硅氧烷(PDMS)印模。涂覆有光致抗蚀剂的硅晶片暴露于穿过掩模的UV光,在该硅晶片上形成图案。然后将曝光的晶片暴露于显影剂溶液,形成用于浇铸PDMS印模的母模。将PDMS预聚物与固化剂混合并倒在所制备的母模上。然后将固化的印模从模板上剥离以备上墨。成品印模为约100μm至约1cm厚,并且印模的凸起部分的范围为约1μm至约500μm。在备选的布置中,类似的微接触印刷方法在柔性表面(例如,卷带或输送带)上进行。
印模用含有活性剂(例如,3-缩水甘油基氧基丙基三甲氧基硅烷(GOPS))的溶液上墨。上墨后,将活性剂溶液转移至结构的表面。在冲压微芯片时注意不要使印模变形。在重新加载印模之前,每个上墨的印模用于对三个微芯片进行图案化。然后使用CVD将活性剂沉积在未处理的区域上。
在对硅板上的活性剂和钝化剂进行图案化的另一工作流程中,使用UV光刻工艺制造聚二甲基硅氧烷(PDMS)印模。涂覆有光致抗蚀剂的两个硅晶片暴露于通过互补掩模的UV光,在每个硅晶片上形成互补图案。然后将曝光的晶片暴露于显影剂溶液,形成用于浇铸PDMS印模的母模。将PDMS预聚物与固化剂混合并倒在所制备的母模上。然后将固化的印模从模板上剥离以备上墨。成品印模为约100μm至约1cm厚,并且印模的凸起部分的范围为约1μm至约500μm。
第一印模用含有活性剂如3-缩水甘油基氧基丙基三甲氧基硅烷(GOPS)的溶液上墨。上墨后,将活性剂溶液转移至硅板。第二印模用含有钝化剂如(十三氟-1,1,2,2-四氢辛基)三氯硅烷的溶液上墨。上墨后,将钝化剂溶液转移至印有活性剂的硅板。在冲压微芯片时注意不要使印模变形。在重新加载印模之前,每个上墨的印模用于对三个微芯片进行图案化。在备选的布置中,类似的微接触印刷方法在柔性表面(例如,卷带或输送带)上进行。
结构和材料
本文所述的用于受控的化学表面图案化的方法可以应用于多种结构。在一些情况下,结构为大约标准96孔板的尺寸,例如约100至200mm乘约50至150mm。在一些情况下,基底具有小于或等于约1000mm、500mm、450mm、400mm、300mm、250nm、200mm、150mm、100mm或50mm的直径。在一些情况下,结构的直径为约25mm至1000mm、约25mm至约800mm、约25mm至约600mm、约25mm至约500mm、约25mm至约400mm、约25mm至约300mm或约25mm至约200mm。结构尺寸的非限制性实例包括约300mm、200mm、150mm、130mm、100mm、76mm、51mm和25mm。在一些情况下,基底具有至少约100mm2、200mm2、500mm2、1,000mm2、2,000mm2、5,000mm2、10,000mm2、12,000mm2、15,000mm2、20,000mm2、30,000mm2、40,000mm2、50,000mm2或更大的平面表面积。在一些情况下,结构在第一维度上的长度为至少约0.1、0.2、0.3、0.4、0.5、1、2、3、4、6、8、10、16、24、39、50、100英尺或更大,并且在第二维度上的长度为至少约0.1、0.2、0.3、0.4、0.5、1、2、3、4、6、8、10、16、24、39、50、100英尺或更大。对于较大的结构,可以使用诸如玻璃、金属或塑料的材料。在一些情况下,用于化学表面图案化的结构为柔性材料,如卷带或带。
在一些情况下,结构的厚度为约50mm至约2000mm、约50mm至约1000mm、约100mm至约1000mm、约200mm至约1000mm或约250mm至约1000mm。结构厚度的非限制性实例包括约0.1mm、0.2、0.3mm、0.4mm、0.5mm、1mm、5mm、10mm、50mm、100mm、200mm、250mm、275mm、375mm、525mm、625mm、675mm、725mm、775mm和925mm。在一些情况下,基底的厚度随直径而变化,并取决于基底的组成。例如,包含硅之外的材料的结构可具有与相同直径的硅基底不同的厚度。结构厚度可以取决于所用材料的机械强度,并且该基底必须足够厚以在操作期间支撑其自身重量而不会破裂。
在一些情况下,本文所述的结构包含多个较小的区域,例如至少约2、4、6、8、10、16、24、39、50、100、200、250、500、1000、5000、6000、7500、9000、10000、20000、30000、50000、100000、500000、1000000个或更多个区域,其中每个区域可独立于另一区域使用。在一些情况下,结构的区域是基底的子域或芯片。在一些情况下,提及基底包括基底的区域。
用于使用本文所述的方法和系统在本文所述的结构上进行图案化的表面由适合于图案化表面的下游应用的任何材料制成。作为一个实例,表面包含在化学反应(例如,寡核酸合成反应)期间对施加到表面的化学物质和/或热量具有耐受性的材料。在一些情况下,表面包含对可见光和/或UV光透明的材料。在一些情况下,表面包含导电材料。在一些情况下,表面包含柔性和/或刚性材料。刚性材料包括但不限于玻璃;熔融石英;硅如二氧化硅或氮化硅;金属如金或铂;塑料如聚四氟乙烯、聚丙烯、聚苯乙烯、聚碳酸酯,及其任何组合。刚性表面可以由选自硅、聚苯乙烯、琼脂糖、葡聚糖、纤维素聚合物、聚丙烯酰胺、聚二甲基硅氧烷(PDMS)和玻璃的材料制成。基底/固体支持物或者其中的显微结构、反应器可使用本文所列材料或本领域中已知的任何其他合适的材料的组合制成。
术语“柔性”在本文中用于指能够弯曲、折叠或类似地操作而不破损的结构。在一些情况下,柔性表面围绕辊弯曲至少30度。在一些情况下,柔性表面围绕辊弯曲至少180度。在一些情况下,柔性表面围绕辊弯曲至少270度。在一些情况下,柔性表面围绕辊弯曲至少约360度。在一些情况下,辊的半径小于约10cm、5cm、3cm、2cm或1cm。在一些情况下,在20℃下,将该柔性表面在任一方向上反复弯曲和拉直至少100次而不会失效(例如,破裂)或变形。在一些情况下,本文所述的柔性表面具有适合滚动的厚度。在一些情况下,本文所述的柔性表面的厚度小于约50mm、10mm、1mm或0.5mm。
示例性柔性材料包括但不限于尼龙(未改性尼龙、改性尼龙、透明尼龙),硝化纤维素,聚丙烯,聚碳酸酯,聚乙烯、聚氨酯,聚苯乙烯,缩醛,丙烯酸,丙烯腈,丁二烯苯乙烯(ABS),聚酯薄膜如聚对苯二甲酸乙二醇酯、聚甲基丙烯酸甲酯或其他丙烯酸,聚氯乙烯或其他乙烯基树脂,透明PVC箔、用于打印机的透明箔,聚(甲基丙烯酸甲酯)(PMMA),甲基丙烯酸酯共聚物,苯乙烯聚合物,高折射率聚合物,含氟聚合物,聚醚砜,含有脂环结构的聚酰亚胺,橡胶,织物,金属箔及其任何组合。在一些情况下,本文中的尼龙和PMAA表面作为片材提供,或者作为在另一种材料如硅上涂覆的层来提供。各种增塑剂和改性剂可与聚合物基底材料一起使用以实现选定的柔性特性。
本文所述的表面可以包含多个座位,即用于寡核酸延伸的非连续的预定位置。在一些情况下,表面的座位物理地将表面的区域限定为用于功能化的区域。在一些情况下,表面的功能化区域限定该表面的座位。例如,与活性功能化剂结合的表面区域为该表面的座位。在一些情况下,本文所述的表面包含多个簇,其中每个簇任选地包含多个座位。在一些情况下,表面包含多个三维凸起和/或凹陷的特征,其中凸起和/或凹陷的特征任选地对应于簇和/或座位。三维特征包括但不限于孔、纳米孔、通道和立柱。在一些情况下,三维特征对应于簇,其中三维特征任选地包含多个座位。在一些情况下,表面包含对应于孔内多个座位的多个通道。
在一些情况下,本文所述的表面通过将一组分子的功能化剂与该表面的一个或多个限定区域结合而进行图案化。在一些情况下,所述表面通过将不同组分子的功能化剂与限定区域外的一个或多个区域结合而进行差异功能化。在一些情况下,将活性功能化剂与表面的特征结合,并且/或者限定表面的特征,其中该活性剂与生物分子发生化学反应。在一些情况下,该生物分子为核酸单体,并且活性功能化区域支持核酸单体附接及合成。在一些情况下,反应剂是与表面及功能化剂两者结合的粘合促进剂。在一些情况下,表面包含厚度为至少或至少约0.1nm、0.5nm、1nm、2nm、5nm、10nm或25nm的反应剂层。在一些情况下,粘合促进剂是具有高表面能的化学品。在一些情况下,表面包含在表面的不同区域或特征处具有高表面能的表面和具有低表面能的表面。在这类情况下,特征和/或特征处的流体接触区域的接近度由高能量区域和低能量区域的图案化布置来控制。
在一些情况下,表面通过将功能化剂与表面的反应剂结合而进行功能化。在一些情况下,表面通过将不同的功能化剂与表面的不同区域结合而进行差异功能化。差异功能化是指在表面上产生两个或更多个不同区域的过程,其中至少一个区域具有与同一表面的另一区域不同的表面或化学性质。这些性质包括但不限于表面能、化学终止、亲水性、疏水性和化学部分的表面浓度。
表面功能化通过导致表面的化学性质变化的任何合适的工艺来实现。在一些情况下,功能化包括将功能化剂施加(例如,沉积)到表面,其中该功能化剂与该表面上的功能基团结合。通常,这导致功能化剂的自组装单层(SAM)的沉积。在一些情况下,功能化剂与厚度为大于约0.5nm、1nm、2nm、3nm、5nm、10nm、20nm或50nm的结构相结合。在一些情况下,功能化包括通过任何沉积技术将功能化剂沉积到结构上,所述沉积技术包括但不限于化学汽相沉积(CVD)、原子层沉积(ALD)、等离子体增强CVD(PECVD)、等离子体增强ALD(PEALD)、金属有机CVD(MOCVD)、热丝CVD(HWCVD)、引发CVD(iCVD)、改进型CVD(MCVD)、汽相轴向沉积(VAD)、外汽相沉积(OVD)、物理汽相沉积(例如,溅射沉积、蒸发沉积)以及分子层沉积(MLD)。
在一些情况下,与功能化之前的区域相比或与表面的其他区域相比,该表面在更加亲水或疏水的区域处进行功能化。在一些情况下,将表面改性为具有在一个或多个非弯曲、光滑或平面等同表面上测得的大于90°、85°、80°、75°、70°、65°、60°、55°、50°、45°、40°、35°、30°、25°、20°、15°或10°的水接触角差异。在一些情况下,将三维特征改性为具有对应于在非弯曲、光滑或平面等同表面上测得的大于90°、85°、80°、75°、70°、65°、60°、55°、50°、45°、40°、35°、30°、25°、20°、15°或10°的水接触角差异的不同疏水性。除非另有说明,本文提及的水接触角对应于在所讨论的表面的非弯曲、光滑或平面等同物上进行的测量。在一些情况下,表面用亲水区域和疏水区域进行差异功能化。在一些情况下,亲水表面用疏水剂的图案进行功能化。在一些情况下,疏水表面用亲水剂的图案进行功能化。
在一些情况下,通过清洗表面以去除可干扰表面与功能化剂结合的微粒来准备用于功能化的表面。表面清洗包括湿法和/或干法工艺。在一些情况下,在升高的温度(例如,120℃)下用水虎鱼溶液(90%H2SO4,10%H2O2)湿法清洗表面。然后用合适的溶剂如水洗涤该表面,并干燥(例如,氮气)。水虎鱼后处理是任选的,其包括将水虎鱼处理过的表面浸泡在碱性溶液(例如,NH4OH)中并随后进行水洗(例如,水)。在一些情况下,任选地在水虎鱼洗涤和任选的水虎鱼后处理之后,对表面进行等离子体清洗。等离子体清洗工艺的实例包括氧等离子体蚀刻。
在一些情况下,表面用活性剂和/或钝化剂进行功能化。表面的活性功能化涉及将活性功能化剂或活性剂沉积到表面,其中该试剂与表面的功能基团结合。表面的钝化功能化涉及将钝化功能化剂或钝化剂沉积到表面,其中该试剂与表面的功能基团结合。在一些情况下,活性功能化剂与表面上的反应性基团结合并且包含与特定生物分子发生反应的功能基团,从而支持与表面的偶联反应。在一些情况下,活性功能化剂包含能够在偶联反应中与核苷结合的羧基、巯基或羟基官能团。在一些情况下,钝化剂结合在具有高表面能的表面区域。在一些情况下,钝化功能化剂与表面上的反应性基团结合,但不含与特定生物分子结合的可用功能基团。在生物分子是核苷的情况下,钝化剂不能有效地与核苷结合,从而阻止核酸附接及合成。在一些情况下,将活性和钝化功能化剂两者混合并与表面的特定区域结合。这种混合物提供了活性功能化剂的稀释区域,并因此降低了在该特定区域处与活性剂结合的任何生物分子的密度。在一些情况下,对某些表面如尼龙和PMMA的功能化允许一步工艺,这样无须沉积活性剂层。
在一些情况下,表面的功能化包括将功能化剂沉积到表面,其中该试剂自组装为表面上的层。自组装试剂的非限制性实例包括正十八烷基三氯硅烷、11-溴十一烷基三氯硅烷、1H,1H,2H,2H-全氟-癸基三氯硅烷、N-[3-(三甲氧基甲硅烷基)丙基]-乙二胺、(3-氨丙基)三甲氧基硅烷、(3-氨丙基)三乙氧基硅烷、(3-巯基丙基)三甲氧基硅烷、PEG硅烷(具有三氯硅氧烷、三甲氧基硅氧烷或三乙氧基硅氧烷官能团)、N-(6-氨基己基)-3-氨丙基三甲氧基硅烷、苯基三氯硅烷、苄基三氯硅烷、正十八烷基三甲氧基硅烷、十七氟-1,1,2,2-四氢-癸基-1-三甲氧基硅烷、3,3,3-三氟丙基三甲氧基硅烷、(4-氯甲基)苯基三甲氧基硅烷、18-十九碳烯基三氯硅烷和2,2,2-三氟乙基十一碳-10-烯酸。
在一些情况下,活性功能化剂包含与结构的表面结合的硅烷基团,而分子的其余部分提供了与表面的距离以及生物分子所附接的末端上的游离羟基。硅烷的非限制性实例包括N-(3-三乙氧基甲硅烷基丙基)-4-羟基丁酰胺(HAPS)、11-乙酰氧基十一烷基三乙氧基硅烷、正癸基三乙氧基硅烷、(3-氨丙基)三甲氧基硅烷、(3-氨丙基)三乙氧基硅烷、3-缩水甘油基氧基丙基三甲氧基硅烷(GOPS)、3-碘-丙基三甲氧基硅烷。在一些情况下,硅烷为氨基硅烷。在一些情况下,硅烷为有机官能烷氧基硅烷分子。有机官能烷氧基硅烷分子的非限制性实例包括丁基-醛-三甲氧基硅烷;二聚仲氨烷基硅氧烷;氨基硅烷如(3-氨丙基)-三乙氧基硅烷、(3-氨丙基)-二乙氧基-甲基硅烷、(3-氨丙基)-二甲基-乙氧基硅烷和(3-氨丙基)-三甲氧基硅烷;缩水甘油基氧基硅烷如(3-缩水甘油基氧基丙基)-二甲基-乙氧基硅烷和缩水甘油基氧基-三甲氧基硅烷等;以及巯基硅烷如(3-巯基丙基)-三甲氧基硅烷、3-4环氧环己基-乙基三甲氧基硅烷和(3-巯基丙基)-甲基-二甲氧基硅烷。有机官能硅烷包括硅氧烷如羟烷基硅氧烷,包括作为3-羟丙基前体的烯丙基三氯氯硅烷和作为8-羟基辛基前体的7-辛-1-烯基三氯氯硅烷;二醇(二羟基烷基)硅氧烷,包括缩水甘油基三甲氧基硅烷衍生的(2,3-二羟基丙氧基)丙基(GOPS);氨基烷基硅氧烷,包括3-氨丙基三甲氧基硅烷;以及二聚仲氨烷基硅氧烷,包括作为双(甲硅烷基丙基)胺前体的双(3-三甲氧基甲硅烷基丙基)胺。
在一些情况下,钝化功能化剂包含硅烷基团,例如,全氟辛基三氯硅烷、(十三氟-1,1,2,2-四氢辛基)三氯硅烷或十三氟-1,1,2,2-四氢辛基)三甲氧基硅烷。在一些情况下,钝化功能化剂包含全氟辛基三乙氧基硅烷。在一些情况下,钝化功能化剂包含全氟辛基三甲氧基硅烷。在一些情况下,钝化功能化剂包含烃硅烷,例如十八烷基三氯硅烷或类似物。在一些情况下,钝化功能化剂包含氟硅烷。在一些情况下,钝化功能化剂包含烃硅烷和氟硅烷的混合物。氟硅烷的非限制性实例包括1H,1H,2H,2H-氟辛基三乙氧基硅烷(FOS)、三氯(1H,1H,2H,2H-全氟辛基)硅烷、叔丁基-[5-氟-4-(4,4,5,5-四甲基-1,3,2-二氧硼杂环戊烷-2-基)吲哚-1-基]-二甲基-硅烷、CYTOPTM、FluorinertTM和前体全氟辛基三氯硅烷(PFOTCS)、全氟辛基二甲基氯硅烷(PFODCS)、全氟癸基三乙氧基硅烷(PFDTES)以及五氟苯基-二甲基丙基氯-硅烷(PFPTES)。在一些情况下,钝化功能化剂包含有机官能烷氧基硅烷分子。有机官能烷氧基硅烷分子的非限制性实例包括二甲基氯十八烷基硅烷;甲基二氯十八烷基硅烷;三氯十八烷基硅烷;三甲基十八烷基硅烷;以及三乙基-十八烷基-硅烷。
在一些情况下,本文所述的表面功能化分子包括交联剂以允许两个不同分子实体的偶联。示例性的交联剂包括N-羟基琥珀酰亚胺酯(NHS酯)(其与伯胺反应以产生稳定的酰胺键)、磺基-NHS酯(其在N-羟基琥珀酰亚胺环上另外含有磺酸(-SO3)基团)、亚氨酸酯和巯基反应性交联剂(例如,马来酰亚胺、卤代乙酰基和吡啶基二硫化物)。
在一些情况下,本文所述的表面用试剂的混合物进行图案化。在一些情况下,混合物包含至少2、3、4、5种或更多种不同类型的功能化剂。在一些情况下,混合物中的至少两种类型的表面功能化剂的比率为约1:1、1:2、1:5、1:9、1:10、2:10、3:10、4:10、5:10、6:10、7:10、8:10、9:10、5:95、1:100、1:150、1:200或用以达到两种基团的所需表面呈现的任何其他比率。在一些情况下,通过向表面提供合适比率的功能化剂来实现期望的表面张力、润湿性、水接触角和/或针对其他合适的溶剂的接触角。在一些情况下,混合物中的试剂选自合适的反应性和惰性部分,从而将反应性基团的表面密度稀释成用于下游反应的期望水平。在一些情况下,功能化剂的混合物包含一种或多种与生物分子结合的试剂和一种或多种不与生物分子结合的试剂。因此,试剂的调节允许控制在不同的功能化区域发生的生物分子结合的量。
在一些情况下,通常通过存在于表面上的反应性亲水部分,在有效将硅烷偶联至表面的反应条件下,用包含硅烷混合物的一组分子使表面功能化。在一些情况下,活性功能化区域包含一种或多种不同种类的硅烷,例如,1、2、3、4、5、6、7、8、9、10种或更多种硅烷。在一些情况下,该一种或多种硅烷中的一种以相比于另一种硅烷更高的量存在于功能化组合物中。例如,具有两种硅烷的混合硅烷溶液包含99:1、98:2、97:3、96:4、95:5、94:6、93:7、92:8、91:9、90:10、89:11、88:12、87:13、86:14、85:15、84:16、83:17、82:18、81:19、80:20、75:25、70:30、65:35、60:40、55:45的一种硅烷与另一种硅烷比。在一些情况下,活性功能化剂包含11-乙酰氧基十一烷基三乙氧基硅烷和正癸基三乙氧基硅烷。在一些情况下,活性功能化剂包含比率为约20:80至约1:99、或约10:90至约2:98、或约5:95的11-乙酰氧基十一烷基三乙氧基硅烷和正癸基三乙氧基硅烷。
在一些情况下,功能化剂用保护基团进行修饰,该保护基团在功能化方法的工艺步骤期间保护该试剂。例如,活性剂与表面结合,其中寡核酸平台得以生长。该平台的寡核酸用三苯甲基保护基团保护,使得该寡核酸在随后的图案化工艺步骤中无反应性。然后将保护基团去除或脱保护,以允许持续的寡核酸合成。示例性的保护基团包括但不限于乙酰基、苯甲酰基、苄基、β-甲氧基乙氧基甲基醚、二甲氧基三苯甲基、[双-(4-甲氧基苯基)苯基甲基]、甲氧基甲基醚、甲氧基三苯甲基[(4-甲氧基苯基)二苯甲基、对甲氧基苄基醚、甲硫基甲基醚、新戊酰基、四氢吡喃基(用酸去除)、四氢呋喃、三苯甲基(三苯甲基,用酸和氢解去除)、甲硅烷基醚(三甲基硅烷基、叔丁基二甲基氯硅烷、三异丙基甲硅烷基氧基甲基和三异丙基甲硅烷基醚)、甲基醚和乙氧基乙基醚。用于去除这类保护基团的示例性试剂是本领域技术人员已知的。
在一些情况下,本文所述的表面包含多个簇、孔,或簇和孔,其中孔任选地对应于一个或多个簇。在一些情况下,簇的直径或宽度为约0.05mm至约10mm、约0.1mm至约10mm、约0.5mm至约10mm、约0.5mm至约5mm、约0.5mm至约2mm、约0.8mm至约2mm、约1mm至约2mm、约1mm至约1.5mm或约0.8mm至约1.5mm。在一些情况下,簇和/或孔的直径为约0.5、0.6、0.7、0.8、0.9、1、1.1、1.15、1.2、1.3.、1.4、1.5、1.6、1.7、1.8或2.0mm。在一些情况下,簇的直径或宽度小于或约为5mm、2mm、1.5mm、1mm、0.5mm、0.1mm或0.05mm。在一些情况下,表面包含具有约20um至约1,000um、约100um至约1,000um或约500um至约1,000um的高度的三维特征,例如孔或立柱。在一些情况下,三维特征的高度为小于约1,000um;小于约800um;或小于约600um。在一些情况下,该簇在孔内。在一些情况下,表面包含纹理表面。示例性的纹理表面包括具有距离表面约1至约1000nm、约250至约1000nm、约250至约750nm或约100至约500nm的高度或深度的凹陷(例如,孔)或突起(例如,立柱)。在一些情况下,纹理表面的每个特征的间距为距离表面的高度或深度的约0.5到约5倍。在一些情况下,纹理表面的每个特征的间距为距离表面的高度或深度的约0.5倍至约两倍。
在一些情况下,表面包含多个座位。座位可对应于表面上的限定平面区域(例如,圆形或正方形)、通道或微孔。在一些情况下,通道和/或微孔的高度或深度为约5um至约500um、约5um至约200um、约5um至约50um或约10um至约50um。在一些情况下,通道和/或微孔的高度小于100um、小于50um、小于30um或小于20um。在一些情况下,通道和/或微孔的高度或深度为约1、5、10、20、30、40、50、60、70、80、90、100um或更大。在一些情况下,座位、通道和/或微孔的宽度为约1um至约1000um或约0.1um至约500um。在一些情况下,座位、通道和/或微孔的宽度为约0.5um至约500um、约3um至约60um或约1um至约100um。在一些情况下,座位的宽度为约100um、80um、60um、40um、20um、10um、5um、1um或0.5um。在一些情况下,座位的宽度为约0.5至约60um。在一些情况下,座位的宽度为约0.5至约20um。在一些情况下,座位的直径为约0.5至约10um。在一些情况下,座位的宽度为约0.1、0.5、1、2、3、4、5、6、7、8、9、10、15、20、25、30或40um。在一些情况下,座位、通道和/或微孔的宽度为小于约100um、80um、50um、20um或10um或1um。在一些情况下,两个相邻座位、通道和/或微孔的中心之间的距离为约0.1um至约50um、约0.1um至约10um、约1um至约500um、约1um至约100um或约5um至约50um,例如,约20um。在一些情况下,座位、通道和/或微孔的宽度为约10um、20um、30um、40um、50um、60um、70um、80um、90um或100um。本文所述的座位可以是包括但不限于圆形、正方形、矩形、椭圆形和三角形的形状。如本文所用的术语“微孔”是指容纳液体的特征。暴露于光源的预定区域形成限定用于核酸延伸的座位的区域。在一些情况下,用于核酸延伸的预定区域具有但不限于圆形、椭圆形、矩形、矩形形状的周边。
微通道或微孔可具有小于1的宽深比(aspect ratio)。如本文所用,术语“宽深比”是指通道的宽度与该通道的深度的比值。因此,具有小于1的宽深比的通道的深度大于其宽度,而具有大于1的宽深比的通道的宽度大于其深度。在一些方面,微通道或微孔的宽深比可小于或等于约0.5、约0.2、约0.1、约0.05或更小。在一些情况下,微通道或微孔的宽深比可为约0.1。在一些情况下,微通道或通道的宽深比可为约0.05。本文所述的微结构,例如具有小于1、0.1或0.05的宽深比的微通道或微孔,可包括具有一个、两个、三个、四个、五个、六个或更多个转角、转弯等的通道。本文所述的微结构可包括关于特定分辨座位内所包含的所有微通道或微孔(例如,一个或多个交叉通道、这些通道中的一些通道、单一通道,以及甚至一个或多个微通道或微孔的一个部分或多个部分)所述的宽深比,例如小于1、0.1或0.05。在一些情况下,所述孔具有约1:1至1:15的宽深比。在一些情况下,所述孔具有约1:10的宽深比。在一些情况下,所述微通道具有约1:1至1:15的宽深比。在一些情况下,所述微通道具有约1:10的宽深比。
在一些情况下,表面包含多于约500、2,000、20,000、100,000、4000,000、500,000、8,000,000、1,000,000、3,000,000、5,000,000或10,000,000个特征。在一些情况下,表面包含密度为至少约1、5、10、20、50、100、150、200、300、400或500个特征/mm2的特征。在一些情况下,表面包含至少约10;500、1,000、5,000、6,000、8,000、10,000、15,000、20,000、30,000、50,000个或更多个簇。在一些情况下,簇包含约1至约10,000个座位。在一些情况下,表面包含超过约500、2,000、20,000、100,000、4000,000、500,000、8,000,000、1,000,000、3,000,000、5,000,000或10,000,000个座位。
在多个方面,表面包含一个或多个簇,其中簇包含多个座位。在一些情况下,表面的簇内的座位密度为至少或约1个座位/mm2、10个座位/mm2、100个座位/mm2、500个座位/mm2、1,000个座位/mm2或更大。在一些情况下,表面包含约10个座位/mm2至约500个座位/mm2或约50个座位/mm2至约200个座位/mm2。在一些情况下,簇内两个相邻座位的中心之间的距离为约10um至约500um、约10um至约200um或约10um至约100um。在一些情况下,簇内两个相邻座位的中心之间的距离小于约200um、150um、100um、50um、20um或10um。在一些情况下,约40、50、60、70、80、90、100、110、120、130、140、150、160、170、180、190、200、300、400、500个或更多个座位位于单簇内。在一些情况下,约50至约500个座位位于单簇内。在一些情况下,约100至约150个座位位于单簇内。在一些情况下,约100、110、115、120、125、130、135或140个座位位于单簇内。在一些情况下,约40、50、60、70、80、90、100、110、120、130、140、150、160、170、180、190、200、300、400、500个或更多个通道位于单孔内。在一些情况下,约50至约500个座位是位于单孔内的通道。在一些情况下,约100至约150个座位是位于单孔内的通道。在一些情况下,约100、110、115、120、125、130、135或140个通道位于单孔内。
在一些情况下,表面内的簇密度为至少或约1个簇/100mm2、1个簇/10mm2、1个簇/1mm2、10个簇/1mm2、50个簇/1mm2或更大。在一些情况下,表面包含约1个簇/10mm2至约10个簇/1mm2。在一些情况下,两个相邻簇的中心之间的距离小于约50um、100um、200um、500um、1000um或2000um或5000um。在一些情况下,两个相邻簇的中心之间的距离为约50um至约100um、约50um至约500um或约100um至约2000um。
在一些情况下,结构为大约标准96孔板的尺寸,例如约100至200mm乘约50至150mm。在一些情况下,表面为约140mm乘90mm。在一些情况下,本文所述的结构在任何维度上超过1、2、5、10、30、50或更多英尺长。在柔性结构的情况下,该柔性结构任选地以卷绕状态(例如,以卷轴)储存。在较大的刚性结构(例如,长度大于1英尺)的情况下,该刚性结构可在垂直或水平方向上进行功能化及储存。
在一些情况下,表面包含为96乘64排列的孔或簇的阵列。在一些情况下,印刷方向的间距为约1.125mm。在一些情况下,单簇包含约50至约500个座位。在一些情况下,单簇包含约100至约200个座位。在一些情况下,单簇包含约100至约150个座位。在一些情况下,单簇包含约120至140个座位。在一些情况下,单簇包含约120、121、122、123、124、125、126、127、128、129、130、131、132、133、134、135、136、137、138、139或140个座位。在一些情况下,表面包含至少500000、600000、700000、800000、900000或1000000个座位。
在一些情况下,结构包含多个较小区域,例如至少约2、4、6、8、10、16、24、39、50、100个或更多个区域,其中每个区域任选地被配置为独立于另一个区域使用。在一些情况下,表面的区域是结构的子域或芯片。在一些情况下,提及表面包括表面的区域。在一些情况下,该结构为140mm×90mm。
在一些情况下,表面具有小于约100mm2、200mm2、500mm2、1,000mm2、5,000mm2、10,000mm2、20,000mm2或50,000mm2的平面表面积。在一些情况下,结构的厚度为约50mm至约2000mm、约100mm至约1000mm或约250mm至约1000mm。结构厚度的非限制性实例包括275mm、375mm、525mm、625mm、675mm、725mm、775mm和925mm。在一些情况下,结构的厚度随直径而变化,并取决于结构的组成。在一些情况下,结构厚度取决于所用材料的机械强度,其中该结构必须足够厚以在操作期间支撑其自身重量而不会破裂。
在一些情况下,表面包含在表面修饰期间使表面与装置对准的结构。例如,切割标记、阴影掩模对准标记、基准点或其组合。在一些情况下,将表面进行标记。在一些情况下,表面包含有利于与试剂沉积装置对准的结构。
在多个方面,本文所述的结构包含通过蚀刻方法制备的三维特征。示例性的蚀刻方法包括:(1)对将被设计成具有三维特征的表面上的硅结构进行氧化;(2)对经氧化的表面施加光刻法以产生光致抗蚀剂掩模;(3)在不含光致抗蚀剂的结构的位置(在许多情况下超出氧化层)处进行蚀刻,以产生特征;以及(4)对光致抗蚀剂进行剥离。在一些实例中,使用深反应离子蚀刻(DRIE)来将垂直侧壁蚀刻至预定深度以生成孔。在一些情况下,仅蚀刻结构的一侧以产生三维特征。在一些情况下,蚀刻结构的两侧(例如,装置和操作侧)以产生三维特征。在一些过程中,作为通过DRIE进行蚀刻的备选或补充,使用SOI结构(绝缘体硅晶片上的硅),并且将操作层蚀刻到隐埋氧化物,其中隐埋氧化物用作蚀刻停止层。在结构的第二侧上进行光刻之后,剥离光致抗蚀剂以生成期望的三维图案。
光源
本文所述的光源提供了用于通过光解切割产生功能化图案化表面的EMR。EMR发射灯和激光器是本领域技术人员已知的,并且包括可商购的灯和激光器以及提供各种波长的DUV光的定制灯和激光器。
灯
本文所述的灯包括具有各种光源布置的灯,诸如圆柱形灯、发射光的平面灯以及具有大平面发射光的平面灯。在一些情况下,圆柱形灯在灯表面的区域与芯片表面之间具有可变的距离,其在一些情况下导致DUV暴露于芯片的均匀性降低。本文公开的圆柱形灯可安装在矩形光亮(反射)外壳中。在一些情况下,本文公开的灯包括准分子灯。本文公开的灯发射包括但不限于126nm、152nm和172nm的波长的DUV光。在一些情况下,本文的灯发射波长为172nm的DUV光。
在一些情况下,本文公开的灯包含平面发光板部分,该部分提供了将DUV光均匀暴露于目标表面。在一些情况下,DUV的均匀暴露提供了在芯片上比非平面的灯更均匀的表面暴露。在一些情况下,本文公开的灯包含能够提供将DUV暴露于更大的工作表面、提供更大的芯片或更多数目的有待同时处理的芯片的平面灯。例如,灯可包含6英寸×6英寸或更大的平面发光表面。在一些情况下,该平面发光表面具有至少4、16、36、64、144或更大平方英寸的表面积。
激光器
本文所述的激光器经由提供具有聚焦光发射的光的光学放大过程来提供ERM,从而允许将EMR精确地施加到功能化表面。对于本文中的激光器有用的波长包括但不限于152nm、172nm和193nm。示例性的激光器及其波长包括但不限于Ar2(126n m)、Kr2(146nm)、F2(157nm)、Xe2(172和175nm)、ArF(193n m)。在本文所述方法中使用的激光器包括准分子激光器和液浸技术。本文中的准分子激光器包括具有157nm波长的F2准分子激光器。在一些情况下,准分子激光器提供更高的分辨率,其对某些应用是有益的。液浸技术(也称为浸没式光刻法)使得能够使用数值孔径超过1.0的光学器件,并且使用液体如超纯的去离子水来提供高于空气的折射率。
系统
在一些情况下,本文提供了用于进行如本文所述的表面功能化方法的系统。在一些情况下,表面功能化系统包含用于将一种或多种试剂施加到表面的沉积装置。在一些情况下,表面功能化系统包含用流体处理表面的装置,例如流动池。在一些情况下,表面功能化系统包含用于在沉积装置与处理装置之间移动表面的装置。在一些情况下,表面功能化系统包含切割装置,该切割装置包括用于切割表面处的化学键的EMR源和用于在EMR源与表面之间定位的阴影掩模。
在一些情况下,本文所述的表面功能化方法采用包含沉积装置的系统,该沉积装置沉积表面功能化所必需的试剂,例如,活性剂、钝化剂和/或洗涤液。在其中功能化表面产物提供用于寡核酸合成的表面的一些情况下,沉积装置沉积合成试剂。在一些情况下,沉积装置沿X-Y方向移动以与表面的位置对准,并且任选地沿Z方向移动以密封表面,从而形成解析反应器。
在一些情况下,沉积装置包含多个沉积头,例如约1至约50个沉积头。在一些情况下,沉积头沉积与由另一个沉积头沉积的另一种试剂不同的试剂组分。在一些情况下,沉积头包含多个喷嘴,其中每个喷嘴任选地被配置为对应于表面上的簇。例如,对于具有256个簇的表面,沉积头包含256个喷嘴。在一些情况下,喷嘴沉积与另一个喷嘴不同的试剂组分。
本文进一步提供了与本文所述的能够使一个或多个表面功能化的功能化方法一起使用的自动化系统,该自动化系统包括:用于在表面上喷洒含有功能化剂的微滴的沉积装置;用于扫描邻近沉积装置的表面以选择性地使微滴沉积在指定位置的扫描传输器;用于处理该表面的流动池,其通过将表面暴露于一种或多种选择的流体使微滴沉积在该表面上;切割装置,其包括用于切割表面处的化学键的EMR源和用于在所述EMR源与表面之间定位的阴影掩模;以及用于使该表面相对于沉积装置和切割装置正确对准的对准单元。在一些情况下,EMR源包括无须使用阴影掩模的激光器。在一些情况下,该系统任选地包括用于在沉积装置与流动池之间移动该表面以在流动池中处理的处理传输器,其中所述处理传输器和所述扫描传输器是不同的元件。在其他情况下,该系统不包括处理传输器。
在一些情况下,沉积装置将功能化剂沉积到结构的表面上。在一些情况下,沉积装置将功能化剂沉积到表面的解析的簇、座位、孔、立柱和/或通道。在一些情况下,沉积装置沉积体积小于约1000、500、100、50、40或20pl且直径小于约200um、100um或50um的液滴。在一些情况下,沉积装置每秒沉积约1至10000、1至5000、100至5000或1000至5000个小液滴。
在一些情况下,在功能化方法过程中,将表面置于流动池内或密封在流动池内。在一些情况下,流动池提供液体的连续或不连续流动,该液体例如是含有对于表面中的反应所必需的试剂(例如,洗涤溶液)的那些液体。在一些情况下,流动池提供气体(例如氮气)的连续或不连续流动,以通常通过增强挥发性物质的蒸发来干燥表面。多种辅助装置可用于改善干燥并减少表面上的残留水分。这类辅助干燥装置的实例包括但不限于真空源、减压泵和真空罐。在一些情况下,表面功能化系统包含一个或多个流动池,诸如2、3、4、5、6、7、8、9、10或20个,和一个或多个表面,诸如2、3、4、5、6、7、8、9、10或20个。在一些情况下,流动池被配置为在功能化反应的一个或多个步骤期间保持试剂并向表面提供试剂。在一些情况下,流动池包括在表面的顶部上滑动的盖子并且可被夹紧到位以在表面边缘周围形成压力密封。适当的密封包括但不限于允许约1、2、3、4、5、6、7、8、9或10个大气压的密封。在一些情况下,打开流动池的盖子以允许进入施加装置如沉积装置。在一些情况下,表面功能化方法的一个或多个步骤在流动池内的表面上进行,而不进行表面的运输。
在一些情况下,表面功能化系统包含可用于功能化表面的下游应用的一个或多个元件。作为其中为寡核酸合成支持物准备功能化表面的一个实例,沉积装置被配置为沉积寡核酸试剂,如核碱基和偶联剂。
基因合成
本文提供了被配置为支持寡核酸附接及合成的差异功能化表面。图8中示出了示例性工作流程。该工作流程大致分为以下过程:(1)从头合成单链寡核酸文库,(2)连接寡核酸以形成更大的片段,(3)错误校正,(4)质量控制,以及(5)运输。在从头合成之前,预先选择预期的核酸序列或核酸序列组。例如,预先选择一组基因用于生成。
在示例性工作流程中,提供了包括表面层801的结构(图8)。在该实例中,对表面的化学物质进行功能化以改善寡核酸合成过程。表面本身可以是平面表面的形式或含有形状的变化,例如增大表面积的突起或纳米孔。在该工作流程实例中,所选择的高表面能分子支持寡核酸附接及合成。
在工作流程实例的第一步骤中,装置如寡核酸合成仪被设计为以逐步方式释放试剂,使得多个寡核酸从活性功能化表面区域平行地一次延伸一个残基,以生成具有预定核酸序列的寡聚物。在一些情况下,寡核酸在该阶段从表面上切下。切割包括例如使用氨或甲胺的气体切割。
将生成的寡核酸文库放置于反应室中。在该示例性工作流程中,反应室(也被称为“纳米反应器”)为硅涂覆的孔,其含有PCR试剂并降低到寡核酸文库上803。在寡核酸密封804之前或之后,添加试剂以从表面释放该寡核酸。在示例性工作流程中,寡核酸在纳米反应器密封805之后释放。一旦释放,单链寡核酸的片段杂交以跨越整个长程DNA序列。部分杂交805是可能的,因为每个合成的寡核酸被设计为具有与池中的至少一个其他寡核酸重叠的一小部分。
杂交后,寡核酸在PCA反应中组装。在PCA反应的聚合酶循环期间,寡核酸与互补片段退火并且空位由聚合酶填充。根据哪些寡核酸彼此发现,每个循环随机增加各个片段的长度。片段之间的互补性允许形成完整的大跨度双链DNA 806。
在PCA结束之后,将纳米反应器与表面分开807并定位以供与具有PCR引物的表面相互作用808。密封后,该纳米反应器经历PCR809并扩增较大的核酸。在PCR之后810,打开纳米室811,添加错误校正试剂812,将腔室密封813,并进行错误校正反应以去除来自双链PCR扩增产物的互补性差的错配碱基对和/或链814。打开并分离纳米反应器815。错误校正产物接下来经历另外的处理步骤,如PCR、核酸分选和/或分子条形码化,随后包装822以供运输823。
在一些情况下,采取质量控制措施。在错误校正之后,质量控制步骤包括例如与具有用于扩增错误校正产物的测序引物的晶片相互作用816,将晶片密封到含有错误校正产物的腔室中817,并执行另一轮扩增818。打开纳米反应器819,并且合并产物820并进行测序821。在一些情况下,核酸分选在测序之前进行。在做出可接受的质量控制检测之后,包装产品822获准进行运输823。
在一些情况下,基于聚合酶链反应(PCR)且非基于聚合酶循环组装(PCA)的策略可用于化学基因合成。此外,采用不同的策略和方法的非基于PCA的化学基因合成,包括酶促基因合成、退火和连接反应、通过杂合基因的两种基因的同时合成、鸟枪法连接和共连接、插入基因合成、经由DNA的一条链的基因合成、模板指导的连接、连接酶链反应、微阵列介导的基因合成、Blue Heron固体支持物技术、Sloning结构单元技术、RNA介导的基因组装、基于PCR的热力学平衡的由内向外法(TBIO)、结合双不对称PCR(DA-PCR)的两步总基因合成方法、重叠延伸PCR、基于PCR的两步DNA合成(PTDS)、连续PCR方法或任何其他本领域已知的合适方法,可与本文所述的方法和组合物结合使用,用于从较短的寡核苷酸来组装较长的多核苷酸。
在一些情况下,用于在本文所述表面上合成寡核酸的方法涉及以下步骤的迭代序列:将受保护的单体施加于表面特征的活性功能化表面以与该表面、连接体或与先前脱保护的单体连接;使所施加的单体脱保护,使得其能够与随后施加的受保护的单体反应;以及施加另一种受保护的单体进行连接。一个或多个中间步骤包括氧化和/或硫化。在一些情况下,一个或多个洗涤步骤在一个或全部步骤之前或之后。特别地,本公开内容的用于功能化表面上寡核酸合成的方法为亚磷酰胺方法,其包括在亚磷酰胺结构单元与结合到表面的核苷之间形成亚磷酸三酯键的偶联步骤中将亚磷酰胺结构单元(即核苷亚磷酰胺)受控添加至生长的寡核酸链中。在一些情况下,将核苷亚磷酰胺提供给活化的或具有活化剂的表面。在一些情况下,核苷亚磷酰胺以相对于表面结合核苷1.5、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、35、40、50、60、70、80、90、100倍或更多倍过量来提供给表面。在一些情况下,添加核苷亚磷酰胺在无水环境中(例如,在无水乙腈中)进行。在偶联步骤中添加并连接核苷亚磷酰胺后,任选地洗涤该表面。在一些情况下,偶联步骤另外重复一次或多次,任选地在向表面添加核苷亚磷酰胺之间进行洗涤步骤。在一些情况下,本文使用的寡核酸合成方法包括1、2、3个或更多个连续的偶联步骤。在许多情况下,在偶联之前,与表面结合的核苷通过去除保护基团来脱保护,其中该保护基团起防止聚合的作用。常见的保护基团为4,4’-二甲氧基三苯甲基(DMT)。
偶联后,亚磷酰胺寡核酸合成方法任选地包括加帽步骤。在加帽步骤中,用加帽剂处理生长的寡核酸。加帽步骤通常用来在偶联后封闭未反应的表面结合的5’-OH基团以防进一步链延伸,从而防止形成具有内部碱基缺失的寡核酸。在一些情况下,与没有加帽的合成相比,在寡核酸合成过程中包括加帽步骤会降低错误率。作为实例,加帽步骤包括用乙酸酐和1-甲基咪唑的混合物处理表面结合的寡核酸。在加帽步骤之后,任选地洗涤该表面。
在一个方面,本文所述的系统和方法被配置为以低错误率在基底上合成高密度的寡核酸。在一些情况下,这些碱基以100、200、300、400、500、1000、2000、5000、10000、15000、20000个碱基中少于约1个碱基的总平均错误率来合成。在一些情况下,这些错误率是所合成寡核酸的至少50%、60%、70%、80%、90%、95%、98%、99%、99.5%或更多。在一些情况下,这些至少90%、95%、98%、99%、99.5%或更多的所合成寡核酸与它们编码的预定序列没有差异。在一些情况下,使用本文所述的方法和系统在基底上合成的寡核酸的错误率小于约1/200。在一些情况下,使用本文所述的方法和系统在基底上合成的寡核酸的错误率小于约1/500。在一些情况下,使用本文所述的方法和系统在基底上合成的寡核酸的错误率小于约1/1,000。在一些情况下,使用本文所述的方法和系统在基底上合成的寡核酸的错误率小于约1/1,500。在一些情况下,使用本文所述的方法和系统在基底上合成的寡核酸的错误率小于约1/2,000。在一些情况下,使用本文所述的方法和系统在基底上合成的寡核酸的错误率小于约1/3,000。在一些情况下,使用本文所述的方法和系统在基底上合成的寡核酸的错误率小于约1/5,000。单个类型的错误率包括在基底上合成的寡核酸的错配、缺失、插入和/或置换。术语“错误率”是指将合成的寡核酸的总量与预定的寡核酸序列的总和进行比较。在一些情况下,本文公开的合成的寡核酸包含12至25个碱基的系链。在一些情况下,该系链包含10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50个或更多个碱基。
通过本文所述方法合成的寡核酸文库可包含至少约100、121、200、300、400、500、600、750、1000、5000、6000、15000、20000、30000、40000、50000、60000、75000、100000、200000、300000、400000、500000、600000、700000、750000、1000000、2000000、3000000、4000000、5000000个或更多个不同的寡核酸。所述不同的寡核酸可与预定/预选序列有关。应当理解,该文库可包含多个不同的子部分,如约2、3、4、5、6、7、8、9、10、12、24个或更多个子部分。本发明的组合物和方法还允许在短时间框架内,如在少于三个月、两个月、一个月、三周、15、14、13、12、11、10、9、8、7、6、5、4、3、2天或更短的时间内,以上述低错误率构建上述大寡核酸合成文库。在一些情况下,通过本文所述方法合成的寡核酸文库包含座位,每个座位具有与另一座位不同的寡核酸,其中当使用光学显微镜在白光照明之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以总信号强度来测量时,每个座位具有至少约75%一致的群体。
通过本文所述方法合成的基因文库可包含至少约50、100、200、250、300、400、500、600、750、1000、5000、6000、15000、20000、30000、40000、50000、60000、75000、100000、200000、300000、400000、500000、600000、750000、1000000、2000000、3000000、4000000、5000000个或更多个不同的基因。本发明的组合物和方法还允许在短时间框架内,如在少于三个月、两个月、一个月、三周、15、14、13、12、11、10、9、8、7、6、5、4、3、2天或更短的时间内,以上述低错误率构建基因的上述大文库。上述文库的基因可通过经由本文其他部分更详细描述或本领域已知的合适的基因组装方法组装从头合成的寡核酸来合成。
在一些情况下,在添加核苷亚磷酰胺之后,并任选地在加帽和一个或多个洗涤步骤之后,表面结合的生长核酸得以氧化。氧化步骤包括将亚磷酸三酯氧化成四配位磷酸三酯(一种天然存在的磷酸二酯核苷间键的受保护的前体)。在一些情况下,生长的寡核酸的氧化通过任选地在弱碱如吡啶、二甲基吡啶、三甲吡啶的存在下用碘和水处理来实现。在一些情况下,氧化在无水条件下采用叔丁基过氧化氢或(1S)-(+)-(10-樟脑磺酰基)-氧杂吖丙啶(CSO)进行。在一些方法中,在氧化之后进行加帽步骤。第二个加帽步骤允许表面干燥,因为可能持续存在的来自氧化的残余水可以抑制随后的偶联。氧化后,任选地洗涤表面和生长的寡核酸。在一些情况下,氧化步骤用硫化步骤来取代,以获得寡核苷酸硫代磷酸酯,其中任何加帽步骤可在硫化之后进行。许多试剂能够进行有效地硫转移,包括但不限于3-(二甲基氨基亚甲基)氨基)-3H-1,2,4-二噻唑-3-硫酮、DDTT、3H-1,2-苯并二硫醇-3-酮1,1-二氧化物(也被称为Beaucage试剂)以及N,N,N'N'-四乙基秋兰姆二硫化物(TETD)。
为了使核苷掺入的后续循环通过偶联而发生,必须移除表面结合的生长寡核酸的受保护的5’端,使得伯羟基能够与下一个核苷亚磷酰胺反应。在一些情况下,保护基团为DMT并且用在二氯甲烷中的三氯乙酸进行解封闭。
在一些情况下,在寡核酸合成之后,寡核酸从其结合的表面释放并合并。在一些情况下,将合并的寡核酸组装成更大的核酸,如基因。在一些情况下,通过连接反应以连接合成的寡核酸来生成较大的寡核酸。连接反应的一个实例为聚合酶链组装(PCA)。
在一些情况下,表面用疏水性分子组进行功能化,其中所述疏水性分子组被配置为保持所提取的寡核酸分子。在一些情况下,疏水性特征对应于孔,并且在组装过程期间(例如,在PCA期间)寡核酸分子保持在该特征中。在一些情况下,疏水性特征对应于孔,并且将组装的寡核酸储存在该孔内。
在一些情况下,对合成的寡核酸和/或组装的产物进行错误校正。用于错误校正的示例性策略涉及通过重叠延伸PCR进行定点诱变以校正错误,其任选地与两轮或更多轮克隆和测序相结合。在某些情况下,选择性地从正确合成的核酸群体中去除具有错配、凸起和小环、化学改变的碱基和/或其他异源双链体的双链核酸。在一些情况下,使用识别并结合或紧挨着双链核酸内的错配或未配对的碱基的蛋白质/酶进行错误校正,以产生单链或双链断裂或启动链转移转座事件。用于错误校正的蛋白质/酶的非限制性实例包括内切核酸酶(T7内切核酸酶I、大肠杆菌内切核酸酶V、T4内切核酸酶VII、绿豆核酸酶、细胞大肠杆菌内切核酸酶IV、UVDE)、限制酶、糖基化酶、核糖核酸酶、错配修复酶、解离酶、解旋酶、连接酶、错配特异性抗体及其变体。特异性错误校正酶的实例包括T4内切核酸酶7、T7内切核酸酶1、S1、绿豆内切核酸酶、MutY、MutS、MutH、MutL、切割酶(cleavase)、CELI和HINF1。在一些情况下,DNA错配结合蛋白MutS(水生栖热菌)用于从合成产物群体中去除失败产物。在一些情况下,使用Correctase酶进行错误校正。在一些情况下,使用SURVEYOR内切核酸酶(Transgenomic)——一种扫描异源双链体DNA中的已知和未知的突变以及多态性的错配特异性DNA内切核酸酶,来进行错误校正。
计算机系统
在多个方面,本文所述的任何系统均可操作地连接至计算机,并且任选地本地或远程地通过计算机进行自动化。在多种情况下,本发明的方法和系统可进一步包括计算机系统上的软件程序及其使用。相应地,对于分配/抽真空/再填充功能的同步如编排和同步材料沉积装置运动、分配动作和真空致动的计算机化控制处于本发明的范围内。在一些情况下,计算机系统被编程为在用户指定的碱基序列与材料沉积装置的位置之间接合,以将正确的试剂递送至表面的指定区域。
图9中示出的计算机系统900可被理解为能够从介质911和/或网络端口905读取指令的逻辑设备,其可任选地连接至具有固定介质912的服务器909。诸如图9示出的系统可包括CPU 901、磁盘驱动器903、任选的输入设备如键盘915和/或鼠标916以及可选的监视器907。可通过示出的通信媒介实现与本地或远程位置处的服务器的数据通信。通信媒介可包括传输和/或接收数据的任何手段。例如,通信媒介可以是网络连接、无线连接或因特网连接。这样的连接可提供经由万维网的通信。可以预期有关本公开内容的数据可经过这样的网络或连接而传输,以便由图9所示的用户方922接收和/或审阅。
图10是示出可与本发明的示例实例结合使用的计算机系统1000的第一示例架构的框图。如图10所示,该示例计算机系统可包括用于处理指令的处理器1002。处理器的非限制性实例包括:Intel XeonTM处理器、AMD OpteronTM处理器、Samsung 32-bit RISC ARM1176JZ(F)-S v1.0TM处理器、ARM Cortex-A8 Samsung S5PC100TM处理器、ARM Cortex-A8Apple A4TM处理器、Marvell PXA 930TM处理器或功能上等效的处理器。多个执行线程可用于并行处理。在一些情况下,也可以使用多个处理器或具有多核的处理器,无论是在单一计算机系统中,在群集中,还是通过包含多个计算机、蜂窝电话和/或个人数据助理设备的网络跨系统分布。
如图10所示,高速缓冲存储器1004可连接至或并入处理器1002,以提供由处理器1002新近或频繁使用的指令或数据的高速存储器。处理器1002通过处理器总线1008连接至北桥1006。北桥906通过存储器总线1012连接至随机存取存储器(RAM)1010,并管理处理器902对RAM1010的访问。北桥1006还通过芯片集总线1016连接至南桥1014。南桥1014又连接至外围总线1018。外围总线可以是例如PCI、PCI-X、PCI Express或其他外围总线。北桥和南桥通常被称为处理器芯片集,并管理在处理器、RAM与外围总线1018上的外围组件之间的数据传送。在一些供选择的架构中,北桥的功能性可以并入处理器,而不是使用单独的北桥芯片。
在一些情况下,系统1000包括附接至外围总线1018的加速器卡1022。加速器可包括现场可编程门阵列(FPGA)或用于加速某个处理的其他硬件。例如,加速器可用于适应性数据重建或用来评估在扩展集处理中使用的代数表达式。
软件和数据存储在外部存储器1024中并可加载至RAM 1010和/或高速缓冲存储器1004中,以供处理器使用。系统1000包括用于管理系统资源的操作系统;操作系统的非限制性实例包括:Linux、WindowsTM、MACOSTM、BlackBerry OSTM、iOSTM和其他功能上等效的操作系统,以及在操作系统顶部运行的、用于根据本发明的示例实施方案管理数据存储和优化的应用软件。
在该实例中,系统1000还包括与外围总线连接的网络接口卡(NIC)1020和921,以提供与外部存储如网络附加存储(NAS)和可用于分布式并行处理的其他计算机系统的网络接口。
图11是显示了具有多个计算机系统1102a和1102b、多个蜂窝电话和个人数据助理1102c以及网络附加存储(NAS)1104a和1104b的网络1100的示图。在示例实例中,系统1102a、1102b和1102c可管理数据存储并优化对存储在网络附加存储(NAS)1104a和1104b中的数据的数据访问。数学模型可用于该数据并使用跨计算机系统1102a和1102b和蜂窝电话以及个人数据助理系统1102c的分布式并行处理进行评估。计算机系统1102a和1102b和蜂窝电话以及个人数据助理系统1102c也可提供对存储在网络附加存储(NAS)1104a和1104b中的数据的适应性数据重建的并行处理。图11仅示出了一个实例,而多种多样的其他计算机架构和系统可与本发明的多个实例一起使用。例如,刀片式服务器可用来提供并行处理。处理器刀片可通过背板连接,以提供并行处理。存储还可通过单独的网络接口连接至背板或作为网络附加存储(NAS)。
在一些示例实例中,处理器可维持单独的存储空间并通过网络接口、背板或其他连接器传输数据以便由其他处理器并行处理。在其他实例中,部分或全部的处理器可使用共享的虚拟地址存储空间。
图12是根据示例实施方案使用共享虚拟地址存储空间的多处理器计算机系统1200的框图。该系统包括可访问共享的存储器子系统1204的多个处理器1202a-f。该系统中并入存储器子系统1204中的多个可编程硬件存储算法处理器(MAP)1206a-f。MAP 1206a-f中的每一个可包括存储器1208a-f和一个或多个现场可编程门阵列(FPGA)1210a-f。MAP提供了可配置的功能单元,并且可向FPGA 1210a-f提供特定算法或算法的部分,以便与各自的处理器密切协调处理。例如,在示例实例中,MAP可用来评估与数据模型相关的代数表达式以及用来进行适应性数据重建。在该实例中,每一个MAP可被用于这些目的的所有处理器全局访问。在一种配置中,每一个MAP可使用直接存储器访问(DMA)以访问相关联的存储器1208a-f,使其独立于且异步于各自的微处理器1202a-f而执行任务。在这一配置中,MAP可将结果直接提供给另一MAP以用于流水处理和并行执行算法。
以上计算机架构和系统仅为实例,并且多种多样的其他计算机、蜂窝电话和个人数据助理架构和系统可与示例实例结合使用,其包括使用普通处理器、协处理器、FPGA和其他可编程逻辑设备、芯片上系统(SOC)、专用集成电路(ASIC)和其他处理和逻辑元件的任何组合的系统。在一些情况下,全部或部分计算机系统可用软件或硬件来实现。任何种类的数据存储介质可与示例实例结合使用,其包括随机存取存储器、硬盘驱动器、闪速存储器、磁带驱动器、磁盘阵列、网络附加存储(NAS)和其他的本地或分布式数据存储设备和系统。
在示例实例中,计算机系统可使用在任何上述或其他计算机架构和系统上执行的软件模块来实现。在其他实例中,系统的功能可部分或完全地在固件、可编程逻辑设备如图12所示的现场可编程门阵列(FPGA)、芯片上系统(SOC)、专用集成电路(ASIC)或其他处理和逻辑元件中实现。例如,集处理器(Set Processor)和优化器可通过使用硬件加速器卡(例如图9中所示的加速器卡922)用硬件加速方式实现。
对于本领域技术人员而言,阐述以下实例以更清楚地说明本文所公开的实施方案的原理和实践,并且这些实例不应被解释为限制任何要求保护的实施方案的范围。除非另有说明,否则所有份数和百分比均以重量计。
实施例
实施例1:表面的差异功能化
使用包含钝化剂(不含用于核苷偶联的反应性基团的试剂)的第一组分子和包含活性剂(包含用于核苷偶联的反应性基团的试剂)的第二组分子对在结构顶部表面上包含二氧化硅层的结构进行差异功能化。用包含(十三氟-1,1,2,2-四氢辛基)三氯硅烷的第一组分子,使用YES-1224P汽相沉积烘箱系统(Yield Engineering Systems)来涂覆该结构的顶部表面,其使用以下参数:1托,60min,70℃汽化器。使用椭圆偏振仪(J.A.Woollam)测得第一涂层的厚度约为使用Kruss GmbH仪器测得接触角约为115度。
钝化涂覆的表面通过经由具有铬图案的石英掩模将深紫外(DUV)光施加到表面的顶部表面进行图案化,其中将掩模置于结构的顶部上,使得只有表面的顶部表面的不同区域暴露于DUV光。使用Hamamatsu L12530 EX-mini紧凑型准分子灯光源施加DUV光总共60秒。准分子灯在172nm波长下递送50mW/cm2的功率,足以从硅表面的暴露区域切割氟硅烷钝化层。如前所述测量接触角,并且其小于10度。将水施加到该结构上,并且只有暴露的区域得以润湿,而未暴露于深UV光的原始含氟聚合物区域则排斥水。
钝化图案化的表面用水冲洗,随后如前所述通过汽相沉积(YES)用3-缩水甘油基氧基丙基三甲氧基硅烷(GOPS)进行涂覆。测得接触角在65度左右。图13是在氟硅烷涂覆(迹线A;约115度)之后、DUV光暴露(迹线B;小于约10度)以及在GOPS沉积(迹线C;约65度)之后在表面的相同区域上测量的接触角的图形表示。
实施例2:使用差异功能化表面进行的寡核酸合成
使用具有实施例1的差异功能化表面的结构作为用于合成50-聚体寡核酸的支持物。将该结构组装至流动池中并与Applied Biosystems ABI394 DNA合成仪连接。使用表2的方法进行50聚体寡核酸的合成。
表2:
从表面提取合成的寡核酸并在BioAnalyzer芯片上进行分析。将寡核酸产物进行PCR扩增、克隆和Sanger测序。图14是在寡核酸合成之后结构表面的数字图像抓取,其中寡核酸合成从涂覆有活性剂的层延伸。包含合成的寡核酸的表面区域显得清晰(寡核酸合成仅在GOPS覆盖的区域上发生,而不在氟硅烷覆盖的区域上发生)。表面发暗的区域对应于未暴露于DUV光的氟硅烷层。图14(A部分)为在5倍物镜下对表面的数字图像抓取,而图14(B部分)为在50倍物镜下对表面的数字图像抓取。图14(部分B)中的箭头指示50um的条带宽度。
实施例3:表面的差异功能化,以在簇内生成不同座位的图案
使用包含钝化剂(不含用于核苷偶联的反应性基团的试剂)的第一组分子和包含活性剂(包含用于核苷偶联的反应性基团的试剂)的第二组分子对在结构顶部表面上包含二氧化硅层的结构进行差异功能化。如实施例1中所述,用包含(十三氟-1,1,2,2-四氢辛基)三氯硅烷的第一组分子涂覆硅表面的顶部表面。钝化涂覆的表面通过经由具有铬图案的石英掩模将DUV光施加到结构的顶部表面进行图案化,其中该掩模位于该结构的顶部,使得只有该结构的顶部表面的不同区域暴露于DUV光。使用Hamamatsu L12530 EX-mini紧凑型准分子灯光源在约1cm距离处使用氮气回填施加DUV光总共60秒。对表面进行图案化以具有多个簇,其中每个簇具有121个用于寡核酸合成的反应位点或座位。钝化图案化的表面用水冲洗,随后如前所述通过汽相沉积(YES)用3-缩水甘油基氧基丙基三甲氧基硅烷(GOPS)进行沉积以涂覆每个座位。
实施例4:在差异功能化表面的不同座位上的寡核酸合成
使用实施例3中的差异功能化表面作为用于合成50-聚体寡核酸的支持物。将该结构组装至流动池中并与Applied Biosystems ABI394DNA合成仪连接。使用表2的方法进行50-聚体寡核酸的合成。从该表面提取合成的寡核酸并在BioAnalyzer芯片上进行分析。将寡核酸产物进行PCR扩增、克隆和Sanger测序。
图15是寡核酸合成之后结构表面的数字图像抓取。包含合成的寡核酸的表面区域显得清晰。表面发暗的区域对应于未暴露于DUV光的氟硅烷层。
实施例5:表面功能化方法的比较
使用反向光致抗蚀剂工艺、正向光致抗蚀剂工艺以及采用深UV光的工艺用活性层和钝化层对表面进行差异功能化。表3中列出了每种表面制备方法的步骤。对于每种方法,通过化学汽相沉积来沉积钝化层和活性层。将每个制备的表面用作在活性功能化区域上合成寡核酸的支持物。
表3:
图16示出了通过表3中所列出的不同工艺步骤用活性层和钝化层差异功能化的表面的数字图像抓取。每张照片显示了在活性剂层上合成寡核酸之后的表面。图16(A部分)示出了如实施例5中所述使用正向光致抗蚀剂工艺功能化的表面的10倍和50倍放大。图16(B部分)示出了如实施例5中所述使用反向光致抗蚀剂工艺功能化的表面的10倍和50倍放大。图16(C部分)示出了如实施例5中所述使用深UV方法功能化的表面的10倍和50倍放大。在所述图像中,包含合成的寡核酸的表面区域显示为表面的清晰且大体圆形的区域。相反,涂覆有钝化层的区域在图像中显得较暗。
生成在通过表3中概述的各种工艺步骤差异功能化的表面上合成的寡核酸的DNA强度分布曲线。图17A示出了在如实施例5中所述使用正向光致抗蚀剂工艺功能化的表面上合成的寡核酸的强度分布曲线。绘图上的X轴对应于穿过每个座位的距离,而绘图上的Y轴对应于信号的强度。该绘图具有顶线、中线1601和底线,其对应于使用Nikon DS Fi2照相机得到的蓝色、绿色和红色波长记录。每条线表示从照相机上的不同光传感器获得的强度信号。中线1601是波长约500nm至约530nm的光发射的记录。中线1601导致生成用于测量该表面上的样品寡核苷酸的最有效对比度。使用Nikon Eclipse L200显微镜生成白光。
图17B示出了在如实施例5中所述使用反向光致抗蚀剂工艺功能化的表面上合成的寡核酸的强度分布曲线。绘图上的X轴对应于穿过每个座位的距离,而绘图上的Y轴对应于信号的强度。该绘图具有顶线、中线1602和底线,其对应于使用Nikon DS Fi2照相机得到的蓝色、绿色和红色波长记录。每条线表示从照相机上的不同光传感器获得的强度信号。中线1602是波长约500nm至约530nm的光发射的记录。中线1602导致生成用于测量该表面上的样品寡核苷酸的最有效对比度。使用Nikon Eclipse L200显微镜生成白光。
图17C示出了在如实施例5中所述使用深UV方法功能化的表面上合成的寡核酸的强度分布曲线。绘图上的X轴对应于穿过每个座位的距离,而绘图上的Y轴对应于信号的强度。该绘图具有顶线、中线1603和底线,其对应于使用Nikon DS Fi2照相机得到的蓝色、绿色和红色波长记录。每条线表示从照相机上的不同光传感器获得的强度信号。中线1603是波长约500nm至约530nm的光发射的记录。中线1603导致生成用于测量该表面上的样品寡核苷酸的最有效对比度。使用Nikon Eclipse L200显微镜生成白光。
在正向光致抗蚀剂工艺中,在活性层涂覆之前涂覆光致抗蚀剂(PR)。在反向工艺中,在活性层涂覆之后沉积PR并且表面上的残留剩余物产生了非均匀的合成的寡核酸层。用深UV图案化的表面在合成的寡核酸链中具有最高百分比的一致性。反向PR工艺的非一致性百分比为约31%,正向PR工艺为约39%,而深UV工艺为约23%(同样,反向PR工艺的一致性百分比为约69%,正向PR工艺为约61%,而深UV工艺为约77%)。通过将信号变化幅度除以总信号强度来计算不一致性。如图17A-17C中突出显示的迹线所示,使用正向和反向光致抗蚀剂工艺制备的表面上合成的寡核酸的信号变化大于使用深UV工艺制备的表面上合成的寡核酸。
实施例6:对在表面上的功能化材料进行图案化
使用Ushio MinExcimer深UV(DUV)灯(图21)和具有Suss MA-6掩模对准器的石英掩模在氟化硅板上产生图案化的功能化表面。该石英掩模允许一些172nm的紫外光穿过。使用铬遮盖物或介电遮盖物在芯片上产生阴影。通过将掩模加载到掩模对准器中并将视觉系统对准掩模的对准基准点来将该掩模固定就位。将芯片加载到对准系统中,并使用掩模对准器上的螺钉将掩模在芯片上对准,并用显微镜显示芯片和掩模。使用氮气回填在该掩模与基底之间产生受控气氛。然后使掩模与芯片紧密接触。一旦掩模在芯片上正确对准,则移除显微镜并将DUV灯移动至掩模上方的位置。还使用氮气回填在该掩模与灯之间产生受控气氛。施加DUV光以激活芯片表面化学性质。使用Ushio MinExcimer灯(提供大约10mW/cm2)将芯片暴露于DUV约100秒。使用氮气回填和臭氧排气清除由低波长光产生的臭氧。DUV暴露后,将3-缩水甘油基氧基丙基三甲氧基硅烷(GOPS)沉积在该芯片表面上,并且激活该表面以用于DNA合成。
图18-19中示出了用于图案化的设备。图18描绘了给提供DUV光的照明单元1804供电的灯供电单元1801。将掩模保持在掩模支架1803中。使用氮气回填1805和臭氧排气1802从系统中除去臭氧。在一些情况下,臭氧排气1702是可选的。图19描绘了照明单元1901、具有用于在改进的掩模板上定位照明单元的窗口1903的板以及用于光源与掩模1902之间的空间的氮气回填。在加载、对准和暴露期间在基底周围引入带有吹氮气的冲孔的管回路以去除氧气并防止暴露区域周围的臭氧形成。
使用基准点2201确认座位的对准。(图22)工艺完成之后座位的直径从约51μm变化至约58μm。在芯片表面上观察到座位直径的这种变化,在芯片中心与芯片边缘之间观察到差异。表面上的DNA产量和质量(错误率)被确定为与标准芯片相似(数据未示出)。NGS是在DNA斑点上完成的,并且确定错误率与用标准芯片所观察到的错误率相似。
在单独的运行中,使用圆柱形UV灯将表面制备为用于在表面上以平行线延伸寡核酸的图案。观察到寡核酸延伸,其中每条线的宽度约为3um,并具有6um的间距(图像抓取未示出)。在一次图像抓取中的线宽度测量值包括2.90um、3.08um和2.71um。
实施例7:使用平面灯对表面进行图案化
使用平面紫外灯(Hamamatsu深UV(DUV)灯,图20)和具有掩模对准器的石英掩模在氟化二氧化硅涂覆的板上产生图案化的功能化表面。石英掩模允许172nm的UV光穿过。该灯具有平面形状,其允许表面暴露于DUV光,并且使板表面上的均匀性提高。通过将掩模加载到掩模对准器中并将视觉系统对准掩模的对准基准点来将掩模固定就位。将该板加载到对准系统中,并使用掩模对准器上的螺钉将该掩模在芯片上对准,并用显微镜显示该板和掩模。使用吹扫与氮气回填的结合在该掩模与基底之间产生受控气氛。然后使掩模与该芯片紧密接触。一旦该掩模在该芯片上正确对准,则移除显微镜并将DUV灯移动至掩模上方的位置。还使用吹扫和氮气回填在该掩模与灯之间产生受控气氛。施加DUV光以激活芯片表面化学性质。使用灯(提供大约50mW/cm2)将芯片暴露于DUV约20秒。使用氮气回填和臭氧排气清除由低波长光产生的臭氧。
进行150μm×150μm区域的TOF-SIMS分析以分析表面化学性质。参照图23,底部图表是来自二氧化硅涂覆的板的背景参考读数;顶部图表是来自具有在顶部涂覆的氟硅烷层的二氧化硅涂覆的板的读数;中部图表是在DUV暴露于芯片的先前氟化部分之后获得的读数。从图表中可以看出,在DUV处理过的部分中未检测到氟硅烷。X轴为强度计数,且Y轴为质量(u)。
实施例8:在表面上对寡核酸进行图案化
在施加一组分子之前提供并通过湿法或干法清洗工艺准备SOI晶片。该晶片上沉积有3-缩水甘油基丙基三甲氧基硅烷(GOPS),并进行核苷酸延伸反应以从长度为至少20个碱基的表面寡核酸延伸。将具有三苯甲基基团的保护基团施加到寡核酸的末端。随后通过经由暴露于172nm的EMR从表面的限定区域去除层来对活性剂层和寡核酸平台层进行图案化。将阴影掩模置于表面上,使得只有限定的区域通过阴影掩模中的开口暴露于EMR。涂覆在表面的暴露区域上的活性剂层和平台寡核酸层从该表面切下,并用洗涤溶液洗掉。在对表面进行图案化之后,将该表面的暴露区域暴露于(十三氟-1,1,2,2-四氢辛基)三氯硅烷或(十三氟-1,1,2,2-四氢辛基)三甲氧基硅烷。进行平台寡核酸脱保护并延伸预定序列的寡核酸100个碱基的长度。所得到的表面将包含直径为1.15mm内的一簇座位,其中每个座位具有10um的宽度。座位各自包含与在另一座位上延伸的寡核酸不同的寡核酸。每个簇将包含约121个座位,并且所述座位将共同编码单个预选核酸(例如,基因)的预定序列。
实施例9:使用大平面灯对表面进行图案化
使用平面紫外灯(Quark深UV(DUV)灯)和具有掩模对准器的石英掩模在氟化硅板上产生图案化的功能化表面。石英掩模允许172nm的UV光穿过。使用铬遮盖物或介电遮盖物在芯片上产生阴影。该灯具有平面形状,其允许表面暴露于DUV光,并且在增加的表面积上使芯片表面上的均匀性提高。通过将掩模加载到掩模对准器中并将视觉系统对准该掩模的对准基准点来将该掩模固定就位。将该板加载到对准系统中,并使用掩模对准器上的螺钉将该掩模在芯片上对准,并用显微镜显示该芯片和掩模。使用吹扫与氮气回填的结合在掩模与基底之间产生受控气氛。然后使该掩模与芯片紧密接触。一旦该掩模在芯片上正确对准,则移除显微镜并将DUV灯移动至该掩模上方的位置。还使用吹扫和氮气回填在该掩模与灯之间产生受控气氛。施加DUV光以激活芯片表面化学性质。使用灯(提供大约30mW/cm2)将芯片暴露于DUV约35秒。使用氮气回填和臭氧排气清除由低波长光产生的臭氧。DUV暴露后,将3-缩水甘油基氧基丙基三甲氧基硅烷(GOPS)沉积在该芯片表面上,并且激活该表面以用于DNA合成。
实施例10:使用激光器对表面进行图案化
使用激光器在氟化硅板上产生图案化的功能化表面。该板与参照对准以引导激光,并且使用吹扫和氮气回填系统在板与激光器之间产生受控气氛。使用脉冲施加激光,同时移动与激光脉冲同步的芯片以在该芯片上产生暴露区域的图案,从而激活该芯片表面化学性质。DUV暴露后,将3-缩水甘油基氧基丙基三甲氧基硅烷(GOPS)沉积在该芯片表面上,并且激活该表面以用于DNA合成。
实施例11:制备尼龙基底
利用尼龙的分子层沉积产生尼龙表面以用于功能化和核酸合成。将尼龙膜沉积在由另一种合成材料制成的卷带上。(或者,使用尼龙卷带或硅晶片)。然后将表面用戊二酰氯处理10秒(室温安瓿,10sccm N2载体)。将表面用5托N2吹扫20秒,抽空5秒,用5托N2吹扫20秒,并抽空5秒。然后将表面用乙二胺处理5秒(室温安瓿,0sccm N2载体)。将表面用5托N2吹扫20秒,抽空5秒,用5托N2吹扫20秒,并抽空5秒。这些步骤重复进行30个循环。
实施例12:使用平面灯对尼龙表面进行图案化
将图案化的功能化尼龙暴露于来自平面UV灯、Hamamatsu深UV(DUV)灯和具有掩模对准器的石英掩模的发射光。石英掩模允许172nm的UV光穿过。使用铬遮盖物或介电遮盖物在芯片上产生阴影。Hamamatsu灯具有平面形状,其允许表面暴露于DUV光,并且使芯片表面上的均匀性提高。通过掩模对准器将掩模固定就位,并使用该掩模对准器上的螺钉将该掩模在卷带上对准,并用显微镜显示芯片和掩模。一旦掩模在芯片上正确对准,则移除显微镜并将DUV灯移动至该掩模上方的位置。施加DUV光以激活该芯片表面化学性质。DUV暴露后,激活该表面以用于DNA合成。使用尼龙表面观察到的DNA产量相比使用带双层的表面所观察到的DNA产量得到增加。
实施例13:使用激光器对尼龙表面进行图案化
使用激光器在尼龙柔性表面上产生图案化的功能化表面。该尼龙柔性表面与参照对准以引导激光,并且使用吹扫和氮气回填系统在卷带与激光器之间产生受控气氛。使用脉冲施加激光,同时移动与激光脉冲同步的芯片以在该卷带上产生暴露区域的图案,从而激活芯片表面化学性质。DUV暴露后,激活所述表面以用于DNA合成。
实施例14:使用微接触印刷对钝化剂进行图案化
使用UV光刻工艺制造聚二甲基硅氧烷(PDMS)印模。涂覆有光致抗蚀剂的硅晶片暴露于穿过掩模的UV光,从而在该硅晶片上形成图案。然后将曝光的晶片暴露于显影剂溶液,从而形成用于浇铸PDMS印模的母模。将PDMS预聚物与固化剂混合并倒在所制备的母模上。然后将固化的印模从模板上剥离以备上墨。成品印模为约100μm至约1cm厚,而印模的凸起部分的范围为约1μm至约500μm。
印模用含有钝化剂(十三氟-1,1,2,2-四氢辛基)三氯硅烷的溶液上墨。上墨后,将钝化剂溶液转移至硅板上。在冲压微芯片时注意不要使该印模变形。在重新加载印模之前,每个上墨的印模用于对三个微芯片进行图案化。
实施例15:使用微接触印刷对活性剂进行图案化
使用UV光刻工艺制造聚二甲基硅氧烷(PDMS)印模。涂覆有光致抗蚀剂的硅晶片暴露于穿过掩模的UV光,在硅晶片上形成图案。然后将曝光的晶片暴露于显影剂溶液,从而形成用于浇铸PDMS印模的母模。将PDMS预聚物与固化剂混合并倒在所制备的母模上。然后将固化的印模从模板上剥离以备上墨。成品印模为约100μm至约1cm厚,而印模的凸起部分的范围为约1μm至约500μm。印模用含有活性剂3-缩水甘油基氧基丙基三甲氧基硅烷(GOPS)的溶液上墨。上墨后,将活性剂溶液转移至硅板上。在冲压微芯片时注意不要使该印模变形。在重新加载印模之前,每个上墨的印模用于对三个微芯片进行图案化。
实施例16:使用PCA由从寡核苷酸合成装置转移的反应混合物进行的基因组装
使用利用实施例2的方案合成的寡核酸群体以及与实施例3-14中基于EMR的方案一致的表面制备程序,如表4所述制备PCA反应混合物。
表4.
使用Mantis分配器(Formulatrix,MA)将约400nL的液滴分配在已经从表面切下的一簇座位的顶部。纳米反应器芯片与寡核苷酸装置手动配合,以拾取具有PCA反应混合物的小液滴。通过在拾取后立即将纳米反应器从寡核苷酸合成装置上释放,将小液滴拾取至纳米反应器芯片中的单独的纳米反应器中。纳米反应器用热封膜(Heat Sealing Film)/卷带遮盖物(Eppendorf)进行密封并放置在使用热循环仪试剂盒(OpenPCR)构建的适当配置的热循环仪中。
或者,使用基于针销(pin)的系统来接触已经从表面上切下的一簇座位。在这样的布置中,尖端上具有水的针销与簇相接触,将其转移至板的孔中,例如每个孔中具有PCA缓冲液的96或384孔板。
在热循环仪上使用下列温度方案:
1个循环:98℃,45秒
40个循环:98℃,15秒;63℃,45秒;72℃,60秒;
1个循环:72℃,5分钟
1个循环:4℃,保持
从单独的孔中收集0.50ul的等份,并在塑料管中,在PCR反应混合物(表5)中根据下列热循环仪程序,使用正向引物和反向引物来扩增该等份:
热循环仪:
1个循环:98℃,30秒
30个循环:98℃,7秒;63℃,30秒;72℃,90秒
1个循环:72℃,5分钟
1个循环:4℃,保持
表5.
虽然本文已经示出和描述了本发明的优选实施方案,但对于本领域技术人员显而易见的是,这些实施方案仅仅是通过示例的方式提供的。本领域技术人员在不脱离本发明的情况下将会想到许多变化、改变和替代。应当理解,可在实施本发明时采用本文描述的本发明的实施方案的各种替代方案。旨在以下述权利要求限定本发明的范围,并且由此涵盖这些权利要求的范围内的方法和结构及其等同物。
Claims (77)
1.一种表面图案化方法,所述方法包括:
将第一组分子施加到结构的表面,其中所述第一组分子中的每一个与所述表面结合并且不含能够与核苷结合的反应性基团;
将电磁辐射(EMR)施加到所述表面的预定区域,其中所述EMR具有约100nm至约300nm的波长,其中所述EMR的施加导致在所述预定区域处去除所述第一组分子,从而限定用于寡核酸延伸的不同座位;以及
合成多个寡核酸,其中每个寡核酸从不同的座位延伸,并且其中当使用光学显微镜在白光照明之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以总信号强度来测量时,所述不同的座位为至少约75%一致。
2.根据权利要求1所述的方法,其中在施加EMR之后,在所述表面的所述预定区域处去除超过约90%的所述第一组分子。
3.根据权利要求1所述的方法,其中在施加EMR之后,在所述表面的所述预定区域处去除约100%的所述第一组分子。
4.根据权利要求1所述的方法,其中所述预定区域具有约1um至约500um的宽度。
5.根据权利要求1所述的方法,其中所述预定区域具有约3um至约60um的宽度。
6.根据权利要求1所述的方法,其中所述预定区域具有至少3um的宽度。
7.根据前述权利要求中任一项所述的方法,其中所述预定区域具有形状为圆形或矩形的周边。
8.根据权利要求1所述的方法,其中所述第一组分子包括氟硅烷。
9.根据权利要求1所述的方法,其中所述第一组分子包括全氟辛基三氯硅烷、(十三氟-1,1,2,2-四氢辛基)三氯硅烷或(十三氟-1,1,2,2-四氢辛基)三甲氧基硅烷。
10.根据权利要求1所述的方法,其进一步包括在施加所述EMR之后将第二组分子施加到所述表面,其中所述第二组分子中的每一个与所述表面的所述预定区域结合并且包含能够与核苷结合的反应性基团。
11.根据权利要求10所述的方法,其中所述第二组分子包括氨基硅烷。
12.根据权利要求10所述的方法,其中所述第二组分子包括N-(3-三乙氧基甲硅烷基丙基)-4-羟基丁酰胺(HAPS)、11-乙酰氧基十一烷基三乙氧基硅烷、正癸基三乙氧基硅烷、(3-氨丙基)三甲氧基硅烷、(3-氨丙基)三乙氧基硅烷、3-缩水甘油基氧基丙基三甲氧基硅烷(GOPS)或3-碘-丙基三甲氧基硅烷。
13.根据权利要求1所述的方法,其中所述寡核酸中的每一个具有约25个碱基至约2kb的长度。
14.根据权利要求13所述的方法,其中所述寡核酸中的每一个具有约25个碱基至约150个碱基的长度。
15.根据权利要求1所述的方法,其中当使用光学显微镜在白光照明之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以总信号强度来测量时,从每个座位延伸的所述寡核酸为约80%一致。
16.根据权利要求1所述的方法,其中所述EMR具有约150nm至约200nm的波长。
17.根据权利要求1所述的方法,其中所述EMR具有约172nm的波长。
18.根据权利要求1所述的方法,其中所述表面是基本上平面的。
19.根据权利要求1所述的方法,其中所述表面包含显微结构。
20.根据权利要求19所述的方法,其中所述显微结构包含通道或孔。
21.根据权利要求1所述的方法,其中所述EMR由灯或激光器发射。
22.根据权利要求21所述的方法,其中所述灯包含圆柱形或平板形状的发射源。
23.根据权利要求22所述的方法,其中所述平板具有至少36平方英寸的表面积。
24.根据权利要求1所述的方法,其中所述结构为板、卷带或带。
25.一种表面图案化方法,所述方法包括:
将第一组分子施加到结构的表面,其中所述第一组分子中的每一个包含能够与核苷结合的反应性基团;
将电磁辐射(EMR)施加到所述表面的预定区域,其中所述EMR具有约100nm至约300nm的波长,其中所述EMR的施加导致在所述预定区域处去除所述第一组分子,从而限定用于寡核酸延伸的不同座位;以及
合成多个寡核酸,其中每个寡核酸从不同的座位延伸,并且其中当使用光学显微镜在白光照明之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以总信号强度来测量时,所述不同的座位为至少约75%一致。
26.根据权利要求25所述的方法,其中在施加EMR之后,在所述表面的所述预定区域处去除超过约90%的所述第一组分子。
27.根据权利要求25所述的方法,其中在施加EMR之后,在所述表面的所述预定区域处去除约100%的所述第一组分子。
28.根据权利要求25所述的方法,其中所述预定区域具有约1um至约500um的宽度。
29.根据权利要求25所述的方法,其中所述预定区域具有至少3um的宽度。
30.根据权利要求25至29中任一项所述的方法,其中所述预定区域具有形状为圆形或矩形的周边。
31.根据权利要求25所述的方法,其中所述EMR由灯或激光器发射。
32.根据权利要求31所述的方法,其中所述灯包含圆柱形或平板形状的发射源。
33.根据权利要求25所述的方法,其中所述结构为板、卷带或带。
34.根据权利要求25所述的方法,其中所述第一组分子包括氨基硅烷。
35.根据权利要求25所述的方法,其中所述第一组分子包括N-(3-三乙氧基甲硅烷基丙基)-4-羟基丁酰胺(HAPS)、11-乙酰氧基十一烷基三乙氧基硅烷、正癸基三乙氧基硅烷、(3-氨丙基)三甲氧基硅烷、(3-氨丙基)三乙氧基硅烷、3-缩水甘油基氧基丙基三甲氧基硅烷(GOPS)或3-碘-丙基三甲氧基硅烷。
36.根据权利要求25所述的方法,其进一步包括在施加所述EMR之后将第二组分子施加到所述表面,其中所述第二组分子中的每一个与所述表面的所述预定区域结合并且不含能够与核苷结合的反应性基团。
37.根据权利要求36所述的方法,其中所述第二组分子包括氟硅烷。
38.根据权利要求36所述的方法,其中所述第二组分子包括全氟辛基三氯硅烷、辛基氯硅烷、十八烷基三氯硅烷、(十三氟-1,1,2,2-四氢辛基)三氯硅烷或(十三氟-1,1,2,2-四氢辛基)三甲氧基硅烷。
39.根据权利要求25所述的方法,其中所述寡核酸中的每一个具有约25个碱基至约2kb的长度。
40.根据权利要求25所述的方法,其中当使用光学显微镜在白光照明之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以总信号强度来测量时,每个座位包含约80%一致的寡核酸群体。
41.根据权利要求25所述的方法,其中所述EMR具有约150nm至约200nm的波长。
42.根据权利要求25所述的方法,其中所述EMR具有约172nm的波长。
43.一种表面图案化方法,所述方法包括:
将第一组分子施加到结构的表面,其中所述第一组分子中的每一个与所述表面结合并且包含能够与核苷结合的反应性基团;
合成第一层寡核酸,其中所述第一层寡核酸中的每个寡核酸具有约10至约100个碱基的长度并从所述表面延伸;
将电磁辐射(EMR)施加到所述表面的预定区域以选择性地去除该层寡核酸的一部分,其中所述EMR具有约100nm至约300nm的波长;以及
合成第二层寡核酸,其中所述第二层寡核酸中的每个寡核酸从所述第一层寡核酸的剩余部分处延伸。
44.根据权利要求43所述的方法,其中所述表面包含用于寡核酸延伸的多个座位,并且其中当使用光学显微镜在白光照射之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以的总信号强度来测量时,所述座位为至少约75%一致。
45.根据权利要求43所述的方法,其中所述第一组分子包括氨基硅烷。
46.根据权利要求43所述的方法,其中所述第一组分子包括N-(3-三乙氧基甲硅烷基丙基)-4-羟基丁酰胺(HAPS)、11-乙酰氧基十一烷基三乙氧基硅烷、正癸基三乙氧基硅烷、(3-氨丙基)三甲氧基硅烷、(3-氨丙基)三乙氧基硅烷,3-缩水甘油基氧基丙基三甲氧基硅烷(GOPS)或3-碘-丙基三甲氧基硅烷。
47.根据权利要求43所述的方法,其中所述第二层寡核酸具有约25个碱基至约2kb的长度。
48.根据权利要求43所述的方法,其中所述结构为板、卷带或带。
49.根据权利要求1至48中任一项所述的方法,其进一步包括释放所述多个寡核酸并组装多个基因。
50.一种合成的寡核酸的文库,其包含多个不同的寡核酸,每个不同的寡核酸从结构上于不同座位处延伸,其中当使用光学显微镜在白光照射之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以的总信号强度来测量时,所述不同的座位为至少约75%一致。
51.根据权利要求50所述的文库,其中所述多个不同的寡核酸包含至少20,000个不同的寡核酸。
52.根据权利要求50所述的文库,其中当使用光学显微镜在白光照射之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以的总信号强度来测量时,从每个座位延伸的所述寡核酸为约80%一致。
53.一种基因合成方法,所述方法包括:
为多个寡核酸提供预定序列,其中所述多个寡核酸共同编码多个基因;
提供用于寡核酸合成的表面;
从所述表面合成所述多个寡核酸,其中每个寡核酸从不同的座位延伸,并且其中当使用光学显微镜在白光照射之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以的总信号强度来测量时,所述不同的座位为至少约75%一致;以及
从所述多个寡核酸组装所述多个基因。
54.根据权利要求53所述的方法,其在合成之前进一步包括:
提供用于寡核酸合成的表面,其中所述表面包含第一组分子,其中所述第一组分子中的每一个不含能够与核苷结合的反应性基团;
将电磁辐射(EMR)施加到所述表面的预定区域,其中所述EMR具有约100nm到约300nm的波长,其中所述EMR的施加导致在所述预定区域处去除所述第一组分子,从而限定用于寡核酸延伸的座位。
55.根据权利要求54所述的方法,其中在施加EMR之后,在所述表面的所述预定区域处去除超过约90%的所述第一组分子。
56.根据权利要求54所述的方法,其中在施加EMR之后,在所述表面的所述预定区域处去除约100%的所述第一组分子。
57.根据权利要求54所述的方法,其中所述预定区域具有约1um至约500um的宽度。
58.根据权利要求54所述的方法,其中所述预定区域具有约3um至约60um的宽度。
59.根据权利要求54所述的方法,其中所述预定区域具有至少3um的宽度。
60.根据权利要求54至59中任一项所述的方法,其中所述预定区域具有形状为圆形或矩形的周边。
61.根据权利要求54所述的方法,其中所述第一组分子包括氟硅烷。
62.权利要求54的方法,其中所述第一组分子包括全氟辛基三氯硅烷、辛基氯硅烷、十八烷基三氯硅烷、(十三氟-1,1,2,2-四氢辛基)三氯硅烷或(十三氟-1,1,2,2-四氢辛基)三甲氧基硅烷。
63.根据权利要求54所述的方法,其进一步包括在施加所述EMR之后将第二组分子施加到所述表面,其中所述第二组分子中的每一个与所述表面的所述预定区域结合并且包含能够与核苷结合的反应性基团。
64.根据权利要求63所述的方法,其中所述第二组分子包括氨基硅烷。
65.根据权利要求63所述的方法,其中所述第二组分子包括N-(3-三乙氧基甲硅烷基丙基)-4-羟基丁酰胺(HAPS)、11-乙酰氧基十一烷基三乙氧基硅烷、正癸基三乙氧基硅烷、(3-氨丙基)三甲氧基硅烷、(3-氨丙基)三乙氧基硅烷、3-缩水甘油基氧基丙基三甲氧基硅烷(GOPS)或3-碘-丙基三甲氧基硅烷。
66.根据权利要求53所述的方法,其中所述寡核酸中的每一个具有约25个碱基至约2kb的长度。
67.根据权利要求53所述的方法,其中当使用光学显微镜在白光照射之后通过计算从每个座位延伸的寡核酸的信号变化幅度除以的总信号强度来测量时,每个座位包含约80%一致的寡核酸群体。
68.根据权利要求54所述的方法,其中所述EMR具有约150nm至约200nm的波长。
69.根据权利要求54所述的方法,其中所述EMR具有约172nm的波长。
70.根据权利要求53所述的方法,其中所述表面是基本上平面的。
71.根据权利要求53所述的方法,其中所述表面包含显微结构。
72.根据权利要求71所述的方法,其中所述显微结构包含通道或孔。
73.根据权利要求54所述的方法,其中所述EMR由灯或激光器发射。
74.根据权利要求73所述的方法,其中所述灯包含圆柱形或平板形状的发射源。
75.根据权利要求74所述的方法,其中所述平板具有至少36平方英寸的表面积。
76.根据权利要求53所述的方法,其中在所述表面上合成的所述多个寡核酸布置在成簇的不同座位中,其中每个簇包含编码单个基因序列的寡核酸。
77.根据权利要求53所述的方法,其中所述多个基因包含至少50、240或5000个基因。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211280420.0A CN115920796A (zh) | 2015-12-01 | 2016-11-30 | 功能化表面及其制备 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562261753P | 2015-12-01 | 2015-12-01 | |
US62/261,753 | 2015-12-01 | ||
PCT/US2016/064270 WO2017095958A1 (en) | 2015-12-01 | 2016-11-30 | Functionalized surfaces and preparation thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211280420.0A Division CN115920796A (zh) | 2015-12-01 | 2016-11-30 | 功能化表面及其制备 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108603307A true CN108603307A (zh) | 2018-09-28 |
Family
ID=58777114
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680080788.9A Pending CN108603307A (zh) | 2015-12-01 | 2016-11-30 | 功能化表面及其制备 |
CN202211280420.0A Pending CN115920796A (zh) | 2015-12-01 | 2016-11-30 | 功能化表面及其制备 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211280420.0A Pending CN115920796A (zh) | 2015-12-01 | 2016-11-30 | 功能化表面及其制备 |
Country Status (5)
Country | Link |
---|---|
US (4) | US9895673B2 (zh) |
EP (1) | EP3384077A4 (zh) |
CN (2) | CN108603307A (zh) |
CA (1) | CA3006867A1 (zh) |
WO (1) | WO2017095958A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111589477A (zh) * | 2020-05-28 | 2020-08-28 | 韶关学院 | 一种微通道器件加工工艺 |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK3030682T3 (da) | 2013-08-05 | 2020-09-14 | Twist Bioscience Corp | De novo synthesized gene libraries |
WO2016126882A1 (en) | 2015-02-04 | 2016-08-11 | Twist Bioscience Corporation | Methods and devices for de novo oligonucleic acid assembly |
US9981239B2 (en) | 2015-04-21 | 2018-05-29 | Twist Bioscience Corporation | Devices and methods for oligonucleic acid library synthesis |
IL258164B (en) | 2015-09-18 | 2022-09-01 | Twist Bioscience Corp | Methods to regulate the activity of proteins and cells and a method for the production of nucleic acids |
US11512347B2 (en) | 2015-09-22 | 2022-11-29 | Twist Bioscience Corporation | Flexible substrates for nucleic acid synthesis |
EP3384077A4 (en) | 2015-12-01 | 2019-05-08 | Twist Bioscience Corporation | FUNCTIONALIZED SURFACES AND THEIR PREPARATION |
JP6854340B2 (ja) | 2016-08-22 | 2021-04-07 | ツイスト バイオサイエンス コーポレーション | デノボ合成された核酸ライブラリ |
US10417457B2 (en) | 2016-09-21 | 2019-09-17 | Twist Bioscience Corporation | Nucleic acid based data storage |
US10907274B2 (en) | 2016-12-16 | 2021-02-02 | Twist Bioscience Corporation | Variant libraries of the immunological synapse and synthesis thereof |
MX2019006753A (es) | 2016-12-22 | 2020-01-30 | Illumina Inc | Paquete de celda de flujo y metodo para fabricar el mismo. |
CN118116478A (zh) | 2017-02-22 | 2024-05-31 | 特韦斯特生物科学公司 | 基于核酸的数据存储 |
CA3056388A1 (en) | 2017-03-15 | 2018-09-20 | Twist Bioscience Corporation | Variant libraries of the immunological synapse and synthesis thereof |
WO2018231872A1 (en) | 2017-06-12 | 2018-12-20 | Twist Bioscience Corporation | Methods for seamless nucleic acid assembly |
WO2018231864A1 (en) | 2017-06-12 | 2018-12-20 | Twist Bioscience Corporation | Methods for seamless nucleic acid assembly |
US11407837B2 (en) | 2017-09-11 | 2022-08-09 | Twist Bioscience Corporation | GPCR binding proteins and synthesis thereof |
CA3079613A1 (en) | 2017-10-20 | 2019-04-25 | Twist Bioscience Corporation | Heated nanowells for polynucleotide synthesis |
WO2019136175A1 (en) | 2018-01-04 | 2019-07-11 | Twist Bioscience Corporation | Dna-based digital information storage |
CA3087896A1 (en) * | 2018-01-09 | 2019-07-18 | Mcmaster University | Fluorosilinated liquid-infused surfaces with embedded biomolecules, methods of making and uses thereof |
AU2019270243A1 (en) | 2018-05-18 | 2021-01-07 | Twist Bioscience Corporation | Polynucleotides, reagents, and methods for nucleic acid hybridization |
CN113766930A (zh) | 2019-02-26 | 2021-12-07 | 特韦斯特生物科学公司 | Glp1受体的变异核酸文库 |
WO2020176680A1 (en) | 2019-02-26 | 2020-09-03 | Twist Bioscience Corporation | Variant nucleic acid libraries for antibody optimization |
AU2020298294A1 (en) | 2019-06-21 | 2022-02-17 | Twist Bioscience Corporation | Barcode-based nucleic acid sequence assembly |
US12091777B2 (en) | 2019-09-23 | 2024-09-17 | Twist Bioscience Corporation | Variant nucleic acid libraries for CRTH2 |
US20240091731A1 (en) * | 2020-04-20 | 2024-03-21 | Lc Sciences | Devices and methods for multiplexing chemical synthesis |
BR112022021789A2 (pt) | 2020-04-27 | 2023-03-07 | Twist Bioscience Corp | Bibliotecas de ácido nucléico variantes para coronavírus |
CA3184821A1 (en) * | 2020-07-07 | 2022-01-13 | Jeremy Lackey | Devices and methods for light-directed polymer synthesis |
EP4182472A1 (en) | 2020-07-15 | 2023-05-24 | DNA Script | Massively parallel enzymatic synthesis of polynucleotides |
EP4229210A1 (en) | 2020-10-19 | 2023-08-23 | Twist Bioscience Corporation | Methods of synthesizing oligonucleotides using tethered nucleotides |
WO2022207934A1 (en) | 2021-04-02 | 2022-10-06 | Dna Script | Methods and kits for enzymatic synthesis of g4-prone polynucleotides |
US11953722B2 (en) * | 2021-06-02 | 2024-04-09 | Luminar Technologies, Inc. | Protective mask for an optical receiver |
NL2032097B1 (en) | 2021-06-10 | 2024-03-29 | Dna Script | Enzymatic synthesis of polynucleotides using 3'-o-amino-2'-deoxyribonucleoside triphosphate monomers |
WO2024141628A1 (en) | 2022-12-31 | 2024-07-04 | Dna Script | Variable viscosity inks for inkjet delivery of enzyme reagents |
WO2024153643A1 (en) | 2023-01-16 | 2024-07-25 | Dna Script | Inkjet-assisted enzymatic nucleic acid synthesis |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5688642A (en) * | 1994-12-01 | 1997-11-18 | The United States Of America As Represented By The Secretary Of The Navy | Selective attachment of nucleic acid molecules to patterned self-assembled surfaces |
EP1363125A2 (en) * | 2002-05-08 | 2003-11-19 | Gentel Corporation | Transcription factor profiling on a solid surface |
WO2008063134A1 (en) * | 2006-11-24 | 2008-05-29 | Agency For Science, Technology And Research | Method of producing a pattern of discriminative wettability |
US7534563B2 (en) * | 2003-06-30 | 2009-05-19 | Agilent Technologies, Inc. | Methods for producing ligand arrays |
WO2015054292A1 (en) * | 2013-10-07 | 2015-04-16 | Cellular Research, Inc. | Methods and systems for digitally counting features on arrays |
Family Cites Families (813)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3549368A (en) | 1968-07-02 | 1970-12-22 | Ibm | Process for improving photoresist adhesion |
US3920714A (en) | 1972-11-16 | 1975-11-18 | Weber Heinrich | Process for the production of polymeric hydrocarbons with reactive silyl side groups |
GB1550867A (en) | 1975-08-04 | 1979-08-22 | Hughes Aircraft Co | Positioning method and apparatus for fabricating microcircuit devices |
US4415732A (en) | 1981-03-27 | 1983-11-15 | University Patents, Inc. | Phosphoramidite compounds and processes |
EP0090789A1 (en) | 1982-03-26 | 1983-10-05 | Monsanto Company | Chemical DNA synthesis |
US4994373A (en) | 1983-01-27 | 1991-02-19 | Enzo Biochem, Inc. | Method and structures employing chemically-labelled polynucleotide probes |
JPS59224123A (ja) | 1983-05-20 | 1984-12-17 | Oki Electric Ind Co Ltd | ウエハアライメントマ−ク |
US5118605A (en) | 1984-10-16 | 1992-06-02 | Chiron Corporation | Polynucleotide determination with selectable cleavage sites |
JPS61141761A (ja) | 1984-12-12 | 1986-06-28 | Kanegafuchi Chem Ind Co Ltd | 硬化性組成物 |
US5242794A (en) | 1984-12-13 | 1993-09-07 | Applied Biosystems, Inc. | Detection of specific sequences in nucleic acids |
US6492107B1 (en) | 1986-11-20 | 2002-12-10 | Stuart Kauffman | Process for obtaining DNA, RNA, peptides, polypeptides, or protein, by recombinant DNA technique |
US4613398A (en) | 1985-06-06 | 1986-09-23 | International Business Machines Corporation | Formation of etch-resistant resists through preferential permeation |
US4981797A (en) | 1985-08-08 | 1991-01-01 | Life Technologies, Inc. | Process of producing highly transformable cells and cells produced thereby |
US4726877A (en) | 1986-01-22 | 1988-02-23 | E. I. Du Pont De Nemours And Company | Methods of using photosensitive compositions containing microgels |
US4808511A (en) | 1987-05-19 | 1989-02-28 | International Business Machines Corporation | Vapor phase photoresist silylation process |
JPH07113774B2 (ja) | 1987-05-29 | 1995-12-06 | 株式会社日立製作所 | パタ−ンの形成方法 |
US4988617A (en) | 1988-03-25 | 1991-01-29 | California Institute Of Technology | Method of detecting a nucleotide change in nucleic acids |
US5700637A (en) | 1988-05-03 | 1997-12-23 | Isis Innovation Limited | Apparatus and method for analyzing polynucleotide sequences and method of generating oligonucleotide arrays |
DE69028725T2 (de) | 1989-02-28 | 1997-03-13 | Canon Kk | Partiell doppelsträngiges Oligonukleotid und Verfahren zu seiner Bildung |
US5556750A (en) | 1989-05-12 | 1996-09-17 | Duke University | Methods and kits for fractionating a population of DNA molecules based on the presence or absence of a base-pair mismatch utilizing mismatch repair systems |
US6008031A (en) | 1989-05-12 | 1999-12-28 | Duke University | Method of analysis and manipulation of DNA utilizing mismatch repair systems |
US5459039A (en) | 1989-05-12 | 1995-10-17 | Duke University | Methods for mapping genetic mutations |
US5102797A (en) | 1989-05-26 | 1992-04-07 | Dna Plant Technology Corporation | Introduction of heterologous genes into bacteria using transposon flanked expression cassette and a binary vector system |
US6040138A (en) | 1995-09-15 | 2000-03-21 | Affymetrix, Inc. | Expression monitoring by hybridization to high density oligonucleotide arrays |
US5143854A (en) | 1989-06-07 | 1992-09-01 | Affymax Technologies N.V. | Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof |
US6919211B1 (en) * | 1989-06-07 | 2005-07-19 | Affymetrix, Inc. | Polypeptide arrays |
US5527681A (en) | 1989-06-07 | 1996-06-18 | Affymax Technologies N.V. | Immobilized molecular synthesis of systematically substituted compounds |
US6309822B1 (en) | 1989-06-07 | 2001-10-30 | Affymetrix, Inc. | Method for comparing copy number of nucleic acid sequences |
US5242974A (en) | 1991-11-22 | 1993-09-07 | Affymax Technologies N.V. | Polymer reversal on solid surfaces |
US5744101A (en) | 1989-06-07 | 1998-04-28 | Affymax Technologies N.V. | Photolabile nucleoside protecting groups |
CA2036946C (en) | 1990-04-06 | 2001-10-16 | Kenneth V. Deugau | Indexing linkers |
US5494810A (en) | 1990-05-03 | 1996-02-27 | Cornell Research Foundation, Inc. | Thermostable ligase-mediated DNA amplifications system for the detection of genetic disease |
US6087482A (en) | 1990-07-27 | 2000-07-11 | Isis Pharmaceuticals, Inc. | Heteroatomic oligonucleoside linkages |
DE69133389T2 (de) | 1990-09-27 | 2005-06-02 | Invitrogen Corp., Carlsbad | Direkte Klonierung von PCR amplifizierten Nukleinsäuren |
GB9025236D0 (en) | 1990-11-20 | 1991-01-02 | Secr Defence | Silicon-on porous-silicon;method of production |
US6582908B2 (en) | 1990-12-06 | 2003-06-24 | Affymetrix, Inc. | Oligonucleotides |
WO1992010588A1 (en) | 1990-12-06 | 1992-06-25 | Affymax Technologies N.V. | Sequencing by hybridization of a target nucleic acid to a matrix of defined oligonucleotides |
JPH06504997A (ja) | 1990-12-06 | 1994-06-09 | アフィメトリックス, インコーポレイテッド | 非常に大きい規模の固定化されたポリマーの合成 |
US5455166A (en) | 1991-01-31 | 1995-10-03 | Becton, Dickinson And Company | Strand displacement amplification |
US5137814A (en) | 1991-06-14 | 1992-08-11 | Life Technologies, Inc. | Use of exo-sample nucleotides in gene cloning |
US5449754A (en) | 1991-08-07 | 1995-09-12 | H & N Instruments, Inc. | Generation of combinatorial libraries |
US5474796A (en) | 1991-09-04 | 1995-12-12 | Protogene Laboratories, Inc. | Method and apparatus for conducting an array of chemical reactions on a support surface |
US5846717A (en) | 1996-01-24 | 1998-12-08 | Third Wave Technologies, Inc. | Detection of nucleic acid sequences by invader-directed cleavage |
US7045289B2 (en) | 1991-09-09 | 2006-05-16 | Third Wave Technologies, Inc. | Detection of RNA Sequences |
US5994069A (en) | 1996-01-24 | 1999-11-30 | Third Wave Technologies, Inc. | Detection of nucleic acids by multiple sequential invasive cleavages |
US7150982B2 (en) | 1991-09-09 | 2006-12-19 | Third Wave Technologies, Inc. | RNA detection assays |
US6759226B1 (en) | 2000-05-24 | 2004-07-06 | Third Wave Technologies, Inc. | Enzymes for the detection of specific nucleic acid sequences |
ATE293011T1 (de) | 1991-11-22 | 2005-04-15 | Affymetrix Inc A Delaware Corp | Kombinatorische strategien für die polymersynthese |
US5384261A (en) | 1991-11-22 | 1995-01-24 | Affymax Technologies N.V. | Very large scale immobilized polymer synthesis using mechanically directed flow paths |
DE69322266T2 (de) | 1992-04-03 | 1999-06-02 | Perkin-Elmer Corp., Foster City, Calif. | Proben zusammensetzung und verfahren |
JP2553322Y2 (ja) | 1992-05-11 | 1997-11-05 | サンデン株式会社 | 飲料抽出装置のフィルタ送り機構 |
CA2141450A1 (en) | 1992-07-31 | 1994-02-17 | Maureen Laney | Method for introducing defined sequences at the 3' end of polynucleotides |
US5288514A (en) | 1992-09-14 | 1994-02-22 | The Regents Of The University Of California | Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support |
JP3176444B2 (ja) | 1992-10-01 | 2001-06-18 | 株式会社リコー | 水性インク及びこれを用いた記録方法 |
DE4241045C1 (de) | 1992-12-05 | 1994-05-26 | Bosch Gmbh Robert | Verfahren zum anisotropen Ätzen von Silicium |
US5395753A (en) | 1993-02-19 | 1995-03-07 | Theratech, Inc. | Method for diagnosing rheumatoid arthritis |
ES2204913T3 (es) | 1993-04-12 | 2004-05-01 | Northwestern University | Metodo para formacion de oligonucleotidos. |
US7135312B2 (en) | 1993-04-15 | 2006-11-14 | University Of Rochester | Circular DNA vectors for synthesis of RNA and DNA |
US5482845A (en) | 1993-09-24 | 1996-01-09 | The Trustees Of Columbia University In The City Of New York | Method for construction of normalized cDNA libraries |
CN1039623C (zh) | 1993-10-22 | 1998-09-02 | 中国人民解放军军事医学科学院毒物药物研究所 | 一种防治运动病综合征的药物组合物及其制备方法 |
AU700315B2 (en) | 1993-10-28 | 1998-12-24 | Houston Advanced Research Center | Microfabricated, flowthrough porous apparatus for discrete detection of binding reactions |
US6893816B1 (en) | 1993-10-28 | 2005-05-17 | Houston Advanced Research Center | Microfabricated, flowthrough porous apparatus for discrete detection of binding reactions |
US6027877A (en) | 1993-11-04 | 2000-02-22 | Gene Check, Inc. | Use of immobilized mismatch binding protein for detection of mutations and polymorphisms, purification of amplified DNA samples and allele identification |
US5834252A (en) | 1995-04-18 | 1998-11-10 | Glaxo Group Limited | End-complementary polymerase reaction |
US6015880A (en) | 1994-03-16 | 2000-01-18 | California Institute Of Technology | Method and substrate for performing multiple sequential reactions on a matrix |
US5824531A (en) | 1994-03-29 | 1998-10-20 | Novid Nordisk | Alkaline bacilus amylase |
US5514789A (en) | 1994-04-21 | 1996-05-07 | Barrskogen, Inc. | Recovery of oligonucleotides by gas phase cleavage |
SE512382C2 (sv) | 1994-04-26 | 2000-03-06 | Ericsson Telefon Ab L M | Anordning och förfarande för att placera långsträckta element mot eller invid en yta |
EP0706649B1 (en) | 1994-04-29 | 2001-01-03 | Perkin-Elmer Corporation | Method and apparatus for real time detection of nucleic acid amplification products |
US6287850B1 (en) | 1995-06-07 | 2001-09-11 | Affymetrix, Inc. | Bioarray chip reaction apparatus and its manufacture |
JPH10507160A (ja) | 1994-06-23 | 1998-07-14 | アフィマックス テクノロジーズ エヌ.ブイ. | 光活性化合物およびその使用方法 |
US5641658A (en) | 1994-08-03 | 1997-06-24 | Mosaic Technologies, Inc. | Method for performing amplification of nucleic acid with two primers bound to a single solid support |
US5530516A (en) | 1994-10-04 | 1996-06-25 | Tamarack Scientific Co., Inc. | Large-area projection exposure system |
US6613560B1 (en) | 1994-10-19 | 2003-09-02 | Agilent Technologies, Inc. | PCR microreactor for amplifying DNA using microquantities of sample fluid |
US6635226B1 (en) | 1994-10-19 | 2003-10-21 | Agilent Technologies, Inc. | Microanalytical device and use thereof for conducting chemical processes |
US5556752A (en) | 1994-10-24 | 1996-09-17 | Affymetrix, Inc. | Surface-bound, unimolecular, double-stranded DNA |
JPH11511900A (ja) | 1994-11-22 | 1999-10-12 | コンプレツクス フルイツド システムズ,インコーポレーテツド | マイクロエレクトロニクス用途のための非アミン系フォトレジスト密着促進剤 |
US5700642A (en) | 1995-05-22 | 1997-12-23 | Sri International | Oligonucleotide sizing using immobilized cleavable primers |
US5830655A (en) | 1995-05-22 | 1998-11-03 | Sri International | Oligonucleotide sizing using cleavable primers |
US5877280A (en) | 1995-06-06 | 1999-03-02 | The Mount Sinai School Of Medicine Of The City University Of New York | Thermostable muts proteins |
US6446682B1 (en) | 1995-06-06 | 2002-09-10 | James P. Viken | Auto-loading fluid exchanger and method of use |
US5707806A (en) | 1995-06-07 | 1998-01-13 | Genzyme Corporation | Direct sequence identification of mutations by cleavage- and ligation-associated mutation-specific sequencing |
US5780613A (en) | 1995-08-01 | 1998-07-14 | Northwestern University | Covalent lock for self-assembled oligonucleotide constructs |
US5854033A (en) | 1995-11-21 | 1998-12-29 | Yale University | Rolling circle replication reporter systems |
JP2000501615A (ja) | 1995-12-15 | 2000-02-15 | アマーシャム・ライフ・サイエンス・インコーポレーテッド | 酵素増幅中に生じる変異配列の検出および除去のためのミスマッチ修復系を用いる方法 |
US5962271A (en) | 1996-01-03 | 1999-10-05 | Cloutech Laboratories, Inc. | Methods and compositions for generating full-length cDNA having arbitrary nucleotide sequence at the 3'-end |
US5976846A (en) | 1996-01-13 | 1999-11-02 | Passmore; Steven E. | Method for multifragment in vivo cloning and mutation mapping |
US6090606A (en) | 1996-01-24 | 2000-07-18 | Third Wave Technologies, Inc. | Cleavage agents |
US7527928B2 (en) | 1996-11-29 | 2009-05-05 | Third Wave Technologies, Inc. | Reactions on a solid surface |
US6706471B1 (en) | 1996-01-24 | 2004-03-16 | Third Wave Technologies, Inc. | Detection of nucleic acid sequences by invader-directed cleavage |
US7432048B2 (en) | 1996-11-29 | 2008-10-07 | Third Wave Technologies, Inc. | Reactions on a solid surface |
US5985557A (en) | 1996-01-24 | 1999-11-16 | Third Wave Technologies, Inc. | Invasive cleavage of nucleic acids |
US7122364B1 (en) | 1998-03-24 | 2006-10-17 | Third Wave Technologies, Inc. | FEN endonucleases |
US6274369B1 (en) | 1996-02-02 | 2001-08-14 | Invitrogen Corporation | Method capable of increasing competency of bacterial cell transformation |
US6013440A (en) | 1996-03-11 | 2000-01-11 | Affymetrix, Inc. | Nucleic acid affinity columns |
US6020481A (en) | 1996-04-01 | 2000-02-01 | The Perkin-Elmer Corporation | Asymmetric benzoxanthene dyes |
US6706875B1 (en) | 1996-04-17 | 2004-03-16 | Affyemtrix, Inc. | Substrate preparation process |
US5869245A (en) | 1996-06-05 | 1999-02-09 | Fox Chase Cancer Center | Mismatch endonuclease and its use in identifying mutations in targeted polynucleotide strands |
US5863801A (en) | 1996-06-14 | 1999-01-26 | Sarnoff Corporation | Automated nucleic acid isolation |
US6780982B2 (en) | 1996-07-12 | 2004-08-24 | Third Wave Technologies, Inc. | Charge tags and the separation of nucleic acid molecules |
US5853993A (en) | 1996-10-21 | 1998-12-29 | Hewlett-Packard Company | Signal enhancement method and kit |
WO1998022541A2 (en) | 1996-11-08 | 1998-05-28 | Ikonos Corporation | Method for coating substrates |
US5750672A (en) | 1996-11-22 | 1998-05-12 | Barrskogen, Inc. | Anhydrous amine cleavage of oligonucleotides |
JP4362150B2 (ja) | 1996-11-29 | 2009-11-11 | サード ウェーブ テクノロジーズ,インコーポレーテッド | Fen−1エンドヌクレアーゼ、混合物、および開裂方法 |
WO1998029736A1 (en) | 1996-12-31 | 1998-07-09 | Genometrix Incorporated | Multiplexed molecular analysis apparatus and method |
ATE294229T1 (de) | 1997-02-12 | 2005-05-15 | Invitrogen Corp | Verfahren zur trocknung von kompetenten zellen |
US5882496A (en) | 1997-02-27 | 1999-03-16 | The Regents Of The University Of California | Porous silicon structures with high surface area/specific pore size |
US6770748B2 (en) | 1997-03-07 | 2004-08-03 | Takeshi Imanishi | Bicyclonucleoside and oligonucleotide analogue |
US6419883B1 (en) | 1998-01-16 | 2002-07-16 | University Of Washington | Chemical synthesis using solvent microdroplets |
US6028189A (en) | 1997-03-20 | 2000-02-22 | University Of Washington | Solvent for oligonucleotide synthesis and methods of use |
AU751956B2 (en) | 1997-03-20 | 2002-09-05 | University Of Washington | Solvent for biopolymer synthesis, solvent microdroplets and methods of use |
ATE378417T1 (de) | 1997-03-21 | 2007-11-15 | Stratagene California | Polymerase-verbessernder faktor (pef)-enthaltende extrakte, pef proteinkomplexe, isoliertes pef protein und verfahren zur reinigung und identifizierung |
US6969488B2 (en) | 1998-05-22 | 2005-11-29 | Solexa, Inc. | System and apparatus for sequential processing of analytes |
US5922593A (en) | 1997-05-23 | 1999-07-13 | Becton, Dickinson And Company | Microbiological test panel and method therefor |
DE69824586T2 (de) | 1997-06-26 | 2005-06-23 | PerSeptive Biosystems, Inc., Framingham | Probenträger hoher dichte für die analyse biologischer proben |
GB9714716D0 (en) | 1997-07-11 | 1997-09-17 | Brax Genomics Ltd | Characterising nucleic acids |
US5989872A (en) | 1997-08-12 | 1999-11-23 | Clontech Laboratories, Inc. | Methods and compositions for transferring DNA sequence information among vectors |
US6027898A (en) | 1997-08-18 | 2000-02-22 | Transgenomic, Inc. | Chromatographic method for mutation detection using mutation site specifically acting enzymes and chemicals |
US6794499B2 (en) | 1997-09-12 | 2004-09-21 | Exiqon A/S | Oligonucleotide analogues |
US6136568A (en) | 1997-09-15 | 2000-10-24 | Hiatt; Andrew C. | De novo polynucleotide synthesis using rolling templates |
US6670127B2 (en) | 1997-09-16 | 2003-12-30 | Egea Biosciences, Inc. | Method for assembly of a polynucleotide encoding a target polypeptide |
WO1999014318A1 (en) | 1997-09-16 | 1999-03-25 | Board Of Regents, The University Of Texas System | Method for the complete chemical synthesis and assembly of genes and genomes |
US5976842A (en) | 1997-10-30 | 1999-11-02 | Clontech Laboratories, Inc. | Methods and compositions for use in high fidelity polymerase chain reaction |
US8182991B1 (en) | 1997-11-26 | 2012-05-22 | Third Wave Technologies, Inc. | FEN-1 endonucleases, mixtures and cleavage methods |
US6408308B1 (en) | 1998-01-29 | 2002-06-18 | Incyte Pharmaceuticals, Inc. | System and method for generating, analyzing and storing normalized expression datasets from raw expression datasets derived from microarray includes nucleic acid probe sequences |
US6287776B1 (en) | 1998-02-02 | 2001-09-11 | Signature Bioscience, Inc. | Method for detecting and classifying nucleic acid hybridization |
US6251588B1 (en) | 1998-02-10 | 2001-06-26 | Agilent Technologies, Inc. | Method for evaluating oligonucleotide probe sequences |
EP1054726B1 (en) | 1998-02-11 | 2003-07-30 | University of Houston, Office of Technology Transfer | Apparatus for chemical and biochemical reactions using photo-generated reagents |
EP2180309B1 (en) | 1998-02-23 | 2017-11-01 | Wisconsin Alumni Research Foundation | Apparatus for synthesis of arrays of DNA probes |
AU3601599A (en) | 1998-03-25 | 1999-10-18 | Ulf Landegren | Rolling circle replication of padlock probes |
US6284497B1 (en) | 1998-04-09 | 2001-09-04 | Trustees Of Boston University | Nucleic acid arrays and methods of synthesis |
US6376285B1 (en) | 1998-05-28 | 2002-04-23 | Texas Instruments Incorporated | Annealed porous silicon with epitaxial layer for SOI |
US6274725B1 (en) | 1998-06-02 | 2001-08-14 | Isis Pharmaceuticals, Inc. | Activators for oligonucleotide synthesis |
US6130045A (en) | 1998-06-11 | 2000-10-10 | Clontech Laboratories, Inc. | Thermostable polymerase |
US6251595B1 (en) | 1998-06-18 | 2001-06-26 | Agilent Technologies, Inc. | Methods and devices for carrying out chemical reactions |
ATE313548T1 (de) | 1998-06-22 | 2006-01-15 | Affymetrix Inc | Reagenz und verfahren zu fester phase synthese |
US7399844B2 (en) | 1998-07-09 | 2008-07-15 | Agilent Technologies, Inc. | Method and reagents for analyzing the nucleotide sequence of nucleic acids |
US6218118B1 (en) | 1998-07-09 | 2001-04-17 | Agilent Technologies, Inc. | Method and mixture reagents for analyzing the nucleotide sequence of nucleic acids by mass spectrometry |
US20030022207A1 (en) | 1998-10-16 | 2003-01-30 | Solexa, Ltd. | Arrayed polynucleotides and their use in genome analysis |
US6787308B2 (en) | 1998-07-30 | 2004-09-07 | Solexa Ltd. | Arrayed biomolecules and their use in sequencing |
US6222030B1 (en) | 1998-08-03 | 2001-04-24 | Agilent Technologies, Inc. | Solid phase synthesis of oligonucleotides using carbonate protecting groups and alpha-effect nucleophile deprotection |
US6991922B2 (en) | 1998-08-12 | 2006-01-31 | Proteus S.A. | Process for in vitro creation of recombinant polynucleotide sequences by oriented ligation |
US6951719B1 (en) | 1999-08-11 | 2005-10-04 | Proteus S.A. | Process for obtaining recombined nucleotide sequences in vitro, libraries of sequences and sequences thus obtained |
US6107038A (en) | 1998-08-14 | 2000-08-22 | Agilent Technologies Inc. | Method of binding a plurality of chemicals on a substrate by electrophoretic self-assembly |
EP1405666B1 (de) | 1998-08-28 | 2007-03-21 | febit biotech GmbH | Träger für Analytbestimmungsverfahren und Verfahren zur Herstellung des Trägers |
US6258454B1 (en) | 1998-09-01 | 2001-07-10 | Agilent Technologies Inc. | Functionalization of substrate surfaces with silane mixtures |
US6458583B1 (en) | 1998-09-09 | 2002-10-01 | Agilent Technologies, Inc. | Method and apparatus for making nucleic acid arrays |
US6461812B2 (en) | 1998-09-09 | 2002-10-08 | Agilent Technologies, Inc. | Method and multiple reservoir apparatus for fabrication of biomolecular arrays |
AU770993B2 (en) | 1998-09-15 | 2004-03-11 | Yale University | Molecular cloning using rolling circle amplification |
AR021833A1 (es) | 1998-09-30 | 2002-08-07 | Applied Research Systems | Metodos de amplificacion y secuenciacion de acido nucleico |
US6399516B1 (en) | 1998-10-30 | 2002-06-04 | Massachusetts Institute Of Technology | Plasma etch techniques for fabricating silicon structures from a substrate |
US6309828B1 (en) | 1998-11-18 | 2001-10-30 | Agilent Technologies, Inc. | Method and apparatus for fabricating replicate arrays of nucleic acid molecules |
GB9900298D0 (en) | 1999-01-07 | 1999-02-24 | Medical Res Council | Optical sorting method |
WO2000042559A1 (en) | 1999-01-18 | 2000-07-20 | Maxygen, Inc. | Methods of populating data structures for use in evolutionary simulations |
US6376246B1 (en) | 1999-02-05 | 2002-04-23 | Maxygen, Inc. | Oligonucleotide mediated nucleic acid recombination |
US20070065838A1 (en) | 1999-01-19 | 2007-03-22 | Maxygen, Inc. | Oligonucleotide mediated nucleic acid recombination |
EP1062614A1 (en) | 1999-01-19 | 2000-12-27 | Maxygen, Inc. | Methods for making character strings, polynucleotides and polypeptides |
US6251685B1 (en) | 1999-02-18 | 2001-06-26 | Agilent Technologies, Inc. | Readout method for molecular biological electronically addressable arrays |
EP1153127B1 (de) | 1999-02-19 | 2006-07-26 | febit biotech GmbH | Verfahren zur herstellung von polymeren |
EP2177627B1 (en) | 1999-02-23 | 2012-05-02 | Caliper Life Sciences, Inc. | Manipulation of microparticles in microfluidic systems |
JP2002538790A (ja) | 1999-03-08 | 2002-11-19 | プロトジーン・ラボラトリーズ・インコーポレーテッド | 長いdna配列を経済的に合成し、そして組み立てるための方法および組成物 |
US6824866B1 (en) | 1999-04-08 | 2004-11-30 | Affymetrix, Inc. | Porous silica substrates for polymer synthesis and assays |
US6284465B1 (en) | 1999-04-15 | 2001-09-04 | Agilent Technologies, Inc. | Apparatus, systems and method for locating nucleic acids bound to surfaces |
US6469156B1 (en) | 1999-04-20 | 2002-10-22 | The United States Of America As Represented By The Department Of Health And Human Services | Rapid and sensitive method for detecting histoplasma capsulatum |
US6773676B2 (en) | 1999-04-27 | 2004-08-10 | Agilent Technologies, Inc. | Devices for performing array hybridization assays and methods of using the same |
US6518056B2 (en) | 1999-04-27 | 2003-02-11 | Agilent Technologies Inc. | Apparatus, systems and method for assaying biological materials using an annular format |
US6221653B1 (en) | 1999-04-27 | 2001-04-24 | Agilent Technologies, Inc. | Method of performing array-based hybridization assays using thermal inkjet deposition of sample fluids |
US6300137B1 (en) | 1999-04-28 | 2001-10-09 | Agilent Technologies Inc. | Method for synthesizing a specific, surface-bound polymer uniformly over an element of a molecular array |
US7276336B1 (en) | 1999-07-22 | 2007-10-02 | Agilent Technologies, Inc. | Methods of fabricating an addressable array of biopolymer probes |
US6242266B1 (en) | 1999-04-30 | 2001-06-05 | Agilent Technologies Inc. | Preparation of biopolymer arrays |
US6323043B1 (en) | 1999-04-30 | 2001-11-27 | Agilent Technologies, Inc. | Fabricating biopolymer arrays |
JP2003516169A (ja) | 1999-05-01 | 2003-05-13 | プシメデイカ・リミテツド | 誘導多孔性シリコン |
ATE347617T1 (de) | 1999-05-06 | 2006-12-15 | Sinai School Medicine | Steganographie auf dna basis |
US7056661B2 (en) | 1999-05-19 | 2006-06-06 | Cornell Research Foundation, Inc. | Method for sequencing nucleic acid molecules |
EP1185544B1 (en) | 1999-05-24 | 2008-11-26 | Invitrogen Corporation | Method for deblocking of labeled oligonucleotides |
US6472147B1 (en) | 1999-05-25 | 2002-10-29 | The Scripps Research Institute | Methods for display of heterodimeric proteins on filamentous phage using pVII and pIX, compositions, vectors and combinatorial libraries |
US6132997A (en) | 1999-05-28 | 2000-10-17 | Agilent Technologies | Method for linear mRNA amplification |
US6815218B1 (en) | 1999-06-09 | 2004-11-09 | Massachusetts Institute Of Technology | Methods for manufacturing bioelectronic devices |
DE19928410C2 (de) | 1999-06-22 | 2002-11-28 | Agilent Technologies Inc | Gerätegehäuse mit einer Einrichtung zum Betrieb eines Labor-Mikrochips |
US6709852B1 (en) | 1999-06-22 | 2004-03-23 | Invitrogen Corporation | Rapid growing microorganisms for biotechnology applications |
EP1190097A2 (en) | 1999-06-22 | 2002-03-27 | Invitrogen Corporation | Improved primers and methods for the detection and discrimination of nucleic acids |
US6399394B1 (en) | 1999-06-30 | 2002-06-04 | Agilent Technologies, Inc. | Testing multiple fluid samples with multiple biopolymer arrays |
US6465183B2 (en) | 1999-07-01 | 2002-10-15 | Agilent Technologies, Inc. | Multidentate arrays |
US6461816B1 (en) | 1999-07-09 | 2002-10-08 | Agilent Technologies, Inc. | Methods for controlling cross-hybridization in analysis of nucleic acid sequences |
US7504213B2 (en) | 1999-07-09 | 2009-03-17 | Agilent Technologies, Inc. | Methods and apparatus for preparing arrays comprising features having degenerate biopolymers |
US6306599B1 (en) | 1999-07-16 | 2001-10-23 | Agilent Technologies Inc. | Biopolymer arrays and their fabrication |
US6346423B1 (en) | 1999-07-16 | 2002-02-12 | Agilent Technologies, Inc. | Methods and compositions for producing biopolymeric arrays |
US6180351B1 (en) | 1999-07-22 | 2001-01-30 | Agilent Technologies Inc. | Chemical array fabrication with identifier |
US6201112B1 (en) | 1999-07-22 | 2001-03-13 | Agilent Technologies Inc. | Method for 3′ end-labeling ribonucleic acids |
CA2382157C (en) | 1999-08-18 | 2012-04-03 | Illumina, Inc. | Compositions and methods for preparing oligonucleotide solutions |
US6262490B1 (en) | 1999-11-05 | 2001-07-17 | Advanced Semiconductor Engineering, Inc. | Substrate strip for use in packaging semiconductor chips |
US6319674B1 (en) | 1999-09-16 | 2001-11-20 | Agilent Technologies, Inc. | Methods for attaching substances to surfaces |
US7211390B2 (en) | 1999-09-16 | 2007-05-01 | 454 Life Sciences Corporation | Method of sequencing a nucleic acid |
US7244559B2 (en) | 1999-09-16 | 2007-07-17 | 454 Life Sciences Corporation | Method of sequencing a nucleic acid |
US6743585B2 (en) | 1999-09-16 | 2004-06-01 | Agilent Technologies, Inc. | Methods for preparing conjugates |
US7078167B2 (en) | 1999-09-17 | 2006-07-18 | Agilent Technologies, Inc. | Arrays having background features and methods for using the same |
US7122303B2 (en) | 1999-09-17 | 2006-10-17 | Agilent Technologies, Inc. | Arrays comprising background features that provide for a measure of a non-specific binding and methods for using the same |
AU7537200A (en) | 1999-09-29 | 2001-04-30 | Solexa Ltd. | Polynucleotide sequencing |
DE19964337B4 (de) | 1999-10-01 | 2004-09-16 | Agilent Technologies, Inc. (n.d.Ges.d.Staates Delaware), Palo Alto | Mikrofluidischer Mikrochip mit abbiegbarem Ansaugrohr |
EP1235932A2 (en) | 1999-10-08 | 2002-09-04 | Protogene Laboratories, Inc. | Method and apparatus for performing large numbers of reactions using array assembly |
US6232072B1 (en) | 1999-10-15 | 2001-05-15 | Agilent Technologies, Inc. | Biopolymer array inspection |
US6451998B1 (en) | 1999-10-18 | 2002-09-17 | Agilent Technologies, Inc. | Capping and de-capping during oligonucleotide synthesis |
US6171797B1 (en) | 1999-10-20 | 2001-01-09 | Agilent Technologies Inc. | Methods of making polymeric arrays |
US7115423B1 (en) | 1999-10-22 | 2006-10-03 | Agilent Technologies, Inc. | Fluidic structures within an array package |
US6387636B1 (en) | 1999-10-22 | 2002-05-14 | Agilent Technologies, Inc. | Method of shielding biosynthesis reactions from the ambient environment on an array |
US6077674A (en) | 1999-10-27 | 2000-06-20 | Agilent Technologies Inc. | Method of producing oligonucleotide arrays with features of high purity |
US6689319B1 (en) | 1999-10-29 | 2004-02-10 | Agilent Technologies, Ind. | Apparatus for deposition and inspection of chemical and biological fluids |
US6329210B1 (en) | 1999-10-29 | 2001-12-11 | Agilent Technologies, Inc. | Method and apparatus for high volume polymer synthesis |
US20010055761A1 (en) | 1999-10-29 | 2001-12-27 | Agilent Technologies | Small scale dna synthesis using polymeric solid support with functionalized regions |
US8268605B2 (en) | 1999-10-29 | 2012-09-18 | Agilent Technologies, Inc. | Compositions and methods utilizing DNA polymerases |
US6406849B1 (en) | 1999-10-29 | 2002-06-18 | Agilent Technologies, Inc. | Interrogating multi-featured arrays |
US6428957B1 (en) | 1999-11-08 | 2002-08-06 | Agilent Technologies, Inc. | Systems tools and methods of assaying biological materials using spatially-addressable arrays |
US6440669B1 (en) | 1999-11-10 | 2002-08-27 | Agilent Technologies, Inc. | Methods for applying small volumes of reagents |
US7041445B2 (en) | 1999-11-15 | 2006-05-09 | Clontech Laboratories, Inc. | Long oligonucleotide arrays |
US6446642B1 (en) | 1999-11-22 | 2002-09-10 | Agilent Technologies, Inc. | Method and apparatus to clean an inkjet reagent deposition device |
US6582938B1 (en) | 2001-05-11 | 2003-06-24 | Affymetrix, Inc. | Amplification of nucleic acids |
US6800439B1 (en) | 2000-01-06 | 2004-10-05 | Affymetrix, Inc. | Methods for improved array preparation |
CA2396320A1 (en) | 2000-01-11 | 2001-07-19 | Maxygen, Inc. | Integrated systems and methods for diversity generation and screening |
EP1118661A1 (en) | 2000-01-13 | 2001-07-25 | Het Nederlands Kanker Instituut | T cell receptor libraries |
EP1252513A4 (en) | 2000-01-25 | 2007-07-18 | Affymetrix Inc | METHOD, SYSTEM AND SOFTWARE FOR OFFERING A GENOMIC WEB PORTAL |
US6587579B1 (en) | 2000-01-26 | 2003-07-01 | Agilent Technologies Inc. | Feature quality in array fabrication |
US6458526B1 (en) | 2000-01-28 | 2002-10-01 | Agilent Technologies, Inc. | Method and apparatus to inhibit bubble formation in a fluid |
US6406851B1 (en) | 2000-01-28 | 2002-06-18 | Agilent Technologies, Inc. | Method for coating a substrate quickly and uniformly with a small volume of fluid |
US7198939B2 (en) | 2000-01-28 | 2007-04-03 | Agilent Technologies, Inc. | Apparatus for interrogating an addressable array |
US6235483B1 (en) | 2000-01-31 | 2001-05-22 | Agilent Technologies, Inc. | Methods and kits for indirect labeling of nucleic acids |
GB0002389D0 (en) | 2000-02-02 | 2000-03-22 | Solexa Ltd | Molecular arrays |
US6403314B1 (en) | 2000-02-04 | 2002-06-11 | Agilent Technologies, Inc. | Computational method and system for predicting fragmented hybridization and for identifying potential cross-hybridization |
US6833450B1 (en) | 2000-03-17 | 2004-12-21 | Affymetrix, Inc. | Phosphite ester oxidation in nucleic acid array preparation |
US6365355B1 (en) | 2000-03-28 | 2002-04-02 | The Regents Of The University Of California | Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches |
US20020025561A1 (en) | 2000-04-17 | 2002-02-28 | Hodgson Clague Pitman | Vectors for gene-self-assembly |
US7776021B2 (en) | 2000-04-28 | 2010-08-17 | The Charles Stark Draper Laboratory | Micromachined bilayer unit for filtration of small molecules |
US6716634B1 (en) | 2000-05-31 | 2004-04-06 | Agilent Technologies, Inc. | Increasing ionization efficiency in mass spectrometry |
US7163660B2 (en) | 2000-05-31 | 2007-01-16 | Infineon Technologies Ag | Arrangement for taking up liquid analytes |
JP2004509609A (ja) | 2000-06-02 | 2004-04-02 | ブルー ヘロン バイオテクノロジー インコーポレイテッド | 合成二本鎖オリゴヌクレオチドの配列忠実度を改善するための方法 |
WO2002010443A1 (en) | 2000-07-27 | 2002-02-07 | The Australian National University | Combinatorial probes and uses therefor |
EP1176151B1 (en) | 2000-07-28 | 2014-08-20 | Agilent Technologies, Inc. | Synthesis of polynucleotides using combined oxidation/deprotection chemistry |
US6613893B1 (en) | 2000-07-31 | 2003-09-02 | Agilent Technologies Inc. | Array fabrication |
US6599693B1 (en) | 2000-07-31 | 2003-07-29 | Agilent Technologies Inc. | Array fabrication |
US7205400B2 (en) | 2000-07-31 | 2007-04-17 | Agilent Technologies, Inc. | Array fabrication |
DE60114525T2 (de) | 2000-07-31 | 2006-07-20 | Agilent Technologies Inc., A Delaware Corp., Palo Alto | Array-basierende Methoden zur Synthese von Nukleinsäuregemischen |
US6890760B1 (en) | 2000-07-31 | 2005-05-10 | Agilent Technologies, Inc. | Array fabrication |
GB0018876D0 (en) | 2000-08-01 | 2000-09-20 | Applied Research Systems | Method of producing polypeptides |
AU2001284997A1 (en) | 2000-08-24 | 2002-03-04 | Maxygen, Inc. | Constructs and their use in metabolic pathway engineering |
EP1319013A2 (en) | 2000-09-08 | 2003-06-18 | University Technologies International Inc. | Linker phosphoramidites for oligonucleotide synthesis |
US6966945B1 (en) | 2000-09-20 | 2005-11-22 | Goodrich Corporation | Inorganic matrix compositions, composites and process of making the same |
WO2002027029A2 (en) | 2000-09-27 | 2002-04-04 | Lynx Therapeutics, Inc. | Method for determining relative abundance of nucleic acid sequences |
NO20004869D0 (no) | 2000-09-28 | 2000-09-28 | Torbjoern Rognes | Metode for hurtig optimal lokal sekvensjustering ved bruk av parallell prosessering |
US7097809B2 (en) | 2000-10-03 | 2006-08-29 | California Institute Of Technology | Combinatorial synthesis system |
EP1330306A2 (en) | 2000-10-10 | 2003-07-30 | BioTrove, Inc. | Apparatus for assay, synthesis and storage, and methods of manufacture, use, and manipulation thereof |
DE10051396A1 (de) | 2000-10-17 | 2002-04-18 | Febit Ferrarius Biotech Gmbh | Verfahren und Vorrichtung zur integrierten Synthese und Analytbestimmung an einem Träger |
CZ20031096A3 (cs) | 2000-10-18 | 2003-10-15 | Ultra Proizvodnja Elektronskih Naprav D. O. O. | Systém pro výměnu dat o platbě a zařízení platebního terminálu v něm použité |
DE60125312T2 (de) | 2000-10-26 | 2007-06-06 | Agilent Technologies, Inc. (n.d. Ges. d. Staates Delaware), Santa Clara | Mikroarray |
US6905816B2 (en) | 2000-11-27 | 2005-06-14 | Intelligent Medical Devices, Inc. | Clinically intelligent diagnostic devices and methods |
US20020155439A1 (en) * | 2000-12-04 | 2002-10-24 | Ana Rodriguez | Method for generating a library of mutant oligonucleotides using the linear cyclic amplification reaction |
DE10060433B4 (de) | 2000-12-05 | 2006-05-11 | Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. | Verfahren zur Herstellung eines Fluidbauelements, Fluidbauelement und Analysevorrichtung |
US6768005B2 (en) | 2000-12-20 | 2004-07-27 | Avecia Limited | Process |
CA2714353A1 (en) | 2000-12-05 | 2002-06-13 | Avecia Biotechnology Inc | Process for the preparation of phosphorothioate oligonucleotides |
US6660475B2 (en) | 2000-12-15 | 2003-12-09 | New England Biolabs, Inc. | Use of site-specific nicking endonucleases to create single-stranded regions and applications thereof |
AUPR259301A0 (en) | 2001-01-18 | 2001-02-15 | Polymerat Pty Ltd | Polymers having co-continuous architecture |
DE60227361D1 (de) | 2001-01-19 | 2008-08-14 | Centocor Inc | Computer vermitteltes assembly von polynucleotiden kodierend für ein zielgerichtetes polypeptide |
US6958217B2 (en) | 2001-01-24 | 2005-10-25 | Genomic Expression Aps | Single-stranded polynucleotide tags |
US7166258B2 (en) | 2001-01-31 | 2007-01-23 | Agilent Technologies, Inc. | Automation-optimized microarray package |
US7027930B2 (en) | 2001-01-31 | 2006-04-11 | Agilent Technologies, Inc. | Reading chemical arrays |
US6879915B2 (en) | 2001-01-31 | 2005-04-12 | Agilent Technologies, Inc. | Chemical array fabrication and use |
US20020164824A1 (en) | 2001-02-16 | 2002-11-07 | Jianming Xiao | Method and apparatus based on bundled capillaries for high throughput screening |
US6660338B1 (en) | 2001-03-08 | 2003-12-09 | Agilent Technologies, Inc. | Functionalization of substrate surfaces with silane mixtures |
US7211654B2 (en) | 2001-03-14 | 2007-05-01 | Regents Of The University Of Michigan | Linkers and co-coupling agents for optimization of oligonucleotide synthesis and purification on solid supports |
EP2801624B1 (en) | 2001-03-16 | 2019-03-06 | Singular Bio, Inc | Arrays and methods of use |
US6610978B2 (en) | 2001-03-27 | 2003-08-26 | Agilent Technologies, Inc. | Integrated sample preparation, separation and introduction microdevice for inductively coupled plasma mass spectrometry |
US7208322B2 (en) | 2001-04-02 | 2007-04-24 | Agilent Technologies, Inc. | Sensor surfaces for detecting analytes |
US20030022240A1 (en) | 2001-04-17 | 2003-01-30 | Peizhi Luo | Generation and affinity maturation of antibody library in silico |
US6943036B2 (en) | 2001-04-30 | 2005-09-13 | Agilent Technologies, Inc. | Error detection in chemical array fabrication |
CA2446417A1 (en) | 2001-05-03 | 2002-11-14 | Sigma Genosys, L.P. | Methods for assembling protein microarrays |
EP1392868B2 (en) | 2001-05-18 | 2013-09-04 | Wisconsin Alumni Research Foundation | Method for the synthesis of dna sequences using photo-labile linkers |
WO2002094846A2 (en) | 2001-05-22 | 2002-11-28 | Parallel Synthesis Technologies, Inc. | Method for in situ, on-chip chemical synthesis |
US6880576B2 (en) | 2001-06-07 | 2005-04-19 | Nanostream, Inc. | Microfluidic devices for methods development |
US6613523B2 (en) | 2001-06-29 | 2003-09-02 | Agilent Technologies, Inc. | Method of DNA sequencing using cleavable tags |
US6649348B2 (en) | 2001-06-29 | 2003-11-18 | Agilent Technologies Inc. | Methods for manufacturing arrays |
US20040161741A1 (en) | 2001-06-30 | 2004-08-19 | Elazar Rabani | Novel compositions and processes for analyte detection, quantification and amplification |
US6989267B2 (en) | 2001-07-02 | 2006-01-24 | Agilent Technologies, Inc. | Methods of making microarrays with substrate surfaces having covalently bound polyelectrolyte films |
US6753145B2 (en) | 2001-07-05 | 2004-06-22 | Agilent Technologies, Inc. | Buffer composition and method for hybridization of microarrays on adsorbed polymer siliceous surfaces |
US7128876B2 (en) | 2001-07-17 | 2006-10-31 | Agilent Technologies, Inc. | Microdevice and method for component separation in a fluid |
US6702256B2 (en) | 2001-07-17 | 2004-03-09 | Agilent Technologies, Inc. | Flow-switching microdevice |
US7314599B2 (en) | 2001-07-17 | 2008-01-01 | Agilent Technologies, Inc. | Paek embossing and adhesion for microfluidic devices |
US20030108903A1 (en) | 2001-07-19 | 2003-06-12 | Liman Wang | Multiple word DNA computing on surfaces |
US8067556B2 (en) | 2001-07-26 | 2011-11-29 | Agilent Technologies, Inc. | Multi-site mutagenesis |
US7371580B2 (en) | 2001-08-24 | 2008-05-13 | Agilent Technologies, Inc. | Use of unstructured nucleic acids in assaying nucleic acid molecules |
US6682702B2 (en) | 2001-08-24 | 2004-01-27 | Agilent Technologies, Inc. | Apparatus and method for simultaneously conducting multiple chemical reactions |
JP2003101204A (ja) | 2001-09-25 | 2003-04-04 | Nec Kansai Ltd | 配線基板及び配線基板の製造方法並びに電子部品 |
US6902921B2 (en) | 2001-10-30 | 2005-06-07 | 454 Corporation | Sulfurylase-luciferase fusion proteins and thermostable sulfurylase |
US20050124022A1 (en) | 2001-10-30 | 2005-06-09 | Maithreyan Srinivasan | Novel sulfurylase-luciferase fusion proteins and thermostable sulfurylase |
US6852850B2 (en) | 2001-10-31 | 2005-02-08 | Agilent Technologies, Inc. | Use of ionic liquids for fabrication of polynucleotide arrays |
US7524950B2 (en) | 2001-10-31 | 2009-04-28 | Agilent Technologies, Inc. | Uses of cationic salts for polynucleotide synthesis |
US6858720B2 (en) | 2001-10-31 | 2005-02-22 | Agilent Technologies, Inc. | Method of synthesizing polynucleotides using ionic liquids |
US20030087298A1 (en) | 2001-11-02 | 2003-05-08 | Roland Green | Detection of hybridization on oligonucleotide microarray through covalently labeling microarray probe |
US7482118B2 (en) | 2001-11-15 | 2009-01-27 | Third Wave Technologies, Inc. | Endonuclease-substrate complexes |
EP1314783B1 (de) | 2001-11-22 | 2008-11-19 | Sloning BioTechnology GmbH | Nukleinsäure-Linker und deren Verwendung in der Gensynthese |
US20030099952A1 (en) | 2001-11-26 | 2003-05-29 | Roland Green | Microarrays with visible pattern detection |
US20030143605A1 (en) | 2001-12-03 | 2003-07-31 | Si Lok | Methods for the selection and cloning of nucleic acid molecules free of unwanted nucleotide sequence alterations |
US6927029B2 (en) | 2001-12-03 | 2005-08-09 | Agilent Technologies, Inc. | Surface with tethered polymeric species for binding biomolecules |
WO2003054232A2 (en) | 2001-12-13 | 2003-07-03 | Blue Heron Biotechnology, Inc. | Methods for removal of double-stranded oligonucleotides containing sequence errors using mismatch recognition proteins |
US6838888B2 (en) | 2001-12-13 | 2005-01-04 | Agilent Technologies, Inc. | Flow cell humidity sensor system |
US7932070B2 (en) | 2001-12-21 | 2011-04-26 | Agilent Technologies, Inc. | High fidelity DNA polymerase compositions and uses therefor |
US6790620B2 (en) | 2001-12-24 | 2004-09-14 | Agilent Technologies, Inc. | Small volume chambers |
US6846454B2 (en) | 2001-12-24 | 2005-01-25 | Agilent Technologies, Inc. | Fluid exit in reaction chambers |
US7282183B2 (en) | 2001-12-24 | 2007-10-16 | Agilent Technologies, Inc. | Atmospheric control in reaction chambers |
US7025324B1 (en) | 2002-01-04 | 2006-04-11 | Massachusetts Institute Of Technology | Gating apparatus and method of manufacture |
US20030171325A1 (en) | 2002-01-04 | 2003-09-11 | Board Of Regents, The University Of Texas System | Proofreading, error deletion, and ligation method for synthesis of high-fidelity polynucleotide sequences |
US20040009498A1 (en) | 2002-01-14 | 2004-01-15 | Diversa Corporation | Chimeric antigen binding molecules and methods for making and using them |
US6673552B2 (en) | 2002-01-14 | 2004-01-06 | Diversa Corporation | Methods for purifying annealed double-stranded oligonucleotides lacking base pair mismatches or nucleotide gaps |
US7141368B2 (en) | 2002-01-30 | 2006-11-28 | Agilent Technologies, Inc. | Multi-directional deposition in array fabrication |
US20040126757A1 (en) | 2002-01-31 | 2004-07-01 | Francesco Cerrina | Method and apparatus for synthesis of arrays of DNA probes |
US7157229B2 (en) | 2002-01-31 | 2007-01-02 | Nimblegen Systems, Inc. | Prepatterned substrate for optical synthesis of DNA probes |
US7037659B2 (en) | 2002-01-31 | 2006-05-02 | Nimblegen Systems Inc. | Apparatus for constructing DNA probes having a prismatic and kaleidoscopic light homogenizer |
US7422851B2 (en) | 2002-01-31 | 2008-09-09 | Nimblegen Systems, Inc. | Correction for illumination non-uniformity during the synthesis of arrays of oligomers |
US7083975B2 (en) | 2002-02-01 | 2006-08-01 | Roland Green | Microarray synthesis instrument and method |
US20030148291A1 (en) | 2002-02-05 | 2003-08-07 | Karla Robotti | Method of immobilizing biologically active molecules for assay purposes in a microfluidic format |
US6728129B2 (en) | 2002-02-19 | 2004-04-27 | The Regents Of The University Of California | Multistate triple-decker dyads in three distinct architectures for information storage applications |
US6958119B2 (en) | 2002-02-26 | 2005-10-25 | Agilent Technologies, Inc. | Mobile phase gradient generation microfluidic device |
US6770892B2 (en) | 2002-02-28 | 2004-08-03 | Agilent Technologies, Inc. | Method and system for automated focus-distance determination for molecular array scanners |
US6914229B2 (en) | 2002-02-28 | 2005-07-05 | Agilent Technologies, Inc. | Signal offset for prevention of data clipping in a molecular array scanner |
US6929951B2 (en) | 2002-02-28 | 2005-08-16 | Agilent Technologies, Inc. | Method and system for molecular array scanner calibration |
US20050084907A1 (en) | 2002-03-01 | 2005-04-21 | Maxygen, Inc. | Methods, systems, and software for identifying functional biomolecules |
US6919181B2 (en) | 2002-03-25 | 2005-07-19 | Agilent Technologies, Inc. | Methods for generating ligand arrays |
WO2003085094A2 (en) | 2002-04-01 | 2003-10-16 | Blue Heron Biotechnology, Inc. | Solid phase methods for polynucleotide production |
EP1350853A1 (en) | 2002-04-05 | 2003-10-08 | ID-Lelystad, Instituut voor Dierhouderij en Diergezondheid B.V. | Detection of polymorphisms |
US6773888B2 (en) | 2002-04-08 | 2004-08-10 | Affymetrix, Inc. | Photoactivatable silane compounds and methods for their synthesis and use |
CA2483338C (en) | 2002-04-22 | 2014-10-14 | Genencor International, Inc. | Method of creating a library of bacterial clones with varying levels of gene expression |
GB0209539D0 (en) | 2002-04-26 | 2002-06-05 | Avecia Ltd | Monomer Polymer and process |
US6946285B2 (en) | 2002-04-29 | 2005-09-20 | Agilent Technologies, Inc. | Arrays with elongated features |
US7125523B2 (en) | 2002-04-29 | 2006-10-24 | Agilent Technologies, Inc. | Holders for arrays |
US7094537B2 (en) | 2002-04-30 | 2006-08-22 | Agilent Technologies, Inc. | Micro arrays with structured and unstructured probes |
US6621076B1 (en) | 2002-04-30 | 2003-09-16 | Agilent Technologies, Inc. | Flexible assembly for transporting sample fluids into a mass spectrometer |
WO2003093504A1 (de) | 2002-05-06 | 2003-11-13 | Noxxon Pharma Ag | Verfahren zur amplifikation von nukleinsäuren |
US7221785B2 (en) | 2002-05-21 | 2007-05-22 | Agilent Technologies, Inc. | Method and system for measuring a molecular array background signal from a continuous background region of specified size |
WO2003100012A2 (en) | 2002-05-24 | 2003-12-04 | Nimblegen Systems, Inc. | Microarrays and method for running hybridization reaction for multiple samples on a single microarray |
US7273730B2 (en) | 2002-05-24 | 2007-09-25 | Invitrogen Corporation | Nested PCR employing degradable primers |
US6789965B2 (en) | 2002-05-31 | 2004-09-14 | Agilent Technologies, Inc. | Dot printer with off-axis loading |
US7537936B2 (en) | 2002-05-31 | 2009-05-26 | Agilent Technologies, Inc. | Method of testing multiple fluid samples with multiple biopolymer arrays |
US7078505B2 (en) | 2002-06-06 | 2006-07-18 | Agilent Technologies, Inc. | Manufacture of arrays with varying deposition parameters |
US7351379B2 (en) | 2002-06-14 | 2008-04-01 | Agilent Technologies, Inc. | Fluid containment structure |
US7919308B2 (en) | 2002-06-14 | 2011-04-05 | Agilent Technologies, Inc. | Form in place gaskets for assays |
US7371348B2 (en) | 2002-06-14 | 2008-05-13 | Agilent Technologies | Multiple array format |
US6939673B2 (en) | 2002-06-14 | 2005-09-06 | Agilent Technologies, Inc. | Manufacture of arrays with reduced error impact |
US7220573B2 (en) | 2002-06-21 | 2007-05-22 | Agilent Technologies, Inc. | Array assay devices and methods of using the same |
US6713262B2 (en) | 2002-06-25 | 2004-03-30 | Agilent Technologies, Inc. | Methods and compositions for high throughput identification of protein/nucleic acid binding pairs |
US7894998B2 (en) | 2002-06-26 | 2011-02-22 | Agilent Technologies, Inc. | Method for identifying suitable nucleic acid probe sequences for use in nucleic acid arrays |
US7202358B2 (en) | 2002-07-25 | 2007-04-10 | Agilent Technologies, Inc. | Methods for producing ligand arrays |
US7452712B2 (en) | 2002-07-30 | 2008-11-18 | Applied Biosystems Inc. | Sample block apparatus and method of maintaining a microcard on a sample block |
US6835938B2 (en) | 2002-07-31 | 2004-12-28 | Agilent Technologies, Inc. | Biopolymer array substrate thickness dependent automated focus-distance determination method for biopolymer array scanners |
US7101508B2 (en) | 2002-07-31 | 2006-09-05 | Agilent Technologies, Inc. | Chemical array fabrication errors |
US7153689B2 (en) | 2002-08-01 | 2006-12-26 | Agilent Technologies, Inc. | Apparatus and methods for cleaning and priming droplet dispensing devices |
US7205128B2 (en) | 2002-08-16 | 2007-04-17 | Agilent Technologies, Inc. | Method for synthesis of the second strand of cDNA |
US7563600B2 (en) | 2002-09-12 | 2009-07-21 | Combimatrix Corporation | Microarray synthesis and assembly of gene-length polynucleotides |
JP2006517090A (ja) | 2002-09-26 | 2006-07-20 | コーサン バイオサイエンシーズ, インコーポレイテッド | 合成遺伝子 |
US7498176B2 (en) | 2002-09-27 | 2009-03-03 | Roche Nimblegen, Inc. | Microarray with hydrophobic barriers |
JP4471927B2 (ja) | 2002-09-30 | 2010-06-02 | ニンブルゲン システムズ インコーポレイテッド | アレイの並列装填方法 |
JP2006500954A (ja) | 2002-10-01 | 2006-01-12 | ニンブルゲン システムズ インコーポレイテッド | 単一のアレイ特徴部に複数のオリゴヌクレオチドを有するマイクロアレイ |
US7129075B2 (en) | 2002-10-18 | 2006-10-31 | Transgenomic, Inc. | Isolated CEL II endonuclease |
US8283148B2 (en) | 2002-10-25 | 2012-10-09 | Agilent Technologies, Inc. | DNA polymerase compositions for quantitative PCR and methods thereof |
JP2006503586A (ja) | 2002-10-28 | 2006-02-02 | ゼオトロン コーポレイション | アレイオリゴマー合成および使用 |
US7402279B2 (en) | 2002-10-31 | 2008-07-22 | Agilent Technologies, Inc. | Device with integrated microfluidic and electronic components |
US7422911B2 (en) | 2002-10-31 | 2008-09-09 | Agilent Technologies, Inc. | Composite flexible array substrate having flexible support |
AU2003287449A1 (en) | 2002-10-31 | 2004-05-25 | Nanostream, Inc. | Parallel detection chromatography systems |
US7364896B2 (en) | 2002-10-31 | 2008-04-29 | Agilent Technologies, Inc. | Test strips including flexible array substrates and method of hybridization |
US7390457B2 (en) | 2002-10-31 | 2008-06-24 | Agilent Technologies, Inc. | Integrated microfluidic array device |
US7629120B2 (en) | 2002-10-31 | 2009-12-08 | Rice University | Method for assembling PCR fragments of DNA |
US20040086892A1 (en) | 2002-11-06 | 2004-05-06 | Crothers Donald M. | Universal tag assay |
US7029854B2 (en) | 2002-11-22 | 2006-04-18 | Agilent Technologies, Inc. | Methods designing multiple mRNA transcript nucleic acid probe sequences for use in nucleic acid arrays |
US7062385B2 (en) | 2002-11-25 | 2006-06-13 | Tufts University | Intelligent electro-optical nucleic acid-based sensor array and method for detecting volatile compounds in ambient air |
US20040110133A1 (en) | 2002-12-06 | 2004-06-10 | Affymetrix, Inc. | Functionated photoacid generator for biological microarray synthesis |
US7932025B2 (en) | 2002-12-10 | 2011-04-26 | Massachusetts Institute Of Technology | Methods for high fidelity production of long nucleic acid molecules with error control |
US7879580B2 (en) | 2002-12-10 | 2011-02-01 | Massachusetts Institute Of Technology | Methods for high fidelity production of long nucleic acid molecules |
US6987263B2 (en) | 2002-12-13 | 2006-01-17 | Nanostream, Inc. | High throughput systems and methods for parallel sample analysis |
US20060076482A1 (en) | 2002-12-13 | 2006-04-13 | Hobbs Steven E | High throughput systems and methods for parallel sample analysis |
US7247337B1 (en) | 2002-12-16 | 2007-07-24 | Agilent Technologies, Inc. | Method and apparatus for microarray fabrication |
US20040191810A1 (en) | 2002-12-17 | 2004-09-30 | Affymetrix, Inc. | Immersed microarrays in conical wells |
GB0229443D0 (en) | 2002-12-18 | 2003-01-22 | Avecia Ltd | Process |
US7960157B2 (en) | 2002-12-20 | 2011-06-14 | Agilent Technologies, Inc. | DNA polymerase blends and uses thereof |
US7737089B2 (en) | 2002-12-23 | 2010-06-15 | Febit Holding Gmbh | Photoactivatable two-stage protective groups for the synthesis of biopolymers |
DE10260805A1 (de) | 2002-12-23 | 2004-07-22 | Geneart Gmbh | Verfahren und Vorrichtung zum Optimieren einer Nucleotidsequenz zur Expression eines Proteins |
DE03808546T1 (de) | 2002-12-23 | 2006-01-26 | Agilent Technologies, Inc., Palo Alto | Vergleichende genomischehybridisierungstests unter verwendung von merkmalen immobilisierteroligonukleotide sowie zusammensetzungen zur durchführung davon |
US7372982B2 (en) | 2003-01-14 | 2008-05-13 | Agilent Technologies, Inc. | User interface for molecular array feature analysis |
US6809277B2 (en) | 2003-01-22 | 2004-10-26 | Agilent Technologies, Inc. | Method for registering a deposited material with channel plate channels, and switch produced using same |
DE602004036672C5 (de) | 2003-01-29 | 2012-11-29 | 454 Life Sciences Corporation | Nukleinsäureamplifikation auf Basis von Kügelchenemulsion |
US8073626B2 (en) | 2003-01-31 | 2011-12-06 | Agilent Technologies, Inc. | Biopolymer array reading |
US7202264B2 (en) | 2003-01-31 | 2007-04-10 | Isis Pharmaceuticals, Inc. | Supports for oligomer synthesis |
US6950756B2 (en) | 2003-02-05 | 2005-09-27 | Agilent Technologies, Inc. | Rearrangement of microarray scan images to form virtual arrays |
GB2398383B (en) | 2003-02-12 | 2005-03-09 | Global Genomics Ab | Method and means for nucleic acid sequencing |
US7413709B2 (en) | 2003-02-12 | 2008-08-19 | Agilent Technologies, Inc. | PAEK-based microfluidic device with integrated electrospray emitter |
US7244513B2 (en) | 2003-02-21 | 2007-07-17 | Nano-Proprietary, Inc. | Stain-etched silicon powder |
US7070932B2 (en) | 2003-02-25 | 2006-07-04 | Agilent Technologies, Inc. | Methods and devices for detecting printhead misalignment of an in situ polymeric array synthesis device |
US7252938B2 (en) | 2003-02-25 | 2007-08-07 | Agilent Technologies, Inc. | Methods and devices for producing a polymer at a location of a substrate |
US6977223B2 (en) | 2003-03-07 | 2005-12-20 | Massachusetts Institute Of Technology | Three dimensional microfabrication |
US20050053968A1 (en) | 2003-03-31 | 2005-03-10 | Council Of Scientific And Industrial Research | Method for storing information in DNA |
EP1613776A1 (en) | 2003-04-02 | 2006-01-11 | Blue Heron Biotechnology, Inc. | Error reduction in automated gene synthesis |
US7534561B2 (en) | 2003-04-02 | 2009-05-19 | Agilent Technologies, Inc. | Nucleic acid array in situ fabrication methods and arrays produced using the same |
US20040219663A1 (en) | 2003-04-30 | 2004-11-04 | Page Robert D. | Biopolymer array fabrication using different drop deposition heads |
US7206439B2 (en) | 2003-04-30 | 2007-04-17 | Agilent Technologies, Inc. | Feature locations in array reading |
US7269518B2 (en) | 2003-04-30 | 2007-09-11 | Agilent Technologies, Inc. | Chemical array reading |
US6916113B2 (en) | 2003-05-16 | 2005-07-12 | Agilent Technologies, Inc. | Devices and methods for fluid mixing |
CA2526368A1 (en) | 2003-05-20 | 2004-12-02 | Fluidigm Corporation | Method and system for microfluidic device and imaging thereof |
CA2531197A1 (en) | 2003-05-30 | 2005-01-06 | The Board Of Trustees Of The University Of Illinois | Gene expression profiles that identify genetically elite ungulate mammals |
US7276599B2 (en) | 2003-06-02 | 2007-10-02 | Isis Pharmaceuticals, Inc. | Oligonucleotide synthesis with alternative solvents |
US8133670B2 (en) | 2003-06-13 | 2012-03-13 | Cold Spring Harbor Laboratory | Method for making populations of defined nucleic acid molecules |
US6938476B2 (en) | 2003-06-25 | 2005-09-06 | Agilent Technologies, Inc. | Apparatus and methods for sensing fluid levels |
US20050016851A1 (en) | 2003-07-24 | 2005-01-27 | Jensen Klavs F. | Microchemical method and apparatus for synthesis and coating of colloidal nanoparticles |
US6843281B1 (en) | 2003-07-30 | 2005-01-18 | Agilent Techinologies, Inc. | Methods and apparatus for introducing liquids into microfluidic chambers |
US7353116B2 (en) | 2003-07-31 | 2008-04-01 | Agilent Technologies, Inc. | Chemical array with test dependent signal reading or processing |
WO2005014850A2 (en) | 2003-08-06 | 2005-02-17 | University Of Massachusetts | Systems and methods for analyzing nucleic acid sequences |
US7028536B2 (en) | 2004-06-29 | 2006-04-18 | Nanostream, Inc. | Sealing interface for microfluidic device |
US7348144B2 (en) | 2003-08-13 | 2008-03-25 | Agilent Technologies, Inc. | Methods and system for multi-drug treatment discovery |
US7229497B2 (en) | 2003-08-26 | 2007-06-12 | Massachusetts Institute Of Technology | Method of preparing nanocrystals |
US7427679B2 (en) | 2003-08-30 | 2008-09-23 | Agilent Technologies, Inc. | Precursors for two-step polynucleotide synthesis |
US7193077B2 (en) | 2003-08-30 | 2007-03-20 | Agilent Technologies, Inc. | Exocyclic amine triaryl methyl protecting groups in two-step polynucleotide synthesis |
US7385050B2 (en) | 2003-08-30 | 2008-06-10 | Agilent Technologies, Inc. | Cleavable linker for polynucleotide synthesis |
US7417139B2 (en) | 2003-08-30 | 2008-08-26 | Agilent Technologies, Inc. | Method for polynucleotide synthesis |
US7585970B2 (en) | 2003-08-30 | 2009-09-08 | Agilent Technologies, Inc. | Method of polynucleotide synthesis using modified support |
US20050049796A1 (en) | 2003-09-03 | 2005-03-03 | Webb Peter G. | Methods for encoding non-biological information on microarrays |
EP2325339A3 (en) | 2003-09-09 | 2011-11-02 | Integrigen, Inc. | Methods and compositions for generation of germline human antibody genes |
US20050112636A1 (en) | 2003-09-23 | 2005-05-26 | Atom Sciences | Polymeric nucleic acid hybridization probes |
US7488607B2 (en) | 2003-09-30 | 2009-02-10 | Agilent Technologies, Inc. | Electronically readable microarray with electronic addressing function |
US7147362B2 (en) | 2003-10-15 | 2006-12-12 | Agilent Technologies, Inc. | Method of mixing by intermittent centrifugal force |
US7075161B2 (en) | 2003-10-23 | 2006-07-11 | Agilent Technologies, Inc. | Apparatus and method for making a low capacitance artificial nanopore |
WO2005043154A2 (en) | 2003-10-27 | 2005-05-12 | Massachusetts Institute Of Technology | High density reaction chambers and methods of use |
US7169560B2 (en) | 2003-11-12 | 2007-01-30 | Helicos Biosciences Corporation | Short cycle methods for sequencing polynucleotides |
US7276338B2 (en) | 2003-11-17 | 2007-10-02 | Jacobson Joseph M | Nucleotide sequencing via repetitive single molecule hybridization |
DE10353887A1 (de) | 2003-11-18 | 2005-06-16 | Febit Ag | Hochparalleler DNA-Synthesizer auf Matrizenbasis |
US7851192B2 (en) | 2004-11-22 | 2010-12-14 | New England Biolabs, Inc. | Modified DNA cleavage enzymes and methods for use |
US7282705B2 (en) | 2003-12-19 | 2007-10-16 | Agilent Technologies, Inc. | Microdevice having an annular lining for producing an electrospray emitter |
US20110059865A1 (en) | 2004-01-07 | 2011-03-10 | Mark Edward Brennan Smith | Modified Molecular Arrays |
US7084180B2 (en) | 2004-01-28 | 2006-08-01 | Velocys, Inc. | Fischer-tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor |
ES2432040T3 (es) | 2004-01-28 | 2013-11-29 | 454 Life Sciences Corporation | Amplificación de ácido nucleico con emulsión de flujo continuo |
DE602005018166D1 (de) | 2004-02-12 | 2010-01-21 | Population Genetics Technologi | Genetische analyse mittels sequenzspezifischem sortieren |
US7125488B2 (en) | 2004-02-12 | 2006-10-24 | Varian, Inc. | Polar-modified bonded phase materials for chromatographic separations |
WO2005089110A2 (en) | 2004-02-27 | 2005-09-29 | President And Fellows Of Harvard College | Polynucleotide synthesis |
US7875463B2 (en) | 2004-03-26 | 2011-01-25 | Agilent Technologies, Inc. | Generalized pulse jet ejection head control model |
US20050214779A1 (en) | 2004-03-29 | 2005-09-29 | Peck Bill J | Methods for in situ generation of nucleic acid arrays |
US8825411B2 (en) | 2004-05-04 | 2014-09-02 | Dna Twopointo, Inc. | Design, synthesis and assembly of synthetic nucleic acids |
EP1747294A2 (en) | 2004-05-11 | 2007-01-31 | Wyeth a Corporation of the State of Delaware | Novel polynucleotides related to oligonucleotide arrays to monitor gene expression |
DK1773978T3 (da) | 2004-05-19 | 2014-05-26 | Univ Pittsburgh | Perfunderede, tredimensionelle celle/vævssygdomsmodeller |
US7302348B2 (en) | 2004-06-02 | 2007-11-27 | Agilent Technologies, Inc. | Method and system for quantifying and removing spatial-intensity trends in microarray data |
US20060024711A1 (en) | 2004-07-02 | 2006-02-02 | Helicos Biosciences Corporation | Methods for nucleic acid amplification and sequence determination |
BRPI0513155B1 (pt) | 2004-07-06 | 2021-07-20 | Bioren, Inc. | Método de distinguir um ou mais resíduos de aminoácido funcionais dos resíduos de aminoácido não-funcionais em uma região definida dentro de um polipeptídeo, método de gerar uma biblioteca de análogos de polipeptídeo e método de identificar um subconjunto de análogos de polipeptídeo tendo uma propriedade desejada |
WO2006014533A2 (en) | 2004-07-07 | 2006-02-09 | Home Guardian Llc | Instrumented mobility assistance device |
US7811753B2 (en) | 2004-07-14 | 2010-10-12 | Ibis Biosciences, Inc. | Methods for repairing degraded DNA |
US20060012793A1 (en) | 2004-07-19 | 2006-01-19 | Helicos Biosciences Corporation | Apparatus and methods for analyzing samples |
US7276720B2 (en) | 2004-07-19 | 2007-10-02 | Helicos Biosciences Corporation | Apparatus and methods for analyzing samples |
US20060019084A1 (en) | 2004-07-23 | 2006-01-26 | Pearson Laurence T | Monolithic composition and method |
US20060024678A1 (en) | 2004-07-28 | 2006-02-02 | Helicos Biosciences Corporation | Use of single-stranded nucleic acid binding proteins in sequencing |
EP1776460B8 (de) | 2004-08-03 | 2014-02-26 | Geneart Ag | Verfahren zur modulation der genexpression durch änderung des cpg gehalts |
WO2006073504A2 (en) | 2004-08-04 | 2006-07-13 | President And Fellows Of Harvard College | Wobble sequencing |
WO2006018044A1 (en) | 2004-08-18 | 2006-02-23 | Agilent Technologies, Inc. | Microfluidic assembly with coupled microfluidic devices |
US7034290B2 (en) | 2004-09-24 | 2006-04-25 | Agilent Technologies, Inc. | Target support with pattern recognition sites |
US7943046B2 (en) | 2004-10-01 | 2011-05-17 | Agilent Technologies, Inc | Methods and systems for on-column protein delipidation |
US20070122817A1 (en) | 2005-02-28 | 2007-05-31 | George Church | Methods for assembly of high fidelity synthetic polynucleotides |
AU2005295351A1 (en) | 2004-10-18 | 2006-04-27 | Codon Devices, Inc. | Methods for assembly of high fidelity synthetic polynucleotides |
US7141807B2 (en) | 2004-10-22 | 2006-11-28 | Agilent Technologies, Inc. | Nanowire capillaries for mass spectrometry |
US20060110744A1 (en) | 2004-11-23 | 2006-05-25 | Sampas Nicolas M | Probe design methods and microarrays for comparative genomic hybridization and location analysis |
US8380441B2 (en) | 2004-11-30 | 2013-02-19 | Agilent Technologies, Inc. | Systems for producing chemical array layouts |
US7977119B2 (en) | 2004-12-08 | 2011-07-12 | Agilent Technologies, Inc. | Chemical arrays and methods of using the same |
US7439272B2 (en) | 2004-12-20 | 2008-10-21 | Varian, Inc. | Ultraporous sol gel monoliths |
EP1841788A4 (en) | 2004-12-22 | 2009-01-21 | Univ Singapore | NEW TOXIN FROM A SERPENT |
JP2008526259A (ja) | 2005-01-13 | 2008-07-24 | コドン デバイシズ インコーポレイテッド | 蛋白質デザインのための組成物及び方法 |
US20060171855A1 (en) | 2005-02-03 | 2006-08-03 | Hongfeng Yin | Devices,systems and methods for multi-dimensional separation |
US20090088679A1 (en) | 2005-02-07 | 2009-04-02 | Massachusetts Institute Of Technology | Electronically-Degradable Layer-by-Layer Thin Films |
US7393665B2 (en) | 2005-02-10 | 2008-07-01 | Population Genetics Technologies Ltd | Methods and compositions for tagging and identifying polynucleotides |
US20060203236A1 (en) | 2005-03-08 | 2006-09-14 | Zhenghua Ji | Sample cell |
EP1623763A1 (en) | 2005-03-11 | 2006-02-08 | Agilent Technologies, Inc. | Chip with cleaning cavity |
US7618777B2 (en) | 2005-03-16 | 2009-11-17 | Agilent Technologies, Inc. | Composition and method for array hybridization |
US20060219637A1 (en) | 2005-03-29 | 2006-10-05 | Killeen Kevin P | Devices, systems and methods for liquid chromatography |
EP1874792B1 (en) | 2005-04-27 | 2016-04-13 | Sigma-Aldrich Co. LLC | Activators for oligonucleotide and phosphoramidite synthesis |
US7572907B2 (en) | 2005-04-29 | 2009-08-11 | Agilent Technologies, Inc. | Methods and compounds for polynucleotide synthesis |
DE602006015633D1 (de) | 2005-04-29 | 2010-09-02 | Synthetic Genomics Inc | Amplifikation und klonierung einzelner dna-moleküle mittels rolling-circle-amplifikation |
US7396676B2 (en) | 2005-05-31 | 2008-07-08 | Agilent Technologies, Inc. | Evanescent wave sensor with attached ligand |
CA2611671C (en) | 2005-06-15 | 2013-10-08 | Callida Genomics, Inc. | Single molecule arrays for genetic and chemical analysis |
US7919239B2 (en) | 2005-07-01 | 2011-04-05 | Agilent Technologies, Inc. | Increasing hybridization efficiencies |
US8076064B2 (en) | 2005-07-09 | 2011-12-13 | Agilent Technologies, Inc. | Method of treatment of RNA sample |
US7718365B2 (en) | 2005-07-09 | 2010-05-18 | Agilent Technologies, Inc. | Microarray analysis of RNA |
WO2007018601A1 (en) | 2005-08-02 | 2007-02-15 | Rubicon Genomics, Inc. | Compositions and methods for processing and amplification of dna, including using multiple enzymes in a single reaction |
DE102005037351B3 (de) | 2005-08-08 | 2007-01-11 | Geneart Ag | Verfahren für die kontinuierliche zielgerichtete Evolution von Proteinen in vitro |
US9404882B2 (en) | 2005-08-11 | 2016-08-02 | New Mexico Tech Research Foundation | Method of producing a multi-microchannel, flow-through element and device using same |
US7749701B2 (en) | 2005-08-11 | 2010-07-06 | Agilent Technologies, Inc. | Controlling use of oligonucleotide sequences released from arrays |
DK2239327T3 (en) | 2005-08-11 | 2015-05-18 | Synthetic Genomics Inc | A method for in vitro recombination |
CA2618699C (en) | 2005-08-11 | 2012-10-02 | J. Craig Venter Institute, Inc. | In vitro recombination method |
US7805252B2 (en) | 2005-08-16 | 2010-09-28 | Dna Twopointo, Inc. | Systems and methods for designing and ordering polynucleotides |
WO2007025059A1 (en) | 2005-08-26 | 2007-03-01 | Surmodics, Inc. | Silane coating compositions, coating systems, and methods |
US20100233429A1 (en) | 2005-09-16 | 2010-09-16 | Yamatake Corporation | Substrate for Biochip, Biochip, Method for Manufacturing Substrate for Biochip and Method for Manufacturing Biochip |
US20080308884A1 (en) | 2005-10-13 | 2008-12-18 | Silex Microsystems Ab | Fabrication of Inlet and Outlet Connections for Microfluidic Chips |
US8202985B2 (en) | 2005-10-31 | 2012-06-19 | Agilent Technologies, Inc. | Monomer compositions for the synthesis of polynucleotides, methods of synthesis, and methods of deprotection |
US7368550B2 (en) | 2005-10-31 | 2008-05-06 | Agilent Technologies, Inc. | Phosphorus protecting groups |
US8552174B2 (en) | 2005-10-31 | 2013-10-08 | Agilent Technologies, Inc. | Solutions, methods, and processes for deprotection of polynucleotides |
US7759471B2 (en) | 2005-10-31 | 2010-07-20 | Agilent Technologies, Inc. | Monomer compositions for the synthesis of RNA, methods of synthesis, and methods of deprotection |
GB0522310D0 (en) | 2005-11-01 | 2005-12-07 | Solexa Ltd | Methods of preparing libraries of template polynucleotides |
US7291471B2 (en) | 2005-11-21 | 2007-11-06 | Agilent Technologies, Inc. | Cleavable oligonucleotide arrays |
GB0524069D0 (en) | 2005-11-25 | 2006-01-04 | Solexa Ltd | Preparation of templates for solid phase amplification |
US8137936B2 (en) | 2005-11-29 | 2012-03-20 | Macevicz Stephen C | Selected amplification of polynucleotides |
EP1989318B1 (en) | 2006-01-06 | 2014-07-30 | Agilent Technologies, Inc. | Reaction buffer composition for nucleic acid replication with packed dna polymerases |
EP1987162A4 (en) | 2006-01-23 | 2009-11-25 | Population Genetics Technologi | NUCLEIC ACID ANALYSIS ABOUT SEQUENCE TOKENS |
WO2007087377A2 (en) | 2006-01-25 | 2007-08-02 | Massachusetts Institute Of Technology | Photoelectrochemical synthesis of high density combinatorial polymer arrays |
US9274108B2 (en) | 2006-02-06 | 2016-03-01 | Massachusetts Institute Of Technology | Self-assembly of macromolecules on multilayered polymer surfaces |
WO2007095171A2 (en) | 2006-02-14 | 2007-08-23 | Massachusetts Institute Of Technology | Absorbing film |
US7807356B2 (en) | 2006-03-09 | 2010-10-05 | Agilent Technologies, Inc. | Labeled nucleotide composition |
US7572908B2 (en) | 2006-03-23 | 2009-08-11 | Agilent Technologies, Inc. | Cleavable linkers for polynucleotides |
US7855281B2 (en) | 2006-03-23 | 2010-12-21 | Agilent Technologies, Inc. | Cleavable thiocarbonate linkers for polynucleotide synthesis |
US20070231800A1 (en) | 2006-03-28 | 2007-10-04 | Agilent Technologies, Inc. | Determination of methylated DNA |
US20070238106A1 (en) | 2006-04-07 | 2007-10-11 | Agilent Technologies, Inc. | Systems and methods of determining alleles and/or copy numbers |
US8058055B2 (en) | 2006-04-07 | 2011-11-15 | Agilent Technologies, Inc. | High resolution chromosomal mapping |
US20070238104A1 (en) | 2006-04-07 | 2007-10-11 | Agilent Technologies, Inc. | Competitive oligonucleotides |
US20070238108A1 (en) | 2006-04-07 | 2007-10-11 | Agilent Technologies, Inc. | Validation of comparative genomic hybridization |
EP2010678A2 (en) | 2006-04-11 | 2009-01-07 | New England Biolabs, Inc. | Repair of nucleic acids for improved amplification |
JP2009538123A (ja) | 2006-04-19 | 2009-11-05 | アプライド バイオシステムズ, エルエルシー | ゲル非含有ビーズベースの配列決定のための試薬、方法およびライブラリー |
US8383338B2 (en) | 2006-04-24 | 2013-02-26 | Roche Nimblegen, Inc. | Methods and systems for uniform enrichment of genomic regions |
US20070259345A1 (en) | 2006-05-03 | 2007-11-08 | Agilent Technologies, Inc. | Target determination using compound probes |
US20070259346A1 (en) | 2006-05-03 | 2007-11-08 | Agilent Technologies, Inc. | Analysis of arrays |
US20070259347A1 (en) | 2006-05-03 | 2007-11-08 | Agilent Technologies, Inc. | Methods of increasing the effective probe densities of arrays |
US20070259344A1 (en) | 2006-05-03 | 2007-11-08 | Agilent Technologies, Inc. | Compound probes and methods of increasing the effective probe densities of arrays |
US20090087840A1 (en) | 2006-05-19 | 2009-04-02 | Codon Devices, Inc. | Combined extension and ligation for nucleic acid assembly |
WO2007137242A2 (en) | 2006-05-19 | 2007-11-29 | Massachusetts Institute Of Technology | Microfluidic-based gene synthesis |
WO2008054543A2 (en) | 2006-05-20 | 2008-05-08 | Codon Devices, Inc. | Oligonucleotides for multiplex nucleic acid assembly |
ES2551577T3 (es) | 2006-06-19 | 2015-11-20 | Yeda Research And Development Company Limited | Alargamiento Iterado Programable: Un método para elaborar genes sintéticos y ADN combinatorio y librerías de proteína |
AT503861B1 (de) | 2006-07-05 | 2008-06-15 | F Star Biotech Forsch & Entw | Verfahren zur manipulation von t-zell-rezeptoren |
US20080193772A1 (en) | 2006-07-07 | 2008-08-14 | Bio-Rad Laboratories, Inc | Mass spectrometry probes having hydrophobic coatiings |
US7524942B2 (en) | 2006-07-31 | 2009-04-28 | Agilent Technologies, Inc. | Labeled nucleotide composition |
US9328378B2 (en) | 2006-07-31 | 2016-05-03 | Illumina Cambridge Limited | Method of library preparation avoiding the formation of adaptor dimers |
US7572585B2 (en) | 2006-07-31 | 2009-08-11 | Agilent Technologies, Inc. | Enzymatic labeling of RNA |
SI2056845T1 (en) | 2006-08-08 | 2018-02-28 | Rheinische Friedrich-Wilhelms-Universitaet Bonn | STRUCTURE AND USE 5 'PHOSPHATE OF OLIGONUCLEOTES |
DE102006039479A1 (de) | 2006-08-23 | 2008-03-06 | Febit Biotech Gmbh | Programmierbare Oligonukleotidsynthese |
WO2008023179A2 (en) | 2006-08-24 | 2008-02-28 | Solexa Limited | Method for retaining even coverage of short insert libraries |
US8415138B2 (en) | 2006-08-31 | 2013-04-09 | Agilent Technologies, Inc. | Apparatuses and methods for oligonucleotide preparation |
US8053191B2 (en) | 2006-08-31 | 2011-11-08 | Westend Asset Clearinghouse Company, Llc | Iterative nucleic acid assembly using activation of vector-encoded traits |
US8097711B2 (en) | 2006-09-02 | 2012-01-17 | Agilent Technologies, Inc. | Thioether substituted aryl carbonate protecting groups |
US20080311628A1 (en) | 2006-10-03 | 2008-12-18 | Ghc Technologies, Inc. | Methods and compositions for rapid amplification and capture of nucleic acid sequences |
EP2078077A2 (en) | 2006-10-04 | 2009-07-15 | Codon Devices, Inc | Nucleic acid libraries and their design and assembly |
US20080085511A1 (en) | 2006-10-05 | 2008-04-10 | Peck Bill J | Preparation of biopolymer arrays |
US20080085514A1 (en) | 2006-10-10 | 2008-04-10 | Peck Bill J | Methods and devices for array synthesis |
US7867782B2 (en) | 2006-10-19 | 2011-01-11 | Agilent Technologies, Inc. | Nanoscale moiety placement methods |
US7999087B2 (en) | 2006-11-15 | 2011-08-16 | Agilent Technologies, Inc. | 2′-silyl containing thiocarbonate protecting groups for RNA synthesis |
WO2008063135A1 (en) | 2006-11-24 | 2008-05-29 | Agency For Science, Technology And Research | Apparatus for processing a sample in a liquid droplet and method of using the same |
US8242258B2 (en) | 2006-12-03 | 2012-08-14 | Agilent Technologies, Inc. | Protecting groups for RNA synthesis |
US7989396B2 (en) | 2006-12-05 | 2011-08-02 | The Board Of Trustees Of The Leland Stanford Junior University | Biomolecule immobilization on biosensors |
US7862999B2 (en) | 2007-01-17 | 2011-01-04 | Affymetrix, Inc. | Multiplex targeted amplification using flap nuclease |
US8314220B2 (en) | 2007-01-26 | 2012-11-20 | Agilent Technologies, Inc. | Methods compositions, and kits for detection of microRNA |
US20080182296A1 (en) * | 2007-01-31 | 2008-07-31 | Chanda Pranab K | Pcr-directed gene synthesis from large number of overlapping oligodeoxyribonucleotides |
US9029085B2 (en) | 2007-03-07 | 2015-05-12 | President And Fellows Of Harvard College | Assays and other reactions involving droplets |
US7651762B2 (en) | 2007-03-13 | 2010-01-26 | Varian, Inc. | Methods and devices using a shrinkable support for porous monolithic materials |
EP2156179B1 (en) | 2007-04-04 | 2021-08-18 | The Regents of The University of California | Methods for using a nanopore |
EP2476689B1 (en) | 2007-05-10 | 2015-10-21 | Agilent Technologies, Inc. | Thiocarbon-protecting groups for RNA synthesis |
EP2160472A1 (en) | 2007-06-04 | 2010-03-10 | IN Situ RCP A/S | Enzyme activity assay using rolling circle amplification |
US20090023190A1 (en) | 2007-06-20 | 2009-01-22 | Kai Qin Lao | Sequence amplification with loopable primers |
US20080318334A1 (en) | 2007-06-20 | 2008-12-25 | Robotti Karla M | Microfluidic devices comprising fluid flow paths having a monolithic chromatographic material |
US8194244B2 (en) | 2007-06-29 | 2012-06-05 | Intel Corporation | Solution sample plate with wells designed for improved Raman scattering signal detection efficiency |
US7659069B2 (en) | 2007-08-31 | 2010-02-09 | Agilent Technologies, Inc. | Binary signaling assay using a split-polymerase |
US8685642B2 (en) | 2007-07-30 | 2014-04-01 | Agilent Technologies, Inc. | Allele-specific copy number measurement using single nucleotide polymorphism and DNA arrays |
US7979215B2 (en) | 2007-07-30 | 2011-07-12 | Agilent Technologies, Inc. | Methods and systems for evaluating CGH candidate probe nucleic acid sequences |
US20090036664A1 (en) | 2007-07-31 | 2009-02-05 | Brian Jon Peter | Complex oligonucleotide primer mix |
EP2190988A4 (en) | 2007-08-07 | 2010-12-22 | Agency Science Tech & Res | INTEGRATED MICROFLUID DEVICE FOR GENE SYNTHESIS |
WO2009023547A2 (en) | 2007-08-14 | 2009-02-19 | Arcxis Biotechnologies | Polymer microfluidic biochip fabrication |
WO2009023257A1 (en) | 2007-08-15 | 2009-02-19 | Massachusetts Institute Of Technology | Microstructures for fluidic ballasting and flow control |
US9598737B2 (en) | 2012-05-09 | 2017-03-21 | Longhorn Vaccines And Diagnostics, Llc | Next generation genomic sequencing methods |
US20090053704A1 (en) | 2007-08-24 | 2009-02-26 | Natalia Novoradovskaya | Stabilization of nucleic acids on solid supports |
WO2009039208A1 (en) | 2007-09-17 | 2009-03-26 | Twof, Inc. | Supramolecular nanostamping printing device |
US7790387B2 (en) | 2007-09-24 | 2010-09-07 | Agilent Technologies, Inc. | Thiocarbonate linkers for polynucleotides |
AU2008307617B2 (en) | 2007-09-28 | 2013-05-23 | Pacific Biosciences Of California, Inc. | Error-free amplification of DNA for clonal sequencing |
EP2053132A1 (en) | 2007-10-23 | 2009-04-29 | Roche Diagnostics GmbH | Enrichment and sequence analysis of geomic regions |
WO2009070665A1 (en) | 2007-11-27 | 2009-06-04 | Massachusetts Institute Of Technology | Near field detector for integrated surface plasmon resonance biosensor applications |
US9286439B2 (en) | 2007-12-17 | 2016-03-15 | Yeda Research And Development Co Ltd | System and method for editing and manipulating DNA |
US9540637B2 (en) | 2008-01-09 | 2017-01-10 | Life Technologies Corporation | Nucleic acid adaptors and uses thereof |
WO2009089384A1 (en) | 2008-01-09 | 2009-07-16 | Life Technologies | Method of making a paired tag library for nucleic acid sequencing |
US7682809B2 (en) | 2008-01-11 | 2010-03-23 | Agilent Technologies, Inc. | Direct ATP release sequencing |
EP2238459B1 (en) | 2008-01-23 | 2019-05-08 | Roche Diagnostics GmbH | Integrated instrument performing synthesis and amplification |
US8304273B2 (en) | 2008-01-24 | 2012-11-06 | Massachusetts Institute Of Technology | Insulated nanogap devices and methods of use thereof |
WO2009097368A2 (en) | 2008-01-28 | 2009-08-06 | Complete Genomics, Inc. | Methods and compositions for efficient base calling in sequencing reactions |
US20090194483A1 (en) | 2008-01-31 | 2009-08-06 | Robotti Karla M | Microfluidic device having monolithic separation medium and method of use |
US8968999B2 (en) | 2008-02-15 | 2015-03-03 | Synthetic Genomics, Inc. | Methods for in vitro joining and combinatorial assembly of nucleic acid molecules |
WO2009113709A1 (ja) | 2008-03-11 | 2009-09-17 | 国立大学法人東京大学 | 粘着末端を有するdna断片の調製方法 |
US20090230044A1 (en) | 2008-03-13 | 2009-09-17 | Agilent Technologies, Inc. | Microfluid Chip Cleaning |
US20090238722A1 (en) | 2008-03-18 | 2009-09-24 | Agilent Technologies, Inc. | Pressure-Reinforced Fluidic Chip |
EP2286217B1 (en) | 2008-03-31 | 2015-02-18 | Pacific Biosciences of California, Inc. | Single molecule loading methods and compositions |
US20090246788A1 (en) | 2008-04-01 | 2009-10-01 | Roche Nimblegen, Inc. | Methods and Assays for Capture of Nucleic Acids |
US8911948B2 (en) | 2008-04-30 | 2014-12-16 | Integrated Dna Technologies, Inc. | RNase H-based assays utilizing modified RNA monomers |
JP4582224B2 (ja) | 2008-05-02 | 2010-11-17 | ソニー株式会社 | マイクロビーズ作製方法及びマイクロビーズ |
JP4667490B2 (ja) | 2008-07-09 | 2011-04-13 | 三菱電機株式会社 | 加熱調理器 |
WO2010014903A1 (en) | 2008-07-31 | 2010-02-04 | Massachusetts Institute Of Technology | Multiplexed olfactory receptor-based microsurface plasmon polariton detector |
US20100069250A1 (en) | 2008-08-16 | 2010-03-18 | The Board Of Trustees Of The Leland Stanford Junior University | Digital PCR Calibration for High Throughput Sequencing |
CA2734235C (en) | 2008-08-22 | 2019-03-26 | Sangamo Biosciences, Inc. | Methods and compositions for targeted single-stranded cleavage and targeted integration |
US8808986B2 (en) | 2008-08-27 | 2014-08-19 | Gen9, Inc. | Methods and devices for high fidelity polynucleotide synthesis |
US8034917B2 (en) | 2008-08-28 | 2011-10-11 | Agilent Technologies, Inc. | Primer-directed chromosome painting |
US8586310B2 (en) | 2008-09-05 | 2013-11-19 | Washington University | Method for multiplexed nucleic acid patch polymerase chain reaction |
CN102639552B (zh) | 2008-09-05 | 2016-05-25 | 高端学术皇家研究会/麦吉尔大学 | 含有O-缩醛乙酰丙酸酯基团(O-acetal levulinyl ester)的RNA单体及其在RNA微阵列中的应用 |
US20100129810A1 (en) | 2008-09-05 | 2010-05-27 | Life Technologies Corporation | Methods and systems for nucleic acid sequencing validation, calibration and normalization |
CA2735251C (en) | 2008-09-06 | 2017-07-11 | Chemgenes Corporation | Rna synthesis - phosphoramidites for synthetic rna in the reverse direction, and application in convenient introduction of ligands, chromophores and modifications of synthetic rna at the 3' - end |
US8541569B2 (en) | 2008-09-06 | 2013-09-24 | Chemgenes Corporation | Phosphoramidites for synthetic RNA in the reverse direction, efficient RNA synthesis and convenient introduction of 3'-end ligands, chromophores and modifications of synthetic RNA |
US20100062495A1 (en) | 2008-09-10 | 2010-03-11 | Genscript Corporation | Homologous recombination-based DNA cloning methods and compositions |
US20100076183A1 (en) | 2008-09-22 | 2010-03-25 | Dellinger Douglas J | Protected monomer and method of final deprotection for rna synthesis |
US8213015B2 (en) | 2008-09-25 | 2012-07-03 | Agilent Technologies, Inc. | Integrated flow cell with semiconductor oxide tubing |
KR20110061629A (ko) | 2008-09-30 | 2011-06-09 | 아보트 러보러터리즈 | 개선된 항체 라이브러리 |
US20100090341A1 (en) | 2008-10-14 | 2010-04-15 | Molecular Imprints, Inc. | Nano-patterned active layers formed by nano-imprint lithography |
US20100301398A1 (en) | 2009-05-29 | 2010-12-02 | Ion Torrent Systems Incorporated | Methods and apparatus for measuring analytes |
US9080211B2 (en) | 2008-10-24 | 2015-07-14 | Epicentre Technologies Corporation | Transposon end compositions and methods for modifying nucleic acids |
US8357489B2 (en) | 2008-11-13 | 2013-01-22 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for detecting hepatocellular carcinoma |
KR101881596B1 (ko) | 2008-12-02 | 2018-07-24 | 웨이브 라이프 사이언시스 재팬 인코포레이티드 | 인 원자 변형된 핵산의 합성 방법 |
US8963262B2 (en) | 2009-08-07 | 2015-02-24 | Massachusettes Institute Of Technology | Method and apparatus for forming MEMS device |
TW201104253A (en) | 2008-12-31 | 2011-02-01 | Nat Health Research Institutes | Microarray chip and method of fabricating for the same |
EP2393833A1 (en) | 2009-02-09 | 2011-12-14 | Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) | Repertoire of allo-restricted peptide-specific t cell receptor sequences and use thereof |
DK2398915T3 (en) | 2009-02-20 | 2016-12-12 | Synthetic Genomics Inc | Synthesis of nucleic acids sequence verified |
US8569046B2 (en) | 2009-02-20 | 2013-10-29 | Massachusetts Institute Of Technology | Microarray with microchannels |
KR20110136825A (ko) | 2009-03-09 | 2011-12-21 | 바이오아트라, 엘엘씨 | 미락 단백질 |
WO2010115122A2 (en) | 2009-04-03 | 2010-10-07 | Illumina, Inc. | Generation of uniform fragments of nucleic acids using patterned substrates |
US7862716B2 (en) | 2009-04-13 | 2011-01-04 | Sielc Technologies Corporation | HPLC schematic with integrated sample cleaning system |
WO2010124734A1 (en) | 2009-04-29 | 2010-11-04 | Telecom Italia S.P.A. | Method and apparatus for depositing a biological fluid onto a substrate |
US9085798B2 (en) | 2009-04-30 | 2015-07-21 | Prognosys Biosciences, Inc. | Nucleic acid constructs and methods of use |
EP2248914A1 (en) | 2009-05-05 | 2010-11-10 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | The use of class IIB restriction endonucleases in 2nd generation sequencing applications |
US9309557B2 (en) | 2010-12-17 | 2016-04-12 | Life Technologies Corporation | Nucleic acid amplification |
US20100292102A1 (en) | 2009-05-14 | 2010-11-18 | Ali Nouri | System and Method For Preventing Synthesis of Dangerous Biological Sequences |
US20100300882A1 (en) | 2009-05-26 | 2010-12-02 | General Electric Company | Devices and methods for in-line sample preparation of materials |
EP2438195B1 (en) | 2009-06-02 | 2014-12-17 | The Regents of The University of California | Virus discovery by sequencing and assembly of virus-derived sirnas, mirnas, pirnas |
US8309710B2 (en) | 2009-06-29 | 2012-11-13 | Agilent Technologies, Inc. | Use of N-alkyl imidazole for sulfurization of oligonucleotides with an acetyl disulfide |
US8642755B2 (en) | 2009-06-30 | 2014-02-04 | Agilent Technologies, Inc. | Use of thioacetic acid derivatives in the sulfurization of oligonucleotides with phenylacetyl disulfide |
GB0912909D0 (en) | 2009-07-23 | 2009-08-26 | Olink Genomics Ab | Probes for specific analysis of nucleic acids |
US8329208B2 (en) | 2009-07-28 | 2012-12-11 | Methylation Sciences International Srl | Pharmacokinetics of S-adenosylmethionine formulations |
ES2645754T3 (es) | 2009-07-30 | 2017-12-07 | F. Hoffmann-La Roche Ag | Conjunto de sondas de oligonucleótidos así como métodos y usos relacionados con el mismo |
US8298767B2 (en) | 2009-08-20 | 2012-10-30 | Population Genetics Technologies Ltd | Compositions and methods for intramolecular nucleic acid rearrangement |
US8476598B1 (en) * | 2009-08-31 | 2013-07-02 | Sionyx, Inc. | Electromagnetic radiation imaging devices and associated methods |
US20110082055A1 (en) | 2009-09-18 | 2011-04-07 | Codexis, Inc. | Reduced codon mutagenesis |
US20120184724A1 (en) | 2009-09-22 | 2012-07-19 | Agilent Technologies, Inc. | Protected monomers and methods of deprotection for rna synthesis |
WO2011038241A1 (en) | 2009-09-25 | 2011-03-31 | President And Fellows Of Harvard College | Nucleic acid amplification and sequencing by synthesis with fluorogenic nucleotides |
US8975019B2 (en) | 2009-10-19 | 2015-03-10 | University Of Massachusetts | Deducing exon connectivity by RNA-templated DNA ligation/sequencing |
EP2494062B1 (en) | 2009-10-28 | 2016-12-28 | Janssen Biotech, Inc. | Anti-glp-1r antibodies and their uses |
WO2011053957A2 (en) | 2009-11-02 | 2011-05-05 | Gen9, Inc. | Compositions and methods for the regulation of multiple genes of interest in a cell |
US10207240B2 (en) | 2009-11-03 | 2019-02-19 | Gen9, Inc. | Methods and microfluidic devices for the manipulation of droplets in high fidelity polynucleotide assembly |
US20110114549A1 (en) | 2009-11-13 | 2011-05-19 | Agilent Technolgies, Inc. | Microfluidic device comprising separation columns |
EP3597771A1 (en) | 2009-11-25 | 2020-01-22 | Gen9, Inc. | Methods and apparatuses for chip-based dna error reduction |
WO2011066185A1 (en) | 2009-11-25 | 2011-06-03 | Gen9, Inc. | Microfluidic devices and methods for gene synthesis |
US8500979B2 (en) | 2009-12-31 | 2013-08-06 | Intel Corporation | Nanogap chemical and biochemical sensors |
US9217144B2 (en) | 2010-01-07 | 2015-12-22 | Gen9, Inc. | Assembly of high fidelity polynucleotides |
US9758817B2 (en) | 2010-01-13 | 2017-09-12 | Agilent Technologies, Inc. | Method for identifying a nucleic acid in a sample |
KR101230350B1 (ko) | 2010-01-27 | 2013-02-06 | 주식회사 엘지화학 | 구조적 안정성이 우수한 전지팩 |
KR20110094878A (ko) * | 2010-02-18 | 2011-08-24 | 삼성전자주식회사 | 올리고머 어레이 제조용 조성물 및 올리고머 어레이 제조 방법 |
GB201003036D0 (en) | 2010-02-23 | 2010-04-07 | Fermentas Uab | Restriction endonucleases and their applications |
US20120027786A1 (en) | 2010-02-23 | 2012-02-02 | Massachusetts Institute Of Technology | Genetically programmable pathogen sense and destroy |
US8716467B2 (en) | 2010-03-03 | 2014-05-06 | Gen9, Inc. | Methods and devices for nucleic acid synthesis |
EP2542676A1 (en) | 2010-03-05 | 2013-01-09 | Synthetic Genomics, Inc. | Methods for cloning and manipulating genomes |
US9125790B2 (en) | 2010-04-12 | 2015-09-08 | Mayo Foundation For Medical Education And Research | System and method for alleviating freezing gait and gait hypokinesia in users with extrapyramidal disorder |
WO2011143556A1 (en) | 2010-05-13 | 2011-11-17 | Gen9, Inc. | Methods for nucleotide sequencing and high fidelity polynucleotide synthesis |
US9187777B2 (en) | 2010-05-28 | 2015-11-17 | Gen9, Inc. | Methods and devices for in situ nucleic acid synthesis |
GB2481425A (en) | 2010-06-23 | 2011-12-28 | Iti Scotland Ltd | Method and device for assembling polynucleic acid sequences |
EA201390011A1 (ru) | 2010-07-28 | 2013-07-30 | Иммьюнокор Лтд. | Т-клеточные рецепторы |
ES2523140T3 (es) | 2010-09-21 | 2014-11-21 | Population Genetics Technologies Ltd. | Aumento de la confianza en las identificaciones de alelos con el recuento molecular |
US8715933B2 (en) | 2010-09-27 | 2014-05-06 | Nabsys, Inc. | Assay methods using nicking endonucleases |
US9689012B2 (en) | 2010-10-12 | 2017-06-27 | Cornell University | Method of dual-adapter recombination for efficient concatenation of multiple DNA fragments in shuffled or specified arrangements |
WO2012154201A1 (en) | 2010-10-22 | 2012-11-15 | President And Fellows Of Harvard College | Orthogonal amplification and assembly of nucleic acid sequences |
EP2635679B1 (en) | 2010-11-05 | 2017-04-19 | Illumina, Inc. | Linking sequence reads using paired code tags |
WO2012064975A1 (en) | 2010-11-12 | 2012-05-18 | Gen9, Inc. | Protein arrays and methods of using and making the same |
AU2011338841B2 (en) | 2010-11-12 | 2017-02-16 | Gen9, Inc. | Methods and devices for nucleic acids synthesis |
EP3564392B1 (en) | 2010-12-17 | 2021-11-24 | Life Technologies Corporation | Methods for nucleic acid amplification |
US9487807B2 (en) | 2010-12-27 | 2016-11-08 | Ibis Biosciences, Inc. | Compositions and methods for producing single-stranded circular DNA |
US20120164633A1 (en) | 2010-12-27 | 2012-06-28 | Ibis Biosciences, Inc. | Digital droplet sequencing |
KR101802908B1 (ko) | 2011-03-30 | 2017-11-29 | 도레이 카부시키가이샤 | 막분취 배양기, 막분취 배양 키트, 이것을 사용한 줄기 세포 분취 방법, 및 분리막 |
US10131903B2 (en) | 2011-04-01 | 2018-11-20 | The Regents Of The University Of California | Microfluidic platform for synthetic biology applications |
US9384920B1 (en) | 2011-04-04 | 2016-07-05 | Eric J. Bakulich | Locking knob |
WO2012149171A1 (en) | 2011-04-27 | 2012-11-01 | The Regents Of The University Of California | Designing padlock probes for targeted genomic sequencing |
US8722585B2 (en) | 2011-05-08 | 2014-05-13 | Yan Wang | Methods of making di-tagged DNA libraries from DNA or RNA using double-tagged oligonucleotides |
EP2710172B1 (en) | 2011-05-20 | 2017-03-29 | Fluidigm Corporation | Nucleic acid encoding reactions |
WO2012167328A1 (en) | 2011-06-10 | 2012-12-13 | Bright Devices Group Pty Ltd | Freezing of gait cue apparatus |
US9752176B2 (en) | 2011-06-15 | 2017-09-05 | Ginkgo Bioworks, Inc. | Methods for preparative in vitro cloning |
ES2662372T3 (es) | 2011-06-21 | 2018-04-06 | Vib Vzw | Dominios de unión dirigidos contra complejos GPCR:proteína G y usos derivados de los mismos |
US9487824B2 (en) | 2011-06-28 | 2016-11-08 | Igor Kutyavin | Methods and compositions for enrichment of nucleic acids in mixtures of highly homologous sequences |
US20130045483A1 (en) | 2011-07-01 | 2013-02-21 | Whitehead Institute For Biomedical Research | Yeast cells expressing amyloid beta and uses therefor |
WO2013019361A1 (en) | 2011-07-07 | 2013-02-07 | Life Technologies Corporation | Sequencing methods |
US20130017978A1 (en) | 2011-07-11 | 2013-01-17 | Finnzymes Oy | Methods and transposon nucleic acids for generating a dna library |
US20150203839A1 (en) | 2011-08-26 | 2015-07-23 | Gen9, Inc. | Compositions and Methods for High Fidelity Assembly of Nucleic Acids |
EP2748318B1 (en) | 2011-08-26 | 2015-11-04 | Gen9, Inc. | Compositions and methods for high fidelity assembly of nucleic acids |
CN103907117B (zh) | 2011-09-01 | 2019-03-29 | 基因组编译器公司 | 用于多核苷酸构建体设计的系统和方法 |
EP2753714B1 (en) | 2011-09-06 | 2017-04-12 | Gen-Probe Incorporated | Circularized templates for sequencing |
US8840981B2 (en) | 2011-09-09 | 2014-09-23 | Eastman Kodak Company | Microfluidic device with multilayer coating |
EP3964285A1 (en) | 2011-09-26 | 2022-03-09 | Thermo Fisher Scientific Geneart GmbH | High efficiency, small volume nucleic acid synthesis |
EP2766838A2 (en) | 2011-10-11 | 2014-08-20 | Life Technologies Corporation | Systems and methods for analysis and interpretation of nucleic acid sequence data |
CA2852949A1 (en) | 2011-10-19 | 2013-04-25 | Nugen Technologies, Inc. | Compositions and methods for directional nucleic acid amplification and sequencing |
US8987174B2 (en) | 2011-10-28 | 2015-03-24 | Prognosys Biosciences, Inc. | Methods for manufacturing molecular arrays |
US8815782B2 (en) | 2011-11-11 | 2014-08-26 | Agilent Technologies, Inc. | Use of DNAzymes for analysis of an RNA sample |
US8450107B1 (en) | 2011-11-30 | 2013-05-28 | The Broad Institute Inc. | Nucleotide-specific recognition sequences for designer TAL effectors |
EP2599785A1 (en) | 2011-11-30 | 2013-06-05 | Agilent Technologies, Inc. | Novel methods for the synthesis and purification of oligomers |
US20130137173A1 (en) | 2011-11-30 | 2013-05-30 | Feng Zhang | Nucleotide-specific recognition sequences for designer tal effectors |
WO2013093693A1 (en) | 2011-12-22 | 2013-06-27 | Rinat Neuroscience Corp. | Staphylococcus aureus specific antibodies and uses thereof |
CA2862364C (en) | 2011-12-30 | 2021-02-23 | Quest Diagnostics Investments Incorporated | Nucleic acid analysis using emulsion pcr |
EP3597764A3 (en) | 2012-02-01 | 2020-05-06 | SGI-DNA, Inc. | Material and methods for the synthesis of error-minimized nucleic acid molecules |
ES2776673T3 (es) | 2012-02-27 | 2020-07-31 | Univ North Carolina Chapel Hill | Métodos y usos para etiquetas moleculares |
US9670529B2 (en) | 2012-02-28 | 2017-06-06 | Population Genetics Technologies Ltd. | Method for attaching a counter sequence to a nucleic acid sample |
US9150853B2 (en) | 2012-03-21 | 2015-10-06 | Gen9, Inc. | Methods for screening proteins using DNA encoded chemical libraries as templates for enzyme catalysis |
AU2013237989B2 (en) | 2012-03-28 | 2017-07-20 | 3M Innovative Properties Company | Reduced-pressure systems, dressings, and methods facilitating separation of electronic and clinical component parts |
RU2014144947A (ru) | 2012-04-10 | 2016-05-27 | Те Трастиз Оф Принстон Юниверсити | Ультрачувствительный сенсор |
US20150353921A9 (en) | 2012-04-16 | 2015-12-10 | Jingdong Tian | Method of on-chip nucleic acid molecule synthesis |
US20130281308A1 (en) | 2012-04-24 | 2013-10-24 | Gen9, Inc. | Methods for sorting nucleic acids and preparative in vitro cloning |
LT2841601T (lt) | 2012-04-24 | 2019-07-10 | Gen9, Inc. | Nukleorūgščių rūšiavimo būdai ir multipleksinis preparatyvinis in vitro klonavimas |
CN104736722B (zh) | 2012-05-21 | 2018-08-07 | 斯克利普斯研究所 | 样品制备方法 |
SG11201407818PA (en) | 2012-06-01 | 2014-12-30 | European Molecular Biology Lab Embl | High-capacity storage of digital information in dna |
US10308979B2 (en) | 2012-06-01 | 2019-06-04 | Agilent Technologies, Inc. | Target enrichment and labeling for multi-kilobase DNA |
US9102936B2 (en) | 2012-06-11 | 2015-08-11 | Agilent Technologies, Inc. | Method of adaptor-dimer subtraction using a CRISPR CAS6 protein |
WO2014004393A1 (en) | 2012-06-25 | 2014-01-03 | Gen9, Inc. | Methods for nucleic acid assembly and high throughput sequencing |
SG10201610861XA (en) | 2012-07-03 | 2017-02-27 | Integrated Dna Tech Inc | Tm-enhanced blocking oligonucleotides and baits for improved target enrichment and reduced off-target selection |
US9255245B2 (en) | 2012-07-03 | 2016-02-09 | Agilent Technologies, Inc. | Sample probes and methods for sampling intracellular material |
US20140038240A1 (en) | 2012-07-10 | 2014-02-06 | Pivot Bio, Inc. | Methods for multipart, modular and scarless assembly of dna molecules |
WO2014012071A1 (en) | 2012-07-12 | 2014-01-16 | Massachusetts Institute Of Technology | Methods and apparatus for assembly |
JP6239813B2 (ja) | 2012-07-18 | 2017-11-29 | 株式会社Screenセミコンダクターソリューションズ | 基板処理装置および基板処理方法 |
EP2875458A2 (en) | 2012-07-19 | 2015-05-27 | President and Fellows of Harvard College | Methods of storing information using nucleic acids |
WO2014021938A1 (en) | 2012-08-02 | 2014-02-06 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and apparatus for nucleic acid synthesis using oligo-templated polymerization |
SG10201808286TA (en) | 2012-08-16 | 2018-10-30 | Synthetic Genomics Inc | Digital to biological converter |
EP2890836B1 (en) | 2012-08-31 | 2019-07-17 | The Scripps Research Institute | Methods related to modulators of eukaryotic cells |
US9328376B2 (en) | 2012-09-05 | 2016-05-03 | Bio-Rad Laboratories, Inc. | Systems and methods for stabilizing droplets |
EP3252174B1 (en) | 2012-10-15 | 2020-07-01 | Life Technologies Corporation | Compositions, methods, systems and kits for target nucleic acid enrichment |
KR20140048733A (ko) | 2012-10-16 | 2014-04-24 | 삼성전자주식회사 | 다중 웰 플레이트 및 상기 다중 웰 플레이트를 이용한 표적 물질 분석 방법 |
EP2912197B1 (en) | 2012-10-24 | 2019-08-07 | Takara Bio USA, Inc. | Template switch-based methods for producing a product nucleic acid |
EP2928500B1 (en) | 2012-12-04 | 2019-03-06 | Phosphorex Inc. | Microparticles and nanoparticles having negative surface charges |
WO2014088693A1 (en) | 2012-12-06 | 2014-06-12 | Agilent Technologies, Inc. | Molecular fabrication |
EP2929048B1 (en) | 2012-12-06 | 2017-12-13 | Agilent Technologies, Inc. | Restriction enzyme-free target enrichment |
EP3561072A1 (en) | 2012-12-10 | 2019-10-30 | Resolution Bioscience, Inc. | Methods for targeted genomic analysis |
WO2014092886A2 (en) | 2012-12-10 | 2014-06-19 | Agilent Technologies, Inc. | Pairing code directed assembly |
WO2014093694A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes |
SG11201506750QA (en) | 2013-02-28 | 2015-09-29 | Univ Nanyang Tech | Method of manufacturing a device for supporting biological material growth and device therefrom |
EP2964778B1 (en) | 2013-03-05 | 2019-10-09 | Agilent Technologies, Inc. | Detection of genomic rearrangements by sequence capture |
US9580746B2 (en) | 2013-03-05 | 2017-02-28 | Agilent Technologies, Inc. | Synthesis of long fish probes |
EP2971034B1 (en) | 2013-03-13 | 2020-12-02 | Gen9, Inc. | Compositions, methods and apparatus for oligonucleotides synthesis |
WO2014160059A1 (en) | 2013-03-13 | 2014-10-02 | Gen9, Inc. | Compositions and methods for synthesis of high fidelity oligonucleotides |
IL292498A (en) | 2013-03-15 | 2022-06-01 | Gen9 Inc | Compositions and methods for multiple synthesis of nucleic acids |
EP3421613B1 (en) | 2013-03-15 | 2020-08-19 | The Board of Trustees of the Leland Stanford Junior University | Identification and use of circulating nucleic acid tumor markers |
US20140274729A1 (en) | 2013-03-15 | 2014-09-18 | Nugen Technologies, Inc. | Methods, compositions and kits for generation of stranded rna or dna libraries |
US20140274741A1 (en) | 2013-03-15 | 2014-09-18 | The Translational Genomics Research Institute | Methods to capture and sequence large fragments of dna and diagnostic methods for neuromuscular disease |
US10683536B2 (en) | 2013-04-02 | 2020-06-16 | Molecular Assemblies, Inc. | Reusable initiators for synthesizing nucleic acids |
US9771613B2 (en) | 2013-04-02 | 2017-09-26 | Molecular Assemblies, Inc. | Methods and apparatus for synthesizing nucleic acid |
US9279149B2 (en) | 2013-04-02 | 2016-03-08 | Molecular Assemblies, Inc. | Methods and apparatus for synthesizing nucleic acids |
US20150293102A1 (en) | 2013-04-13 | 2015-10-15 | Jung-Uk Shim | Detecting low-abundant analyte in microfluidic droplets |
ITRM20130278A1 (it) | 2013-05-10 | 2014-11-11 | Consiglio Nazionale Ricerche | Procedimento di fabbricazione di film autoassemblati di copolimeri a blocchi |
US20150010953A1 (en) | 2013-07-03 | 2015-01-08 | Agilent Technologies, Inc. | Method for producing a population of oligonucleotides that has reduced synthesis errors |
KR20150005062A (ko) | 2013-07-04 | 2015-01-14 | 삼성전자주식회사 | 미니-코어를 사용하는 프로세서 |
US10421957B2 (en) | 2013-07-29 | 2019-09-24 | Agilent Technologies, Inc. | DNA assembly using an RNA-programmable nickase |
US20160168564A1 (en) | 2013-07-30 | 2016-06-16 | Gen9, Inc. | Methods for the Production of Long Length Clonal Sequence Verified Nucleic Acid Constructs |
DK3030682T3 (da) | 2013-08-05 | 2020-09-14 | Twist Bioscience Corp | De novo synthesized gene libraries |
US9589445B2 (en) | 2013-08-07 | 2017-03-07 | Nike, Inc. | Activity recognition with activity reminders |
CN104371019B (zh) | 2013-08-13 | 2019-09-10 | 鸿运华宁(杭州)生物医药有限公司 | 一种能与glp-1r特异性结合的抗体及其与glp-1的融合蛋白质 |
GB201314721D0 (en) | 2013-08-16 | 2013-10-02 | Almagen Ltd | A method of selectively masking one or more sites on a surface and a method of synthesising an array of molecules |
GB2534067B (en) | 2013-08-30 | 2021-07-21 | Personalis Inc | Methods and systems for genomic analysis |
WO2015039053A2 (en) | 2013-09-14 | 2015-03-19 | Chemgenes Corporation | Highly efficient synthesis of long rna using reverse direction approach |
WO2015040075A1 (en) | 2013-09-18 | 2015-03-26 | Genome Research Limited | Genomic screening methods using rna-guided endonucleases |
US9422325B2 (en) | 2013-10-04 | 2016-08-23 | Trustees Of Tufts College | Glycosylation reactions using phenyl(trifluoroethyl)iodonium salts |
WO2015063765A1 (en) | 2013-10-29 | 2015-05-07 | Milbat - Giving Quality To Life | Walker-assist device |
BR112016012164A2 (pt) | 2013-11-26 | 2017-09-26 | Xenco Medical LLC | sistema de liberação de implante |
US20170175110A1 (en) | 2013-11-27 | 2017-06-22 | Gen9, Inc. | Libraries of Nucleic Acids and Methods for Making the Same |
JP7060317B2 (ja) | 2013-12-04 | 2022-04-26 | 中外製薬株式会社 | 化合物の濃度に応じて抗原結合能の変化する抗原結合分子及びそのライブラリ |
US20150159152A1 (en) | 2013-12-09 | 2015-06-11 | Integrated Dna Technologies, Inc. | Long nucleic acid sequences containing variable regions |
KR102447878B1 (ko) | 2013-12-17 | 2022-09-26 | 제넨테크, 인크. | Pd-1 축 결합 길항제 및 탁산을 이용한 암 치료 방법 |
GB2521387B (en) | 2013-12-18 | 2020-05-27 | Ge Healthcare Uk Ltd | Oligonucleotide data storage on solid supports |
US9587268B2 (en) | 2014-01-29 | 2017-03-07 | Agilent Technologies Inc. | Fast hybridization for next generation sequencing target enrichment |
US10287627B2 (en) | 2014-02-08 | 2019-05-14 | The Regents Of The University Of Colorado, A Body Corporate | Multiplexed linking PCR |
US10208338B2 (en) | 2014-03-03 | 2019-02-19 | Swift Biosciences, Inc. | Enhanced adaptor ligation |
WO2015195178A2 (en) | 2014-03-27 | 2015-12-23 | Canon U.S. Life Sciences, Inc. | Integration of ex situ fabricated porous polymer monoliths into fluidic chips |
CN106232906A (zh) | 2014-04-15 | 2016-12-14 | 沃尔沃建造设备有限公司 | 用于控制工程机械的发动机和液压泵的装置及其控制方法 |
GB201407852D0 (en) | 2014-05-02 | 2014-06-18 | Iontas Ltd | Preparation of libraries od protein variants expressed in eukaryotic cells and use for selecting binding molecules |
CN106536734B (zh) | 2014-05-16 | 2020-12-22 | Illumina公司 | 核酸合成技术 |
US20150361422A1 (en) | 2014-06-16 | 2015-12-17 | Agilent Technologies, Inc. | High throughput gene assembly in droplets |
US20150361423A1 (en) | 2014-06-16 | 2015-12-17 | Agilent Technologies, Inc. | High throughput gene assembly in droplets |
US10472620B2 (en) | 2014-07-01 | 2019-11-12 | General Electric Company | Method, substrate and device for separating nucleic acids |
US10870845B2 (en) | 2014-07-01 | 2020-12-22 | Global Life Sciences Solutions Operations UK Ltd | Methods for capturing nucleic acids |
US20170198268A1 (en) | 2014-07-09 | 2017-07-13 | Gen9, Inc. | Compositions and Methods for Site-Directed DNA Nicking and Cleaving |
US11254933B2 (en) | 2014-07-14 | 2022-02-22 | The Regents Of The University Of California | CRISPR/Cas transcriptional modulation |
EP3169781B1 (en) | 2014-07-15 | 2020-04-08 | Life Technologies Corporation | Compositions and methods for nucleic acid assembly |
WO2016022557A1 (en) | 2014-08-05 | 2016-02-11 | Twist Bioscience Corporation | Cell free cloning of nucleic acids |
CN107278234A (zh) | 2014-10-03 | 2017-10-20 | 生命科技公司 | 基因序列校验组合物、方法和试剂盒 |
CN113930455A (zh) | 2014-10-09 | 2022-01-14 | 生命技术公司 | Crispr寡核苷酸和基因剪辑 |
JP6722179B2 (ja) | 2014-10-10 | 2020-07-15 | インヴァイティ コーポレイションInvitae Corporation | 多重キャプチャー反応のためのユニバーサルブロッキングオリゴシステム及び改良されたハイブリダイゼーションキャプチャー方法 |
CA2964985A1 (en) | 2014-10-18 | 2016-04-21 | Girik MALIK | A biomolecule based data storage system |
CN107107058B (zh) | 2014-10-22 | 2021-08-10 | 加利福尼亚大学董事会 | 高清晰度微液滴打印机 |
US9890417B2 (en) | 2014-11-03 | 2018-02-13 | Agilent Technologies, Inc. | Signal amplification of fluorescence in situ hybridization |
US10233490B2 (en) | 2014-11-21 | 2019-03-19 | Metabiotech Corporation | Methods for assembling and reading nucleic acid sequences from mixed populations |
CN104562213A (zh) | 2014-12-26 | 2015-04-29 | 北京诺禾致源生物信息科技有限公司 | 扩增子文库及其构建方法 |
WO2016126882A1 (en) | 2015-02-04 | 2016-08-11 | Twist Bioscience Corporation | Methods and devices for de novo oligonucleic acid assembly |
WO2016126987A1 (en) | 2015-02-04 | 2016-08-11 | Twist Bioscience Corporation | Compositions and methods for synthetic gene assembly |
US9834774B2 (en) | 2015-02-11 | 2017-12-05 | Agilent Technologies, Inc. | Methods and compositions for rapid seamless DNA assembly |
EP3256624A4 (en) | 2015-02-13 | 2018-07-25 | Vaccine Research Institute of San Diego | Materials and methods to analyze rna isoforms in transcriptomes |
CN104734848A (zh) | 2015-03-02 | 2015-06-24 | 郑州轻工业学院 | 基于重组dna技术对信息进行加密与隐藏的方法及应用 |
JP2018511329A (ja) | 2015-04-01 | 2018-04-26 | ザ スクリプス リサーチ インスティテュート | Gpcrアゴニストポリペプチドに関連する方法および組成物 |
WO2016164779A1 (en) | 2015-04-10 | 2016-10-13 | University Of Washington | Integrated system for nucleic acid-based storage of digital data |
EP3283512A4 (en) | 2015-04-17 | 2018-10-03 | Distributed Bio Inc | Method for mass humanization of non-human antibodies |
US9981239B2 (en) | 2015-04-21 | 2018-05-29 | Twist Bioscience Corporation | Devices and methods for oligonucleic acid library synthesis |
EP3288973B1 (en) | 2015-04-30 | 2021-10-20 | AbCheck s.r.o. | Method for mass humanization of rabbit antibodies |
WO2016183100A1 (en) | 2015-05-11 | 2016-11-17 | Twist Bioscience Corporation | Compositions and methods for nucleic acid amplification |
WO2017011492A1 (en) | 2015-07-13 | 2017-01-19 | President And Fellows Of Harvard College | Methods for retrievable information storage using nucleic acids |
IL258164B (en) | 2015-09-18 | 2022-09-01 | Twist Bioscience Corp | Methods to regulate the activity of proteins and cells and a method for the production of nucleic acids |
US11512347B2 (en) | 2015-09-22 | 2022-11-29 | Twist Bioscience Corporation | Flexible substrates for nucleic acid synthesis |
US20180320166A1 (en) | 2015-10-01 | 2018-11-08 | University Of Washington | Multiplex pairwise assembly of dna oligonucleotides |
US20170141793A1 (en) | 2015-11-13 | 2017-05-18 | Microsoft Technology Licensing, Llc | Error correction for nucleotide data stores |
EP3384077A4 (en) | 2015-12-01 | 2019-05-08 | Twist Bioscience Corporation | FUNCTIONALIZED SURFACES AND THEIR PREPARATION |
EP3387152B1 (en) | 2015-12-08 | 2022-01-26 | Twinstrand Biosciences, Inc. | Improved adapters, methods, and compositions for duplex sequencing |
BR112018013883A2 (pt) | 2016-01-08 | 2018-12-18 | Iontas Ltd | membros de ligação com domínios de arcabouço de diversidade alterada |
GB201604492D0 (en) | 2016-03-16 | 2016-04-27 | Immatics Biotechnologies Gmbh | Transfected t-cells and t-cell receptors for use in immunotherapy against cancers |
CN109564769A (zh) | 2016-06-10 | 2019-04-02 | 特韦斯特生物科学公司 | 用于自动注释和筛选生物序列的系统和方法 |
WO2017214557A1 (en) | 2016-06-10 | 2017-12-14 | Counsyl, Inc. | Nucleic acid sequencing adapters and uses thereof |
CN110088281A (zh) | 2016-08-03 | 2019-08-02 | 特韦斯特生物科学公司 | 用于多核苷酸合成的纹理化表面 |
JP6854340B2 (ja) | 2016-08-22 | 2021-04-07 | ツイスト バイオサイエンス コーポレーション | デノボ合成された核酸ライブラリ |
US10417457B2 (en) | 2016-09-21 | 2019-09-17 | Twist Bioscience Corporation | Nucleic acid based data storage |
JP2020504709A (ja) | 2016-11-18 | 2020-02-13 | ツイスト バイオサイエンス コーポレーション | 制御された化学量論を有するポリヌクレオチドライブラリおよびその合成 |
US10907274B2 (en) | 2016-12-16 | 2021-02-02 | Twist Bioscience Corporation | Variant libraries of the immunological synapse and synthesis thereof |
CN118116478A (zh) | 2017-02-22 | 2024-05-31 | 特韦斯特生物科学公司 | 基于核酸的数据存储 |
JP7335165B2 (ja) | 2017-03-15 | 2023-08-29 | ツイスト バイオサイエンス コーポレーション | デノボ合成されたコンビナトリアル核酸ライブラリー |
CA3056388A1 (en) | 2017-03-15 | 2018-09-20 | Twist Bioscience Corporation | Variant libraries of the immunological synapse and synthesis thereof |
SG11201909918XA (en) | 2017-04-23 | 2019-11-28 | Illumina Cambridge Ltd | Compositions and methods for improving sample identification in indexed nucleic acid libraries |
WO2018231864A1 (en) | 2017-06-12 | 2018-12-20 | Twist Bioscience Corporation | Methods for seamless nucleic acid assembly |
WO2018231872A1 (en) | 2017-06-12 | 2018-12-20 | Twist Bioscience Corporation | Methods for seamless nucleic acid assembly |
US11407837B2 (en) | 2017-09-11 | 2022-08-09 | Twist Bioscience Corporation | GPCR binding proteins and synthesis thereof |
CA3079613A1 (en) | 2017-10-20 | 2019-04-25 | Twist Bioscience Corporation | Heated nanowells for polynucleotide synthesis |
WO2019136175A1 (en) | 2018-01-04 | 2019-07-11 | Twist Bioscience Corporation | Dna-based digital information storage |
AU2019270243A1 (en) | 2018-05-18 | 2021-01-07 | Twist Bioscience Corporation | Polynucleotides, reagents, and methods for nucleic acid hybridization |
WO2020139871A1 (en) | 2018-12-26 | 2020-07-02 | Twist Bioscience Corporation | Highly accurate de novo polynucleotide synthesis |
-
2016
- 2016-11-30 EP EP16871446.7A patent/EP3384077A4/en not_active Withdrawn
- 2016-11-30 US US15/365,826 patent/US9895673B2/en active Active
- 2016-11-30 CN CN201680080788.9A patent/CN108603307A/zh active Pending
- 2016-11-30 CA CA3006867A patent/CA3006867A1/en active Pending
- 2016-11-30 CN CN202211280420.0A patent/CN115920796A/zh active Pending
- 2016-11-30 WO PCT/US2016/064270 patent/WO2017095958A1/en active Application Filing
-
2018
- 2018-01-02 US US15/860,445 patent/US10384189B2/en active Active
-
2019
- 2019-04-15 US US16/384,678 patent/US10987648B2/en active Active
-
2021
- 2021-02-19 US US17/180,614 patent/US20210170356A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5688642A (en) * | 1994-12-01 | 1997-11-18 | The United States Of America As Represented By The Secretary Of The Navy | Selective attachment of nucleic acid molecules to patterned self-assembled surfaces |
EP1363125A2 (en) * | 2002-05-08 | 2003-11-19 | Gentel Corporation | Transcription factor profiling on a solid surface |
US7534563B2 (en) * | 2003-06-30 | 2009-05-19 | Agilent Technologies, Inc. | Methods for producing ligand arrays |
WO2008063134A1 (en) * | 2006-11-24 | 2008-05-29 | Agency For Science, Technology And Research | Method of producing a pattern of discriminative wettability |
WO2015054292A1 (en) * | 2013-10-07 | 2015-04-16 | Cellular Research, Inc. | Methods and systems for digitally counting features on arrays |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111589477A (zh) * | 2020-05-28 | 2020-08-28 | 韶关学院 | 一种微通道器件加工工艺 |
CN111589477B (zh) * | 2020-05-28 | 2022-04-15 | 韶关学院 | 一种微通道器件加工工艺 |
Also Published As
Publication number | Publication date |
---|---|
CA3006867A1 (en) | 2017-06-08 |
US10384189B2 (en) | 2019-08-20 |
US10987648B2 (en) | 2021-04-27 |
US20210170356A1 (en) | 2021-06-10 |
EP3384077A1 (en) | 2018-10-10 |
EP3384077A4 (en) | 2019-05-08 |
WO2017095958A1 (en) | 2017-06-08 |
CN115920796A (zh) | 2023-04-07 |
US9895673B2 (en) | 2018-02-20 |
US20180126355A1 (en) | 2018-05-10 |
US20190240636A1 (en) | 2019-08-08 |
US20170151546A1 (en) | 2017-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108603307A (zh) | 功能化表面及其制备 | |
US12056264B2 (en) | Nucleic acid based data storage | |
CN110088281A (zh) | 用于多核苷酸合成的纹理化表面 | |
US20230338913A1 (en) | Devices and methods for oligonucleic acid library synthesis | |
US11697668B2 (en) | Methods and devices for de novo oligonucleic acid assembly | |
US20220032256A1 (en) | Devices and methods for light-directed polymer synthesis | |
WO2022047076A1 (en) | Devices and methods for synthesis | |
CN112041438A (zh) | 基于dna的数字信息存储 | |
CN108698012A (zh) | 用于核酸合成的柔性基底 | |
CN116670594A (zh) | 流通池涂覆方法 | |
CN117460574A (zh) | 流通池及其制备方法 | |
CN117642225A (zh) | 流通池及其制备方法 | |
KR102723464B1 (ko) | 핵산 기반 데이터 저장 | |
JP2010024194A (ja) | o−ニトロベンジル基含有シラザン化合物及び用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |